1 (* Title: Pure/Proof/reconstruct.ML
3 Author: Stefan Berghofer, TU Muenchen
5 Reconstruction of partial proof terms.
8 signature RECONSTRUCT =
10 val quiet_mode : bool ref
11 val reconstruct_proof : Sign.sg -> term -> Proofterm.proof -> Proofterm.proof
12 val prop_of' : term list -> Proofterm.proof -> term
13 val prop_of : Proofterm.proof -> term
14 val expand_proof : Sign.sg -> (string * term option) list ->
15 Proofterm.proof -> Proofterm.proof
18 structure Reconstruct : RECONSTRUCT =
23 val quiet_mode = ref true;
24 fun message s = if !quiet_mode then () else writeln s;
26 fun vars_of t = rev (foldl_aterms
27 (fn (vs, v as Var _) => v ins vs | (vs, _) => vs) ([], t));
29 fun forall_intr (t, prop) =
30 let val (a, T) = (case t of Var ((a, _), T) => (a, T) | Free p => p)
31 in all T $ Abs (a, T, abstract_over (t, prop)) end;
33 fun forall_intr_vfs prop = foldr forall_intr prop
34 (vars_of prop @ sort (make_ord atless) (term_frees prop));
36 fun forall_intr_prf (t, prf) =
37 let val (a, T) = (case t of Var ((a, _), T) => (a, T) | Free p => p)
38 in Abst (a, SOME T, prf_abstract_over t prf) end;
40 fun forall_intr_vfs_prf prop prf = foldr forall_intr_prf prf
41 (vars_of prop @ sort (make_ord atless) (term_frees prop));
43 fun merge_envs (Envir.Envir {asol=asol1, iTs=iTs1, maxidx=maxidx1})
44 (Envir.Envir {asol=asol2, iTs=iTs2, maxidx=maxidx2}) =
45 Envir.Envir {asol=Vartab.merge (op =) (asol1, asol2),
46 iTs=Vartab.merge (op =) (iTs1, iTs2),
47 maxidx=Int.max (maxidx1, maxidx2)};
50 (**** generate constraints for proof term ****)
53 let val (env', v) = Envir.genvar "a" (env, rev Ts ---> T)
54 in (env', list_comb (v, map Bound (length Ts - 1 downto 0))) end;
56 fun mk_tvar (Envir.Envir {iTs, asol, maxidx}, s) =
57 (Envir.Envir {iTs = iTs, asol = asol, maxidx = maxidx+1},
58 TVar (("'t", maxidx+1), s));
60 fun mk_abs Ts t = Library.foldl (fn (u, T) => Abs ("", T, u)) (t, Ts);
62 fun unifyT sg env T U =
64 val Envir.Envir {asol, iTs, maxidx} = env;
65 val (iTs', maxidx') = Type.unify (Sign.tsig_of sg) (iTs, maxidx) (T, U)
66 in Envir.Envir {asol=asol, iTs=iTs', maxidx=maxidx'} end
67 handle Type.TUNIFY => error ("Non-unifiable types:\n" ^
68 Sign.string_of_typ sg T ^ "\n\n" ^ Sign.string_of_typ sg U);
70 fun chaseT (env as Envir.Envir {iTs, ...}) (T as TVar ixnS) =
71 (case Type.lookup (iTs, ixnS) of NONE => T | SOME T' => chaseT env T')
74 fun infer_type sg (env as Envir.Envir {maxidx, asol, iTs}) Ts vTs
75 (t as Const (s, T)) = if T = dummyT then (case Sign.const_type sg s of
76 NONE => error ("reconstruct_proof: No such constant: " ^ quote s)
78 let val T' = incr_tvar (maxidx + 1) T
79 in (Const (s, T'), T', vTs,
80 Envir.Envir {maxidx = maxidx + 1, asol = asol, iTs = iTs})
83 | infer_type sg env Ts vTs (t as Free (s, T)) =
84 if T = dummyT then (case Symtab.lookup (vTs, s) of
86 let val (env', T) = mk_tvar (env, [])
87 in (Free (s, T), T, Symtab.update_new ((s, T), vTs), env') end
88 | SOME T => (Free (s, T), T, vTs, env))
90 | infer_type sg env Ts vTs (Var _) = error "reconstruct_proof: internal error"
91 | infer_type sg env Ts vTs (Abs (s, T, t)) =
93 val (env', T') = if T = dummyT then mk_tvar (env, []) else (env, T);
94 val (t', U, vTs', env'') = infer_type sg env' (T' :: Ts) vTs t
95 in (Abs (s, T', t'), T' --> U, vTs', env'') end
96 | infer_type sg env Ts vTs (t $ u) =
98 val (t', T, vTs1, env1) = infer_type sg env Ts vTs t;
99 val (u', U, vTs2, env2) = infer_type sg env1 Ts vTs1 u;
100 in (case chaseT env2 T of
101 Type ("fun", [U', V]) => (t' $ u', V, vTs2, unifyT sg env2 U U')
103 let val (env3, V) = mk_tvar (env2, [])
104 in (t' $ u', V, vTs2, unifyT sg env3 T (U --> V)) end)
106 | infer_type sg env Ts vTs (t as Bound i) = (t, List.nth (Ts, i), vTs, env);
108 fun cantunify sg (t, u) = error ("Non-unifiable terms:\n" ^
109 Sign.string_of_term sg t ^ "\n\n" ^ Sign.string_of_term sg u);
111 fun decompose sg Ts (env, p as (t, u)) =
112 let fun rigrig (a, T) (b, U) uT ts us = if a <> b then cantunify sg p
113 else apsnd List.concat (foldl_map (decompose sg Ts) (uT env T U, ts ~~ us))
114 in case pairself (strip_comb o Envir.head_norm env) p of
115 ((Const c, ts), (Const d, us)) => rigrig c d (unifyT sg) ts us
116 | ((Free c, ts), (Free d, us)) => rigrig c d (unifyT sg) ts us
117 | ((Bound i, ts), (Bound j, us)) =>
118 rigrig (i, dummyT) (j, dummyT) (K o K) ts us
119 | ((Abs (_, T, t), []), (Abs (_, U, u), [])) =>
120 decompose sg (T::Ts) (unifyT sg env T U, (t, u))
121 | ((Abs (_, T, t), []), _) =>
122 decompose sg (T::Ts) (env, (t, incr_boundvars 1 u $ Bound 0))
123 | (_, (Abs (_, T, u), [])) =>
124 decompose sg (T::Ts) (env, (incr_boundvars 1 t $ Bound 0, u))
125 | _ => (env, [(mk_abs Ts t, mk_abs Ts u)])
128 fun make_constraints_cprf sg env cprf =
130 fun add_cnstrt Ts prop prf cs env vTs (t, u) =
132 val t' = mk_abs Ts t;
135 (prop, prf, cs, Pattern.unify (sg, env, [(t', u')]), vTs)
136 handle Pattern.Pattern =>
137 let val (env', cs') = decompose sg [] (env, (t', u'))
138 in (prop, prf, cs @ cs', env', vTs) end
140 cantunify sg (Envir.norm_term env t', Envir.norm_term env u')
143 fun mk_cnstrts_atom env vTs prop opTs prf =
145 val tvars = term_tvars prop;
146 val tfrees = term_tfrees prop;
147 val (prop', fmap) = Type.varify (prop, []);
148 val (env', Ts) = (case opTs of
149 NONE => foldl_map mk_tvar (env, map snd tvars @ map snd tfrees)
150 | SOME Ts => (env, Ts));
151 val prop'' = subst_TVars (map fst tvars @ map snd fmap ~~ Ts)
152 (forall_intr_vfs prop') handle UnequalLengths =>
153 error ("Wrong number of type arguments for " ^
154 quote (fst (get_name_tags [] prop prf)))
155 in (prop'', change_type (SOME Ts) prf, [], env', vTs) end;
157 fun head_norm (prop, prf, cnstrts, env, vTs) =
158 (Envir.head_norm env prop, prf, cnstrts, env, vTs);
160 fun mk_cnstrts env _ Hs vTs (PBound i) = (List.nth (Hs, i), PBound i, [], env, vTs)
161 | mk_cnstrts env Ts Hs vTs (Abst (s, opT, cprf)) =
163 val (env', T) = (case opT of
164 NONE => mk_tvar (env, []) | SOME T => (env, T));
165 val (t, prf, cnstrts, env'', vTs') =
166 mk_cnstrts env' (T::Ts) (map (incr_boundvars 1) Hs) vTs cprf;
167 in (Const ("all", (T --> propT) --> propT) $ Abs (s, T, t), Abst (s, SOME T, prf),
168 cnstrts, env'', vTs')
170 | mk_cnstrts env Ts Hs vTs (AbsP (s, SOME t, cprf)) =
172 val (t', _, vTs', env') = infer_type sg env Ts vTs t;
173 val (u, prf, cnstrts, env'', vTs'') = mk_cnstrts env' Ts (t'::Hs) vTs' cprf;
174 in (Logic.mk_implies (t', u), AbsP (s, SOME t', prf), cnstrts, env'', vTs'')
176 | mk_cnstrts env Ts Hs vTs (AbsP (s, NONE, cprf)) =
178 val (env', t) = mk_var env Ts propT;
179 val (u, prf, cnstrts, env'', vTs') = mk_cnstrts env' Ts (t::Hs) vTs cprf;
180 in (Logic.mk_implies (t, u), AbsP (s, SOME t, prf), cnstrts, env'', vTs')
182 | mk_cnstrts env Ts Hs vTs (cprf1 %% cprf2) =
183 let val (u, prf2, cnstrts, env', vTs') = mk_cnstrts env Ts Hs vTs cprf2
184 in (case head_norm (mk_cnstrts env' Ts Hs vTs' cprf1) of
185 (Const ("==>", _) $ u' $ t', prf1, cnstrts', env'', vTs'') =>
186 add_cnstrt Ts t' (prf1 %% prf2) (cnstrts' @ cnstrts)
188 | (t, prf1, cnstrts', env'', vTs'') =>
189 let val (env''', v) = mk_var env'' Ts propT
190 in add_cnstrt Ts v (prf1 %% prf2) (cnstrts' @ cnstrts)
191 env''' vTs'' (t, Logic.mk_implies (u, v))
194 | mk_cnstrts env Ts Hs vTs (cprf % SOME t) =
195 let val (t', U, vTs1, env1) = infer_type sg env Ts vTs t
196 in (case head_norm (mk_cnstrts env1 Ts Hs vTs1 cprf) of
197 (Const ("all", Type ("fun", [Type ("fun", [T, _]), _])) $ f,
198 prf, cnstrts, env2, vTs2) =>
199 let val env3 = unifyT sg env2 T U
200 in (betapply (f, t'), prf % SOME t', cnstrts, env3, vTs2)
202 | (u, prf, cnstrts, env2, vTs2) =>
203 let val (env3, v) = mk_var env2 Ts (U --> propT);
205 add_cnstrt Ts (v $ t') (prf % SOME t') cnstrts env3 vTs2
206 (u, Const ("all", (U --> propT) --> propT) $ v)
209 | mk_cnstrts env Ts Hs vTs (cprf % NONE) =
210 (case head_norm (mk_cnstrts env Ts Hs vTs cprf) of
211 (Const ("all", Type ("fun", [Type ("fun", [T, _]), _])) $ f,
212 prf, cnstrts, env', vTs') =>
213 let val (env'', t) = mk_var env' Ts T
214 in (betapply (f, t), prf % SOME t, cnstrts, env'', vTs')
216 | (u, prf, cnstrts, env', vTs') =>
218 val (env1, T) = mk_tvar (env', []);
219 val (env2, v) = mk_var env1 Ts (T --> propT);
220 val (env3, t) = mk_var env2 Ts T
222 add_cnstrt Ts (v $ t) (prf % SOME t) cnstrts env3 vTs'
223 (u, Const ("all", (T --> propT) --> propT) $ v)
225 | mk_cnstrts env _ _ vTs (prf as PThm (_, _, prop, opTs)) =
226 mk_cnstrts_atom env vTs prop opTs prf
227 | mk_cnstrts env _ _ vTs (prf as PAxm (_, prop, opTs)) =
228 mk_cnstrts_atom env vTs prop opTs prf
229 | mk_cnstrts env _ _ vTs (prf as Oracle (_, prop, opTs)) =
230 mk_cnstrts_atom env vTs prop opTs prf
231 | mk_cnstrts env _ _ vTs (Hyp t) = (t, Hyp t, [], env, vTs)
232 | mk_cnstrts _ _ _ _ _ = error "reconstruct_proof: minimal proof object"
233 in mk_cnstrts env [] [] Symtab.empty cprf end;
235 fun add_term_ixns (is, Var (i, T)) = add_typ_ixns (i ins is, T)
236 | add_term_ixns (is, Free (_, T)) = add_typ_ixns (is, T)
237 | add_term_ixns (is, Const (_, T)) = add_typ_ixns (is, T)
238 | add_term_ixns (is, t1 $ t2) = add_term_ixns (add_term_ixns (is, t1), t2)
239 | add_term_ixns (is, Abs (_, T, t)) = add_term_ixns (add_typ_ixns (is, T), t)
240 | add_term_ixns (is, _) = is;
243 (**** update list of free variables of constraints ****)
245 fun upd_constrs env cs =
247 val Envir.Envir {asol, iTs, ...} = env;
248 val dom = Vartab.foldl (uncurry (cons o fst) o Library.swap)
249 (Vartab.foldl (uncurry (cons o fst) o Library.swap) ([], asol), iTs);
250 val vran = Vartab.foldl (add_typ_ixns o apsnd (snd o snd))
251 (Vartab.foldl (add_term_ixns o apsnd (snd o snd)) ([], asol), iTs);
253 | check_cs ((u, p, vs)::ps) =
254 let val vs' = vs \\ dom;
255 in if vs = vs' then (u, p, vs)::check_cs ps
256 else (true, p, vs' union vran)::check_cs ps
260 (**** solution of constraints ****)
262 fun solve _ [] bigenv = bigenv
263 | solve sg cs bigenv =
265 fun search env [] = error ("Unsolvable constraints:\n" ^
266 Pretty.string_of (Pretty.chunks (map (fn (_, p, _) =>
267 Display.pretty_flexpair (Sign.pp sg) (pairself
268 (Envir.norm_term bigenv) p)) cs)))
269 | search env ((u, p as (t1, t2), vs)::ps) =
272 val tn1 = Envir.norm_term bigenv t1;
273 val tn2 = Envir.norm_term bigenv t2
275 if Pattern.pattern tn1 andalso Pattern.pattern tn2 then
276 ((Pattern.unify (sg, env, [(tn1, tn2)]), ps) handle Pattern.Unif =>
277 cantunify sg (tn1, tn2))
279 let val (env', cs') = decompose sg [] (env, (tn1, tn2))
280 in if cs' = [(tn1, tn2)] then
281 apsnd (cons (false, (tn1, tn2), vs)) (search env ps)
282 else search env' (map (fn q => (true, q, vs)) cs' @ ps)
285 else apsnd (cons (false, p, vs)) (search env ps);
286 val Envir.Envir {maxidx, ...} = bigenv;
287 val (env, cs') = search (Envir.empty maxidx) cs;
289 solve sg (upd_constrs env cs') (merge_envs bigenv env)
293 (**** reconstruction of proofs ****)
295 fun reconstruct_proof sg prop cprf =
297 val (cprf' % SOME prop', thawf) = freeze_thaw_prf (cprf % SOME prop);
298 val _ = message "Collecting constraints...";
299 val (t, prf, cs, env, _) = make_constraints_cprf sg
300 (Envir.empty (maxidx_of_proof cprf)) cprf';
301 val cs' = map (fn p => (true, p, op union
302 (pairself (map (fst o dest_Var) o term_vars) p))) (map (pairself (Envir.norm_term env)) ((t, prop')::cs));
303 val _ = message ("Solving remaining constraints (" ^ string_of_int (length cs') ^ ") ...");
304 val env' = solve sg cs' env
306 thawf (norm_proof env' prf)
309 fun prop_of_atom prop Ts =
310 let val (prop', fmap) = Type.varify (prop, []);
311 in subst_TVars (map fst (term_tvars prop) @ map snd fmap ~~ Ts)
312 (forall_intr_vfs prop')
315 val head_norm = Envir.head_norm (Envir.empty 0);
317 fun prop_of0 Hs (PBound i) = List.nth (Hs, i)
318 | prop_of0 Hs (Abst (s, SOME T, prf)) =
319 all T $ (Abs (s, T, prop_of0 Hs prf))
320 | prop_of0 Hs (AbsP (s, SOME t, prf)) =
321 Logic.mk_implies (t, prop_of0 (t :: Hs) prf)
322 | prop_of0 Hs (prf % SOME t) = (case head_norm (prop_of0 Hs prf) of
323 Const ("all", _) $ f => f $ t
324 | _ => error "prop_of: all expected")
325 | prop_of0 Hs (prf1 %% prf2) = (case head_norm (prop_of0 Hs prf1) of
326 Const ("==>", _) $ P $ Q => Q
327 | _ => error "prop_of: ==> expected")
328 | prop_of0 Hs (Hyp t) = t
329 | prop_of0 Hs (PThm (_, _, prop, SOME Ts)) = prop_of_atom prop Ts
330 | prop_of0 Hs (PAxm (_, prop, SOME Ts)) = prop_of_atom prop Ts
331 | prop_of0 Hs (Oracle (_, prop, SOME Ts)) = prop_of_atom prop Ts
332 | prop_of0 _ _ = error "prop_of: partial proof object";
334 val prop_of' = Pattern.eta_contract oo (Envir.beta_norm oo prop_of0);
335 val prop_of = prop_of' [];
338 (**** expand and reconstruct subproofs ****)
340 fun expand_proof sg thms prf =
342 fun expand maxidx prfs (AbsP (s, t, prf)) =
343 let val (maxidx', prfs', prf') = expand maxidx prfs prf
344 in (maxidx', prfs', AbsP (s, t, prf')) end
345 | expand maxidx prfs (Abst (s, T, prf)) =
346 let val (maxidx', prfs', prf') = expand maxidx prfs prf
347 in (maxidx', prfs', Abst (s, T, prf')) end
348 | expand maxidx prfs (prf1 %% prf2) =
350 val (maxidx', prfs', prf1') = expand maxidx prfs prf1;
351 val (maxidx'', prfs'', prf2') = expand maxidx' prfs' prf2;
352 in (maxidx'', prfs'', prf1' %% prf2') end
353 | expand maxidx prfs (prf % t) =
354 let val (maxidx', prfs', prf') = expand maxidx prfs prf
355 in (maxidx', prfs', prf' % t) end
356 | expand maxidx prfs (prf as PThm ((a, _), cprf, prop, SOME Ts)) =
358 (fn (b, NONE) => a = b
359 | (b, SOME prop') => a = b andalso prop = prop') thms)
360 then (maxidx, prfs, prf) else
363 map_proof_terms (Logic.incr_indexes ([], i)) (incr_tvar i);
364 val (maxidx', prf, prfs') = (case assoc (prfs, (a, prop)) of
367 val _ = message ("Reconstructing proof of " ^ a);
368 val _ = message (Sign.string_of_term sg prop);
369 val prf' = forall_intr_vfs_prf prop
370 (reconstruct_proof sg prop cprf);
371 val (maxidx', prfs', prf) = expand
372 (maxidx_of_proof prf') prfs prf'
373 in (maxidx' + maxidx + 1, inc (maxidx + 1) prf,
374 ((a, prop), (maxidx', prf)) :: prfs')
376 | SOME (maxidx', prf) => (maxidx' + maxidx + 1,
377 inc (maxidx + 1) prf, prfs));
378 val tfrees = term_tfrees prop;
379 val tye = map (fn ((s, j), _) => (s, maxidx + 1 + j))
380 (term_tvars prop) @ map (rpair ~1 o fst) tfrees ~~ Ts;
381 val varify = map_type_tfree (fn p as (a, S) =>
382 if p mem tfrees then TVar ((a, ~1), S) else TFree p)
384 (maxidx', prfs', map_proof_terms (subst_TVars tye o
385 map_term_types varify) (typ_subst_TVars tye o varify) prf)
387 | expand maxidx prfs prf = (maxidx, prfs, prf);
389 in #3 (expand (maxidx_of_proof prf) [] prf) end;