author hoelzl
Tue Nov 12 19:28:56 2013 +0100 (2013-11-12)
changeset 54417 dbb8ecfe1337
parent 53374 a14d2a854c02
child 56154 f0a927235162
permissions -rw-r--r--
add restrict_space measure
     1 (*  Title:      HOL/Probability/Measure_Space.thy
     2     Author:     Lawrence C Paulson
     3     Author:     Johannes Hölzl, TU München
     4     Author:     Armin Heller, TU München
     5 *)
     7 header {* Measure spaces and their properties *}
     9 theory Measure_Space
    10 imports
    11   Measurable
    12   "~~/src/HOL/Multivariate_Analysis/Extended_Real_Limits"
    13 begin
    15 lemma sums_def2:
    16   "f sums x \<longleftrightarrow> (\<lambda>n. (\<Sum>i\<le>n. f i)) ----> x"
    17   unfolding sums_def
    18   apply (subst LIMSEQ_Suc_iff[symmetric])
    19   unfolding atLeastLessThanSuc_atLeastAtMost atLeast0AtMost ..
    21 subsection "Relate extended reals and the indicator function"
    23 lemma ereal_indicator: "ereal (indicator A x) = indicator A x"
    24   by (auto simp: indicator_def one_ereal_def)
    26 lemma ereal_indicator_pos[simp,intro]: "0 \<le> (indicator A x ::ereal)"
    27   unfolding indicator_def by auto
    29 lemma LIMSEQ_indicator_UN:
    30   "(\<lambda>k. indicator (\<Union> i<k. A i) x) ----> (indicator (\<Union>i. A i) x :: real)"
    31 proof cases
    32   assume "\<exists>i. x \<in> A i" then guess i .. note i = this
    33   then have *: "\<And>n. (indicator (\<Union> i<n + Suc i. A i) x :: real) = 1"
    34     "(indicator (\<Union> i. A i) x :: real) = 1" by (auto simp: indicator_def)
    35   show ?thesis
    36     apply (rule LIMSEQ_offset[of _ "Suc i"]) unfolding * by auto
    37 qed (auto simp: indicator_def)
    39 lemma indicator_add:
    40   "A \<inter> B = {} \<Longrightarrow> (indicator A x::_::monoid_add) + indicator B x = indicator (A \<union> B) x"
    41   unfolding indicator_def by auto
    43 lemma suminf_cmult_indicator:
    44   fixes f :: "nat \<Rightarrow> ereal"
    45   assumes "disjoint_family A" "x \<in> A i" "\<And>i. 0 \<le> f i"
    46   shows "(\<Sum>n. f n * indicator (A n) x) = f i"
    47 proof -
    48   have **: "\<And>n. f n * indicator (A n) x = (if n = i then f n else 0 :: ereal)"
    49     using `x \<in> A i` assms unfolding disjoint_family_on_def indicator_def by auto
    50   then have "\<And>n. (\<Sum>j<n. f j * indicator (A j) x) = (if i < n then f i else 0 :: ereal)"
    51     by (auto simp: setsum_cases)
    52   moreover have "(SUP n. if i < n then f i else 0) = (f i :: ereal)"
    53   proof (rule SUP_eqI)
    54     fix y :: ereal assume "\<And>n. n \<in> UNIV \<Longrightarrow> (if i < n then f i else 0) \<le> y"
    55     from this[of "Suc i"] show "f i \<le> y" by auto
    56   qed (insert assms, simp)
    57   ultimately show ?thesis using assms
    58     by (subst suminf_ereal_eq_SUPR) (auto simp: indicator_def)
    59 qed
    61 lemma suminf_indicator:
    62   assumes "disjoint_family A"
    63   shows "(\<Sum>n. indicator (A n) x :: ereal) = indicator (\<Union>i. A i) x"
    64 proof cases
    65   assume *: "x \<in> (\<Union>i. A i)"
    66   then obtain i where "x \<in> A i" by auto
    67   from suminf_cmult_indicator[OF assms(1), OF `x \<in> A i`, of "\<lambda>k. 1"]
    68   show ?thesis using * by simp
    69 qed simp
    71 text {*
    72   The type for emeasure spaces is already defined in @{theory Sigma_Algebra}, as it is also used to
    73   represent sigma algebras (with an arbitrary emeasure).
    74 *}
    76 section "Extend binary sets"
    78 lemma LIMSEQ_binaryset:
    79   assumes f: "f {} = 0"
    80   shows  "(\<lambda>n. \<Sum>i<n. f (binaryset A B i)) ----> f A + f B"
    81 proof -
    82   have "(\<lambda>n. \<Sum>i < Suc (Suc n). f (binaryset A B i)) = (\<lambda>n. f A + f B)"
    83     proof
    84       fix n
    85       show "(\<Sum>i < Suc (Suc n). f (binaryset A B i)) = f A + f B"
    86         by (induct n)  (auto simp add: binaryset_def f)
    87     qed
    88   moreover
    89   have "... ----> f A + f B" by (rule tendsto_const)
    90   ultimately
    91   have "(\<lambda>n. \<Sum>i< Suc (Suc n). f (binaryset A B i)) ----> f A + f B"
    92     by metis
    93   hence "(\<lambda>n. \<Sum>i< n+2. f (binaryset A B i)) ----> f A + f B"
    94     by simp
    95   thus ?thesis by (rule LIMSEQ_offset [where k=2])
    96 qed
    98 lemma binaryset_sums:
    99   assumes f: "f {} = 0"
   100   shows  "(\<lambda>n. f (binaryset A B n)) sums (f A + f B)"
   101     by (simp add: sums_def LIMSEQ_binaryset [where f=f, OF f] atLeast0LessThan)
   103 lemma suminf_binaryset_eq:
   104   fixes f :: "'a set \<Rightarrow> 'b::{comm_monoid_add, t2_space}"
   105   shows "f {} = 0 \<Longrightarrow> (\<Sum>n. f (binaryset A B n)) = f A + f B"
   106   by (metis binaryset_sums sums_unique)
   108 section {* Properties of a premeasure @{term \<mu>} *}
   110 text {*
   111   The definitions for @{const positive} and @{const countably_additive} should be here, by they are
   112   necessary to define @{typ "'a measure"} in @{theory Sigma_Algebra}.
   113 *}
   115 definition additive where
   116   "additive M \<mu> \<longleftrightarrow> (\<forall>x\<in>M. \<forall>y\<in>M. x \<inter> y = {} \<longrightarrow> \<mu> (x \<union> y) = \<mu> x + \<mu> y)"
   118 definition increasing where
   119   "increasing M \<mu> \<longleftrightarrow> (\<forall>x\<in>M. \<forall>y\<in>M. x \<subseteq> y \<longrightarrow> \<mu> x \<le> \<mu> y)"
   121 lemma positiveD1: "positive M f \<Longrightarrow> f {} = 0" by (auto simp: positive_def)
   122 lemma positiveD2: "positive M f \<Longrightarrow> A \<in> M \<Longrightarrow> 0 \<le> f A" by (auto simp: positive_def)
   124 lemma positiveD_empty:
   125   "positive M f \<Longrightarrow> f {} = 0"
   126   by (auto simp add: positive_def)
   128 lemma additiveD:
   129   "additive M f \<Longrightarrow> x \<inter> y = {} \<Longrightarrow> x \<in> M \<Longrightarrow> y \<in> M \<Longrightarrow> f (x \<union> y) = f x + f y"
   130   by (auto simp add: additive_def)
   132 lemma increasingD:
   133   "increasing M f \<Longrightarrow> x \<subseteq> y \<Longrightarrow> x\<in>M \<Longrightarrow> y\<in>M \<Longrightarrow> f x \<le> f y"
   134   by (auto simp add: increasing_def)
   136 lemma countably_additiveI[case_names countably]:
   137   "(\<And>A. range A \<subseteq> M \<Longrightarrow> disjoint_family A \<Longrightarrow> (\<Union>i. A i) \<in> M \<Longrightarrow> (\<Sum>i. f (A i)) = f (\<Union>i. A i))
   138   \<Longrightarrow> countably_additive M f"
   139   by (simp add: countably_additive_def)
   141 lemma (in ring_of_sets) disjointed_additive:
   142   assumes f: "positive M f" "additive M f" and A: "range A \<subseteq> M" "incseq A"
   143   shows "(\<Sum>i\<le>n. f (disjointed A i)) = f (A n)"
   144 proof (induct n)
   145   case (Suc n)
   146   then have "(\<Sum>i\<le>Suc n. f (disjointed A i)) = f (A n) + f (disjointed A (Suc n))"
   147     by simp
   148   also have "\<dots> = f (A n \<union> disjointed A (Suc n))"
   149     using A by (subst f(2)[THEN additiveD]) (auto simp: disjointed_incseq)
   150   also have "A n \<union> disjointed A (Suc n) = A (Suc n)"
   151     using `incseq A` by (auto dest: incseq_SucD simp: disjointed_incseq)
   152   finally show ?case .
   153 qed simp
   155 lemma (in ring_of_sets) additive_sum:
   156   fixes A:: "'i \<Rightarrow> 'a set"
   157   assumes f: "positive M f" and ad: "additive M f" and "finite S"
   158       and A: "A`S \<subseteq> M"
   159       and disj: "disjoint_family_on A S"
   160   shows  "(\<Sum>i\<in>S. f (A i)) = f (\<Union>i\<in>S. A i)"
   161   using `finite S` disj A
   162 proof induct
   163   case empty show ?case using f by (simp add: positive_def)
   164 next
   165   case (insert s S)
   166   then have "A s \<inter> (\<Union>i\<in>S. A i) = {}"
   167     by (auto simp add: disjoint_family_on_def neq_iff)
   168   moreover
   169   have "A s \<in> M" using insert by blast
   170   moreover have "(\<Union>i\<in>S. A i) \<in> M"
   171     using insert `finite S` by auto
   172   ultimately have "f (A s \<union> (\<Union>i\<in>S. A i)) = f (A s) + f(\<Union>i\<in>S. A i)"
   173     using ad UNION_in_sets A by (auto simp add: additive_def)
   174   with insert show ?case using ad disjoint_family_on_mono[of S "insert s S" A]
   175     by (auto simp add: additive_def subset_insertI)
   176 qed
   178 lemma (in ring_of_sets) additive_increasing:
   179   assumes posf: "positive M f" and addf: "additive M f"
   180   shows "increasing M f"
   181 proof (auto simp add: increasing_def)
   182   fix x y
   183   assume xy: "x \<in> M" "y \<in> M" "x \<subseteq> y"
   184   then have "y - x \<in> M" by auto
   185   then have "0 \<le> f (y-x)" using posf[unfolded positive_def] by auto
   186   then have "f x + 0 \<le> f x + f (y-x)" by (intro add_left_mono) auto
   187   also have "... = f (x \<union> (y-x))" using addf
   188     by (auto simp add: additive_def) (metis Diff_disjoint Un_Diff_cancel Diff xy(1,2))
   189   also have "... = f y"
   190     by (metis Un_Diff_cancel Un_absorb1 xy(3))
   191   finally show "f x \<le> f y" by simp
   192 qed
   194 lemma (in ring_of_sets) subadditive:
   195   assumes f: "positive M f" "additive M f" and A: "range A \<subseteq> M" and S: "finite S"
   196   shows "f (\<Union>i\<in>S. A i) \<le> (\<Sum>i\<in>S. f (A i))"
   197 using S
   198 proof (induct S)
   199   case empty thus ?case using f by (auto simp: positive_def)
   200 next
   201   case (insert x F)
   202   hence in_M: "A x \<in> M" "(\<Union> i\<in>F. A i) \<in> M" "(\<Union> i\<in>F. A i) - A x \<in> M" using A by force+
   203   have subs: "(\<Union> i\<in>F. A i) - A x \<subseteq> (\<Union> i\<in>F. A i)" by auto
   204   have "(\<Union> i\<in>(insert x F). A i) = A x \<union> ((\<Union> i\<in>F. A i) - A x)" by auto
   205   hence "f (\<Union> i\<in>(insert x F). A i) = f (A x \<union> ((\<Union> i\<in>F. A i) - A x))"
   206     by simp
   207   also have "\<dots> = f (A x) + f ((\<Union> i\<in>F. A i) - A x)"
   208     using f(2) by (rule additiveD) (insert in_M, auto)
   209   also have "\<dots> \<le> f (A x) + f (\<Union> i\<in>F. A i)"
   210     using additive_increasing[OF f] in_M subs by (auto simp: increasing_def intro: add_left_mono)
   211   also have "\<dots> \<le> f (A x) + (\<Sum>i\<in>F. f (A i))" using insert by (auto intro: add_left_mono)
   212   finally show "f (\<Union> i\<in>(insert x F). A i) \<le> (\<Sum>i\<in>(insert x F). f (A i))" using insert by simp
   213 qed
   215 lemma (in ring_of_sets) countably_additive_additive:
   216   assumes posf: "positive M f" and ca: "countably_additive M f"
   217   shows "additive M f"
   218 proof (auto simp add: additive_def)
   219   fix x y
   220   assume x: "x \<in> M" and y: "y \<in> M" and "x \<inter> y = {}"
   221   hence "disjoint_family (binaryset x y)"
   222     by (auto simp add: disjoint_family_on_def binaryset_def)
   223   hence "range (binaryset x y) \<subseteq> M \<longrightarrow>
   224          (\<Union>i. binaryset x y i) \<in> M \<longrightarrow>
   225          f (\<Union>i. binaryset x y i) = (\<Sum> n. f (binaryset x y n))"
   226     using ca
   227     by (simp add: countably_additive_def)
   228   hence "{x,y,{}} \<subseteq> M \<longrightarrow> x \<union> y \<in> M \<longrightarrow>
   229          f (x \<union> y) = (\<Sum>n. f (binaryset x y n))"
   230     by (simp add: range_binaryset_eq UN_binaryset_eq)
   231   thus "f (x \<union> y) = f x + f y" using posf x y
   232     by (auto simp add: Un suminf_binaryset_eq positive_def)
   233 qed
   235 lemma (in algebra) increasing_additive_bound:
   236   fixes A:: "nat \<Rightarrow> 'a set" and  f :: "'a set \<Rightarrow> ereal"
   237   assumes f: "positive M f" and ad: "additive M f"
   238       and inc: "increasing M f"
   239       and A: "range A \<subseteq> M"
   240       and disj: "disjoint_family A"
   241   shows  "(\<Sum>i. f (A i)) \<le> f \<Omega>"
   242 proof (safe intro!: suminf_bound)
   243   fix N
   244   note disj_N = disjoint_family_on_mono[OF _ disj, of "{..<N}"]
   245   have "(\<Sum>i<N. f (A i)) = f (\<Union>i\<in>{..<N}. A i)"
   246     using A by (intro additive_sum [OF f ad _ _]) (auto simp: disj_N)
   247   also have "... \<le> f \<Omega>" using space_closed A
   248     by (intro increasingD[OF inc] finite_UN) auto
   249   finally show "(\<Sum>i<N. f (A i)) \<le> f \<Omega>" by simp
   250 qed (insert f A, auto simp: positive_def)
   252 lemma (in ring_of_sets) countably_additiveI_finite:
   253   assumes "finite \<Omega>" "positive M \<mu>" "additive M \<mu>"
   254   shows "countably_additive M \<mu>"
   255 proof (rule countably_additiveI)
   256   fix F :: "nat \<Rightarrow> 'a set" assume F: "range F \<subseteq> M" "(\<Union>i. F i) \<in> M" and disj: "disjoint_family F"
   258   have "\<forall>i\<in>{i. F i \<noteq> {}}. \<exists>x. x \<in> F i" by auto
   259   from bchoice[OF this] obtain f where f: "\<And>i. F i \<noteq> {} \<Longrightarrow> f i \<in> F i" by auto
   261   have inj_f: "inj_on f {i. F i \<noteq> {}}"
   262   proof (rule inj_onI, simp)
   263     fix i j a b assume *: "f i = f j" "F i \<noteq> {}" "F j \<noteq> {}"
   264     then have "f i \<in> F i" "f j \<in> F j" using f by force+
   265     with disj * show "i = j" by (auto simp: disjoint_family_on_def)
   266   qed
   267   have "finite (\<Union>i. F i)"
   268     by (metis F(2) assms(1) infinite_super sets_into_space)
   270   have F_subset: "{i. \<mu> (F i) \<noteq> 0} \<subseteq> {i. F i \<noteq> {}}"
   271     by (auto simp: positiveD_empty[OF `positive M \<mu>`])
   272   moreover have fin_not_empty: "finite {i. F i \<noteq> {}}"
   273   proof (rule finite_imageD)
   274     from f have "f`{i. F i \<noteq> {}} \<subseteq> (\<Union>i. F i)" by auto
   275     then show "finite (f`{i. F i \<noteq> {}})"
   276       by (rule finite_subset) fact
   277   qed fact
   278   ultimately have fin_not_0: "finite {i. \<mu> (F i) \<noteq> 0}"
   279     by (rule finite_subset)
   281   have disj_not_empty: "disjoint_family_on F {i. F i \<noteq> {}}"
   282     using disj by (auto simp: disjoint_family_on_def)
   284   from fin_not_0 have "(\<Sum>i. \<mu> (F i)) = (\<Sum>i | \<mu> (F i) \<noteq> 0. \<mu> (F i))"
   285     by (rule suminf_finite) auto
   286   also have "\<dots> = (\<Sum>i | F i \<noteq> {}. \<mu> (F i))"
   287     using fin_not_empty F_subset by (rule setsum_mono_zero_left) auto
   288   also have "\<dots> = \<mu> (\<Union>i\<in>{i. F i \<noteq> {}}. F i)"
   289     using `positive M \<mu>` `additive M \<mu>` fin_not_empty disj_not_empty F by (intro additive_sum) auto
   290   also have "\<dots> = \<mu> (\<Union>i. F i)"
   291     by (rule arg_cong[where f=\<mu>]) auto
   292   finally show "(\<Sum>i. \<mu> (F i)) = \<mu> (\<Union>i. F i)" .
   293 qed
   295 lemma (in ring_of_sets) countably_additive_iff_continuous_from_below:
   296   assumes f: "positive M f" "additive M f"
   297   shows "countably_additive M f \<longleftrightarrow>
   298     (\<forall>A. range A \<subseteq> M \<longrightarrow> incseq A \<longrightarrow> (\<Union>i. A i) \<in> M \<longrightarrow> (\<lambda>i. f (A i)) ----> f (\<Union>i. A i))"
   299   unfolding countably_additive_def
   300 proof safe
   301   assume count_sum: "\<forall>A. range A \<subseteq> M \<longrightarrow> disjoint_family A \<longrightarrow> UNION UNIV A \<in> M \<longrightarrow> (\<Sum>i. f (A i)) = f (UNION UNIV A)"
   302   fix A :: "nat \<Rightarrow> 'a set" assume A: "range A \<subseteq> M" "incseq A" "(\<Union>i. A i) \<in> M"
   303   then have dA: "range (disjointed A) \<subseteq> M" by (auto simp: range_disjointed_sets)
   304   with count_sum[THEN spec, of "disjointed A"] A(3)
   305   have f_UN: "(\<Sum>i. f (disjointed A i)) = f (\<Union>i. A i)"
   306     by (auto simp: UN_disjointed_eq disjoint_family_disjointed)
   307   moreover have "(\<lambda>n. (\<Sum>i=0..<n. f (disjointed A i))) ----> (\<Sum>i. f (disjointed A i))"
   308     using f(1)[unfolded positive_def] dA
   309     by (auto intro!: summable_sumr_LIMSEQ_suminf summable_ereal_pos)
   310   from LIMSEQ_Suc[OF this]
   311   have "(\<lambda>n. (\<Sum>i\<le>n. f (disjointed A i))) ----> (\<Sum>i. f (disjointed A i))"
   312     unfolding atLeastLessThanSuc_atLeastAtMost atLeast0AtMost .
   313   moreover have "\<And>n. (\<Sum>i\<le>n. f (disjointed A i)) = f (A n)"
   314     using disjointed_additive[OF f A(1,2)] .
   315   ultimately show "(\<lambda>i. f (A i)) ----> f (\<Union>i. A i)" by simp
   316 next
   317   assume cont: "\<forall>A. range A \<subseteq> M \<longrightarrow> incseq A \<longrightarrow> (\<Union>i. A i) \<in> M \<longrightarrow> (\<lambda>i. f (A i)) ----> f (\<Union>i. A i)"
   318   fix A :: "nat \<Rightarrow> 'a set" assume A: "range A \<subseteq> M" "disjoint_family A" "(\<Union>i. A i) \<in> M"
   319   have *: "(\<Union>n. (\<Union>i\<le>n. A i)) = (\<Union>i. A i)" by auto
   320   have "(\<lambda>n. f (\<Union>i\<le>n. A i)) ----> f (\<Union>i. A i)"
   321   proof (unfold *[symmetric], intro cont[rule_format])
   322     show "range (\<lambda>i. \<Union> i\<le>i. A i) \<subseteq> M" "(\<Union>i. \<Union> i\<le>i. A i) \<in> M"
   323       using A * by auto
   324   qed (force intro!: incseq_SucI)
   325   moreover have "\<And>n. f (\<Union>i\<le>n. A i) = (\<Sum>i\<le>n. f (A i))"
   326     using A
   327     by (intro additive_sum[OF f, of _ A, symmetric])
   328        (auto intro: disjoint_family_on_mono[where B=UNIV])
   329   ultimately
   330   have "(\<lambda>i. f (A i)) sums f (\<Union>i. A i)"
   331     unfolding sums_def2 by simp
   332   from sums_unique[OF this]
   333   show "(\<Sum>i. f (A i)) = f (\<Union>i. A i)" by simp
   334 qed
   336 lemma (in ring_of_sets) continuous_from_above_iff_empty_continuous:
   337   assumes f: "positive M f" "additive M f"
   338   shows "(\<forall>A. range A \<subseteq> M \<longrightarrow> decseq A \<longrightarrow> (\<Inter>i. A i) \<in> M \<longrightarrow> (\<forall>i. f (A i) \<noteq> \<infinity>) \<longrightarrow> (\<lambda>i. f (A i)) ----> f (\<Inter>i. A i))
   339      \<longleftrightarrow> (\<forall>A. range A \<subseteq> M \<longrightarrow> decseq A \<longrightarrow> (\<Inter>i. A i) = {} \<longrightarrow> (\<forall>i. f (A i) \<noteq> \<infinity>) \<longrightarrow> (\<lambda>i. f (A i)) ----> 0)"
   340 proof safe
   341   assume cont: "(\<forall>A. range A \<subseteq> M \<longrightarrow> decseq A \<longrightarrow> (\<Inter>i. A i) \<in> M \<longrightarrow> (\<forall>i. f (A i) \<noteq> \<infinity>) \<longrightarrow> (\<lambda>i. f (A i)) ----> f (\<Inter>i. A i))"
   342   fix A :: "nat \<Rightarrow> 'a set" assume A: "range A \<subseteq> M" "decseq A" "(\<Inter>i. A i) = {}" "\<forall>i. f (A i) \<noteq> \<infinity>"
   343   with cont[THEN spec, of A] show "(\<lambda>i. f (A i)) ----> 0"
   344     using `positive M f`[unfolded positive_def] by auto
   345 next
   346   assume cont: "\<forall>A. range A \<subseteq> M \<longrightarrow> decseq A \<longrightarrow> (\<Inter>i. A i) = {} \<longrightarrow> (\<forall>i. f (A i) \<noteq> \<infinity>) \<longrightarrow> (\<lambda>i. f (A i)) ----> 0"
   347   fix A :: "nat \<Rightarrow> 'a set" assume A: "range A \<subseteq> M" "decseq A" "(\<Inter>i. A i) \<in> M" "\<forall>i. f (A i) \<noteq> \<infinity>"
   349   have f_mono: "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a \<subseteq> b \<Longrightarrow> f a \<le> f b"
   350     using additive_increasing[OF f] unfolding increasing_def by simp
   352   have decseq_fA: "decseq (\<lambda>i. f (A i))"
   353     using A by (auto simp: decseq_def intro!: f_mono)
   354   have decseq: "decseq (\<lambda>i. A i - (\<Inter>i. A i))"
   355     using A by (auto simp: decseq_def)
   356   then have decseq_f: "decseq (\<lambda>i. f (A i - (\<Inter>i. A i)))"
   357     using A unfolding decseq_def by (auto intro!: f_mono Diff)
   358   have "f (\<Inter>x. A x) \<le> f (A 0)"
   359     using A by (auto intro!: f_mono)
   360   then have f_Int_fin: "f (\<Inter>x. A x) \<noteq> \<infinity>"
   361     using A by auto
   362   { fix i
   363     have "f (A i - (\<Inter>i. A i)) \<le> f (A i)" using A by (auto intro!: f_mono)
   364     then have "f (A i - (\<Inter>i. A i)) \<noteq> \<infinity>"
   365       using A by auto }
   366   note f_fin = this
   367   have "(\<lambda>i. f (A i - (\<Inter>i. A i))) ----> 0"
   368   proof (intro cont[rule_format, OF _ decseq _ f_fin])
   369     show "range (\<lambda>i. A i - (\<Inter>i. A i)) \<subseteq> M" "(\<Inter>i. A i - (\<Inter>i. A i)) = {}"
   370       using A by auto
   371   qed
   372   from INF_Lim_ereal[OF decseq_f this]
   373   have "(INF n. f (A n - (\<Inter>i. A i))) = 0" .
   374   moreover have "(INF n. f (\<Inter>i. A i)) = f (\<Inter>i. A i)"
   375     by auto
   376   ultimately have "(INF n. f (A n - (\<Inter>i. A i)) + f (\<Inter>i. A i)) = 0 + f (\<Inter>i. A i)"
   377     using A(4) f_fin f_Int_fin
   378     by (subst INFI_ereal_add) (auto simp: decseq_f)
   379   moreover {
   380     fix n
   381     have "f (A n - (\<Inter>i. A i)) + f (\<Inter>i. A i) = f ((A n - (\<Inter>i. A i)) \<union> (\<Inter>i. A i))"
   382       using A by (subst f(2)[THEN additiveD]) auto
   383     also have "(A n - (\<Inter>i. A i)) \<union> (\<Inter>i. A i) = A n"
   384       by auto
   385     finally have "f (A n - (\<Inter>i. A i)) + f (\<Inter>i. A i) = f (A n)" . }
   386   ultimately have "(INF n. f (A n)) = f (\<Inter>i. A i)"
   387     by simp
   388   with LIMSEQ_INF[OF decseq_fA]
   389   show "(\<lambda>i. f (A i)) ----> f (\<Inter>i. A i)" by simp
   390 qed
   392 lemma (in ring_of_sets) empty_continuous_imp_continuous_from_below:
   393   assumes f: "positive M f" "additive M f" "\<forall>A\<in>M. f A \<noteq> \<infinity>"
   394   assumes cont: "\<forall>A. range A \<subseteq> M \<longrightarrow> decseq A \<longrightarrow> (\<Inter>i. A i) = {} \<longrightarrow> (\<lambda>i. f (A i)) ----> 0"
   395   assumes A: "range A \<subseteq> M" "incseq A" "(\<Union>i. A i) \<in> M"
   396   shows "(\<lambda>i. f (A i)) ----> f (\<Union>i. A i)"
   397 proof -
   398   have "\<forall>A\<in>M. \<exists>x. f A = ereal x"
   399   proof
   400     fix A assume "A \<in> M" with f show "\<exists>x. f A = ereal x"
   401       unfolding positive_def by (cases "f A") auto
   402   qed
   403   from bchoice[OF this] guess f' .. note f' = this[rule_format]
   404   from A have "(\<lambda>i. f ((\<Union>i. A i) - A i)) ----> 0"
   405     by (intro cont[rule_format]) (auto simp: decseq_def incseq_def)
   406   moreover
   407   { fix i
   408     have "f ((\<Union>i. A i) - A i) + f (A i) = f ((\<Union>i. A i) - A i \<union> A i)"
   409       using A by (intro f(2)[THEN additiveD, symmetric]) auto
   410     also have "(\<Union>i. A i) - A i \<union> A i = (\<Union>i. A i)"
   411       by auto
   412     finally have "f' (\<Union>i. A i) - f' (A i) = f' ((\<Union>i. A i) - A i)"
   413       using A by (subst (asm) (1 2 3) f') auto
   414     then have "f ((\<Union>i. A i) - A i) = ereal (f' (\<Union>i. A i) - f' (A i))"
   415       using A f' by auto }
   416   ultimately have "(\<lambda>i. f' (\<Union>i. A i) - f' (A i)) ----> 0"
   417     by (simp add: zero_ereal_def)
   418   then have "(\<lambda>i. f' (A i)) ----> f' (\<Union>i. A i)"
   419     by (rule LIMSEQ_diff_approach_zero2[OF tendsto_const])
   420   then show "(\<lambda>i. f (A i)) ----> f (\<Union>i. A i)"
   421     using A by (subst (1 2) f') auto
   422 qed
   424 lemma (in ring_of_sets) empty_continuous_imp_countably_additive:
   425   assumes f: "positive M f" "additive M f" and fin: "\<forall>A\<in>M. f A \<noteq> \<infinity>"
   426   assumes cont: "\<And>A. range A \<subseteq> M \<Longrightarrow> decseq A \<Longrightarrow> (\<Inter>i. A i) = {} \<Longrightarrow> (\<lambda>i. f (A i)) ----> 0"
   427   shows "countably_additive M f"
   428   using countably_additive_iff_continuous_from_below[OF f]
   429   using empty_continuous_imp_continuous_from_below[OF f fin] cont
   430   by blast
   432 section {* Properties of @{const emeasure} *}
   434 lemma emeasure_positive: "positive (sets M) (emeasure M)"
   435   by (cases M) (auto simp: sets_def emeasure_def Abs_measure_inverse measure_space_def)
   437 lemma emeasure_empty[simp, intro]: "emeasure M {} = 0"
   438   using emeasure_positive[of M] by (simp add: positive_def)
   440 lemma emeasure_nonneg[intro!]: "0 \<le> emeasure M A"
   441   using emeasure_notin_sets[of A M] emeasure_positive[of M]
   442   by (cases "A \<in> sets M") (auto simp: positive_def)
   444 lemma emeasure_not_MInf[simp]: "emeasure M A \<noteq> - \<infinity>"
   445   using emeasure_nonneg[of M A] by auto
   447 lemma emeasure_le_0_iff: "emeasure M A \<le> 0 \<longleftrightarrow> emeasure M A = 0"
   448   using emeasure_nonneg[of M A] by auto
   450 lemma emeasure_less_0_iff: "emeasure M A < 0 \<longleftrightarrow> False"
   451   using emeasure_nonneg[of M A] by auto
   453 lemma emeasure_countably_additive: "countably_additive (sets M) (emeasure M)"
   454   by (cases M) (auto simp: sets_def emeasure_def Abs_measure_inverse measure_space_def)
   456 lemma suminf_emeasure:
   457   "range A \<subseteq> sets M \<Longrightarrow> disjoint_family A \<Longrightarrow> (\<Sum>i. emeasure M (A i)) = emeasure M (\<Union>i. A i)"
   458   using sets.countable_UN[of A UNIV M] emeasure_countably_additive[of M]
   459   by (simp add: countably_additive_def)
   461 lemma emeasure_additive: "additive (sets M) (emeasure M)"
   462   by (metis sets.countably_additive_additive emeasure_positive emeasure_countably_additive)
   464 lemma plus_emeasure:
   465   "a \<in> sets M \<Longrightarrow> b \<in> sets M \<Longrightarrow> a \<inter> b = {} \<Longrightarrow> emeasure M a + emeasure M b = emeasure M (a \<union> b)"
   466   using additiveD[OF emeasure_additive] ..
   468 lemma setsum_emeasure:
   469   "F`I \<subseteq> sets M \<Longrightarrow> disjoint_family_on F I \<Longrightarrow> finite I \<Longrightarrow>
   470     (\<Sum>i\<in>I. emeasure M (F i)) = emeasure M (\<Union>i\<in>I. F i)"
   471   by (metis sets.additive_sum emeasure_positive emeasure_additive)
   473 lemma emeasure_mono:
   474   "a \<subseteq> b \<Longrightarrow> b \<in> sets M \<Longrightarrow> emeasure M a \<le> emeasure M b"
   475   by (metis sets.additive_increasing emeasure_additive emeasure_nonneg emeasure_notin_sets
   476             emeasure_positive increasingD)
   478 lemma emeasure_space:
   479   "emeasure M A \<le> emeasure M (space M)"
   480   by (metis emeasure_mono emeasure_nonneg emeasure_notin_sets sets.sets_into_space
   482 lemma emeasure_compl:
   483   assumes s: "s \<in> sets M" and fin: "emeasure M s \<noteq> \<infinity>"
   484   shows "emeasure M (space M - s) = emeasure M (space M) - emeasure M s"
   485 proof -
   486   from s have "0 \<le> emeasure M s" by auto
   487   have "emeasure M (space M) = emeasure M (s \<union> (space M - s))" using s
   488     by (metis Un_Diff_cancel Un_absorb1 s sets.sets_into_space)
   489   also have "... = emeasure M s + emeasure M (space M - s)"
   490     by (rule plus_emeasure[symmetric]) (auto simp add: s)
   491   finally have "emeasure M (space M) = emeasure M s + emeasure M (space M - s)" .
   492   then show ?thesis
   493     using fin `0 \<le> emeasure M s`
   494     unfolding ereal_eq_minus_iff by (auto simp: ac_simps)
   495 qed
   497 lemma emeasure_Diff:
   498   assumes finite: "emeasure M B \<noteq> \<infinity>"
   499   and [measurable]: "A \<in> sets M" "B \<in> sets M" and "B \<subseteq> A"
   500   shows "emeasure M (A - B) = emeasure M A - emeasure M B"
   501 proof -
   502   have "0 \<le> emeasure M B" using assms by auto
   503   have "(A - B) \<union> B = A" using `B \<subseteq> A` by auto
   504   then have "emeasure M A = emeasure M ((A - B) \<union> B)" by simp
   505   also have "\<dots> = emeasure M (A - B) + emeasure M B"
   506     by (subst plus_emeasure[symmetric]) auto
   507   finally show "emeasure M (A - B) = emeasure M A - emeasure M B"
   508     unfolding ereal_eq_minus_iff
   509     using finite `0 \<le> emeasure M B` by auto
   510 qed
   512 lemma Lim_emeasure_incseq:
   513   "range A \<subseteq> sets M \<Longrightarrow> incseq A \<Longrightarrow> (\<lambda>i. (emeasure M (A i))) ----> emeasure M (\<Union>i. A i)"
   514   using emeasure_countably_additive
   515   by (auto simp add: sets.countably_additive_iff_continuous_from_below emeasure_positive
   516     emeasure_additive)
   518 lemma incseq_emeasure:
   519   assumes "range B \<subseteq> sets M" "incseq B"
   520   shows "incseq (\<lambda>i. emeasure M (B i))"
   521   using assms by (auto simp: incseq_def intro!: emeasure_mono)
   523 lemma SUP_emeasure_incseq:
   524   assumes A: "range A \<subseteq> sets M" "incseq A"
   525   shows "(SUP n. emeasure M (A n)) = emeasure M (\<Union>i. A i)"
   526   using LIMSEQ_SUP[OF incseq_emeasure, OF A] Lim_emeasure_incseq[OF A]
   527   by (simp add: LIMSEQ_unique)
   529 lemma decseq_emeasure:
   530   assumes "range B \<subseteq> sets M" "decseq B"
   531   shows "decseq (\<lambda>i. emeasure M (B i))"
   532   using assms by (auto simp: decseq_def intro!: emeasure_mono)
   534 lemma INF_emeasure_decseq:
   535   assumes A: "range A \<subseteq> sets M" and "decseq A"
   536   and finite: "\<And>i. emeasure M (A i) \<noteq> \<infinity>"
   537   shows "(INF n. emeasure M (A n)) = emeasure M (\<Inter>i. A i)"
   538 proof -
   539   have le_MI: "emeasure M (\<Inter>i. A i) \<le> emeasure M (A 0)"
   540     using A by (auto intro!: emeasure_mono)
   541   hence *: "emeasure M (\<Inter>i. A i) \<noteq> \<infinity>" using finite[of 0] by auto
   543   have A0: "0 \<le> emeasure M (A 0)" using A by auto
   545   have "emeasure M (A 0) - (INF n. emeasure M (A n)) = emeasure M (A 0) + (SUP n. - emeasure M (A n))"
   546     by (simp add: ereal_SUPR_uminus minus_ereal_def)
   547   also have "\<dots> = (SUP n. emeasure M (A 0) - emeasure M (A n))"
   548     unfolding minus_ereal_def using A0 assms
   549     by (subst SUPR_ereal_add) (auto simp add: decseq_emeasure)
   550   also have "\<dots> = (SUP n. emeasure M (A 0 - A n))"
   551     using A finite `decseq A`[unfolded decseq_def] by (subst emeasure_Diff) auto
   552   also have "\<dots> = emeasure M (\<Union>i. A 0 - A i)"
   553   proof (rule SUP_emeasure_incseq)
   554     show "range (\<lambda>n. A 0 - A n) \<subseteq> sets M"
   555       using A by auto
   556     show "incseq (\<lambda>n. A 0 - A n)"
   557       using `decseq A` by (auto simp add: incseq_def decseq_def)
   558   qed
   559   also have "\<dots> = emeasure M (A 0) - emeasure M (\<Inter>i. A i)"
   560     using A finite * by (simp, subst emeasure_Diff) auto
   561   finally show ?thesis
   562     unfolding ereal_minus_eq_minus_iff using finite A0 by auto
   563 qed
   565 lemma Lim_emeasure_decseq:
   566   assumes A: "range A \<subseteq> sets M" "decseq A" and fin: "\<And>i. emeasure M (A i) \<noteq> \<infinity>"
   567   shows "(\<lambda>i. emeasure M (A i)) ----> emeasure M (\<Inter>i. A i)"
   568   using LIMSEQ_INF[OF decseq_emeasure, OF A]
   569   using INF_emeasure_decseq[OF A fin] by simp
   571 lemma emeasure_subadditive:
   572   assumes [measurable]: "A \<in> sets M" "B \<in> sets M"
   573   shows "emeasure M (A \<union> B) \<le> emeasure M A + emeasure M B"
   574 proof -
   575   from plus_emeasure[of A M "B - A"]
   576   have "emeasure M (A \<union> B) = emeasure M A + emeasure M (B - A)" by simp
   577   also have "\<dots> \<le> emeasure M A + emeasure M B"
   578     using assms by (auto intro!: add_left_mono emeasure_mono)
   579   finally show ?thesis .
   580 qed
   582 lemma emeasure_subadditive_finite:
   583   assumes "finite I" "A ` I \<subseteq> sets M"
   584   shows "emeasure M (\<Union>i\<in>I. A i) \<le> (\<Sum>i\<in>I. emeasure M (A i))"
   585 using assms proof induct
   586   case (insert i I)
   587   then have "emeasure M (\<Union>i\<in>insert i I. A i) = emeasure M (A i \<union> (\<Union>i\<in>I. A i))"
   588     by simp
   589   also have "\<dots> \<le> emeasure M (A i) + emeasure M (\<Union>i\<in>I. A i)"
   590     using insert by (intro emeasure_subadditive) auto
   591   also have "\<dots> \<le> emeasure M (A i) + (\<Sum>i\<in>I. emeasure M (A i))"
   592     using insert by (intro add_mono) auto
   593   also have "\<dots> = (\<Sum>i\<in>insert i I. emeasure M (A i))"
   594     using insert by auto
   595   finally show ?case .
   596 qed simp
   598 lemma emeasure_subadditive_countably:
   599   assumes "range f \<subseteq> sets M"
   600   shows "emeasure M (\<Union>i. f i) \<le> (\<Sum>i. emeasure M (f i))"
   601 proof -
   602   have "emeasure M (\<Union>i. f i) = emeasure M (\<Union>i. disjointed f i)"
   603     unfolding UN_disjointed_eq ..
   604   also have "\<dots> = (\<Sum>i. emeasure M (disjointed f i))"
   605     using sets.range_disjointed_sets[OF assms] suminf_emeasure[of "disjointed f"]
   606     by (simp add:  disjoint_family_disjointed comp_def)
   607   also have "\<dots> \<le> (\<Sum>i. emeasure M (f i))"
   608     using sets.range_disjointed_sets[OF assms] assms
   609     by (auto intro!: suminf_le_pos emeasure_mono disjointed_subset)
   610   finally show ?thesis .
   611 qed
   613 lemma emeasure_insert:
   614   assumes sets: "{x} \<in> sets M" "A \<in> sets M" and "x \<notin> A"
   615   shows "emeasure M (insert x A) = emeasure M {x} + emeasure M A"
   616 proof -
   617   have "{x} \<inter> A = {}" using `x \<notin> A` by auto
   618   from plus_emeasure[OF sets this] show ?thesis by simp
   619 qed
   621 lemma emeasure_eq_setsum_singleton:
   622   assumes "finite S" "\<And>x. x \<in> S \<Longrightarrow> {x} \<in> sets M"
   623   shows "emeasure M S = (\<Sum>x\<in>S. emeasure M {x})"
   624   using setsum_emeasure[of "\<lambda>x. {x}" S M] assms
   625   by (auto simp: disjoint_family_on_def subset_eq)
   627 lemma setsum_emeasure_cover:
   628   assumes "finite S" and "A \<in> sets M" and br_in_M: "B ` S \<subseteq> sets M"
   629   assumes A: "A \<subseteq> (\<Union>i\<in>S. B i)"
   630   assumes disj: "disjoint_family_on B S"
   631   shows "emeasure M A = (\<Sum>i\<in>S. emeasure M (A \<inter> (B i)))"
   632 proof -
   633   have "(\<Sum>i\<in>S. emeasure M (A \<inter> (B i))) = emeasure M (\<Union>i\<in>S. A \<inter> (B i))"
   634   proof (rule setsum_emeasure)
   635     show "disjoint_family_on (\<lambda>i. A \<inter> B i) S"
   636       using `disjoint_family_on B S`
   637       unfolding disjoint_family_on_def by auto
   638   qed (insert assms, auto)
   639   also have "(\<Union>i\<in>S. A \<inter> (B i)) = A"
   640     using A by auto
   641   finally show ?thesis by simp
   642 qed
   644 lemma emeasure_eq_0:
   645   "N \<in> sets M \<Longrightarrow> emeasure M N = 0 \<Longrightarrow> K \<subseteq> N \<Longrightarrow> emeasure M K = 0"
   646   by (metis emeasure_mono emeasure_nonneg order_eq_iff)
   648 lemma emeasure_UN_eq_0:
   649   assumes "\<And>i::nat. emeasure M (N i) = 0" and "range N \<subseteq> sets M"
   650   shows "emeasure M (\<Union> i. N i) = 0"
   651 proof -
   652   have "0 \<le> emeasure M (\<Union> i. N i)" using assms by auto
   653   moreover have "emeasure M (\<Union> i. N i) \<le> 0"
   654     using emeasure_subadditive_countably[OF assms(2)] assms(1) by simp
   655   ultimately show ?thesis by simp
   656 qed
   658 lemma measure_eqI_finite:
   659   assumes [simp]: "sets M = Pow A" "sets N = Pow A" and "finite A"
   660   assumes eq: "\<And>a. a \<in> A \<Longrightarrow> emeasure M {a} = emeasure N {a}"
   661   shows "M = N"
   662 proof (rule measure_eqI)
   663   fix X assume "X \<in> sets M"
   664   then have X: "X \<subseteq> A" by auto
   665   then have "emeasure M X = (\<Sum>a\<in>X. emeasure M {a})"
   666     using `finite A` by (subst emeasure_eq_setsum_singleton) (auto dest: finite_subset)
   667   also have "\<dots> = (\<Sum>a\<in>X. emeasure N {a})"
   668     using X eq by (auto intro!: setsum_cong)
   669   also have "\<dots> = emeasure N X"
   670     using X `finite A` by (subst emeasure_eq_setsum_singleton) (auto dest: finite_subset)
   671   finally show "emeasure M X = emeasure N X" .
   672 qed simp
   674 lemma measure_eqI_generator_eq:
   675   fixes M N :: "'a measure" and E :: "'a set set" and A :: "nat \<Rightarrow> 'a set"
   676   assumes "Int_stable E" "E \<subseteq> Pow \<Omega>"
   677   and eq: "\<And>X. X \<in> E \<Longrightarrow> emeasure M X = emeasure N X"
   678   and M: "sets M = sigma_sets \<Omega> E"
   679   and N: "sets N = sigma_sets \<Omega> E"
   680   and A: "range A \<subseteq> E" "(\<Union>i. A i) = \<Omega>" "\<And>i. emeasure M (A i) \<noteq> \<infinity>"
   681   shows "M = N"
   682 proof -
   683   let ?\<mu>  = "emeasure M" and ?\<nu> = "emeasure N"
   684   interpret S: sigma_algebra \<Omega> "sigma_sets \<Omega> E" by (rule sigma_algebra_sigma_sets) fact
   685   have "space M = \<Omega>"
   686     using[of M] sets.space_closed[of M] S.space_closed `sets M = sigma_sets \<Omega> E`
   687     by blast
   689   { fix F D assume "F \<in> E" and "?\<mu> F \<noteq> \<infinity>"
   690     then have [intro]: "F \<in> sigma_sets \<Omega> E" by auto
   691     have "?\<nu> F \<noteq> \<infinity>" using `?\<mu> F \<noteq> \<infinity>` `F \<in> E` eq by simp
   692     assume "D \<in> sets M"
   693     with `Int_stable E` `E \<subseteq> Pow \<Omega>` have "emeasure M (F \<inter> D) = emeasure N (F \<inter> D)"
   694       unfolding M
   695     proof (induct rule: sigma_sets_induct_disjoint)
   696       case (basic A)
   697       then have "F \<inter> A \<in> E" using `Int_stable E` `F \<in> E` by (auto simp: Int_stable_def)
   698       then show ?case using eq by auto
   699     next
   700       case empty then show ?case by simp
   701     next
   702       case (compl A)
   703       then have **: "F \<inter> (\<Omega> - A) = F - (F \<inter> A)"
   704         and [intro]: "F \<inter> A \<in> sigma_sets \<Omega> E"
   705         using `F \<in> E` S.sets_into_space by (auto simp: M)
   706       have "?\<nu> (F \<inter> A) \<le> ?\<nu> F" by (auto intro!: emeasure_mono simp: M N)
   707       then have "?\<nu> (F \<inter> A) \<noteq> \<infinity>" using `?\<nu> F \<noteq> \<infinity>` by auto
   708       have "?\<mu> (F \<inter> A) \<le> ?\<mu> F" by (auto intro!: emeasure_mono simp: M N)
   709       then have "?\<mu> (F \<inter> A) \<noteq> \<infinity>" using `?\<mu> F \<noteq> \<infinity>` by auto
   710       then have "?\<mu> (F \<inter> (\<Omega> - A)) = ?\<mu> F - ?\<mu> (F \<inter> A)" unfolding **
   711         using `F \<inter> A \<in> sigma_sets \<Omega> E` by (auto intro!: emeasure_Diff simp: M N)
   712       also have "\<dots> = ?\<nu> F - ?\<nu> (F \<inter> A)" using eq `F \<in> E` compl by simp
   713       also have "\<dots> = ?\<nu> (F \<inter> (\<Omega> - A))" unfolding **
   714         using `F \<inter> A \<in> sigma_sets \<Omega> E` `?\<nu> (F \<inter> A) \<noteq> \<infinity>`
   715         by (auto intro!: emeasure_Diff[symmetric] simp: M N)
   716       finally show ?case
   717         using `space M = \<Omega>` by auto
   718     next
   719       case (union A)
   720       then have "?\<mu> (\<Union>x. F \<inter> A x) = ?\<nu> (\<Union>x. F \<inter> A x)"
   721         by (subst (1 2) suminf_emeasure[symmetric]) (auto simp: disjoint_family_on_def subset_eq M N)
   722       with A show ?case
   723         by auto
   724     qed }
   725   note * = this
   726   show "M = N"
   727   proof (rule measure_eqI)
   728     show "sets M = sets N"
   729       using M N by simp
   730     have [simp, intro]: "\<And>i. A i \<in> sets M"
   731       using A(1) by (auto simp: subset_eq M)
   732     fix F assume "F \<in> sets M"
   733     let ?D = "disjointed (\<lambda>i. F \<inter> A i)"
   734     from `space M = \<Omega>` have F_eq: "F = (\<Union>i. ?D i)"
   735       using `F \<in> sets M`[THEN sets.sets_into_space] A(2)[symmetric] by (auto simp: UN_disjointed_eq)
   736     have [simp, intro]: "\<And>i. ?D i \<in> sets M"
   737       using sets.range_disjointed_sets[of "\<lambda>i. F \<inter> A i" M] `F \<in> sets M`
   738       by (auto simp: subset_eq)
   739     have "disjoint_family ?D"
   740       by (auto simp: disjoint_family_disjointed)
   741     moreover
   742     have "(\<Sum>i. emeasure M (?D i)) = (\<Sum>i. emeasure N (?D i))"
   743     proof (intro arg_cong[where f=suminf] ext)
   744       fix i
   745       have "A i \<inter> ?D i = ?D i"
   746         by (auto simp: disjointed_def)
   747       then show "emeasure M (?D i) = emeasure N (?D i)"
   748         using *[of "A i" "?D i", OF _ A(3)] A(1) by auto
   749     qed
   750     ultimately show "emeasure M F = emeasure N F"
   751       by (simp add: image_subset_iff `sets M = sets N`[symmetric] F_eq[symmetric] suminf_emeasure)
   752   qed
   753 qed
   755 lemma measure_of_of_measure: "measure_of (space M) (sets M) (emeasure M) = M"
   756 proof (intro measure_eqI emeasure_measure_of_sigma)
   757   show "sigma_algebra (space M) (sets M)" ..
   758   show "positive (sets M) (emeasure M)"
   759     by (simp add: positive_def emeasure_nonneg)
   760   show "countably_additive (sets M) (emeasure M)"
   761     by (simp add: emeasure_countably_additive)
   762 qed simp_all
   764 section "@{text \<mu>}-null sets"
   766 definition null_sets :: "'a measure \<Rightarrow> 'a set set" where
   767   "null_sets M = {N\<in>sets M. emeasure M N = 0}"
   769 lemma null_setsD1[dest]: "A \<in> null_sets M \<Longrightarrow> emeasure M A = 0"
   770   by (simp add: null_sets_def)
   772 lemma null_setsD2[dest]: "A \<in> null_sets M \<Longrightarrow> A \<in> sets M"
   773   unfolding null_sets_def by simp
   775 lemma null_setsI[intro]: "emeasure M A = 0 \<Longrightarrow> A \<in> sets M \<Longrightarrow> A \<in> null_sets M"
   776   unfolding null_sets_def by simp
   778 interpretation null_sets: ring_of_sets "space M" "null_sets M" for M
   779 proof (rule ring_of_setsI)
   780   show "null_sets M \<subseteq> Pow (space M)"
   781     using sets.sets_into_space by auto
   782   show "{} \<in> null_sets M"
   783     by auto
   784   fix A B assume null_sets: "A \<in> null_sets M" "B \<in> null_sets M"
   785   then have sets: "A \<in> sets M" "B \<in> sets M"
   786     by auto
   787   then have *: "emeasure M (A \<union> B) \<le> emeasure M A + emeasure M B"
   788     "emeasure M (A - B) \<le> emeasure M A"
   789     by (auto intro!: emeasure_subadditive emeasure_mono)
   790   then have "emeasure M B = 0" "emeasure M A = 0"
   791     using null_sets by auto
   792   with sets * show "A - B \<in> null_sets M" "A \<union> B \<in> null_sets M"
   793     by (auto intro!: antisym)
   794 qed
   796 lemma UN_from_nat: "(\<Union>i. N i) = (\<Union>i. N (Countable.from_nat i))"
   797 proof -
   798   have "(\<Union>i. N i) = (\<Union>i. (N \<circ> Countable.from_nat) i)"
   799     unfolding SUP_def image_compose
   800     unfolding surj_from_nat ..
   801   then show ?thesis by simp
   802 qed
   804 lemma null_sets_UN[intro]:
   805   assumes "\<And>i::'i::countable. N i \<in> null_sets M"
   806   shows "(\<Union>i. N i) \<in> null_sets M"
   807 proof (intro conjI CollectI null_setsI)
   808   show "(\<Union>i. N i) \<in> sets M" using assms by auto
   809   have "0 \<le> emeasure M (\<Union>i. N i)" by (rule emeasure_nonneg)
   810   moreover have "emeasure M (\<Union>i. N i) \<le> (\<Sum>n. emeasure M (N (Countable.from_nat n)))"
   811     unfolding UN_from_nat[of N]
   812     using assms by (intro emeasure_subadditive_countably) auto
   813   ultimately show "emeasure M (\<Union>i. N i) = 0"
   814     using assms by (auto simp: null_setsD1)
   815 qed
   817 lemma null_set_Int1:
   818   assumes "B \<in> null_sets M" "A \<in> sets M" shows "A \<inter> B \<in> null_sets M"
   819 proof (intro CollectI conjI null_setsI)
   820   show "emeasure M (A \<inter> B) = 0" using assms
   821     by (intro emeasure_eq_0[of B _ "A \<inter> B"]) auto
   822 qed (insert assms, auto)
   824 lemma null_set_Int2:
   825   assumes "B \<in> null_sets M" "A \<in> sets M" shows "B \<inter> A \<in> null_sets M"
   826   using assms by (subst Int_commute) (rule null_set_Int1)
   828 lemma emeasure_Diff_null_set:
   829   assumes "B \<in> null_sets M" "A \<in> sets M"
   830   shows "emeasure M (A - B) = emeasure M A"
   831 proof -
   832   have *: "A - B = (A - (A \<inter> B))" by auto
   833   have "A \<inter> B \<in> null_sets M" using assms by (rule null_set_Int1)
   834   then show ?thesis
   835     unfolding * using assms
   836     by (subst emeasure_Diff) auto
   837 qed
   839 lemma null_set_Diff:
   840   assumes "B \<in> null_sets M" "A \<in> sets M" shows "B - A \<in> null_sets M"
   841 proof (intro CollectI conjI null_setsI)
   842   show "emeasure M (B - A) = 0" using assms by (intro emeasure_eq_0[of B _ "B - A"]) auto
   843 qed (insert assms, auto)
   845 lemma emeasure_Un_null_set:
   846   assumes "A \<in> sets M" "B \<in> null_sets M"
   847   shows "emeasure M (A \<union> B) = emeasure M A"
   848 proof -
   849   have *: "A \<union> B = A \<union> (B - A)" by auto
   850   have "B - A \<in> null_sets M" using assms(2,1) by (rule null_set_Diff)
   851   then show ?thesis
   852     unfolding * using assms
   853     by (subst plus_emeasure[symmetric]) auto
   854 qed
   856 section "Formalize almost everywhere"
   858 definition ae_filter :: "'a measure \<Rightarrow> 'a filter" where
   859   "ae_filter M = Abs_filter (\<lambda>P. \<exists>N\<in>null_sets M. {x \<in> space M. \<not> P x} \<subseteq> N)"
   861 abbreviation
   862   almost_everywhere :: "'a measure \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
   863   "almost_everywhere M P \<equiv> eventually P (ae_filter M)"
   865 syntax
   866   "_almost_everywhere" :: "pttrn \<Rightarrow> 'a \<Rightarrow> bool \<Rightarrow> bool" ("AE _ in _. _" [0,0,10] 10)
   868 translations
   869   "AE x in M. P" == "CONST almost_everywhere M (%x. P)"
   871 lemma eventually_ae_filter:
   872   fixes M P
   873   defines [simp]: "F \<equiv> \<lambda>P. \<exists>N\<in>null_sets M. {x \<in> space M. \<not> P x} \<subseteq> N" 
   874   shows "eventually P (ae_filter M) \<longleftrightarrow> F P"
   875   unfolding ae_filter_def F_def[symmetric]
   876 proof (rule eventually_Abs_filter)
   877   show "is_filter F"
   878   proof
   879     fix P Q assume "F P" "F Q"
   880     then obtain N L where N: "N \<in> null_sets M" "{x \<in> space M. \<not> P x} \<subseteq> N"
   881       and L: "L \<in> null_sets M" "{x \<in> space M. \<not> Q x} \<subseteq> L"
   882       by auto
   883     then have "L \<union> N \<in> null_sets M" "{x \<in> space M. \<not> (P x \<and> Q x)} \<subseteq> L \<union> N" by auto
   884     then show "F (\<lambda>x. P x \<and> Q x)" by auto
   885   next
   886     fix P Q assume "F P"
   887     then obtain N where N: "N \<in> null_sets M" "{x \<in> space M. \<not> P x} \<subseteq> N" by auto
   888     moreover assume "\<forall>x. P x \<longrightarrow> Q x"
   889     ultimately have "N \<in> null_sets M" "{x \<in> space M. \<not> Q x} \<subseteq> N" by auto
   890     then show "F Q" by auto
   891   qed auto
   892 qed
   894 lemma AE_I':
   895   "N \<in> null_sets M \<Longrightarrow> {x\<in>space M. \<not> P x} \<subseteq> N \<Longrightarrow> (AE x in M. P x)"
   896   unfolding eventually_ae_filter by auto
   898 lemma AE_iff_null:
   899   assumes "{x\<in>space M. \<not> P x} \<in> sets M" (is "?P \<in> sets M")
   900   shows "(AE x in M. P x) \<longleftrightarrow> {x\<in>space M. \<not> P x} \<in> null_sets M"
   901 proof
   902   assume "AE x in M. P x" then obtain N where N: "N \<in> sets M" "?P \<subseteq> N" "emeasure M N = 0"
   903     unfolding eventually_ae_filter by auto
   904   have "0 \<le> emeasure M ?P" by auto
   905   moreover have "emeasure M ?P \<le> emeasure M N"
   906     using assms N(1,2) by (auto intro: emeasure_mono)
   907   ultimately have "emeasure M ?P = 0" unfolding `emeasure M N = 0` by auto
   908   then show "?P \<in> null_sets M" using assms by auto
   909 next
   910   assume "?P \<in> null_sets M" with assms show "AE x in M. P x" by (auto intro: AE_I')
   911 qed
   913 lemma AE_iff_null_sets:
   914   "N \<in> sets M \<Longrightarrow> N \<in> null_sets M \<longleftrightarrow> (AE x in M. x \<notin> N)"
   915   using Int_absorb1[OF sets.sets_into_space, of N M]
   916   by (subst AE_iff_null) (auto simp: Int_def[symmetric])
   918 lemma AE_not_in:
   919   "N \<in> null_sets M \<Longrightarrow> AE x in M. x \<notin> N"
   920   by (metis AE_iff_null_sets null_setsD2)
   922 lemma AE_iff_measurable:
   923   "N \<in> sets M \<Longrightarrow> {x\<in>space M. \<not> P x} = N \<Longrightarrow> (AE x in M. P x) \<longleftrightarrow> emeasure M N = 0"
   924   using AE_iff_null[of _ P] by auto
   926 lemma AE_E[consumes 1]:
   927   assumes "AE x in M. P x"
   928   obtains N where "{x \<in> space M. \<not> P x} \<subseteq> N" "emeasure M N = 0" "N \<in> sets M"
   929   using assms unfolding eventually_ae_filter by auto
   931 lemma AE_E2:
   932   assumes "AE x in M. P x" "{x\<in>space M. P x} \<in> sets M"
   933   shows "emeasure M {x\<in>space M. \<not> P x} = 0" (is "emeasure M ?P = 0")
   934 proof -
   935   have "{x\<in>space M. \<not> P x} = space M - {x\<in>space M. P x}" by auto
   936   with AE_iff_null[of M P] assms show ?thesis by auto
   937 qed
   939 lemma AE_I:
   940   assumes "{x \<in> space M. \<not> P x} \<subseteq> N" "emeasure M N = 0" "N \<in> sets M"
   941   shows "AE x in M. P x"
   942   using assms unfolding eventually_ae_filter by auto
   944 lemma AE_mp[elim!]:
   945   assumes AE_P: "AE x in M. P x" and AE_imp: "AE x in M. P x \<longrightarrow> Q x"
   946   shows "AE x in M. Q x"
   947 proof -
   948   from AE_P obtain A where P: "{x\<in>space M. \<not> P x} \<subseteq> A"
   949     and A: "A \<in> sets M" "emeasure M A = 0"
   950     by (auto elim!: AE_E)
   952   from AE_imp obtain B where imp: "{x\<in>space M. P x \<and> \<not> Q x} \<subseteq> B"
   953     and B: "B \<in> sets M" "emeasure M B = 0"
   954     by (auto elim!: AE_E)
   956   show ?thesis
   957   proof (intro AE_I)
   958     have "0 \<le> emeasure M (A \<union> B)" using A B by auto
   959     moreover have "emeasure M (A \<union> B) \<le> 0"
   960       using emeasure_subadditive[of A M B] A B by auto
   961     ultimately show "A \<union> B \<in> sets M" "emeasure M (A \<union> B) = 0" using A B by auto
   962     show "{x\<in>space M. \<not> Q x} \<subseteq> A \<union> B"
   963       using P imp by auto
   964   qed
   965 qed
   967 (* depricated replace by laws about eventually *)
   968 lemma
   969   shows AE_iffI: "AE x in M. P x \<Longrightarrow> AE x in M. P x \<longleftrightarrow> Q x \<Longrightarrow> AE x in M. Q x"
   970     and AE_disjI1: "AE x in M. P x \<Longrightarrow> AE x in M. P x \<or> Q x"
   971     and AE_disjI2: "AE x in M. Q x \<Longrightarrow> AE x in M. P x \<or> Q x"
   972     and AE_conjI: "AE x in M. P x \<Longrightarrow> AE x in M. Q x \<Longrightarrow> AE x in M. P x \<and> Q x"
   973     and AE_conj_iff[simp]: "(AE x in M. P x \<and> Q x) \<longleftrightarrow> (AE x in M. P x) \<and> (AE x in M. Q x)"
   974   by auto
   976 lemma AE_impI:
   977   "(P \<Longrightarrow> AE x in M. Q x) \<Longrightarrow> AE x in M. P \<longrightarrow> Q x"
   978   by (cases P) auto
   980 lemma AE_measure:
   981   assumes AE: "AE x in M. P x" and sets: "{x\<in>space M. P x} \<in> sets M" (is "?P \<in> sets M")
   982   shows "emeasure M {x\<in>space M. P x} = emeasure M (space M)"
   983 proof -
   984   from AE_E[OF AE] guess N . note N = this
   985   with sets have "emeasure M (space M) \<le> emeasure M (?P \<union> N)"
   986     by (intro emeasure_mono) auto
   987   also have "\<dots> \<le> emeasure M ?P + emeasure M N"
   988     using sets N by (intro emeasure_subadditive) auto
   989   also have "\<dots> = emeasure M ?P" using N by simp
   990   finally show "emeasure M ?P = emeasure M (space M)"
   991     using emeasure_space[of M "?P"] by auto
   992 qed
   994 lemma AE_space: "AE x in M. x \<in> space M"
   995   by (rule AE_I[where N="{}"]) auto
   997 lemma AE_I2[simp, intro]:
   998   "(\<And>x. x \<in> space M \<Longrightarrow> P x) \<Longrightarrow> AE x in M. P x"
   999   using AE_space by force
  1001 lemma AE_Ball_mp:
  1002   "\<forall>x\<in>space M. P x \<Longrightarrow> AE x in M. P x \<longrightarrow> Q x \<Longrightarrow> AE x in M. Q x"
  1003   by auto
  1005 lemma AE_cong[cong]:
  1006   "(\<And>x. x \<in> space M \<Longrightarrow> P x \<longleftrightarrow> Q x) \<Longrightarrow> (AE x in M. P x) \<longleftrightarrow> (AE x in M. Q x)"
  1007   by auto
  1009 lemma AE_all_countable:
  1010   "(AE x in M. \<forall>i. P i x) \<longleftrightarrow> (\<forall>i::'i::countable. AE x in M. P i x)"
  1011 proof
  1012   assume "\<forall>i. AE x in M. P i x"
  1013   from this[unfolded eventually_ae_filter Bex_def, THEN choice]
  1014   obtain N where N: "\<And>i. N i \<in> null_sets M" "\<And>i. {x\<in>space M. \<not> P i x} \<subseteq> N i" by auto
  1015   have "{x\<in>space M. \<not> (\<forall>i. P i x)} \<subseteq> (\<Union>i. {x\<in>space M. \<not> P i x})" by auto
  1016   also have "\<dots> \<subseteq> (\<Union>i. N i)" using N by auto
  1017   finally have "{x\<in>space M. \<not> (\<forall>i. P i x)} \<subseteq> (\<Union>i. N i)" .
  1018   moreover from N have "(\<Union>i. N i) \<in> null_sets M"
  1019     by (intro null_sets_UN) auto
  1020   ultimately show "AE x in M. \<forall>i. P i x"
  1021     unfolding eventually_ae_filter by auto
  1022 qed auto
  1024 lemma AE_finite_all:
  1025   assumes f: "finite S" shows "(AE x in M. \<forall>i\<in>S. P i x) \<longleftrightarrow> (\<forall>i\<in>S. AE x in M. P i x)"
  1026   using f by induct auto
  1028 lemma AE_finite_allI:
  1029   assumes "finite S"
  1030   shows "(\<And>s. s \<in> S \<Longrightarrow> AE x in M. Q s x) \<Longrightarrow> AE x in M. \<forall>s\<in>S. Q s x"
  1031   using AE_finite_all[OF `finite S`] by auto
  1033 lemma emeasure_mono_AE:
  1034   assumes imp: "AE x in M. x \<in> A \<longrightarrow> x \<in> B"
  1035     and B: "B \<in> sets M"
  1036   shows "emeasure M A \<le> emeasure M B"
  1037 proof cases
  1038   assume A: "A \<in> sets M"
  1039   from imp obtain N where N: "{x\<in>space M. \<not> (x \<in> A \<longrightarrow> x \<in> B)} \<subseteq> N" "N \<in> null_sets M"
  1040     by (auto simp: eventually_ae_filter)
  1041   have "emeasure M A = emeasure M (A - N)"
  1042     using N A by (subst emeasure_Diff_null_set) auto
  1043   also have "emeasure M (A - N) \<le> emeasure M (B - N)"
  1044     using N A B sets.sets_into_space by (auto intro!: emeasure_mono)
  1045   also have "emeasure M (B - N) = emeasure M B"
  1046     using N B by (subst emeasure_Diff_null_set) auto
  1047   finally show ?thesis .
  1048 qed (simp add: emeasure_nonneg emeasure_notin_sets)
  1050 lemma emeasure_eq_AE:
  1051   assumes iff: "AE x in M. x \<in> A \<longleftrightarrow> x \<in> B"
  1052   assumes A: "A \<in> sets M" and B: "B \<in> sets M"
  1053   shows "emeasure M A = emeasure M B"
  1054   using assms by (safe intro!: antisym emeasure_mono_AE) auto
  1056 section {* @{text \<sigma>}-finite Measures *}
  1058 locale sigma_finite_measure =
  1059   fixes M :: "'a measure"
  1060   assumes sigma_finite: "\<exists>A::nat \<Rightarrow> 'a set.
  1061     range A \<subseteq> sets M \<and> (\<Union>i. A i) = space M \<and> (\<forall>i. emeasure M (A i) \<noteq> \<infinity>)"
  1063 lemma (in sigma_finite_measure) sigma_finite_disjoint:
  1064   obtains A :: "nat \<Rightarrow> 'a set"
  1065   where "range A \<subseteq> sets M" "(\<Union>i. A i) = space M" "\<And>i. emeasure M (A i) \<noteq> \<infinity>" "disjoint_family A"
  1066 proof atomize_elim
  1067   case goal1
  1068   obtain A :: "nat \<Rightarrow> 'a set" where
  1069     range: "range A \<subseteq> sets M" and
  1070     space: "(\<Union>i. A i) = space M" and
  1071     measure: "\<And>i. emeasure M (A i) \<noteq> \<infinity>"
  1072     using sigma_finite by auto
  1073   note range' = sets.range_disjointed_sets[OF range] range
  1074   { fix i
  1075     have "emeasure M (disjointed A i) \<le> emeasure M (A i)"
  1076       using range' disjointed_subset[of A i] by (auto intro!: emeasure_mono)
  1077     then have "emeasure M (disjointed A i) \<noteq> \<infinity>"
  1078       using measure[of i] by auto }
  1079   with disjoint_family_disjointed UN_disjointed_eq[of A] space range'
  1080   show ?case by (auto intro!: exI[of _ "disjointed A"])
  1081 qed
  1083 lemma (in sigma_finite_measure) sigma_finite_incseq:
  1084   obtains A :: "nat \<Rightarrow> 'a set"
  1085   where "range A \<subseteq> sets M" "(\<Union>i. A i) = space M" "\<And>i. emeasure M (A i) \<noteq> \<infinity>" "incseq A"
  1086 proof atomize_elim
  1087   case goal1
  1088   obtain F :: "nat \<Rightarrow> 'a set" where
  1089     F: "range F \<subseteq> sets M" "(\<Union>i. F i) = space M" "\<And>i. emeasure M (F i) \<noteq> \<infinity>"
  1090     using sigma_finite by auto
  1091   then show ?case
  1092   proof (intro exI[of _ "\<lambda>n. \<Union>i\<le>n. F i"] conjI allI)
  1093     from F have "\<And>x. x \<in> space M \<Longrightarrow> \<exists>i. x \<in> F i" by auto
  1094     then show "(\<Union>n. \<Union> i\<le>n. F i) = space M"
  1095       using F by fastforce
  1096   next
  1097     fix n
  1098     have "emeasure M (\<Union> i\<le>n. F i) \<le> (\<Sum>i\<le>n. emeasure M (F i))" using F
  1099       by (auto intro!: emeasure_subadditive_finite)
  1100     also have "\<dots> < \<infinity>"
  1101       using F by (auto simp: setsum_Pinfty)
  1102     finally show "emeasure M (\<Union> i\<le>n. F i) \<noteq> \<infinity>" by simp
  1103   qed (force simp: incseq_def)+
  1104 qed
  1106 section {* Measure space induced by distribution of @{const measurable}-functions *}
  1108 definition distr :: "'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b measure" where
  1109   "distr M N f = measure_of (space N) (sets N) (\<lambda>A. emeasure M (f -` A \<inter> space M))"
  1111 lemma
  1112   shows sets_distr[simp]: "sets (distr M N f) = sets N"
  1113     and space_distr[simp]: "space (distr M N f) = space N"
  1114   by (auto simp: distr_def)
  1116 lemma
  1117   shows measurable_distr_eq1[simp]: "measurable (distr Mf Nf f) Mf' = measurable Nf Mf'"
  1118     and measurable_distr_eq2[simp]: "measurable Mg' (distr Mg Ng g) = measurable Mg' Ng"
  1119   by (auto simp: measurable_def)
  1121 lemma distr_cong:
  1122   "M = K \<Longrightarrow> sets N = sets L \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> f x = g x) \<Longrightarrow> distr M N f = distr K L g"
  1123   using sets_eq_imp_space_eq[of N L] by (simp add: distr_def Int_def cong: rev_conj_cong)
  1125 lemma emeasure_distr:
  1126   fixes f :: "'a \<Rightarrow> 'b"
  1127   assumes f: "f \<in> measurable M N" and A: "A \<in> sets N"
  1128   shows "emeasure (distr M N f) A = emeasure M (f -` A \<inter> space M)" (is "_ = ?\<mu> A")
  1129   unfolding distr_def
  1130 proof (rule emeasure_measure_of_sigma)
  1131   show "positive (sets N) ?\<mu>"
  1132     by (auto simp: positive_def)
  1134   show "countably_additive (sets N) ?\<mu>"
  1135   proof (intro countably_additiveI)
  1136     fix A :: "nat \<Rightarrow> 'b set" assume "range A \<subseteq> sets N" "disjoint_family A"
  1137     then have A: "\<And>i. A i \<in> sets N" "(\<Union>i. A i) \<in> sets N" by auto
  1138     then have *: "range (\<lambda>i. f -` (A i) \<inter> space M) \<subseteq> sets M"
  1139       using f by (auto simp: measurable_def)
  1140     moreover have "(\<Union>i. f -`  A i \<inter> space M) \<in> sets M"
  1141       using * by blast
  1142     moreover have **: "disjoint_family (\<lambda>i. f -` A i \<inter> space M)"
  1143       using `disjoint_family A` by (auto simp: disjoint_family_on_def)
  1144     ultimately show "(\<Sum>i. ?\<mu> (A i)) = ?\<mu> (\<Union>i. A i)"
  1145       using suminf_emeasure[OF _ **] A f
  1146       by (auto simp: comp_def vimage_UN)
  1147   qed
  1148   show "sigma_algebra (space N) (sets N)" ..
  1149 qed fact
  1151 lemma distr_id[simp]: "distr N N (\<lambda>x. x) = N"
  1152   by (rule measure_eqI) (auto simp: emeasure_distr)
  1154 lemma measure_distr:
  1155   "f \<in> measurable M N \<Longrightarrow> S \<in> sets N \<Longrightarrow> measure (distr M N f) S = measure M (f -` S \<inter> space M)"
  1156   by (simp add: emeasure_distr measure_def)
  1158 lemma AE_distrD:
  1159   assumes f: "f \<in> measurable M M'"
  1160     and AE: "AE x in distr M M' f. P x"
  1161   shows "AE x in M. P (f x)"
  1162 proof -
  1163   from AE[THEN AE_E] guess N .
  1164   with f show ?thesis
  1165     unfolding eventually_ae_filter
  1166     by (intro bexI[of _ "f -` N \<inter> space M"])
  1167        (auto simp: emeasure_distr measurable_def)
  1168 qed
  1170 lemma AE_distr_iff:
  1171   assumes f[measurable]: "f \<in> measurable M N" and P[measurable]: "{x \<in> space N. P x} \<in> sets N"
  1172   shows "(AE x in distr M N f. P x) \<longleftrightarrow> (AE x in M. P (f x))"
  1173 proof (subst (1 2) AE_iff_measurable[OF _ refl])
  1174   have "f -` {x\<in>space N. \<not> P x} \<inter> space M = {x \<in> space M. \<not> P (f x)}"
  1175     using f[THEN measurable_space] by auto
  1176   then show "(emeasure (distr M N f) {x \<in> space (distr M N f). \<not> P x} = 0) =
  1177     (emeasure M {x \<in> space M. \<not> P (f x)} = 0)"
  1178     by (simp add: emeasure_distr)
  1179 qed auto
  1181 lemma null_sets_distr_iff:
  1182   "f \<in> measurable M N \<Longrightarrow> A \<in> null_sets (distr M N f) \<longleftrightarrow> f -` A \<inter> space M \<in> null_sets M \<and> A \<in> sets N"
  1183   by (auto simp add: null_sets_def emeasure_distr)
  1185 lemma distr_distr:
  1186   "g \<in> measurable N L \<Longrightarrow> f \<in> measurable M N \<Longrightarrow> distr (distr M N f) L g = distr M L (g \<circ> f)"
  1187   by (auto simp add: emeasure_distr measurable_space
  1188            intro!: arg_cong[where f="emeasure M"] measure_eqI)
  1190 section {* Real measure values *}
  1192 lemma measure_nonneg: "0 \<le> measure M A"
  1193   using emeasure_nonneg[of M A] unfolding measure_def by (auto intro: real_of_ereal_pos)
  1195 lemma measure_empty[simp]: "measure M {} = 0"
  1196   unfolding measure_def by simp
  1198 lemma emeasure_eq_ereal_measure:
  1199   "emeasure M A \<noteq> \<infinity> \<Longrightarrow> emeasure M A = ereal (measure M A)"
  1200   using emeasure_nonneg[of M A]
  1201   by (cases "emeasure M A") (auto simp: measure_def)
  1203 lemma measure_Union:
  1204   assumes finite: "emeasure M A \<noteq> \<infinity>" "emeasure M B \<noteq> \<infinity>"
  1205   and measurable: "A \<in> sets M" "B \<in> sets M" "A \<inter> B = {}"
  1206   shows "measure M (A \<union> B) = measure M A + measure M B"
  1207   unfolding measure_def
  1208   using plus_emeasure[OF measurable, symmetric] finite
  1209   by (simp add: emeasure_eq_ereal_measure)
  1211 lemma measure_finite_Union:
  1212   assumes measurable: "A`S \<subseteq> sets M" "disjoint_family_on A S" "finite S"
  1213   assumes finite: "\<And>i. i \<in> S \<Longrightarrow> emeasure M (A i) \<noteq> \<infinity>"
  1214   shows "measure M (\<Union>i\<in>S. A i) = (\<Sum>i\<in>S. measure M (A i))"
  1215   unfolding measure_def
  1216   using setsum_emeasure[OF measurable, symmetric] finite
  1217   by (simp add: emeasure_eq_ereal_measure)
  1219 lemma measure_Diff:
  1220   assumes finite: "emeasure M A \<noteq> \<infinity>"
  1221   and measurable: "A \<in> sets M" "B \<in> sets M" "B \<subseteq> A"
  1222   shows "measure M (A - B) = measure M A - measure M B"
  1223 proof -
  1224   have "emeasure M (A - B) \<le> emeasure M A" "emeasure M B \<le> emeasure M A"
  1225     using measurable by (auto intro!: emeasure_mono)
  1226   hence "measure M ((A - B) \<union> B) = measure M (A - B) + measure M B"
  1227     using measurable finite by (rule_tac measure_Union) auto
  1228   thus ?thesis using `B \<subseteq> A` by (auto simp: Un_absorb2)
  1229 qed
  1231 lemma measure_UNION:
  1232   assumes measurable: "range A \<subseteq> sets M" "disjoint_family A"
  1233   assumes finite: "emeasure M (\<Union>i. A i) \<noteq> \<infinity>"
  1234   shows "(\<lambda>i. measure M (A i)) sums (measure M (\<Union>i. A i))"
  1235 proof -
  1236   from summable_sums[OF summable_ereal_pos, of "\<lambda>i. emeasure M (A i)"]
  1237        suminf_emeasure[OF measurable] emeasure_nonneg[of M]
  1238   have "(\<lambda>i. emeasure M (A i)) sums (emeasure M (\<Union>i. A i))" by simp
  1239   moreover
  1240   { fix i
  1241     have "emeasure M (A i) \<le> emeasure M (\<Union>i. A i)"
  1242       using measurable by (auto intro!: emeasure_mono)
  1243     then have "emeasure M (A i) = ereal ((measure M (A i)))"
  1244       using finite by (intro emeasure_eq_ereal_measure) auto }
  1245   ultimately show ?thesis using finite
  1246     unfolding sums_ereal[symmetric] by (simp add: emeasure_eq_ereal_measure)
  1247 qed
  1249 lemma measure_subadditive:
  1250   assumes measurable: "A \<in> sets M" "B \<in> sets M"
  1251   and fin: "emeasure M A \<noteq> \<infinity>" "emeasure M B \<noteq> \<infinity>"
  1252   shows "(measure M (A \<union> B)) \<le> (measure M A) + (measure M B)"
  1253 proof -
  1254   have "emeasure M (A \<union> B) \<noteq> \<infinity>"
  1255     using emeasure_subadditive[OF measurable] fin by auto
  1256   then show "(measure M (A \<union> B)) \<le> (measure M A) + (measure M B)"
  1257     using emeasure_subadditive[OF measurable] fin
  1258     by (auto simp: emeasure_eq_ereal_measure)
  1259 qed
  1261 lemma measure_subadditive_finite:
  1262   assumes A: "finite I" "A`I \<subseteq> sets M" and fin: "\<And>i. i \<in> I \<Longrightarrow> emeasure M (A i) \<noteq> \<infinity>"
  1263   shows "measure M (\<Union>i\<in>I. A i) \<le> (\<Sum>i\<in>I. measure M (A i))"
  1264 proof -
  1265   { have "emeasure M (\<Union>i\<in>I. A i) \<le> (\<Sum>i\<in>I. emeasure M (A i))"
  1266       using emeasure_subadditive_finite[OF A] .
  1267     also have "\<dots> < \<infinity>"
  1268       using fin by (simp add: setsum_Pinfty)
  1269     finally have "emeasure M (\<Union>i\<in>I. A i) \<noteq> \<infinity>" by simp }
  1270   then show ?thesis
  1271     using emeasure_subadditive_finite[OF A] fin
  1272     unfolding measure_def by (simp add: emeasure_eq_ereal_measure suminf_ereal measure_nonneg)
  1273 qed
  1275 lemma measure_subadditive_countably:
  1276   assumes A: "range A \<subseteq> sets M" and fin: "(\<Sum>i. emeasure M (A i)) \<noteq> \<infinity>"
  1277   shows "measure M (\<Union>i. A i) \<le> (\<Sum>i. measure M (A i))"
  1278 proof -
  1279   from emeasure_nonneg fin have "\<And>i. emeasure M (A i) \<noteq> \<infinity>" by (rule suminf_PInfty)
  1280   moreover
  1281   { have "emeasure M (\<Union>i. A i) \<le> (\<Sum>i. emeasure M (A i))"
  1282       using emeasure_subadditive_countably[OF A] .
  1283     also have "\<dots> < \<infinity>"
  1284       using fin by simp
  1285     finally have "emeasure M (\<Union>i. A i) \<noteq> \<infinity>" by simp }
  1286   ultimately  show ?thesis
  1287     using emeasure_subadditive_countably[OF A] fin
  1288     unfolding measure_def by (simp add: emeasure_eq_ereal_measure suminf_ereal measure_nonneg)
  1289 qed
  1291 lemma measure_eq_setsum_singleton:
  1292   assumes S: "finite S" "\<And>x. x \<in> S \<Longrightarrow> {x} \<in> sets M"
  1293   and fin: "\<And>x. x \<in> S \<Longrightarrow> emeasure M {x} \<noteq> \<infinity>"
  1294   shows "(measure M S) = (\<Sum>x\<in>S. (measure M {x}))"
  1295   unfolding measure_def
  1296   using emeasure_eq_setsum_singleton[OF S] fin
  1297   by simp (simp add: emeasure_eq_ereal_measure)
  1299 lemma Lim_measure_incseq:
  1300   assumes A: "range A \<subseteq> sets M" "incseq A" and fin: "emeasure M (\<Union>i. A i) \<noteq> \<infinity>"
  1301   shows "(\<lambda>i. (measure M (A i))) ----> (measure M (\<Union>i. A i))"
  1302 proof -
  1303   have "ereal ((measure M (\<Union>i. A i))) = emeasure M (\<Union>i. A i)"
  1304     using fin by (auto simp: emeasure_eq_ereal_measure)
  1305   then show ?thesis
  1306     using Lim_emeasure_incseq[OF A]
  1307     unfolding measure_def
  1308     by (intro lim_real_of_ereal) simp
  1309 qed
  1311 lemma Lim_measure_decseq:
  1312   assumes A: "range A \<subseteq> sets M" "decseq A" and fin: "\<And>i. emeasure M (A i) \<noteq> \<infinity>"
  1313   shows "(\<lambda>n. measure M (A n)) ----> measure M (\<Inter>i. A i)"
  1314 proof -
  1315   have "emeasure M (\<Inter>i. A i) \<le> emeasure M (A 0)"
  1316     using A by (auto intro!: emeasure_mono)
  1317   also have "\<dots> < \<infinity>"
  1318     using fin[of 0] by auto
  1319   finally have "ereal ((measure M (\<Inter>i. A i))) = emeasure M (\<Inter>i. A i)"
  1320     by (auto simp: emeasure_eq_ereal_measure)
  1321   then show ?thesis
  1322     unfolding measure_def
  1323     using Lim_emeasure_decseq[OF A fin]
  1324     by (intro lim_real_of_ereal) simp
  1325 qed
  1327 section {* Measure spaces with @{term "emeasure M (space M) < \<infinity>"} *}
  1329 locale finite_measure = sigma_finite_measure M for M +
  1330   assumes finite_emeasure_space: "emeasure M (space M) \<noteq> \<infinity>"
  1332 lemma finite_measureI[Pure.intro!]:
  1333   assumes *: "emeasure M (space M) \<noteq> \<infinity>"
  1334   shows "finite_measure M"
  1335 proof
  1336   show "\<exists>A. range A \<subseteq> sets M \<and> (\<Union>i. A i) = space M \<and> (\<forall>i. emeasure M (A i) \<noteq> \<infinity>)"
  1337     using * by (auto intro!: exI[of _ "\<lambda>_. space M"])
  1338 qed fact
  1340 lemma (in finite_measure) emeasure_finite[simp, intro]: "emeasure M A \<noteq> \<infinity>"
  1341   using finite_emeasure_space emeasure_space[of M A] by auto
  1343 lemma (in finite_measure) emeasure_eq_measure: "emeasure M A = ereal (measure M A)"
  1344   unfolding measure_def by (simp add: emeasure_eq_ereal_measure)
  1346 lemma (in finite_measure) emeasure_real: "\<exists>r. 0 \<le> r \<and> emeasure M A = ereal r"
  1347   using emeasure_finite[of A] emeasure_nonneg[of M A] by (cases "emeasure M A") auto
  1349 lemma (in finite_measure) bounded_measure: "measure M A \<le> measure M (space M)"
  1350   using emeasure_space[of M A] emeasure_real[of A] emeasure_real[of "space M"] by (auto simp: measure_def)
  1352 lemma (in finite_measure) finite_measure_Diff:
  1353   assumes sets: "A \<in> sets M" "B \<in> sets M" and "B \<subseteq> A"
  1354   shows "measure M (A - B) = measure M A - measure M B"
  1355   using measure_Diff[OF _ assms] by simp
  1357 lemma (in finite_measure) finite_measure_Union:
  1358   assumes sets: "A \<in> sets M" "B \<in> sets M" and "A \<inter> B = {}"
  1359   shows "measure M (A \<union> B) = measure M A + measure M B"
  1360   using measure_Union[OF _ _ assms] by simp
  1362 lemma (in finite_measure) finite_measure_finite_Union:
  1363   assumes measurable: "A`S \<subseteq> sets M" "disjoint_family_on A S" "finite S"
  1364   shows "measure M (\<Union>i\<in>S. A i) = (\<Sum>i\<in>S. measure M (A i))"
  1365   using measure_finite_Union[OF assms] by simp
  1367 lemma (in finite_measure) finite_measure_UNION:
  1368   assumes A: "range A \<subseteq> sets M" "disjoint_family A"
  1369   shows "(\<lambda>i. measure M (A i)) sums (measure M (\<Union>i. A i))"
  1370   using measure_UNION[OF A] by simp
  1372 lemma (in finite_measure) finite_measure_mono:
  1373   assumes "A \<subseteq> B" "B \<in> sets M" shows "measure M A \<le> measure M B"
  1374   using emeasure_mono[OF assms] emeasure_real[of A] emeasure_real[of B] by (auto simp: measure_def)
  1376 lemma (in finite_measure) finite_measure_subadditive:
  1377   assumes m: "A \<in> sets M" "B \<in> sets M"
  1378   shows "measure M (A \<union> B) \<le> measure M A + measure M B"
  1379   using measure_subadditive[OF m] by simp
  1381 lemma (in finite_measure) finite_measure_subadditive_finite:
  1382   assumes "finite I" "A`I \<subseteq> sets M" shows "measure M (\<Union>i\<in>I. A i) \<le> (\<Sum>i\<in>I. measure M (A i))"
  1383   using measure_subadditive_finite[OF assms] by simp
  1385 lemma (in finite_measure) finite_measure_subadditive_countably:
  1386   assumes A: "range A \<subseteq> sets M" and sum: "summable (\<lambda>i. measure M (A i))"
  1387   shows "measure M (\<Union>i. A i) \<le> (\<Sum>i. measure M (A i))"
  1388 proof -
  1389   from `summable (\<lambda>i. measure M (A i))`
  1390   have "(\<lambda>i. ereal (measure M (A i))) sums ereal (\<Sum>i. measure M (A i))"
  1391     by (simp add: sums_ereal) (rule summable_sums)
  1392   from sums_unique[OF this, symmetric]
  1393        measure_subadditive_countably[OF A]
  1394   show ?thesis by (simp add: emeasure_eq_measure)
  1395 qed
  1397 lemma (in finite_measure) finite_measure_eq_setsum_singleton:
  1398   assumes "finite S" and *: "\<And>x. x \<in> S \<Longrightarrow> {x} \<in> sets M"
  1399   shows "measure M S = (\<Sum>x\<in>S. measure M {x})"
  1400   using measure_eq_setsum_singleton[OF assms] by simp
  1402 lemma (in finite_measure) finite_Lim_measure_incseq:
  1403   assumes A: "range A \<subseteq> sets M" "incseq A"
  1404   shows "(\<lambda>i. measure M (A i)) ----> measure M (\<Union>i. A i)"
  1405   using Lim_measure_incseq[OF A] by simp
  1407 lemma (in finite_measure) finite_Lim_measure_decseq:
  1408   assumes A: "range A \<subseteq> sets M" "decseq A"
  1409   shows "(\<lambda>n. measure M (A n)) ----> measure M (\<Inter>i. A i)"
  1410   using Lim_measure_decseq[OF A] by simp
  1412 lemma (in finite_measure) finite_measure_compl:
  1413   assumes S: "S \<in> sets M"
  1414   shows "measure M (space M - S) = measure M (space M) - measure M S"
  1415   using measure_Diff[OF _ S sets.sets_into_space] S by simp
  1417 lemma (in finite_measure) finite_measure_mono_AE:
  1418   assumes imp: "AE x in M. x \<in> A \<longrightarrow> x \<in> B" and B: "B \<in> sets M"
  1419   shows "measure M A \<le> measure M B"
  1420   using assms emeasure_mono_AE[OF imp B]
  1421   by (simp add: emeasure_eq_measure)
  1423 lemma (in finite_measure) finite_measure_eq_AE:
  1424   assumes iff: "AE x in M. x \<in> A \<longleftrightarrow> x \<in> B"
  1425   assumes A: "A \<in> sets M" and B: "B \<in> sets M"
  1426   shows "measure M A = measure M B"
  1427   using assms emeasure_eq_AE[OF assms] by (simp add: emeasure_eq_measure)
  1429 lemma (in finite_measure) measure_increasing: "increasing M (measure M)"
  1430   by (auto intro!: finite_measure_mono simp: increasing_def)
  1432 lemma (in finite_measure) measure_zero_union:
  1433   assumes "s \<in> sets M" "t \<in> sets M" "measure M t = 0"
  1434   shows "measure M (s \<union> t) = measure M s"
  1435 using assms
  1436 proof -
  1437   have "measure M (s \<union> t) \<le> measure M s"
  1438     using finite_measure_subadditive[of s t] assms by auto
  1439   moreover have "measure M (s \<union> t) \<ge> measure M s"
  1440     using assms by (blast intro: finite_measure_mono)
  1441   ultimately show ?thesis by simp
  1442 qed
  1444 lemma (in finite_measure) measure_eq_compl:
  1445   assumes "s \<in> sets M" "t \<in> sets M"
  1446   assumes "measure M (space M - s) = measure M (space M - t)"
  1447   shows "measure M s = measure M t"
  1448   using assms finite_measure_compl by auto
  1450 lemma (in finite_measure) measure_eq_bigunion_image:
  1451   assumes "range f \<subseteq> sets M" "range g \<subseteq> sets M"
  1452   assumes "disjoint_family f" "disjoint_family g"
  1453   assumes "\<And> n :: nat. measure M (f n) = measure M (g n)"
  1454   shows "measure M (\<Union> i. f i) = measure M (\<Union> i. g i)"
  1455 using assms
  1456 proof -
  1457   have a: "(\<lambda> i. measure M (f i)) sums (measure M (\<Union> i. f i))"
  1458     by (rule finite_measure_UNION[OF assms(1,3)])
  1459   have b: "(\<lambda> i. measure M (g i)) sums (measure M (\<Union> i. g i))"
  1460     by (rule finite_measure_UNION[OF assms(2,4)])
  1461   show ?thesis using sums_unique[OF b] sums_unique[OF a] assms by simp
  1462 qed
  1464 lemma (in finite_measure) measure_countably_zero:
  1465   assumes "range c \<subseteq> sets M"
  1466   assumes "\<And> i. measure M (c i) = 0"
  1467   shows "measure M (\<Union> i :: nat. c i) = 0"
  1468 proof (rule antisym)
  1469   show "measure M (\<Union> i :: nat. c i) \<le> 0"
  1470     using finite_measure_subadditive_countably[OF assms(1)] by (simp add: assms(2))
  1471 qed (simp add: measure_nonneg)
  1473 lemma (in finite_measure) measure_space_inter:
  1474   assumes events:"s \<in> sets M" "t \<in> sets M"
  1475   assumes "measure M t = measure M (space M)"
  1476   shows "measure M (s \<inter> t) = measure M s"
  1477 proof -
  1478   have "measure M ((space M - s) \<union> (space M - t)) = measure M (space M - s)"
  1479     using events assms finite_measure_compl[of "t"] by (auto intro!: measure_zero_union)
  1480   also have "(space M - s) \<union> (space M - t) = space M - (s \<inter> t)"
  1481     by blast
  1482   finally show "measure M (s \<inter> t) = measure M s"
  1483     using events by (auto intro!: measure_eq_compl[of "s \<inter> t" s])
  1484 qed
  1486 lemma (in finite_measure) measure_equiprobable_finite_unions:
  1487   assumes s: "finite s" "\<And>x. x \<in> s \<Longrightarrow> {x} \<in> sets M"
  1488   assumes "\<And> x y. \<lbrakk>x \<in> s; y \<in> s\<rbrakk> \<Longrightarrow> measure M {x} = measure M {y}"
  1489   shows "measure M s = real (card s) * measure M {SOME x. x \<in> s}"
  1490 proof cases
  1491   assume "s \<noteq> {}"
  1492   then have "\<exists> x. x \<in> s" by blast
  1493   from someI_ex[OF this] assms
  1494   have prob_some: "\<And> x. x \<in> s \<Longrightarrow> measure M {x} = measure M {SOME y. y \<in> s}" by blast
  1495   have "measure M s = (\<Sum> x \<in> s. measure M {x})"
  1496     using finite_measure_eq_setsum_singleton[OF s] by simp
  1497   also have "\<dots> = (\<Sum> x \<in> s. measure M {SOME y. y \<in> s})" using prob_some by auto
  1498   also have "\<dots> = real (card s) * measure M {(SOME x. x \<in> s)}"
  1499     using setsum_constant assms by (simp add: real_eq_of_nat)
  1500   finally show ?thesis by simp
  1501 qed simp
  1503 lemma (in finite_measure) measure_real_sum_image_fn:
  1504   assumes "e \<in> sets M"
  1505   assumes "\<And> x. x \<in> s \<Longrightarrow> e \<inter> f x \<in> sets M"
  1506   assumes "finite s"
  1507   assumes disjoint: "\<And> x y. \<lbrakk>x \<in> s ; y \<in> s ; x \<noteq> y\<rbrakk> \<Longrightarrow> f x \<inter> f y = {}"
  1508   assumes upper: "space M \<subseteq> (\<Union> i \<in> s. f i)"
  1509   shows "measure M e = (\<Sum> x \<in> s. measure M (e \<inter> f x))"
  1510 proof -
  1511   have e: "e = (\<Union> i \<in> s. e \<inter> f i)"
  1512     using `e \<in> sets M` sets.sets_into_space upper by blast
  1513   hence "measure M e = measure M (\<Union> i \<in> s. e \<inter> f i)" by simp
  1514   also have "\<dots> = (\<Sum> x \<in> s. measure M (e \<inter> f x))"
  1515   proof (rule finite_measure_finite_Union)
  1516     show "finite s" by fact
  1517     show "(\<lambda>i. e \<inter> f i)`s \<subseteq> sets M" using assms(2) by auto
  1518     show "disjoint_family_on (\<lambda>i. e \<inter> f i) s"
  1519       using disjoint by (auto simp: disjoint_family_on_def)
  1520   qed
  1521   finally show ?thesis .
  1522 qed
  1524 lemma (in finite_measure) measure_exclude:
  1525   assumes "A \<in> sets M" "B \<in> sets M"
  1526   assumes "measure M A = measure M (space M)" "A \<inter> B = {}"
  1527   shows "measure M B = 0"
  1528   using measure_space_inter[of B A] assms by (auto simp: ac_simps)
  1530 section {* Counting space *}
  1532 lemma strict_monoI_Suc:
  1533   assumes ord [simp]: "(\<And>n. f n < f (Suc n))" shows "strict_mono f"
  1534   unfolding strict_mono_def
  1535 proof safe
  1536   fix n m :: nat assume "n < m" then show "f n < f m"
  1537     by (induct m) (auto simp: less_Suc_eq intro: less_trans ord)
  1538 qed
  1540 lemma emeasure_count_space:
  1541   assumes "X \<subseteq> A" shows "emeasure (count_space A) X = (if finite X then ereal (card X) else \<infinity>)"
  1542     (is "_ = ?M X")
  1543   unfolding count_space_def
  1544 proof (rule emeasure_measure_of_sigma)
  1545   show "X \<in> Pow A" using `X \<subseteq> A` by auto
  1546   show "sigma_algebra A (Pow A)" by (rule sigma_algebra_Pow)
  1547   show positive: "positive (Pow A) ?M"
  1548     by (auto simp: positive_def)
  1549   have additive: "additive (Pow A) ?M"
  1550     by (auto simp: card_Un_disjoint additive_def)
  1552   interpret ring_of_sets A "Pow A"
  1553     by (rule ring_of_setsI) auto
  1554   show "countably_additive (Pow A) ?M" 
  1555     unfolding countably_additive_iff_continuous_from_below[OF positive additive]
  1556   proof safe
  1557     fix F :: "nat \<Rightarrow> 'a set" assume "incseq F"
  1558     show "(\<lambda>i. ?M (F i)) ----> ?M (\<Union>i. F i)"
  1559     proof cases
  1560       assume "\<exists>i. \<forall>j\<ge>i. F i = F j"
  1561       then guess i .. note i = this
  1562       { fix j from i `incseq F` have "F j \<subseteq> F i"
  1563           by (cases "i \<le> j") (auto simp: incseq_def) }
  1564       then have eq: "(\<Union>i. F i) = F i"
  1565         by auto
  1566       with i show ?thesis
  1567         by (auto intro!: Lim_eventually eventually_sequentiallyI[where c=i])
  1568     next
  1569       assume "\<not> (\<exists>i. \<forall>j\<ge>i. F i = F j)"
  1570       then obtain f where f: "\<And>i. i \<le> f i" "\<And>i. F i \<noteq> F (f i)" by metis
  1571       then have "\<And>i. F i \<subseteq> F (f i)" using `incseq F` by (auto simp: incseq_def)
  1572       with f have *: "\<And>i. F i \<subset> F (f i)" by auto
  1574       have "incseq (\<lambda>i. ?M (F i))"
  1575         using `incseq F` unfolding incseq_def by (auto simp: card_mono dest: finite_subset)
  1576       then have "(\<lambda>i. ?M (F i)) ----> (SUP n. ?M (F n))"
  1577         by (rule LIMSEQ_SUP)
  1579       moreover have "(SUP n. ?M (F n)) = \<infinity>"
  1580       proof (rule SUP_PInfty)
  1581         fix n :: nat show "\<exists>k::nat\<in>UNIV. ereal n \<le> ?M (F k)"
  1582         proof (induct n)
  1583           case (Suc n)
  1584           then guess k .. note k = this
  1585           moreover have "finite (F k) \<Longrightarrow> finite (F (f k)) \<Longrightarrow> card (F k) < card (F (f k))"
  1586             using `F k \<subset> F (f k)` by (simp add: psubset_card_mono)
  1587           moreover have "finite (F (f k)) \<Longrightarrow> finite (F k)"
  1588             using `k \<le> f k` `incseq F` by (auto simp: incseq_def dest: finite_subset)
  1589           ultimately show ?case
  1590             by (auto intro!: exI[of _ "f k"])
  1591         qed auto
  1592       qed
  1594       moreover
  1595       have "inj (\<lambda>n. F ((f ^^ n) 0))"
  1596         by (intro strict_mono_imp_inj_on strict_monoI_Suc) (simp add: *)
  1597       then have 1: "infinite (range (\<lambda>i. F ((f ^^ i) 0)))"
  1598         by (rule range_inj_infinite)
  1599       have "infinite (Pow (\<Union>i. F i))"
  1600         by (rule infinite_super[OF _ 1]) auto
  1601       then have "infinite (\<Union>i. F i)"
  1602         by auto
  1604       ultimately show ?thesis by auto
  1605     qed
  1606   qed
  1607 qed
  1609 lemma emeasure_count_space_finite[simp]:
  1610   "X \<subseteq> A \<Longrightarrow> finite X \<Longrightarrow> emeasure (count_space A) X = ereal (card X)"
  1611   using emeasure_count_space[of X A] by simp
  1613 lemma emeasure_count_space_infinite[simp]:
  1614   "X \<subseteq> A \<Longrightarrow> infinite X \<Longrightarrow> emeasure (count_space A) X = \<infinity>"
  1615   using emeasure_count_space[of X A] by simp
  1617 lemma emeasure_count_space_eq_0:
  1618   "emeasure (count_space A) X = 0 \<longleftrightarrow> (X \<subseteq> A \<longrightarrow> X = {})"
  1619 proof cases
  1620   assume X: "X \<subseteq> A"
  1621   then show ?thesis
  1622   proof (intro iffI impI)
  1623     assume "emeasure (count_space A) X = 0"
  1624     with X show "X = {}"
  1625       by (subst (asm) emeasure_count_space) (auto split: split_if_asm)
  1626   qed simp
  1627 qed (simp add: emeasure_notin_sets)
  1629 lemma null_sets_count_space: "null_sets (count_space A) = { {} }"
  1630   unfolding null_sets_def by (auto simp add: emeasure_count_space_eq_0)
  1632 lemma AE_count_space: "(AE x in count_space A. P x) \<longleftrightarrow> (\<forall>x\<in>A. P x)"
  1633   unfolding eventually_ae_filter by (auto simp add: null_sets_count_space)
  1635 lemma sigma_finite_measure_count_space:
  1636   fixes A :: "'a::countable set"
  1637   shows "sigma_finite_measure (count_space A)"
  1638 proof
  1639   show "\<exists>F::nat \<Rightarrow> 'a set. range F \<subseteq> sets (count_space A) \<and> (\<Union>i. F i) = space (count_space A) \<and>
  1640      (\<forall>i. emeasure (count_space A) (F i) \<noteq> \<infinity>)"
  1641      using surj_from_nat by (intro exI[of _ "\<lambda>i. {from_nat i} \<inter> A"]) (auto simp del: surj_from_nat)
  1642 qed
  1644 lemma finite_measure_count_space:
  1645   assumes [simp]: "finite A"
  1646   shows "finite_measure (count_space A)"
  1647   by rule simp
  1649 lemma sigma_finite_measure_count_space_finite:
  1650   assumes A: "finite A" shows "sigma_finite_measure (count_space A)"
  1651 proof -
  1652   interpret finite_measure "count_space A" using A by (rule finite_measure_count_space)
  1653   show "sigma_finite_measure (count_space A)" ..
  1654 qed
  1656 section {* Measure restricted to space *}
  1658 lemma emeasure_restrict_space:
  1659   assumes "\<Omega> \<in> sets M" "A \<subseteq> \<Omega>"
  1660   shows "emeasure (restrict_space M \<Omega>) A = emeasure M A"
  1661 proof cases
  1662   assume "A \<in> sets M"
  1664   have "emeasure (restrict_space M \<Omega>) A = emeasure M (A \<inter> \<Omega>)"
  1665   proof (rule emeasure_measure_of[OF restrict_space_def])
  1666     show "op \<inter> \<Omega> ` sets M \<subseteq> Pow \<Omega>" "A \<in> sets (restrict_space M \<Omega>)"
  1667       using assms `A \<in> sets M` by (auto simp: sets_restrict_space sets.sets_into_space)
  1668     show "positive (sets (restrict_space M \<Omega>)) (\<lambda>A. emeasure M (A \<inter> \<Omega>))"
  1669       by (auto simp: positive_def emeasure_nonneg)
  1670     show "countably_additive (sets (restrict_space M \<Omega>)) (\<lambda>A. emeasure M (A \<inter> \<Omega>))"
  1671     proof (rule countably_additiveI)
  1672       fix A :: "nat \<Rightarrow> _" assume "range A \<subseteq> sets (restrict_space M \<Omega>)" "disjoint_family A"
  1673       with assms have "\<And>i. A i \<in> sets M" "\<And>i. A i \<subseteq> space M" "disjoint_family A"
  1674         by (auto simp: sets_restrict_space_iff subset_eq dest: sets.sets_into_space)
  1675       with `\<Omega> \<in> sets M` show "(\<Sum>i. emeasure M (A i \<inter> \<Omega>)) = emeasure M ((\<Union>i. A i) \<inter> \<Omega>)"
  1676         by (subst suminf_emeasure) (auto simp: disjoint_family_subset)
  1677     qed
  1678   qed
  1679   with `A \<subseteq> \<Omega>` show ?thesis
  1680     by (simp add: Int_absorb2)
  1681 next
  1682   assume "A \<notin> sets M"
  1683   moreover with assms have "A \<notin> sets (restrict_space M \<Omega>)"
  1684     by (simp add: sets_restrict_space_iff)
  1685   ultimately show ?thesis
  1686     by (simp add: emeasure_notin_sets)
  1687 qed
  1689 lemma restrict_count_space:
  1690   assumes "A \<subseteq> B" shows "restrict_space (count_space B) A = count_space A"
  1691 proof (rule measure_eqI)
  1692   show "sets (restrict_space (count_space B) A) = sets (count_space A)"
  1693     using `A \<subseteq> B` by (subst sets_restrict_space) auto
  1694   moreover fix X assume "X \<in> sets (restrict_space (count_space B) A)"
  1695   moreover note `A \<subseteq> B`
  1696   ultimately have "X \<subseteq> A" by auto
  1697   with `A \<subseteq> B` show "emeasure (restrict_space (count_space B) A) X = emeasure (count_space A) X"
  1698     by (cases "finite X") (auto simp add: emeasure_restrict_space)
  1699 qed
  1701 end