1 (* Title: HOL/Finite.thy
3 Author: Lawrence C Paulson & Tobias Nipkow
4 Copyright 1995 University of Cambridge & TU Muenchen
6 Finite sets and their cardinality
14 goalw Finite.thy Fin.defs "!!A B. A<=B ==> Fin(A) <= Fin(B)";
16 by (REPEAT (ares_tac basic_monos 1));
19 goalw Finite.thy Fin.defs "Fin(A) <= Pow(A)";
20 by (blast_tac (claset() addSIs [lfp_lowerbound]) 1);
23 (* A : Fin(B) ==> A <= B *)
24 val FinD = Fin_subset_Pow RS subsetD RS PowD;
27 (*Discharging ~ x:y entails extra work*)
28 val major::prems = goal Finite.thy
29 "[| finite F; P({}); \
30 \ !!F x. [| finite F; x ~: F; P(F) |] ==> P(insert x F) \
32 by (rtac (major RS Finites.induct) 1);
33 by (excluded_middle_tac "a:A" 2);
34 by (etac (insert_absorb RS ssubst) 3 THEN assume_tac 3); (*backtracking!*)
35 by (REPEAT (ares_tac prems 1));
38 val major::prems = goal Finite.thy
41 \ !!F a. [| finite F; a:A; a ~: F; P(F) |] ==> P(insert a F) \
42 \ |] ==> F <= A --> P(F)";
43 by (rtac (major RS finite_induct) 1);
44 by (ALLGOALS (blast_tac (claset() addIs prems)));
47 val prems = goal Finite.thy
48 "[| finite F; F <= A; \
50 \ !!F a. [| finite F; a:A; a ~: F; P(F) |] ==> P(insert a F) \
52 by (blast_tac (HOL_cs addIs ((lemma RS mp)::prems)) 1);
53 qed "finite_subset_induct";
55 Addsimps Finites.intrs;
58 (*The union of two finite sets is finite*)
59 val major::prems = goal Finite.thy
60 "[| finite F; finite G |] ==> finite(F Un G)";
61 by (rtac (major RS finite_induct) 1);
62 by (ALLGOALS (asm_simp_tac (simpset() addsimps prems)));
65 (*Every subset of a finite set is finite*)
66 val [subs,fin] = goal Finite.thy "[| A<=B; finite B |] ==> finite A";
67 by (EVERY1 [subgoal_tac "ALL C. C<=B --> finite C",
70 by (rtac (fin RS finite_induct) 1);
71 by (simp_tac (simpset() addsimps [subset_Un_eq]) 1);
72 by (safe_tac (claset() addSDs [subset_insert_iff RS iffD1]));
73 by (eres_inst_tac [("t","C")] (insert_Diff RS subst) 2);
74 by (ALLGOALS Asm_simp_tac);
77 goal Finite.thy "finite(F Un G) = (finite F & finite G)";
78 by (blast_tac (claset() addIs [finite_UnI] addDs
79 [Un_upper1 RS finite_subset, Un_upper2 RS finite_subset]) 1);
83 goal Finite.thy "finite(insert a A) = finite A";
84 by (stac insert_is_Un 1);
85 by (simp_tac (HOL_ss addsimps [finite_Un]) 1);
88 Addsimps[finite_insert];
90 (*The image of a finite set is finite *)
91 goal Finite.thy "!!F. finite F ==> finite(h``F)";
92 by (etac finite_induct 1);
97 val major::prems = goal Finite.thy
98 "[| finite c; finite b; \
100 \ !!x y. [| finite y; x:y; P(y) |] ==> P(y-{x}) \
101 \ |] ==> c<=b --> P(b-c)";
102 by (rtac (major RS finite_induct) 1);
103 by (stac Diff_insert 2);
104 by (ALLGOALS (asm_simp_tac
105 (simpset() addsimps (prems@[Diff_subset RS finite_subset]))));
106 val lemma = result();
108 val prems = goal Finite.thy
111 \ !!a A. [| finite A; a:A; P(A) |] ==> P(A-{a}) \
113 by (rtac (Diff_cancel RS subst) 1);
114 by (rtac (lemma RS mp) 1);
115 by (REPEAT (ares_tac (subset_refl::prems) 1));
116 qed "finite_empty_induct";
119 (* finite B ==> finite (B - Ba) *)
120 bind_thm ("finite_Diff", Diff_subset RS finite_subset);
121 Addsimps [finite_Diff];
123 goal Finite.thy "finite(A-{a}) = finite(A)";
124 by (case_tac "a:A" 1);
125 by (rtac (finite_insert RS sym RS trans) 1);
126 by (stac insert_Diff 1);
127 by (ALLGOALS Asm_simp_tac);
128 qed "finite_Diff_singleton";
129 AddIffs [finite_Diff_singleton];
131 (*Lemma for proving finite_imageD*)
132 goal Finite.thy "!!A. finite B ==> !A. f``A = B --> inj_onto f A --> finite A";
133 by (etac finite_induct 1);
134 by (ALLGOALS Asm_simp_tac);
136 by (subgoal_tac "EX y:A. f y = x & F = f``(A-{y})" 1);
138 by (full_simp_tac (simpset() addsimps [inj_onto_def]) 1);
140 by (thin_tac "ALL A. ?PP(A)" 1);
141 by (forward_tac [[equalityD2, insertI1] MRS subsetD] 1);
143 by (res_inst_tac [("x","xa")] bexI 1);
145 (asm_full_simp_tac (simpset() addsimps [inj_onto_image_set_diff])));
146 val lemma = result();
148 goal Finite.thy "!!A. [| finite(f``A); inj_onto f A |] ==> finite A";
153 (** The finite UNION of finite sets **)
155 val [prem] = goal Finite.thy
156 "finite A ==> (!a:A. finite(B a)) --> finite(UN a:A. B a)";
157 by (rtac (prem RS finite_induct) 1);
158 by (ALLGOALS Asm_simp_tac);
159 bind_thm("finite_UnionI", ballI RSN (2, result() RS mp));
160 Addsimps [finite_UnionI];
162 (** Sigma of finite sets **)
164 goalw Finite.thy [Sigma_def]
165 "!!A. [| finite A; !a:A. finite(B a) |] ==> finite(SIGMA a:A. B a)";
166 by (blast_tac (claset() addSIs [finite_UnionI]) 1);
167 bind_thm("finite_SigmaI", ballI RSN (2,result()));
168 Addsimps [finite_SigmaI];
170 (** The powerset of a finite set **)
172 goal Finite.thy "!!A. finite(Pow A) ==> finite A";
173 by (subgoal_tac "finite ((%x.{x})``A)" 1);
174 by (rtac finite_subset 2);
177 (fast_tac (claset() addSDs [rewrite_rule [inj_onto_def] finite_imageD])));
178 val lemma = result();
180 goal Finite.thy "finite(Pow A) = finite A";
183 (*Opposite inclusion: finite A ==> finite (Pow A) *)
184 by (etac finite_induct 1);
187 (simpset() addsimps [finite_UnI, finite_imageI, Pow_insert])));
188 qed "finite_Pow_iff";
189 AddIffs [finite_Pow_iff];
191 goal Finite.thy "finite(r^-1) = finite r";
192 by (subgoal_tac "r^-1 = (%(x,y).(y,x))``r" 1);
195 by (etac (rewrite_rule [inj_onto_def] finite_imageD) 1);
196 by (simp_tac (simpset() addsplits [expand_split]) 1);
197 by (etac finite_imageI 1);
198 by (simp_tac (simpset() addsimps [inverse_def,image_def]) 1);
203 by (split_all_tac 1);
204 by (Asm_full_simp_tac 1);
205 qed "finite_inverse";
206 AddIffs [finite_inverse];
208 section "Finite cardinality -- 'card'";
210 goal Set.thy "{f i |i. P i | i=n} = insert (f n) {f i|i. P i}";
212 val Collect_conv_insert = result();
214 goalw Finite.thy [card_def] "card {} = 0";
215 by (rtac Least_equality 1);
216 by (ALLGOALS Asm_full_simp_tac);
218 Addsimps [card_empty];
220 val [major] = goal Finite.thy
221 "finite A ==> ? (n::nat) f. A = {f i |i. i<n}";
222 by (rtac (major RS finite_induct) 1);
223 by (res_inst_tac [("x","0")] exI 1);
227 by (hyp_subst_tac 1);
228 by (res_inst_tac [("x","Suc n")] exI 1);
229 by (res_inst_tac [("x","%i. if i<n then f i else x")] exI 1);
230 by (asm_simp_tac (simpset() addsimps [Collect_conv_insert, less_Suc_eq]
231 addcongs [rev_conj_cong]) 1);
232 qed "finite_has_card";
235 "!!A.[| x ~: A; insert x A = {f i|i. i<n} |] ==> \
236 \ ? m::nat. m<n & (? g. A = {g i|i. i<m})";
237 by (res_inst_tac [("n","n")] natE 1);
238 by (hyp_subst_tac 1);
239 by (Asm_full_simp_tac 1);
240 by (rename_tac "m" 1);
241 by (hyp_subst_tac 1);
242 by (case_tac "? a. a:A" 1);
243 by (res_inst_tac [("x","0")] exI 2);
247 by (simp_tac (simpset() addsimps [less_Suc_eq]) 1);
249 by (rtac (refl RS disjI2 RS conjI) 1);
250 by (etac equalityE 1);
251 by (asm_full_simp_tac
252 (simpset() addsimps [subset_insert,Collect_conv_insert, less_Suc_eq]) 1);
254 by (Asm_full_simp_tac 1);
255 by (res_inst_tac [("x","%i. if f i = f m then a else f i")] exI 1);
256 by (SELECT_GOAL Safe_tac 1);
257 by (subgoal_tac "x ~= f m" 1);
259 by (subgoal_tac "? k. f k = x & k<m" 1);
261 by (SELECT_GOAL Safe_tac 1);
262 by (res_inst_tac [("x","k")] exI 1);
264 by (simp_tac (simpset() addsplits [expand_if]) 1);
267 by (rotate_tac ~1 1);
268 by (Asm_full_simp_tac 1);
269 by (res_inst_tac [("x","%i. if f i = f m then a else f i")] exI 1);
270 by (SELECT_GOAL Safe_tac 1);
271 by (subgoal_tac "x ~= f m" 1);
273 by (subgoal_tac "? k. f k = x & k<m" 1);
275 by (SELECT_GOAL Safe_tac 1);
276 by (res_inst_tac [("x","k")] exI 1);
278 by (simp_tac (simpset() addsplits [expand_if]) 1);
280 by (res_inst_tac [("x","%j. if f j = f i then f m else f j")] exI 1);
281 by (SELECT_GOAL Safe_tac 1);
282 by (subgoal_tac "x ~= f i" 1);
284 by (case_tac "x = f m" 1);
285 by (res_inst_tac [("x","i")] exI 1);
287 by (subgoal_tac "? k. f k = x & k<m" 1);
289 by (SELECT_GOAL Safe_tac 1);
290 by (res_inst_tac [("x","k")] exI 1);
292 by (simp_tac (simpset() addsplits [expand_if]) 1);
294 val lemma = result();
296 goal Finite.thy "!!A. [| finite A; x ~: A |] ==> \
297 \ (LEAST n. ? f. insert x A = {f i|i. i<n}) = Suc(LEAST n. ? f. A={f i|i. i<n})";
298 by (rtac Least_equality 1);
299 by (dtac finite_has_card 1);
301 by (dres_inst_tac [("P","%n.? f. A={f i|i. i<n}")] LeastI 1);
304 [("x","%i. if i<(LEAST n. ? f. A={f i |i. i < n}) then f i else x")] exI 1);
306 (simpset() addsimps [Collect_conv_insert, less_Suc_eq]
307 addcongs [rev_conj_cong]) 1);
316 by (dres_inst_tac [("P","%x. ? g. A = {g i |i. i < x}")] Least_le 1);
317 by (dtac le_less_trans 1 THEN atac 1);
318 by (asm_full_simp_tac (simpset() addsimps [less_Suc_eq]) 1);
320 by (etac less_asym 1 THEN atac 1);
321 by (hyp_subst_tac 1);
322 by (Asm_full_simp_tac 1);
323 val lemma = result();
325 goalw Finite.thy [card_def]
326 "!!A. [| finite A; x ~: A |] ==> card(insert x A) = Suc(card A)";
329 qed "card_insert_disjoint";
330 Addsimps [card_insert_disjoint];
332 goal Finite.thy "!!A. finite A ==> !B. B <= A --> card(B) <= card(A)";
333 by (etac finite_induct 1);
336 by (case_tac "x:B" 1);
337 by (dres_inst_tac [("A","B")] mk_disjoint_insert 1);
338 by (SELECT_GOAL Safe_tac 1);
339 by (rotate_tac ~1 1);
340 by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff,finite_subset]) 1);
341 by (rotate_tac ~1 1);
342 by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff,finite_subset]) 1);
343 qed_spec_mp "card_mono";
345 goal Finite.thy "!!A B. [| finite A; finite B |]\
346 \ ==> A Int B = {} --> card(A Un B) = card A + card B";
347 by (etac finite_induct 1);
349 (asm_simp_tac (simpset() addsimps [Int_insert_left]
350 addsplits [expand_if])));
351 qed_spec_mp "card_Un_disjoint";
353 goal Finite.thy "!!A. [| finite A; B<=A |] ==> card A - card B = card (A - B)";
354 by (subgoal_tac "(A-B) Un B = A" 1);
356 by (rtac (add_right_cancel RS iffD1) 1);
357 by (rtac (card_Un_disjoint RS subst) 1);
362 (simpset() addsimps [add_commute, not_less_iff_le,
363 add_diff_inverse, card_mono, finite_subset])));
364 qed "card_Diff_subset";
366 goal Finite.thy "!!A. [| finite A; x: A |] ==> Suc(card(A-{x})) = card A";
367 by (res_inst_tac [("t", "A")] (insert_Diff RS subst) 1);
372 goal Finite.thy "!!A. [| finite A; x: A |] ==> card(A-{x}) < card A";
373 by (rtac Suc_less_SucD 1);
374 by (asm_simp_tac (simpset() addsimps [card_Suc_Diff]) 1);
378 (*** Cardinality of the Powerset ***)
380 val [major] = goal Finite.thy
381 "finite A ==> card(insert x A) = Suc(card(A-{x}))";
382 by (case_tac "x:A" 1);
383 by (asm_simp_tac (simpset() addsimps [insert_absorb]) 1);
384 by (dtac mk_disjoint_insert 1);
387 by (rtac card_insert_disjoint 1);
388 by (rtac (major RSN (2,finite_subset)) 1);
391 by (asm_simp_tac (simpset() addsimps [major RS card_insert_disjoint]) 1);
393 Addsimps [card_insert];
395 goal Finite.thy "!!A. finite(A) ==> inj_onto f A --> card (f `` A) = card A";
396 by (etac finite_induct 1);
397 by (ALLGOALS Asm_simp_tac);
399 by (rewtac inj_onto_def);
401 by (stac card_insert_disjoint 1);
402 by (etac finite_imageI 1);
405 qed_spec_mp "card_image";
407 goal thy "!!A. finite A ==> card (Pow A) = 2 ^ card A";
408 by (etac finite_induct 1);
409 by (ALLGOALS (asm_simp_tac (simpset() addsimps [Pow_insert])));
410 by (stac card_Un_disjoint 1);
411 by (EVERY (map (blast_tac (claset() addIs [finite_imageI])) [3,2,1]));
412 by (subgoal_tac "inj_onto (insert x) (Pow F)" 1);
413 by (asm_simp_tac (simpset() addsimps [card_image, Pow_insert]) 1);
414 by (rewtac inj_onto_def);
415 by (blast_tac (claset() addSEs [equalityE]) 1);
421 goalw Finite.thy [psubset_def]
422 "!!B. finite B ==> !A. A < B --> card(A) < card(B)";
423 by (etac finite_induct 1);
426 by (case_tac "x:A" 1);
428 by (dres_inst_tac [("A","A")]mk_disjoint_insert 1);
431 by (hyp_subst_tac 1);
432 by (rotate_tac ~1 1);
433 by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff,finite_subset]) 1);
436 by (rotate_tac ~1 1);
437 by (eres_inst_tac [("P","?a<?b")] notE 1);
438 by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff,finite_subset]) 1);
439 by (case_tac "A=F" 1);
440 by (ALLGOALS Asm_simp_tac);
441 qed_spec_mp "psubset_card" ;
444 (*Relates to equivalence classes. Based on a theorem of F. Kammueller's.
445 The "finite C" premise is redundant*)
446 goal thy "!!C. finite C ==> finite (Union C) --> \
447 \ (! c : C. k dvd card c) --> \
448 \ (! c1: C. ! c2: C. c1 ~= c2 --> c1 Int c2 = {}) \
449 \ --> k dvd card(Union C)";
450 by (etac finite_induct 1);
451 by (ALLGOALS Asm_simp_tac);
453 by (stac card_Un_disjoint 1);
455 (asm_full_simp_tac (simpset()
456 addsimps [dvd_add, disjoint_eq_subset_Compl])));
457 by (thin_tac "!c:F. ?PP(c)" 1);
458 by (thin_tac "!c:F. ?PP(c) & ?QQ(c)" 1);
462 qed_spec_mp "dvd_partition";