3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory
4 Copyright 1991 University of Cambridge
6 Tactics and lemmas for FOL.thy (classical First-Order Logic)
12 val ccontr = FalseE RS classical;
14 (*** Classical introduction rules for | and EX ***)
16 qed_goal "disjCI" FOL.thy
20 (REPEAT (ares_tac (prems@[disjI1,notI]) 1)),
21 (REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ]);
23 (*introduction rule involving only EX*)
24 qed_goal "ex_classical" FOL.thy
25 "( ~(EX x. P(x)) ==> P(a)) ==> EX x. P(x)"
28 (eresolve_tac (prems RL [exI]) 1) ]);
30 (*version of above, simplifying ~EX to ALL~ *)
31 qed_goal "exCI" FOL.thy
32 "(ALL x. ~P(x) ==> P(a)) ==> EX x. P(x)"
34 [ (rtac ex_classical 1),
35 (resolve_tac [notI RS allI RS prem] 1),
39 qed_goal "excluded_middle" FOL.thy "~P | P"
40 (fn _=> [ rtac disjCI 1, assume_tac 1 ]);
42 (*For disjunctive case analysis*)
43 fun excluded_middle_tac sP =
44 res_inst_tac [("Q",sP)] (excluded_middle RS disjE);
46 (*** Special elimination rules *)
49 (*Classical implies (-->) elimination. *)
50 qed_goal "impCE" FOL.thy
51 "[| P-->Q; ~P ==> R; Q ==> R |] ==> R"
53 [ (resolve_tac [excluded_middle RS disjE] 1),
54 (DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ]);
56 (*Double negation law*)
57 qed_goal "notnotD" FOL.thy "~~P ==> P"
59 [ (rtac classical 1), (eresolve_tac [major RS notE] 1) ]);
61 qed_goal "contrapos2" FOL.thy "[| Q; ~ P ==> ~ Q |] ==> P" (fn [p1,p2] => [
67 (*** Tactics for implication and contradiction ***)
69 (*Classical <-> elimination. Proof substitutes P=Q in
70 ~P ==> ~Q and P ==> Q *)
71 qed_goalw "iffCE" FOL.thy [iff_def]
72 "[| P<->Q; [| P; Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R"
75 (REPEAT (DEPTH_SOLVE_1
76 (etac impCE 1 ORELSE mp_tac 1 ORELSE ares_tac prems 1))) ]);