src/HOL/Library/Infinite_Set.thy
 author huffman Sun Feb 07 10:16:10 2010 -0800 (2010-02-07) changeset 35056 d97b5c3af6d5 parent 34941 156925dd67af child 35844 65258d2c3214 permissions -rw-r--r--
remove redundant theorem attributes
```     1 (*  Title:      HOL/Library/Infinite_Set.thy
```
```     2     Author:     Stephan Merz
```
```     3 *)
```
```     4
```
```     5 header {* Infinite Sets and Related Concepts *}
```
```     6
```
```     7 theory Infinite_Set
```
```     8 imports Main
```
```     9 begin
```
```    10
```
```    11 subsection "Infinite Sets"
```
```    12
```
```    13 text {*
```
```    14   Some elementary facts about infinite sets, mostly by Stefan Merz.
```
```    15   Beware! Because "infinite" merely abbreviates a negation, these
```
```    16   lemmas may not work well with @{text "blast"}.
```
```    17 *}
```
```    18
```
```    19 abbreviation
```
```    20   infinite :: "'a set \<Rightarrow> bool" where
```
```    21   "infinite S == \<not> finite S"
```
```    22
```
```    23 text {*
```
```    24   Infinite sets are non-empty, and if we remove some elements from an
```
```    25   infinite set, the result is still infinite.
```
```    26 *}
```
```    27
```
```    28 lemma infinite_imp_nonempty: "infinite S ==> S \<noteq> {}"
```
```    29   by auto
```
```    30
```
```    31 lemma infinite_remove:
```
```    32   "infinite S \<Longrightarrow> infinite (S - {a})"
```
```    33   by simp
```
```    34
```
```    35 lemma Diff_infinite_finite:
```
```    36   assumes T: "finite T" and S: "infinite S"
```
```    37   shows "infinite (S - T)"
```
```    38   using T
```
```    39 proof induct
```
```    40   from S
```
```    41   show "infinite (S - {})" by auto
```
```    42 next
```
```    43   fix T x
```
```    44   assume ih: "infinite (S - T)"
```
```    45   have "S - (insert x T) = (S - T) - {x}"
```
```    46     by (rule Diff_insert)
```
```    47   with ih
```
```    48   show "infinite (S - (insert x T))"
```
```    49     by (simp add: infinite_remove)
```
```    50 qed
```
```    51
```
```    52 lemma Un_infinite: "infinite S \<Longrightarrow> infinite (S \<union> T)"
```
```    53   by simp
```
```    54
```
```    55 lemma infinite_super:
```
```    56   assumes T: "S \<subseteq> T" and S: "infinite S"
```
```    57   shows "infinite T"
```
```    58 proof
```
```    59   assume "finite T"
```
```    60   with T have "finite S" by (simp add: finite_subset)
```
```    61   with S show False by simp
```
```    62 qed
```
```    63
```
```    64 text {*
```
```    65   As a concrete example, we prove that the set of natural numbers is
```
```    66   infinite.
```
```    67 *}
```
```    68
```
```    69 lemma finite_nat_bounded:
```
```    70   assumes S: "finite (S::nat set)"
```
```    71   shows "\<exists>k. S \<subseteq> {..<k}"  (is "\<exists>k. ?bounded S k")
```
```    72 using S
```
```    73 proof induct
```
```    74   have "?bounded {} 0" by simp
```
```    75   then show "\<exists>k. ?bounded {} k" ..
```
```    76 next
```
```    77   fix S x
```
```    78   assume "\<exists>k. ?bounded S k"
```
```    79   then obtain k where k: "?bounded S k" ..
```
```    80   show "\<exists>k. ?bounded (insert x S) k"
```
```    81   proof (cases "x < k")
```
```    82     case True
```
```    83     with k show ?thesis by auto
```
```    84   next
```
```    85     case False
```
```    86     with k have "?bounded S (Suc x)" by auto
```
```    87     then show ?thesis by auto
```
```    88   qed
```
```    89 qed
```
```    90
```
```    91 lemma finite_nat_iff_bounded:
```
```    92   "finite (S::nat set) = (\<exists>k. S \<subseteq> {..<k})"  (is "?lhs = ?rhs")
```
```    93 proof
```
```    94   assume ?lhs
```
```    95   then show ?rhs by (rule finite_nat_bounded)
```
```    96 next
```
```    97   assume ?rhs
```
```    98   then obtain k where "S \<subseteq> {..<k}" ..
```
```    99   then show "finite S"
```
```   100     by (rule finite_subset) simp
```
```   101 qed
```
```   102
```
```   103 lemma finite_nat_iff_bounded_le:
```
```   104   "finite (S::nat set) = (\<exists>k. S \<subseteq> {..k})"  (is "?lhs = ?rhs")
```
```   105 proof
```
```   106   assume ?lhs
```
```   107   then obtain k where "S \<subseteq> {..<k}"
```
```   108     by (blast dest: finite_nat_bounded)
```
```   109   then have "S \<subseteq> {..k}" by auto
```
```   110   then show ?rhs ..
```
```   111 next
```
```   112   assume ?rhs
```
```   113   then obtain k where "S \<subseteq> {..k}" ..
```
```   114   then show "finite S"
```
```   115     by (rule finite_subset) simp
```
```   116 qed
```
```   117
```
```   118 lemma infinite_nat_iff_unbounded:
```
```   119   "infinite (S::nat set) = (\<forall>m. \<exists>n. m<n \<and> n\<in>S)"
```
```   120   (is "?lhs = ?rhs")
```
```   121 proof
```
```   122   assume ?lhs
```
```   123   show ?rhs
```
```   124   proof (rule ccontr)
```
```   125     assume "\<not> ?rhs"
```
```   126     then obtain m where m: "\<forall>n. m<n \<longrightarrow> n\<notin>S" by blast
```
```   127     then have "S \<subseteq> {..m}"
```
```   128       by (auto simp add: sym [OF linorder_not_less])
```
```   129     with `?lhs` show False
```
```   130       by (simp add: finite_nat_iff_bounded_le)
```
```   131   qed
```
```   132 next
```
```   133   assume ?rhs
```
```   134   show ?lhs
```
```   135   proof
```
```   136     assume "finite S"
```
```   137     then obtain m where "S \<subseteq> {..m}"
```
```   138       by (auto simp add: finite_nat_iff_bounded_le)
```
```   139     then have "\<forall>n. m<n \<longrightarrow> n\<notin>S" by auto
```
```   140     with `?rhs` show False by blast
```
```   141   qed
```
```   142 qed
```
```   143
```
```   144 lemma infinite_nat_iff_unbounded_le:
```
```   145   "infinite (S::nat set) = (\<forall>m. \<exists>n. m\<le>n \<and> n\<in>S)"
```
```   146   (is "?lhs = ?rhs")
```
```   147 proof
```
```   148   assume ?lhs
```
```   149   show ?rhs
```
```   150   proof
```
```   151     fix m
```
```   152     from `?lhs` obtain n where "m<n \<and> n\<in>S"
```
```   153       by (auto simp add: infinite_nat_iff_unbounded)
```
```   154     then have "m\<le>n \<and> n\<in>S" by simp
```
```   155     then show "\<exists>n. m \<le> n \<and> n \<in> S" ..
```
```   156   qed
```
```   157 next
```
```   158   assume ?rhs
```
```   159   show ?lhs
```
```   160   proof (auto simp add: infinite_nat_iff_unbounded)
```
```   161     fix m
```
```   162     from `?rhs` obtain n where "Suc m \<le> n \<and> n\<in>S"
```
```   163       by blast
```
```   164     then have "m<n \<and> n\<in>S" by simp
```
```   165     then show "\<exists>n. m < n \<and> n \<in> S" ..
```
```   166   qed
```
```   167 qed
```
```   168
```
```   169 text {*
```
```   170   For a set of natural numbers to be infinite, it is enough to know
```
```   171   that for any number larger than some @{text k}, there is some larger
```
```   172   number that is an element of the set.
```
```   173 *}
```
```   174
```
```   175 lemma unbounded_k_infinite:
```
```   176   assumes k: "\<forall>m. k<m \<longrightarrow> (\<exists>n. m<n \<and> n\<in>S)"
```
```   177   shows "infinite (S::nat set)"
```
```   178 proof -
```
```   179   {
```
```   180     fix m have "\<exists>n. m<n \<and> n\<in>S"
```
```   181     proof (cases "k<m")
```
```   182       case True
```
```   183       with k show ?thesis by blast
```
```   184     next
```
```   185       case False
```
```   186       from k obtain n where "Suc k < n \<and> n\<in>S" by auto
```
```   187       with False have "m<n \<and> n\<in>S" by auto
```
```   188       then show ?thesis ..
```
```   189     qed
```
```   190   }
```
```   191   then show ?thesis
```
```   192     by (auto simp add: infinite_nat_iff_unbounded)
```
```   193 qed
```
```   194
```
```   195 (* duplicates Finite_Set.infinite_UNIV_nat *)
```
```   196 lemma nat_infinite: "infinite (UNIV :: nat set)"
```
```   197   by (auto simp add: infinite_nat_iff_unbounded)
```
```   198
```
```   199 lemma nat_not_finite: "finite (UNIV::nat set) \<Longrightarrow> R"
```
```   200   by simp
```
```   201
```
```   202 text {*
```
```   203   Every infinite set contains a countable subset. More precisely we
```
```   204   show that a set @{text S} is infinite if and only if there exists an
```
```   205   injective function from the naturals into @{text S}.
```
```   206 *}
```
```   207
```
```   208 lemma range_inj_infinite:
```
```   209   "inj (f::nat \<Rightarrow> 'a) \<Longrightarrow> infinite (range f)"
```
```   210 proof
```
```   211   assume "finite (range f)" and "inj f"
```
```   212   then have "finite (UNIV::nat set)"
```
```   213     by (rule finite_imageD)
```
```   214   then show False by simp
```
```   215 qed
```
```   216
```
```   217 lemma int_infinite [simp]:
```
```   218   shows "infinite (UNIV::int set)"
```
```   219 proof -
```
```   220   from inj_int have "infinite (range int)" by (rule range_inj_infinite)
```
```   221   moreover
```
```   222   have "range int \<subseteq> (UNIV::int set)" by simp
```
```   223   ultimately show "infinite (UNIV::int set)" by (simp add: infinite_super)
```
```   224 qed
```
```   225
```
```   226 text {*
```
```   227   The ``only if'' direction is harder because it requires the
```
```   228   construction of a sequence of pairwise different elements of an
```
```   229   infinite set @{text S}. The idea is to construct a sequence of
```
```   230   non-empty and infinite subsets of @{text S} obtained by successively
```
```   231   removing elements of @{text S}.
```
```   232 *}
```
```   233
```
```   234 lemma linorder_injI:
```
```   235   assumes hyp: "!!x y. x < (y::'a::linorder) ==> f x \<noteq> f y"
```
```   236   shows "inj f"
```
```   237 proof (rule inj_onI)
```
```   238   fix x y
```
```   239   assume f_eq: "f x = f y"
```
```   240   show "x = y"
```
```   241   proof (rule linorder_cases)
```
```   242     assume "x < y"
```
```   243     with hyp have "f x \<noteq> f y" by blast
```
```   244     with f_eq show ?thesis by simp
```
```   245   next
```
```   246     assume "x = y"
```
```   247     then show ?thesis .
```
```   248   next
```
```   249     assume "y < x"
```
```   250     with hyp have "f y \<noteq> f x" by blast
```
```   251     with f_eq show ?thesis by simp
```
```   252   qed
```
```   253 qed
```
```   254
```
```   255 lemma infinite_countable_subset:
```
```   256   assumes inf: "infinite (S::'a set)"
```
```   257   shows "\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S"
```
```   258 proof -
```
```   259   def Sseq \<equiv> "nat_rec S (\<lambda>n T. T - {SOME e. e \<in> T})"
```
```   260   def pick \<equiv> "\<lambda>n. (SOME e. e \<in> Sseq n)"
```
```   261   have Sseq_inf: "\<And>n. infinite (Sseq n)"
```
```   262   proof -
```
```   263     fix n
```
```   264     show "infinite (Sseq n)"
```
```   265     proof (induct n)
```
```   266       from inf show "infinite (Sseq 0)"
```
```   267         by (simp add: Sseq_def)
```
```   268     next
```
```   269       fix n
```
```   270       assume "infinite (Sseq n)" then show "infinite (Sseq (Suc n))"
```
```   271         by (simp add: Sseq_def infinite_remove)
```
```   272     qed
```
```   273   qed
```
```   274   have Sseq_S: "\<And>n. Sseq n \<subseteq> S"
```
```   275   proof -
```
```   276     fix n
```
```   277     show "Sseq n \<subseteq> S"
```
```   278       by (induct n) (auto simp add: Sseq_def)
```
```   279   qed
```
```   280   have Sseq_pick: "\<And>n. pick n \<in> Sseq n"
```
```   281   proof -
```
```   282     fix n
```
```   283     show "pick n \<in> Sseq n"
```
```   284     proof (unfold pick_def, rule someI_ex)
```
```   285       from Sseq_inf have "infinite (Sseq n)" .
```
```   286       then have "Sseq n \<noteq> {}" by auto
```
```   287       then show "\<exists>x. x \<in> Sseq n" by auto
```
```   288     qed
```
```   289   qed
```
```   290   with Sseq_S have rng: "range pick \<subseteq> S"
```
```   291     by auto
```
```   292   have pick_Sseq_gt: "\<And>n m. pick n \<notin> Sseq (n + Suc m)"
```
```   293   proof -
```
```   294     fix n m
```
```   295     show "pick n \<notin> Sseq (n + Suc m)"
```
```   296       by (induct m) (auto simp add: Sseq_def pick_def)
```
```   297   qed
```
```   298   have pick_pick: "\<And>n m. pick n \<noteq> pick (n + Suc m)"
```
```   299   proof -
```
```   300     fix n m
```
```   301     from Sseq_pick have "pick (n + Suc m) \<in> Sseq (n + Suc m)" .
```
```   302     moreover from pick_Sseq_gt
```
```   303     have "pick n \<notin> Sseq (n + Suc m)" .
```
```   304     ultimately show "pick n \<noteq> pick (n + Suc m)"
```
```   305       by auto
```
```   306   qed
```
```   307   have inj: "inj pick"
```
```   308   proof (rule linorder_injI)
```
```   309     fix i j :: nat
```
```   310     assume "i < j"
```
```   311     show "pick i \<noteq> pick j"
```
```   312     proof
```
```   313       assume eq: "pick i = pick j"
```
```   314       from `i < j` obtain k where "j = i + Suc k"
```
```   315         by (auto simp add: less_iff_Suc_add)
```
```   316       with pick_pick have "pick i \<noteq> pick j" by simp
```
```   317       with eq show False by simp
```
```   318     qed
```
```   319   qed
```
```   320   from rng inj show ?thesis by auto
```
```   321 qed
```
```   322
```
```   323 lemma infinite_iff_countable_subset:
```
```   324     "infinite S = (\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S)"
```
```   325   by (auto simp add: infinite_countable_subset range_inj_infinite infinite_super)
```
```   326
```
```   327 text {*
```
```   328   For any function with infinite domain and finite range there is some
```
```   329   element that is the image of infinitely many domain elements.  In
```
```   330   particular, any infinite sequence of elements from a finite set
```
```   331   contains some element that occurs infinitely often.
```
```   332 *}
```
```   333
```
```   334 lemma inf_img_fin_dom:
```
```   335   assumes img: "finite (f`A)" and dom: "infinite A"
```
```   336   shows "\<exists>y \<in> f`A. infinite (f -` {y})"
```
```   337 proof (rule ccontr)
```
```   338   assume "\<not> ?thesis"
```
```   339   with img have "finite (UN y:f`A. f -` {y})" by (blast intro: finite_UN_I)
```
```   340   moreover have "A \<subseteq> (UN y:f`A. f -` {y})" by auto
```
```   341   moreover note dom
```
```   342   ultimately show False by (simp add: infinite_super)
```
```   343 qed
```
```   344
```
```   345 lemma inf_img_fin_domE:
```
```   346   assumes "finite (f`A)" and "infinite A"
```
```   347   obtains y where "y \<in> f`A" and "infinite (f -` {y})"
```
```   348   using assms by (blast dest: inf_img_fin_dom)
```
```   349
```
```   350
```
```   351 subsection "Infinitely Many and Almost All"
```
```   352
```
```   353 text {*
```
```   354   We often need to reason about the existence of infinitely many
```
```   355   (resp., all but finitely many) objects satisfying some predicate, so
```
```   356   we introduce corresponding binders and their proof rules.
```
```   357 *}
```
```   358
```
```   359 definition
```
```   360   Inf_many :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "INFM " 10) where
```
```   361   "Inf_many P = infinite {x. P x}"
```
```   362
```
```   363 definition
```
```   364   Alm_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "MOST " 10) where
```
```   365   "Alm_all P = (\<not> (INFM x. \<not> P x))"
```
```   366
```
```   367 notation (xsymbols)
```
```   368   Inf_many  (binder "\<exists>\<^sub>\<infinity>" 10) and
```
```   369   Alm_all  (binder "\<forall>\<^sub>\<infinity>" 10)
```
```   370
```
```   371 notation (HTML output)
```
```   372   Inf_many  (binder "\<exists>\<^sub>\<infinity>" 10) and
```
```   373   Alm_all  (binder "\<forall>\<^sub>\<infinity>" 10)
```
```   374
```
```   375 lemma INFM_iff_infinite: "(INFM x. P x) \<longleftrightarrow> infinite {x. P x}"
```
```   376   unfolding Inf_many_def ..
```
```   377
```
```   378 lemma MOST_iff_cofinite: "(MOST x. P x) \<longleftrightarrow> finite {x. \<not> P x}"
```
```   379   unfolding Alm_all_def Inf_many_def by simp
```
```   380
```
```   381 (* legacy name *)
```
```   382 lemmas MOST_iff_finiteNeg = MOST_iff_cofinite
```
```   383
```
```   384 lemma not_INFM [simp]: "\<not> (INFM x. P x) \<longleftrightarrow> (MOST x. \<not> P x)"
```
```   385   unfolding Alm_all_def not_not ..
```
```   386
```
```   387 lemma not_MOST [simp]: "\<not> (MOST x. P x) \<longleftrightarrow> (INFM x. \<not> P x)"
```
```   388   unfolding Alm_all_def not_not ..
```
```   389
```
```   390 lemma INFM_const [simp]: "(INFM x::'a. P) \<longleftrightarrow> P \<and> infinite (UNIV::'a set)"
```
```   391   unfolding Inf_many_def by simp
```
```   392
```
```   393 lemma MOST_const [simp]: "(MOST x::'a. P) \<longleftrightarrow> P \<or> finite (UNIV::'a set)"
```
```   394   unfolding Alm_all_def by simp
```
```   395
```
```   396 lemma INFM_EX: "(\<exists>\<^sub>\<infinity>x. P x) \<Longrightarrow> (\<exists>x. P x)"
```
```   397   by (erule contrapos_pp, simp)
```
```   398
```
```   399 lemma ALL_MOST: "\<forall>x. P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. P x"
```
```   400   by simp
```
```   401
```
```   402 lemma INFM_E: assumes "INFM x. P x" obtains x where "P x"
```
```   403   using INFM_EX [OF assms] by (rule exE)
```
```   404
```
```   405 lemma MOST_I: assumes "\<And>x. P x" shows "MOST x. P x"
```
```   406   using assms by simp
```
```   407
```
```   408 lemma INFM_mono:
```
```   409   assumes inf: "\<exists>\<^sub>\<infinity>x. P x" and q: "\<And>x. P x \<Longrightarrow> Q x"
```
```   410   shows "\<exists>\<^sub>\<infinity>x. Q x"
```
```   411 proof -
```
```   412   from inf have "infinite {x. P x}" unfolding Inf_many_def .
```
```   413   moreover from q have "{x. P x} \<subseteq> {x. Q x}" by auto
```
```   414   ultimately show ?thesis
```
```   415     by (simp add: Inf_many_def infinite_super)
```
```   416 qed
```
```   417
```
```   418 lemma MOST_mono: "\<forall>\<^sub>\<infinity>x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> \<forall>\<^sub>\<infinity>x. Q x"
```
```   419   unfolding Alm_all_def by (blast intro: INFM_mono)
```
```   420
```
```   421 lemma INFM_disj_distrib:
```
```   422   "(\<exists>\<^sub>\<infinity>x. P x \<or> Q x) \<longleftrightarrow> (\<exists>\<^sub>\<infinity>x. P x) \<or> (\<exists>\<^sub>\<infinity>x. Q x)"
```
```   423   unfolding Inf_many_def by (simp add: Collect_disj_eq)
```
```   424
```
```   425 lemma INFM_imp_distrib:
```
```   426   "(INFM x. P x \<longrightarrow> Q x) \<longleftrightarrow> ((MOST x. P x) \<longrightarrow> (INFM x. Q x))"
```
```   427   by (simp only: imp_conv_disj INFM_disj_distrib not_MOST)
```
```   428
```
```   429 lemma MOST_conj_distrib:
```
```   430   "(\<forall>\<^sub>\<infinity>x. P x \<and> Q x) \<longleftrightarrow> (\<forall>\<^sub>\<infinity>x. P x) \<and> (\<forall>\<^sub>\<infinity>x. Q x)"
```
```   431   unfolding Alm_all_def by (simp add: INFM_disj_distrib del: disj_not1)
```
```   432
```
```   433 lemma MOST_conjI:
```
```   434   "MOST x. P x \<Longrightarrow> MOST x. Q x \<Longrightarrow> MOST x. P x \<and> Q x"
```
```   435   by (simp add: MOST_conj_distrib)
```
```   436
```
```   437 lemma INFM_conjI:
```
```   438   "INFM x. P x \<Longrightarrow> MOST x. Q x \<Longrightarrow> INFM x. P x \<and> Q x"
```
```   439   unfolding MOST_iff_cofinite INFM_iff_infinite
```
```   440   apply (drule (1) Diff_infinite_finite)
```
```   441   apply (simp add: Collect_conj_eq Collect_neg_eq)
```
```   442   done
```
```   443
```
```   444 lemma MOST_rev_mp:
```
```   445   assumes "\<forall>\<^sub>\<infinity>x. P x" and "\<forall>\<^sub>\<infinity>x. P x \<longrightarrow> Q x"
```
```   446   shows "\<forall>\<^sub>\<infinity>x. Q x"
```
```   447 proof -
```
```   448   have "\<forall>\<^sub>\<infinity>x. P x \<and> (P x \<longrightarrow> Q x)"
```
```   449     using assms by (rule MOST_conjI)
```
```   450   thus ?thesis by (rule MOST_mono) simp
```
```   451 qed
```
```   452
```
```   453 lemma MOST_imp_iff:
```
```   454   assumes "MOST x. P x"
```
```   455   shows "(MOST x. P x \<longrightarrow> Q x) \<longleftrightarrow> (MOST x. Q x)"
```
```   456 proof
```
```   457   assume "MOST x. P x \<longrightarrow> Q x"
```
```   458   with assms show "MOST x. Q x" by (rule MOST_rev_mp)
```
```   459 next
```
```   460   assume "MOST x. Q x"
```
```   461   then show "MOST x. P x \<longrightarrow> Q x" by (rule MOST_mono) simp
```
```   462 qed
```
```   463
```
```   464 lemma INFM_MOST_simps [simp]:
```
```   465   "\<And>P Q. (INFM x. P x \<and> Q) \<longleftrightarrow> (INFM x. P x) \<and> Q"
```
```   466   "\<And>P Q. (INFM x. P \<and> Q x) \<longleftrightarrow> P \<and> (INFM x. Q x)"
```
```   467   "\<And>P Q. (MOST x. P x \<or> Q) \<longleftrightarrow> (MOST x. P x) \<or> Q"
```
```   468   "\<And>P Q. (MOST x. P \<or> Q x) \<longleftrightarrow> P \<or> (MOST x. Q x)"
```
```   469   "\<And>P Q. (MOST x. P x \<longrightarrow> Q) \<longleftrightarrow> ((INFM x. P x) \<longrightarrow> Q)"
```
```   470   "\<And>P Q. (MOST x. P \<longrightarrow> Q x) \<longleftrightarrow> (P \<longrightarrow> (MOST x. Q x))"
```
```   471   unfolding Alm_all_def Inf_many_def
```
```   472   by (simp_all add: Collect_conj_eq)
```
```   473
```
```   474 text {* Properties of quantifiers with injective functions. *}
```
```   475
```
```   476 lemma INFM_inj:
```
```   477   "INFM x. P (f x) \<Longrightarrow> inj f \<Longrightarrow> INFM x. P x"
```
```   478   unfolding INFM_iff_infinite
```
```   479   by (clarify, drule (1) finite_vimageI, simp)
```
```   480
```
```   481 lemma MOST_inj:
```
```   482   "MOST x. P x \<Longrightarrow> inj f \<Longrightarrow> MOST x. P (f x)"
```
```   483   unfolding MOST_iff_cofinite
```
```   484   by (drule (1) finite_vimageI, simp)
```
```   485
```
```   486 text {* Properties of quantifiers with singletons. *}
```
```   487
```
```   488 lemma not_INFM_eq [simp]:
```
```   489   "\<not> (INFM x. x = a)"
```
```   490   "\<not> (INFM x. a = x)"
```
```   491   unfolding INFM_iff_infinite by simp_all
```
```   492
```
```   493 lemma MOST_neq [simp]:
```
```   494   "MOST x. x \<noteq> a"
```
```   495   "MOST x. a \<noteq> x"
```
```   496   unfolding MOST_iff_cofinite by simp_all
```
```   497
```
```   498 lemma INFM_neq [simp]:
```
```   499   "(INFM x::'a. x \<noteq> a) \<longleftrightarrow> infinite (UNIV::'a set)"
```
```   500   "(INFM x::'a. a \<noteq> x) \<longleftrightarrow> infinite (UNIV::'a set)"
```
```   501   unfolding INFM_iff_infinite by simp_all
```
```   502
```
```   503 lemma MOST_eq [simp]:
```
```   504   "(MOST x::'a. x = a) \<longleftrightarrow> finite (UNIV::'a set)"
```
```   505   "(MOST x::'a. a = x) \<longleftrightarrow> finite (UNIV::'a set)"
```
```   506   unfolding MOST_iff_cofinite by simp_all
```
```   507
```
```   508 lemma MOST_eq_imp:
```
```   509   "MOST x. x = a \<longrightarrow> P x"
```
```   510   "MOST x. a = x \<longrightarrow> P x"
```
```   511   unfolding MOST_iff_cofinite by simp_all
```
```   512
```
```   513 text {* Properties of quantifiers over the naturals. *}
```
```   514
```
```   515 lemma INFM_nat: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m<n \<and> P n)"
```
```   516   by (simp add: Inf_many_def infinite_nat_iff_unbounded)
```
```   517
```
```   518 lemma INFM_nat_le: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m\<le>n \<and> P n)"
```
```   519   by (simp add: Inf_many_def infinite_nat_iff_unbounded_le)
```
```   520
```
```   521 lemma MOST_nat: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m<n \<longrightarrow> P n)"
```
```   522   by (simp add: Alm_all_def INFM_nat)
```
```   523
```
```   524 lemma MOST_nat_le: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m\<le>n \<longrightarrow> P n)"
```
```   525   by (simp add: Alm_all_def INFM_nat_le)
```
```   526
```
```   527
```
```   528 subsection "Enumeration of an Infinite Set"
```
```   529
```
```   530 text {*
```
```   531   The set's element type must be wellordered (e.g. the natural numbers).
```
```   532 *}
```
```   533
```
```   534 primrec (in wellorder) enumerate :: "'a set \<Rightarrow> nat \<Rightarrow> 'a" where
```
```   535     enumerate_0:   "enumerate S 0       = (LEAST n. n \<in> S)"
```
```   536   | enumerate_Suc: "enumerate S (Suc n) = enumerate (S - {LEAST n. n \<in> S}) n"
```
```   537
```
```   538 lemma enumerate_Suc':
```
```   539     "enumerate S (Suc n) = enumerate (S - {enumerate S 0}) n"
```
```   540   by simp
```
```   541
```
```   542 lemma enumerate_in_set: "infinite S \<Longrightarrow> enumerate S n : S"
```
```   543 apply (induct n arbitrary: S)
```
```   544  apply (fastsimp intro: LeastI dest!: infinite_imp_nonempty)
```
```   545 apply simp
```
```   546 apply (metis Collect_def Collect_mem_eq DiffE infinite_remove)
```
```   547 done
```
```   548
```
```   549 declare enumerate_0 [simp del] enumerate_Suc [simp del]
```
```   550
```
```   551 lemma enumerate_step: "infinite S \<Longrightarrow> enumerate S n < enumerate S (Suc n)"
```
```   552   apply (induct n arbitrary: S)
```
```   553    apply (rule order_le_neq_trans)
```
```   554     apply (simp add: enumerate_0 Least_le enumerate_in_set)
```
```   555    apply (simp only: enumerate_Suc')
```
```   556    apply (subgoal_tac "enumerate (S - {enumerate S 0}) 0 : S - {enumerate S 0}")
```
```   557     apply (blast intro: sym)
```
```   558    apply (simp add: enumerate_in_set del: Diff_iff)
```
```   559   apply (simp add: enumerate_Suc')
```
```   560   done
```
```   561
```
```   562 lemma enumerate_mono: "m<n \<Longrightarrow> infinite S \<Longrightarrow> enumerate S m < enumerate S n"
```
```   563   apply (erule less_Suc_induct)
```
```   564   apply (auto intro: enumerate_step)
```
```   565   done
```
```   566
```
```   567
```
```   568 subsection "Miscellaneous"
```
```   569
```
```   570 text {*
```
```   571   A few trivial lemmas about sets that contain at most one element.
```
```   572   These simplify the reasoning about deterministic automata.
```
```   573 *}
```
```   574
```
```   575 definition
```
```   576   atmost_one :: "'a set \<Rightarrow> bool" where
```
```   577   "atmost_one S = (\<forall>x y. x\<in>S \<and> y\<in>S \<longrightarrow> x=y)"
```
```   578
```
```   579 lemma atmost_one_empty: "S = {} \<Longrightarrow> atmost_one S"
```
```   580   by (simp add: atmost_one_def)
```
```   581
```
```   582 lemma atmost_one_singleton: "S = {x} \<Longrightarrow> atmost_one S"
```
```   583   by (simp add: atmost_one_def)
```
```   584
```
```   585 lemma atmost_one_unique [elim]: "atmost_one S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> y = x"
```
```   586   by (simp add: atmost_one_def)
```
```   587
```
```   588 end
```