1 (* Title: HOL/Library/Continuity.thy
3 Author: David von Oheimb, TU Muenchen
6 header {* Continuity and iterations (of set transformers) *}
12 subsection {* Continuity for complete lattices *}
15 chain :: "(nat \<Rightarrow> 'a::complete_lattice) \<Rightarrow> bool" where
16 "chain M \<longleftrightarrow> (\<forall>i. M i \<le> M (Suc i))"
19 continuous :: "('a::complete_lattice \<Rightarrow> 'a::complete_lattice) \<Rightarrow> bool" where
20 "continuous F \<longleftrightarrow> (\<forall>M. chain M \<longrightarrow> F (SUP i. M i) = (SUP i. F (M i)))"
23 bot :: "'a::complete_lattice" where
27 "(SUP n. M n) = sup (M 0) (SUP n. M(Suc n))"
28 apply(rule order_antisym)
32 apply (fast intro:le_SUPI le_supI2)
34 apply (blast intro:SUP_leI le_SUPI)
37 lemma continuous_mono: fixes F :: "'a::complete_lattice \<Rightarrow> 'a::complete_lattice"
38 assumes "continuous F" shows "mono F"
40 fix A B :: "'a" assume "A <= B"
41 let ?C = "%i::nat. if i=0 then A else B"
42 have "chain ?C" using `A <= B` by(simp add:chain_def)
43 have "F B = sup (F A) (F B)"
45 have "sup A B = B" using `A <= B` by (simp add:sup_absorb2)
46 hence "F B = F(SUP i. ?C i)" by (subst SUP_nat_conv) simp
47 also have "\<dots> = (SUP i. F(?C i))"
48 using `chain ?C` `continuous F` by(simp add:continuous_def)
49 also have "\<dots> = sup (F A) (F B)" by (subst SUP_nat_conv) simp
50 finally show ?thesis .
52 thus "F A \<le> F B" by(subst le_iff_sup, simp)
56 assumes "continuous F" shows "lfp F = (SUP i. (F^i) bot)"
58 note mono = continuous_mono[OF `continuous F`]
59 { fix i have "(F^i) bot \<le> lfp F"
61 show "(F^0) bot \<le> lfp F" by simp
64 have "(F^(Suc i)) bot = F((F^i) bot)" by simp
65 also have "\<dots> \<le> F(lfp F)" by(rule monoD[OF mono Suc])
66 also have "\<dots> = lfp F" by(simp add:lfp_unfold[OF mono, symmetric])
69 hence "(SUP i. (F^i) bot) \<le> lfp F" by (blast intro!:SUP_leI)
70 moreover have "lfp F \<le> (SUP i. (F^i) bot)" (is "_ \<le> ?U")
71 proof (rule lfp_lowerbound)
72 have "chain(%i. (F^i) bot)"
74 { fix i have "(F^i) bot \<le> (F^(Suc i)) bot"
76 case 0 show ?case by simp
78 case Suc thus ?case using monoD[OF mono Suc] by auto
80 thus ?thesis by(auto simp add:chain_def)
82 hence "F ?U = (SUP i. (F^(i+1)) bot)" using `continuous F` by (simp add:continuous_def)
83 also have "\<dots> \<le> ?U" by(fast intro:SUP_leI le_SUPI)
84 finally show "F ?U \<le> ?U" .
86 ultimately show ?thesis by (blast intro:order_antisym)
89 text{* The following development is just for sets but presents an up
90 and a down version of chains and continuity and covers @{const gfp}. *}
96 up_chain :: "(nat => 'a set) => bool" where
97 "up_chain F = (\<forall>i. F i \<subseteq> F (Suc i))"
99 lemma up_chainI: "(!!i. F i \<subseteq> F (Suc i)) ==> up_chain F"
100 by (simp add: up_chain_def)
102 lemma up_chainD: "up_chain F ==> F i \<subseteq> F (Suc i)"
103 by (simp add: up_chain_def)
105 lemma up_chain_less_mono:
106 "up_chain F ==> x < y ==> F x \<subseteq> F y"
108 apply (blast dest: up_chainD elim: less_SucE)+
111 lemma up_chain_mono: "up_chain F ==> x \<le> y ==> F x \<subseteq> F y"
112 apply (drule le_imp_less_or_eq)
113 apply (blast dest: up_chain_less_mono)
118 down_chain :: "(nat => 'a set) => bool" where
119 "down_chain F = (\<forall>i. F (Suc i) \<subseteq> F i)"
121 lemma down_chainI: "(!!i. F (Suc i) \<subseteq> F i) ==> down_chain F"
122 by (simp add: down_chain_def)
124 lemma down_chainD: "down_chain F ==> F (Suc i) \<subseteq> F i"
125 by (simp add: down_chain_def)
127 lemma down_chain_less_mono:
128 "down_chain F ==> x < y ==> F y \<subseteq> F x"
130 apply (blast dest: down_chainD elim: less_SucE)+
133 lemma down_chain_mono: "down_chain F ==> x \<le> y ==> F y \<subseteq> F x"
134 apply (drule le_imp_less_or_eq)
135 apply (blast dest: down_chain_less_mono)
139 subsection "Continuity"
142 up_cont :: "('a set => 'a set) => bool" where
143 "up_cont f = (\<forall>F. up_chain F --> f (\<Union>(range F)) = \<Union>(f ` range F))"
146 "(!!F. up_chain F ==> f (\<Union>(range F)) = \<Union>(f ` range F)) ==> up_cont f"
147 apply (unfold up_cont_def)
152 "up_cont f ==> up_chain F ==> f (\<Union>(range F)) = \<Union>(f ` range F)"
153 apply (unfold up_cont_def)
158 lemma up_cont_mono: "up_cont f ==> mono f"
160 apply (drule_tac F = "\<lambda>i. if i = 0 then A else B" in up_contD)
161 apply (rule up_chainI)
163 apply (drule Un_absorb1)
164 apply (auto simp add: nat_not_singleton)
169 down_cont :: "('a set => 'a set) => bool" where
171 (\<forall>F. down_chain F --> f (Inter (range F)) = Inter (f ` range F))"
174 "(!!F. down_chain F ==> f (Inter (range F)) = Inter (f ` range F)) ==>
176 apply (unfold down_cont_def)
180 lemma down_contD: "down_cont f ==> down_chain F ==>
181 f (Inter (range F)) = Inter (f ` range F)"
182 apply (unfold down_cont_def)
186 lemma down_cont_mono: "down_cont f ==> mono f"
188 apply (drule_tac F = "\<lambda>i. if i = 0 then B else A" in down_contD)
189 apply (rule down_chainI)
191 apply (drule Int_absorb1)
192 apply (auto simp add: nat_not_singleton)
196 subsection "Iteration"
199 up_iterate :: "('a set => 'a set) => nat => 'a set" where
200 "up_iterate f n = (f^n) {}"
202 lemma up_iterate_0 [simp]: "up_iterate f 0 = {}"
203 by (simp add: up_iterate_def)
205 lemma up_iterate_Suc [simp]: "up_iterate f (Suc i) = f (up_iterate f i)"
206 by (simp add: up_iterate_def)
208 lemma up_iterate_chain: "mono F ==> up_chain (up_iterate F)"
209 apply (rule up_chainI)
212 apply (erule (1) monoD)
215 lemma UNION_up_iterate_is_fp:
217 F (UNION UNIV (up_iterate F)) = UNION UNIV (up_iterate F)"
218 apply (frule up_cont_mono [THEN up_iterate_chain])
219 apply (drule (1) up_contD)
221 apply (auto simp del: up_iterate_Suc simp add: up_iterate_Suc [symmetric])
226 lemma UNION_up_iterate_lowerbound:
227 "mono F ==> F P = P ==> UNION UNIV (up_iterate F) \<subseteq> P"
228 apply (subgoal_tac "(!!i. up_iterate F i \<subseteq> P)")
231 prefer 2 apply (drule (1) monoD)
235 lemma UNION_up_iterate_is_lfp:
236 "up_cont F ==> lfp F = UNION UNIV (up_iterate F)"
237 apply (rule set_eq_subset [THEN iffD2])
240 apply (drule up_cont_mono)
241 apply (rule UNION_up_iterate_lowerbound)
243 apply (erule lfp_unfold [symmetric])
244 apply (rule lfp_lowerbound)
245 apply (rule set_eq_subset [THEN iffD1, THEN conjunct2])
246 apply (erule UNION_up_iterate_is_fp [symmetric])
251 down_iterate :: "('a set => 'a set) => nat => 'a set" where
252 "down_iterate f n = (f^n) UNIV"
254 lemma down_iterate_0 [simp]: "down_iterate f 0 = UNIV"
255 by (simp add: down_iterate_def)
257 lemma down_iterate_Suc [simp]:
258 "down_iterate f (Suc i) = f (down_iterate f i)"
259 by (simp add: down_iterate_def)
261 lemma down_iterate_chain: "mono F ==> down_chain (down_iterate F)"
262 apply (rule down_chainI)
265 apply (erule (1) monoD)
268 lemma INTER_down_iterate_is_fp:
270 F (INTER UNIV (down_iterate F)) = INTER UNIV (down_iterate F)"
271 apply (frule down_cont_mono [THEN down_iterate_chain])
272 apply (drule (1) down_contD)
274 apply (auto simp del: down_iterate_Suc simp add: down_iterate_Suc [symmetric])
279 lemma INTER_down_iterate_upperbound:
280 "mono F ==> F P = P ==> P \<subseteq> INTER UNIV (down_iterate F)"
281 apply (subgoal_tac "(!!i. P \<subseteq> down_iterate F i)")
284 prefer 2 apply (drule (1) monoD)
288 lemma INTER_down_iterate_is_gfp:
289 "down_cont F ==> gfp F = INTER UNIV (down_iterate F)"
290 apply (rule set_eq_subset [THEN iffD2])
292 apply (drule down_cont_mono)
293 apply (rule INTER_down_iterate_upperbound)
295 apply (erule gfp_unfold [symmetric])
296 apply (rule gfp_upperbound)
297 apply (rule set_eq_subset [THEN iffD1, THEN conjunct2])
298 apply (erule INTER_down_iterate_is_fp)