src/HOL/simpdata.ML
author nipkow
Wed, 09 Sep 1998 17:34:58 +0200
changeset 5447 df03d330aeab
parent 5307 6a699d5cdef4
child 5552 dcd3e7711cac
permissions -rw-r--r--
Proved and added rewrite rule (@x. x=y) = y to simpset. Strange that only the symetric version was present!

(*  Title:      HOL/simpdata.ML
    ID:         $Id$
    Author:     Tobias Nipkow
    Copyright   1991  University of Cambridge

Instantiation of the generic simplifier for HOL.
*)

section "Simplifier";

(*** Addition of rules to simpsets and clasets simultaneously ***)

infix 4 addIffs delIffs;

(*Takes UNCONDITIONAL theorems of the form A<->B to 
        the Safe Intr     rule B==>A and 
        the Safe Destruct rule A==>B.
  Also ~A goes to the Safe Elim rule A ==> ?R
  Failing other cases, A is added as a Safe Intr rule*)
local
  val iff_const = HOLogic.eq_const HOLogic.boolT;

  fun addIff ((cla, simp), th) = 
      (case HOLogic.dest_Trueprop (#prop (rep_thm th)) of
                (Const("Not", _) $ A) =>
                    cla addSEs [zero_var_indexes (th RS notE)]
              | (con $ _ $ _) =>
                    if con = iff_const
                    then cla addSIs [zero_var_indexes (th RS iffD2)]  
                              addSDs [zero_var_indexes (th RS iffD1)]
                    else  cla addSIs [th]
              | _ => cla addSIs [th],
       simp addsimps [th])
      handle _ => error ("AddIffs: theorem must be unconditional\n" ^ 
                         string_of_thm th);

  fun delIff ((cla, simp), th) = 
      (case HOLogic.dest_Trueprop (#prop (rep_thm th)) of
                (Const ("Not", _) $ A) =>
                    cla delrules [zero_var_indexes (th RS notE)]
              | (con $ _ $ _) =>
                    if con = iff_const
                    then cla delrules [zero_var_indexes (th RS iffD2),
                                       make_elim (zero_var_indexes (th RS iffD1))]
                    else cla delrules [th]
              | _ => cla delrules [th],
       simp delsimps [th])
      handle _ => (warning("DelIffs: ignoring conditional theorem\n" ^ 
                          string_of_thm th); (cla, simp));

  fun store_clasimp (cla, simp) = (claset_ref () := cla; simpset_ref () := simp)
in
val op addIffs = foldl addIff;
val op delIffs = foldl delIff;
fun AddIffs thms = store_clasimp ((claset (), simpset ()) addIffs thms);
fun DelIffs thms = store_clasimp ((claset (), simpset ()) delIffs thms);
end;


qed_goal "meta_eq_to_obj_eq" HOL.thy "x==y ==> x=y"
  (fn [prem] => [rewtac prem, rtac refl 1]);

local

  fun prover s = prove_goal HOL.thy s (K [Blast_tac 1]);

  val P_imp_P_iff_True = prover "P --> (P = True)" RS mp;
  val P_imp_P_eq_True = P_imp_P_iff_True RS eq_reflection;

  val not_P_imp_P_iff_F = prover "~P --> (P = False)" RS mp;
  val not_P_imp_P_eq_False = not_P_imp_P_iff_F RS eq_reflection;

in

  fun meta_eq r = r RS eq_reflection;

  fun mk_meta_eq th = case concl_of th of
          Const("==",_)$_$_       => th
      |   _$(Const("op =",_)$_$_) => meta_eq th
      |   _$(Const("Not",_)$_)    => th RS not_P_imp_P_eq_False
      |   _                       => th RS P_imp_P_eq_True;
  (* last 2 lines requires all formulae to be of the from Trueprop(.) *)

  fun mk_meta_eq_True r = Some(r RS meta_eq_to_obj_eq RS P_imp_P_eq_True);


val simp_thms = map prover
 [ "(x=x) = True",
   "(~True) = False", "(~False) = True", "(~ ~ P) = P",
   "(~P) ~= P", "P ~= (~P)", "(P ~= Q) = (P = (~Q))",
   "(True=P) = P", "(P=True) = P", "(False=P) = (~P)", "(P=False) = (~P)",
   "(True --> P) = P", "(False --> P) = True", 
   "(P --> True) = True", "(P --> P) = True",
   "(P --> False) = (~P)", "(P --> ~P) = (~P)",
   "(P & True) = P", "(True & P) = P", 
   "(P & False) = False", "(False & P) = False",
   "(P & P) = P", "(P & (P & Q)) = (P & Q)",
   "(P & ~P) = False",    "(~P & P) = False",
   "(P | True) = True", "(True | P) = True", 
   "(P | False) = P", "(False | P) = P",
   "(P | P) = P", "(P | (P | Q)) = (P | Q)",
   "(P | ~P) = True",    "(~P | P) = True",
   "((~P) = (~Q)) = (P=Q)",
   "(!x. P) = P", "(? x. P) = P", "? x. x=t", "? x. t=x", 
(*two needed for the one-point-rule quantifier simplification procs*)
   "(? x. x=t & P(x)) = P(t)",		(*essential for termination!!*)
   "(! x. t=x --> P(x)) = P(t)" ];      (*covers a stray case*)

(*Add congruence rules for = (instead of ==) *)
infix 4 addcongs delcongs;

fun mk_meta_cong rl =
  standard(meta_eq(replicate (nprems_of rl) meta_eq_to_obj_eq MRS rl))
  handle THM _ =>
  error("Premises and conclusion of congruence rules must be =-equalities");

fun ss addcongs congs = ss addeqcongs (map mk_meta_cong congs);

fun ss delcongs congs = ss deleqcongs (map mk_meta_cong congs);

fun Addcongs congs = (simpset_ref() := simpset() addcongs congs);
fun Delcongs congs = (simpset_ref() := simpset() delcongs congs);

val imp_cong = impI RSN
    (2, prove_goal HOL.thy "(P=P')--> (P'--> (Q=Q'))--> ((P-->Q) = (P'-->Q'))"
        (fn _=> [Blast_tac 1]) RS mp RS mp);

(*Miniscoping: pushing in existential quantifiers*)
val ex_simps = map prover 
                ["(EX x. P x & Q)   = ((EX x. P x) & Q)",
                 "(EX x. P & Q x)   = (P & (EX x. Q x))",
                 "(EX x. P x | Q)   = ((EX x. P x) | Q)",
                 "(EX x. P | Q x)   = (P | (EX x. Q x))",
                 "(EX x. P x --> Q) = ((ALL x. P x) --> Q)",
                 "(EX x. P --> Q x) = (P --> (EX x. Q x))"];

(*Miniscoping: pushing in universal quantifiers*)
val all_simps = map prover
                ["(ALL x. P x & Q)   = ((ALL x. P x) & Q)",
                 "(ALL x. P & Q x)   = (P & (ALL x. Q x))",
                 "(ALL x. P x | Q)   = ((ALL x. P x) | Q)",
                 "(ALL x. P | Q x)   = (P | (ALL x. Q x))",
                 "(ALL x. P x --> Q) = ((EX x. P x) --> Q)",
                 "(ALL x. P --> Q x) = (P --> (ALL x. Q x))"];


(* elimination of existential quantifiers in assumptions *)

val ex_all_equiv =
  let val lemma1 = prove_goal HOL.thy
        "(? x. P(x) ==> PROP Q) ==> (!!x. P(x) ==> PROP Q)"
        (fn prems => [resolve_tac prems 1, etac exI 1]);
      val lemma2 = prove_goalw HOL.thy [Ex_def]
        "(!!x. P(x) ==> PROP Q) ==> (? x. P(x) ==> PROP Q)"
        (fn prems => [REPEAT(resolve_tac prems 1)])
  in equal_intr lemma1 lemma2 end;

end;

(* Elimination of True from asumptions: *)

val True_implies_equals = prove_goal HOL.thy
 "(True ==> PROP P) == PROP P"
(K [rtac equal_intr_rule 1, atac 2,
          METAHYPS (fn prems => resolve_tac prems 1) 1,
          rtac TrueI 1]);

fun prove nm thm  = qed_goal nm HOL.thy thm (K [Blast_tac 1]);

prove "conj_commute" "(P&Q) = (Q&P)";
prove "conj_left_commute" "(P&(Q&R)) = (Q&(P&R))";
val conj_comms = [conj_commute, conj_left_commute];
prove "conj_assoc" "((P&Q)&R) = (P&(Q&R))";

prove "disj_commute" "(P|Q) = (Q|P)";
prove "disj_left_commute" "(P|(Q|R)) = (Q|(P|R))";
val disj_comms = [disj_commute, disj_left_commute];
prove "disj_assoc" "((P|Q)|R) = (P|(Q|R))";

prove "conj_disj_distribL" "(P&(Q|R)) = (P&Q | P&R)";
prove "conj_disj_distribR" "((P|Q)&R) = (P&R | Q&R)";

prove "disj_conj_distribL" "(P|(Q&R)) = ((P|Q) & (P|R))";
prove "disj_conj_distribR" "((P&Q)|R) = ((P|R) & (Q|R))";

prove "imp_conjR" "(P --> (Q&R)) = ((P-->Q) & (P-->R))";
prove "imp_conjL" "((P&Q) -->R)  = (P --> (Q --> R))";
prove "imp_disjL" "((P|Q) --> R) = ((P-->R)&(Q-->R))";

(*These two are specialized, but imp_disj_not1 is useful in Auth/Yahalom.ML*)
prove "imp_disj_not1" "((P --> Q | R)) = (~Q --> P --> R)";
prove "imp_disj_not2" "((P --> Q | R)) = (~R --> P --> Q)";

prove "imp_disj1" "((P-->Q)|R) = (P--> Q|R)";
prove "imp_disj2" "(Q|(P-->R)) = (P--> Q|R)";

prove "de_Morgan_disj" "(~(P | Q)) = (~P & ~Q)";
prove "de_Morgan_conj" "(~(P & Q)) = (~P | ~Q)";
prove "not_imp" "(~(P --> Q)) = (P & ~Q)";
prove "not_iff" "(P~=Q) = (P = (~Q))";
prove "disj_not1" "(~P | Q) = (P --> Q)";
prove "disj_not2" "(P | ~Q) = (Q --> P)"; (* changes orientation :-( *)

(*Avoids duplication of subgoals after split_if, when the true and false 
  cases boil down to the same thing.*) 
prove "cases_simp" "((P --> Q) & (~P --> Q)) = Q";

prove "not_all" "(~ (! x. P(x))) = (? x.~P(x))";
prove "imp_all" "((! x. P x) --> Q) = (? x. P x --> Q)";
prove "not_ex"  "(~ (? x. P(x))) = (! x.~P(x))";
prove "imp_ex" "((? x. P x) --> Q) = (! x. P x --> Q)";

prove "ex_disj_distrib" "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))";
prove "all_conj_distrib" "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))";

(* '&' congruence rule: not included by default!
   May slow rewrite proofs down by as much as 50% *)

let val th = prove_goal HOL.thy 
                "(P=P')--> (P'--> (Q=Q'))--> ((P&Q) = (P'&Q'))"
                (fn _=> [Blast_tac 1])
in  bind_thm("conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;

let val th = prove_goal HOL.thy 
                "(Q=Q')--> (Q'--> (P=P'))--> ((P&Q) = (P'&Q'))"
                (fn _=> [Blast_tac 1])
in  bind_thm("rev_conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;

(* '|' congruence rule: not included by default! *)

let val th = prove_goal HOL.thy 
                "(P=P')--> (~P'--> (Q=Q'))--> ((P|Q) = (P'|Q'))"
                (fn _=> [Blast_tac 1])
in  bind_thm("disj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;

prove "eq_sym_conv" "(x=y) = (y=x)";


(** if-then-else rules **)

qed_goalw "if_True" HOL.thy [if_def] "(if True then x else y) = x"
 (K [Blast_tac 1]);

qed_goalw "if_False" HOL.thy [if_def] "(if False then x else y) = y"
 (K [Blast_tac 1]);

qed_goalw "if_P" HOL.thy [if_def] "!!P. P ==> (if P then x else y) = x"
 (K [Blast_tac 1]);

qed_goalw "if_not_P" HOL.thy [if_def] "!!P. ~P ==> (if P then x else y) = y"
 (K [Blast_tac 1]);

qed_goal "split_if" HOL.thy
    "P(if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))" (K [
	res_inst_tac [("Q","Q")] (excluded_middle RS disjE) 1,
         stac if_P 2,
         stac if_not_P 1,
         ALLGOALS (Blast_tac)]);
(* for backwards compatibility: *)
val expand_if = split_if;

qed_goal "split_if_asm" HOL.thy
    "P(if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))"
    (K [stac split_if 1,
	Blast_tac 1]);

qed_goal "if_cancel" HOL.thy "(if c then x else x) = x"
  (K [stac split_if 1, Blast_tac 1]);

qed_goal "if_eq_cancel" HOL.thy "(if x = y then y else x) = x"
  (K [stac split_if 1, Blast_tac 1]);

(*This form is useful for expanding IFs on the RIGHT of the ==> symbol*)
qed_goal "if_bool_eq_conj" HOL.thy
    "(if P then Q else R) = ((P-->Q) & (~P-->R))"
    (K [rtac split_if 1]);

(*And this form is useful for expanding IFs on the LEFT*)
qed_goal "if_bool_eq_disj" HOL.thy
    "(if P then Q else R) = ((P&Q) | (~P&R))"
    (K [stac split_if 1,
	Blast_tac 1]);


(*** make simplification procedures for quantifier elimination ***)

structure Quantifier1 = Quantifier1Fun(
struct
  (*abstract syntax*)
  fun dest_eq((c as Const("op =",_)) $ s $ t) = Some(c,s,t)
    | dest_eq _ = None;
  fun dest_conj((c as Const("op &",_)) $ s $ t) = Some(c,s,t)
    | dest_conj _ = None;
  val conj = HOLogic.conj
  val imp  = HOLogic.imp
  (*rules*)
  val iff_reflection = eq_reflection
  val iffI = iffI
  val sym  = sym
  val conjI= conjI
  val conjE= conjE
  val impI = impI
  val impE = impE
  val mp   = mp
  val exI  = exI
  val exE  = exE
  val allI = allI
  val allE = allE
end);

local
val ex_pattern =
  read_cterm (sign_of HOL.thy) ("EX x. P(x) & Q(x)",HOLogic.boolT)

val all_pattern =
  read_cterm (sign_of HOL.thy) ("ALL x. P(x) & P'(x) --> Q(x)",HOLogic.boolT)

in
val defEX_regroup =
  mk_simproc "defined EX" [ex_pattern] Quantifier1.rearrange_ex;
val defALL_regroup =
  mk_simproc "defined ALL" [all_pattern] Quantifier1.rearrange_all;
end;


(*** Case splitting ***)

structure SplitterData =
  struct
  structure Simplifier = Simplifier
  val mk_meta_eq     = mk_meta_eq
  val meta_eq_to_iff = meta_eq_to_obj_eq
  val iffD           = iffD2
  val disjE          = disjE
  val conjE          = conjE
  val exE            = exE
  val contrapos      = contrapos
  val contrapos2     = contrapos2
  val notnotD        = notnotD
  end;

structure Splitter = SplitterFun(SplitterData);

val split_tac        = Splitter.split_tac;
val split_inside_tac = Splitter.split_inside_tac;
val split_asm_tac    = Splitter.split_asm_tac;
val op addsplits     = Splitter.addsplits;
val op delsplits     = Splitter.delsplits;
val Addsplits        = Splitter.Addsplits;
val Delsplits        = Splitter.Delsplits;

(** 'if' congruence rules: neither included by default! *)

(*Simplifies x assuming c and y assuming ~c*)
qed_goal "if_cong" HOL.thy
  "[| b=c; c ==> x=u; ~c ==> y=v |] ==>\
\  (if b then x else y) = (if c then u else v)"
  (fn rew::prems =>
   [stac rew 1, stac split_if 1, stac split_if 1,
    blast_tac (HOL_cs addDs prems) 1]);

(*Prevents simplification of x and y: much faster*)
qed_goal "if_weak_cong" HOL.thy
  "b=c ==> (if b then x else y) = (if c then x else y)"
  (fn [prem] => [rtac (prem RS arg_cong) 1]);

(*Prevents simplification of t: much faster*)
qed_goal "let_weak_cong" HOL.thy
  "a = b ==> (let x=a in t(x)) = (let x=b in t(x))"
  (fn [prem] => [rtac (prem RS arg_cong) 1]);

(*In general it seems wrong to add distributive laws by default: they
  might cause exponential blow-up.  But imp_disjL has been in for a while
  and cannot be removed without affecting existing proofs.  Moreover, 
  rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the
  grounds that it allows simplification of R in the two cases.*)

fun gen_all th = forall_elim_vars (#maxidx(rep_thm th)+1) th;

val mksimps_pairs =
  [("op -->", [mp]), ("op &", [conjunct1,conjunct2]),
   ("All", [spec]), ("True", []), ("False", []),
   ("If", [if_bool_eq_conj RS iffD1])];

(* FIXME: move to Provers/simplifier.ML
val mk_atomize:      (string * thm list) list -> thm -> thm list
*)
(* FIXME: move to Provers/simplifier.ML*)
fun mk_atomize pairs =
  let fun atoms th =
        (case concl_of th of
           Const("Trueprop",_) $ p =>
             (case head_of p of
                Const(a,_) =>
                  (case assoc(pairs,a) of
                     Some(rls) => flat (map atoms ([th] RL rls))
                   | None => [th])
              | _ => [th])
         | _ => [th])
  in atoms end;

fun mksimps pairs = (map mk_meta_eq o mk_atomize pairs o gen_all);

fun unsafe_solver prems = FIRST'[resolve_tac (reflexive_thm::TrueI::refl::prems),
				 atac, etac FalseE];
(*No premature instantiation of variables during simplification*)
fun   safe_solver prems = FIRST'[match_tac (reflexive_thm::TrueI::prems),
				 eq_assume_tac, ematch_tac [FalseE]];

val HOL_basic_ss = empty_ss setsubgoaler asm_simp_tac
			    setSSolver   safe_solver
			    setSolver  unsafe_solver
			    setmksimps (mksimps mksimps_pairs)
			    setmkeqTrue mk_meta_eq_True;

val HOL_ss = 
    HOL_basic_ss addsimps 
     ([triv_forall_equality, (* prunes params *)
       True_implies_equals, (* prune asms `True' *)
       if_True, if_False, if_cancel, if_eq_cancel,
       imp_disjL, conj_assoc, disj_assoc,
       de_Morgan_conj, de_Morgan_disj, imp_disj1, imp_disj2, not_imp,
       disj_not1, not_all, not_ex, cases_simp, Eps_eq, Eps_sym_eq]
     @ ex_simps @ all_simps @ simp_thms)
     addsimprocs [defALL_regroup,defEX_regroup]
     addcongs [imp_cong]
     addsplits [split_if];

qed_goal "if_distrib" HOL.thy
  "f(if c then x else y) = (if c then f x else f y)" 
  (K [simp_tac (HOL_ss setloop (split_tac [split_if])) 1]);


(*For expand_case_tac*)
val prems = goal HOL.thy "[| P ==> Q(True); ~P ==> Q(False) |] ==> Q(P)";
by (case_tac "P" 1);
by (ALLGOALS (asm_simp_tac (HOL_ss addsimps prems)));
val expand_case = result();

(*Used in Auth proofs.  Typically P contains Vars that become instantiated
  during unification.*)
fun expand_case_tac P i =
    res_inst_tac [("P",P)] expand_case i THEN
    Simp_tac (i+1) THEN 
    Simp_tac i;


(* install implicit simpset *)

simpset_ref() := HOL_ss;



(*** integration of simplifier with classical reasoner ***)

structure Clasimp = ClasimpFun
 (structure Simplifier = Simplifier and Classical = Classical and Blast = Blast
  val op addcongs = op addcongs and op delcongs = op delcongs
  and op addSaltern = op addSaltern and op addbefore = op addbefore);

open Clasimp;

val HOL_css = (HOL_cs, HOL_ss);