src/HOL/Analysis/Complex_Analysis_Basics.thy
 author hoelzl Fri Sep 23 18:34:34 2016 +0200 (2016-09-23) changeset 63941 f353674c2528 parent 63918 6bf55e6e0b75 child 64267 b9a1486e79be permissions -rw-r--r--
move absolutely_integrable_on to Equivalence_Lebesgue_Henstock_Integration, now based on the Lebesgue integral
```     1 (*  Author: John Harrison, Marco Maggesi, Graziano Gentili, Gianni Ciolli, Valentina Bruno
```
```     2     Ported from "hol_light/Multivariate/canal.ml" by L C Paulson (2014)
```
```     3 *)
```
```     4
```
```     5 section \<open>Complex Analysis Basics\<close>
```
```     6
```
```     7 theory Complex_Analysis_Basics
```
```     8 imports Equivalence_Lebesgue_Henstock_Integration "~~/src/HOL/Library/Nonpos_Ints"
```
```     9 begin
```
```    10
```
```    11
```
```    12 subsection\<open>General lemmas\<close>
```
```    13
```
```    14 lemma nonneg_Reals_cmod_eq_Re: "z \<in> \<real>\<^sub>\<ge>\<^sub>0 \<Longrightarrow> norm z = Re z"
```
```    15   by (simp add: complex_nonneg_Reals_iff cmod_eq_Re)
```
```    16
```
```    17 lemma has_derivative_mult_right:
```
```    18   fixes c:: "'a :: real_normed_algebra"
```
```    19   shows "((op * c) has_derivative (op * c)) F"
```
```    20 by (rule has_derivative_mult_right [OF has_derivative_id])
```
```    21
```
```    22 lemma has_derivative_of_real[derivative_intros, simp]:
```
```    23   "(f has_derivative f') F \<Longrightarrow> ((\<lambda>x. of_real (f x)) has_derivative (\<lambda>x. of_real (f' x))) F"
```
```    24   using bounded_linear.has_derivative[OF bounded_linear_of_real] .
```
```    25
```
```    26 lemma has_vector_derivative_real_complex:
```
```    27   "DERIV f (of_real a) :> f' \<Longrightarrow> ((\<lambda>x. f (of_real x)) has_vector_derivative f') (at a within s)"
```
```    28   using has_derivative_compose[of of_real of_real a _ f "op * f'"]
```
```    29   by (simp add: scaleR_conv_of_real ac_simps has_vector_derivative_def has_field_derivative_def)
```
```    30
```
```    31 lemma fact_cancel:
```
```    32   fixes c :: "'a::real_field"
```
```    33   shows "of_nat (Suc n) * c / (fact (Suc n)) = c / (fact n)"
```
```    34   by (simp add: of_nat_mult del: of_nat_Suc times_nat.simps)
```
```    35
```
```    36 lemma bilinear_times:
```
```    37   fixes c::"'a::real_algebra" shows "bilinear (\<lambda>x y::'a. x*y)"
```
```    38   by (auto simp: bilinear_def distrib_left distrib_right intro!: linearI)
```
```    39
```
```    40 lemma linear_cnj: "linear cnj"
```
```    41   using bounded_linear.linear[OF bounded_linear_cnj] .
```
```    42
```
```    43 lemma tendsto_Re_upper:
```
```    44   assumes "~ (trivial_limit F)"
```
```    45           "(f \<longlongrightarrow> l) F"
```
```    46           "eventually (\<lambda>x. Re(f x) \<le> b) F"
```
```    47     shows  "Re(l) \<le> b"
```
```    48   by (metis assms tendsto_le [OF _ tendsto_const]  tendsto_Re)
```
```    49
```
```    50 lemma tendsto_Re_lower:
```
```    51   assumes "~ (trivial_limit F)"
```
```    52           "(f \<longlongrightarrow> l) F"
```
```    53           "eventually (\<lambda>x. b \<le> Re(f x)) F"
```
```    54     shows  "b \<le> Re(l)"
```
```    55   by (metis assms tendsto_le [OF _ _ tendsto_const]  tendsto_Re)
```
```    56
```
```    57 lemma tendsto_Im_upper:
```
```    58   assumes "~ (trivial_limit F)"
```
```    59           "(f \<longlongrightarrow> l) F"
```
```    60           "eventually (\<lambda>x. Im(f x) \<le> b) F"
```
```    61     shows  "Im(l) \<le> b"
```
```    62   by (metis assms tendsto_le [OF _ tendsto_const]  tendsto_Im)
```
```    63
```
```    64 lemma tendsto_Im_lower:
```
```    65   assumes "~ (trivial_limit F)"
```
```    66           "(f \<longlongrightarrow> l) F"
```
```    67           "eventually (\<lambda>x. b \<le> Im(f x)) F"
```
```    68     shows  "b \<le> Im(l)"
```
```    69   by (metis assms tendsto_le [OF _ _ tendsto_const]  tendsto_Im)
```
```    70
```
```    71 lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = op * 0"
```
```    72   by auto
```
```    73
```
```    74 lemma lambda_one: "(\<lambda>x::'a::monoid_mult. x) = op * 1"
```
```    75   by auto
```
```    76
```
```    77 lemma continuous_mult_left:
```
```    78   fixes c::"'a::real_normed_algebra"
```
```    79   shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. c * f x)"
```
```    80 by (rule continuous_mult [OF continuous_const])
```
```    81
```
```    82 lemma continuous_mult_right:
```
```    83   fixes c::"'a::real_normed_algebra"
```
```    84   shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x * c)"
```
```    85 by (rule continuous_mult [OF _ continuous_const])
```
```    86
```
```    87 lemma continuous_on_mult_left:
```
```    88   fixes c::"'a::real_normed_algebra"
```
```    89   shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. c * f x)"
```
```    90 by (rule continuous_on_mult [OF continuous_on_const])
```
```    91
```
```    92 lemma continuous_on_mult_right:
```
```    93   fixes c::"'a::real_normed_algebra"
```
```    94   shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x * c)"
```
```    95 by (rule continuous_on_mult [OF _ continuous_on_const])
```
```    96
```
```    97 lemma uniformly_continuous_on_cmul_right [continuous_intros]:
```
```    98   fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
```
```    99   shows "uniformly_continuous_on s f \<Longrightarrow> uniformly_continuous_on s (\<lambda>x. f x * c)"
```
```   100   using bounded_linear.uniformly_continuous_on[OF bounded_linear_mult_left] .
```
```   101
```
```   102 lemma uniformly_continuous_on_cmul_left[continuous_intros]:
```
```   103   fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
```
```   104   assumes "uniformly_continuous_on s f"
```
```   105     shows "uniformly_continuous_on s (\<lambda>x. c * f x)"
```
```   106 by (metis assms bounded_linear.uniformly_continuous_on bounded_linear_mult_right)
```
```   107
```
```   108 lemma continuous_within_norm_id [continuous_intros]: "continuous (at x within S) norm"
```
```   109   by (rule continuous_norm [OF continuous_ident])
```
```   110
```
```   111 lemma continuous_on_norm_id [continuous_intros]: "continuous_on S norm"
```
```   112   by (intro continuous_on_id continuous_on_norm)
```
```   113
```
```   114 subsection\<open>DERIV stuff\<close>
```
```   115
```
```   116 lemma DERIV_zero_connected_constant:
```
```   117   fixes f :: "'a::{real_normed_field,euclidean_space} \<Rightarrow> 'a"
```
```   118   assumes "connected s"
```
```   119       and "open s"
```
```   120       and "finite k"
```
```   121       and "continuous_on s f"
```
```   122       and "\<forall>x\<in>(s - k). DERIV f x :> 0"
```
```   123     obtains c where "\<And>x. x \<in> s \<Longrightarrow> f(x) = c"
```
```   124 using has_derivative_zero_connected_constant [OF assms(1-4)] assms
```
```   125 by (metis DERIV_const has_derivative_const Diff_iff at_within_open frechet_derivative_at has_field_derivative_def)
```
```   126
```
```   127 lemma DERIV_zero_constant:
```
```   128   fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
```
```   129   shows    "\<lbrakk>convex s;
```
```   130              \<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)\<rbrakk>
```
```   131              \<Longrightarrow> \<exists>c. \<forall>x \<in> s. f(x) = c"
```
```   132   by (auto simp: has_field_derivative_def lambda_zero intro: has_derivative_zero_constant)
```
```   133
```
```   134 lemma DERIV_zero_unique:
```
```   135   fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
```
```   136   assumes "convex s"
```
```   137       and d0: "\<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)"
```
```   138       and "a \<in> s"
```
```   139       and "x \<in> s"
```
```   140     shows "f x = f a"
```
```   141   by (rule has_derivative_zero_unique [OF assms(1) _ assms(4,3)])
```
```   142      (metis d0 has_field_derivative_imp_has_derivative lambda_zero)
```
```   143
```
```   144 lemma DERIV_zero_connected_unique:
```
```   145   fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
```
```   146   assumes "connected s"
```
```   147       and "open s"
```
```   148       and d0: "\<And>x. x\<in>s \<Longrightarrow> DERIV f x :> 0"
```
```   149       and "a \<in> s"
```
```   150       and "x \<in> s"
```
```   151     shows "f x = f a"
```
```   152     by (rule has_derivative_zero_unique_connected [OF assms(2,1) _ assms(5,4)])
```
```   153        (metis has_field_derivative_def lambda_zero d0)
```
```   154
```
```   155 lemma DERIV_transform_within:
```
```   156   assumes "(f has_field_derivative f') (at a within s)"
```
```   157       and "0 < d" "a \<in> s"
```
```   158       and "\<And>x. x\<in>s \<Longrightarrow> dist x a < d \<Longrightarrow> f x = g x"
```
```   159     shows "(g has_field_derivative f') (at a within s)"
```
```   160   using assms unfolding has_field_derivative_def
```
```   161   by (blast intro: has_derivative_transform_within)
```
```   162
```
```   163 lemma DERIV_transform_within_open:
```
```   164   assumes "DERIV f a :> f'"
```
```   165       and "open s" "a \<in> s"
```
```   166       and "\<And>x. x\<in>s \<Longrightarrow> f x = g x"
```
```   167     shows "DERIV g a :> f'"
```
```   168   using assms unfolding has_field_derivative_def
```
```   169 by (metis has_derivative_transform_within_open)
```
```   170
```
```   171 lemma DERIV_transform_at:
```
```   172   assumes "DERIV f a :> f'"
```
```   173       and "0 < d"
```
```   174       and "\<And>x. dist x a < d \<Longrightarrow> f x = g x"
```
```   175     shows "DERIV g a :> f'"
```
```   176   by (blast intro: assms DERIV_transform_within)
```
```   177
```
```   178 (*generalising DERIV_isconst_all, which requires type real (using the ordering)*)
```
```   179 lemma DERIV_zero_UNIV_unique:
```
```   180   fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
```
```   181   shows "(\<And>x. DERIV f x :> 0) \<Longrightarrow> f x = f a"
```
```   182 by (metis DERIV_zero_unique UNIV_I convex_UNIV)
```
```   183
```
```   184 subsection \<open>Some limit theorems about real part of real series etc.\<close>
```
```   185
```
```   186 (*MOVE? But not to Finite_Cartesian_Product*)
```
```   187 lemma sums_vec_nth :
```
```   188   assumes "f sums a"
```
```   189   shows "(\<lambda>x. f x \$ i) sums a \$ i"
```
```   190 using assms unfolding sums_def
```
```   191 by (auto dest: tendsto_vec_nth [where i=i])
```
```   192
```
```   193 lemma summable_vec_nth :
```
```   194   assumes "summable f"
```
```   195   shows "summable (\<lambda>x. f x \$ i)"
```
```   196 using assms unfolding summable_def
```
```   197 by (blast intro: sums_vec_nth)
```
```   198
```
```   199 subsection \<open>Complex number lemmas\<close>
```
```   200
```
```   201 lemma
```
```   202   shows open_halfspace_Re_lt: "open {z. Re(z) < b}"
```
```   203     and open_halfspace_Re_gt: "open {z. Re(z) > b}"
```
```   204     and closed_halfspace_Re_ge: "closed {z. Re(z) \<ge> b}"
```
```   205     and closed_halfspace_Re_le: "closed {z. Re(z) \<le> b}"
```
```   206     and closed_halfspace_Re_eq: "closed {z. Re(z) = b}"
```
```   207     and open_halfspace_Im_lt: "open {z. Im(z) < b}"
```
```   208     and open_halfspace_Im_gt: "open {z. Im(z) > b}"
```
```   209     and closed_halfspace_Im_ge: "closed {z. Im(z) \<ge> b}"
```
```   210     and closed_halfspace_Im_le: "closed {z. Im(z) \<le> b}"
```
```   211     and closed_halfspace_Im_eq: "closed {z. Im(z) = b}"
```
```   212   by (intro open_Collect_less closed_Collect_le closed_Collect_eq continuous_on_Re
```
```   213             continuous_on_Im continuous_on_id continuous_on_const)+
```
```   214
```
```   215 lemma closed_complex_Reals: "closed (\<real> :: complex set)"
```
```   216 proof -
```
```   217   have "(\<real> :: complex set) = {z. Im z = 0}"
```
```   218     by (auto simp: complex_is_Real_iff)
```
```   219   then show ?thesis
```
```   220     by (metis closed_halfspace_Im_eq)
```
```   221 qed
```
```   222
```
```   223 lemma closed_Real_halfspace_Re_le: "closed (\<real> \<inter> {w. Re w \<le> x})"
```
```   224   by (simp add: closed_Int closed_complex_Reals closed_halfspace_Re_le)
```
```   225
```
```   226 corollary closed_nonpos_Reals_complex [simp]: "closed (\<real>\<^sub>\<le>\<^sub>0 :: complex set)"
```
```   227 proof -
```
```   228   have "\<real>\<^sub>\<le>\<^sub>0 = \<real> \<inter> {z. Re(z) \<le> 0}"
```
```   229     using complex_nonpos_Reals_iff complex_is_Real_iff by auto
```
```   230   then show ?thesis
```
```   231     by (metis closed_Real_halfspace_Re_le)
```
```   232 qed
```
```   233
```
```   234 lemma closed_Real_halfspace_Re_ge: "closed (\<real> \<inter> {w. x \<le> Re(w)})"
```
```   235   using closed_halfspace_Re_ge
```
```   236   by (simp add: closed_Int closed_complex_Reals)
```
```   237
```
```   238 corollary closed_nonneg_Reals_complex [simp]: "closed (\<real>\<^sub>\<ge>\<^sub>0 :: complex set)"
```
```   239 proof -
```
```   240   have "\<real>\<^sub>\<ge>\<^sub>0 = \<real> \<inter> {z. Re(z) \<ge> 0}"
```
```   241     using complex_nonneg_Reals_iff complex_is_Real_iff by auto
```
```   242   then show ?thesis
```
```   243     by (metis closed_Real_halfspace_Re_ge)
```
```   244 qed
```
```   245
```
```   246 lemma closed_real_abs_le: "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
```
```   247 proof -
```
```   248   have "{w \<in> \<real>. \<bar>Re w\<bar> \<le> r} = (\<real> \<inter> {w. Re w \<le> r}) \<inter> (\<real> \<inter> {w. Re w \<ge> -r})"
```
```   249     by auto
```
```   250   then show "closed {w \<in> \<real>. \<bar>Re w\<bar> \<le> r}"
```
```   251     by (simp add: closed_Int closed_Real_halfspace_Re_ge closed_Real_halfspace_Re_le)
```
```   252 qed
```
```   253
```
```   254 lemma real_lim:
```
```   255   fixes l::complex
```
```   256   assumes "(f \<longlongrightarrow> l) F" and "~(trivial_limit F)" and "eventually P F" and "\<And>a. P a \<Longrightarrow> f a \<in> \<real>"
```
```   257   shows  "l \<in> \<real>"
```
```   258 proof (rule Lim_in_closed_set[OF closed_complex_Reals _ assms(2,1)])
```
```   259   show "eventually (\<lambda>x. f x \<in> \<real>) F"
```
```   260     using assms(3, 4) by (auto intro: eventually_mono)
```
```   261 qed
```
```   262
```
```   263 lemma real_lim_sequentially:
```
```   264   fixes l::complex
```
```   265   shows "(f \<longlongrightarrow> l) sequentially \<Longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>"
```
```   266 by (rule real_lim [where F=sequentially]) (auto simp: eventually_sequentially)
```
```   267
```
```   268 lemma real_series:
```
```   269   fixes l::complex
```
```   270   shows "f sums l \<Longrightarrow> (\<And>n. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>"
```
```   271 unfolding sums_def
```
```   272 by (metis real_lim_sequentially setsum_in_Reals)
```
```   273
```
```   274 lemma Lim_null_comparison_Re:
```
```   275   assumes "eventually (\<lambda>x. norm(f x) \<le> Re(g x)) F" "(g \<longlongrightarrow> 0) F" shows "(f \<longlongrightarrow> 0) F"
```
```   276   by (rule Lim_null_comparison[OF assms(1)] tendsto_eq_intros assms(2))+ simp
```
```   277
```
```   278 subsection\<open>Holomorphic functions\<close>
```
```   279
```
```   280 definition field_differentiable :: "['a \<Rightarrow> 'a::real_normed_field, 'a filter] \<Rightarrow> bool"
```
```   281            (infixr "(field'_differentiable)" 50)
```
```   282   where "f field_differentiable F \<equiv> \<exists>f'. (f has_field_derivative f') F"
```
```   283
```
```   284 lemma field_differentiable_derivI:
```
```   285     "f field_differentiable (at x) \<Longrightarrow> (f has_field_derivative deriv f x) (at x)"
```
```   286 by (simp add: field_differentiable_def DERIV_deriv_iff_has_field_derivative)
```
```   287
```
```   288 lemma field_differentiable_imp_continuous_at:
```
```   289     "f field_differentiable (at x within s) \<Longrightarrow> continuous (at x within s) f"
```
```   290   by (metis DERIV_continuous field_differentiable_def)
```
```   291
```
```   292 lemma field_differentiable_within_subset:
```
```   293     "\<lbrakk>f field_differentiable (at x within s); t \<subseteq> s\<rbrakk>
```
```   294      \<Longrightarrow> f field_differentiable (at x within t)"
```
```   295   by (metis DERIV_subset field_differentiable_def)
```
```   296
```
```   297 lemma field_differentiable_at_within:
```
```   298     "\<lbrakk>f field_differentiable (at x)\<rbrakk>
```
```   299      \<Longrightarrow> f field_differentiable (at x within s)"
```
```   300   unfolding field_differentiable_def
```
```   301   by (metis DERIV_subset top_greatest)
```
```   302
```
```   303 lemma field_differentiable_linear [simp,derivative_intros]: "(op * c) field_differentiable F"
```
```   304 proof -
```
```   305   show ?thesis
```
```   306     unfolding field_differentiable_def has_field_derivative_def mult_commute_abs
```
```   307     by (force intro: has_derivative_mult_right)
```
```   308 qed
```
```   309
```
```   310 lemma field_differentiable_const [simp,derivative_intros]: "(\<lambda>z. c) field_differentiable F"
```
```   311   unfolding field_differentiable_def has_field_derivative_def
```
```   312   by (rule exI [where x=0])
```
```   313      (metis has_derivative_const lambda_zero)
```
```   314
```
```   315 lemma field_differentiable_ident [simp,derivative_intros]: "(\<lambda>z. z) field_differentiable F"
```
```   316   unfolding field_differentiable_def has_field_derivative_def
```
```   317   by (rule exI [where x=1])
```
```   318      (simp add: lambda_one [symmetric])
```
```   319
```
```   320 lemma field_differentiable_id [simp,derivative_intros]: "id field_differentiable F"
```
```   321   unfolding id_def by (rule field_differentiable_ident)
```
```   322
```
```   323 lemma field_differentiable_minus [derivative_intros]:
```
```   324   "f field_differentiable F \<Longrightarrow> (\<lambda>z. - (f z)) field_differentiable F"
```
```   325   unfolding field_differentiable_def
```
```   326   by (metis field_differentiable_minus)
```
```   327
```
```   328 lemma field_differentiable_add [derivative_intros]:
```
```   329   assumes "f field_differentiable F" "g field_differentiable F"
```
```   330     shows "(\<lambda>z. f z + g z) field_differentiable F"
```
```   331   using assms unfolding field_differentiable_def
```
```   332   by (metis field_differentiable_add)
```
```   333
```
```   334 lemma field_differentiable_add_const [simp,derivative_intros]:
```
```   335      "op + c field_differentiable F"
```
```   336   by (simp add: field_differentiable_add)
```
```   337
```
```   338 lemma field_differentiable_setsum [derivative_intros]:
```
```   339   "(\<And>i. i \<in> I \<Longrightarrow> (f i) field_differentiable F) \<Longrightarrow> (\<lambda>z. \<Sum>i\<in>I. f i z) field_differentiable F"
```
```   340   by (induct I rule: infinite_finite_induct)
```
```   341      (auto intro: field_differentiable_add field_differentiable_const)
```
```   342
```
```   343 lemma field_differentiable_diff [derivative_intros]:
```
```   344   assumes "f field_differentiable F" "g field_differentiable F"
```
```   345     shows "(\<lambda>z. f z - g z) field_differentiable F"
```
```   346   using assms unfolding field_differentiable_def
```
```   347   by (metis field_differentiable_diff)
```
```   348
```
```   349 lemma field_differentiable_inverse [derivative_intros]:
```
```   350   assumes "f field_differentiable (at a within s)" "f a \<noteq> 0"
```
```   351   shows "(\<lambda>z. inverse (f z)) field_differentiable (at a within s)"
```
```   352   using assms unfolding field_differentiable_def
```
```   353   by (metis DERIV_inverse_fun)
```
```   354
```
```   355 lemma field_differentiable_mult [derivative_intros]:
```
```   356   assumes "f field_differentiable (at a within s)"
```
```   357           "g field_differentiable (at a within s)"
```
```   358     shows "(\<lambda>z. f z * g z) field_differentiable (at a within s)"
```
```   359   using assms unfolding field_differentiable_def
```
```   360   by (metis DERIV_mult [of f _ a s g])
```
```   361
```
```   362 lemma field_differentiable_divide [derivative_intros]:
```
```   363   assumes "f field_differentiable (at a within s)"
```
```   364           "g field_differentiable (at a within s)"
```
```   365           "g a \<noteq> 0"
```
```   366     shows "(\<lambda>z. f z / g z) field_differentiable (at a within s)"
```
```   367   using assms unfolding field_differentiable_def
```
```   368   by (metis DERIV_divide [of f _ a s g])
```
```   369
```
```   370 lemma field_differentiable_power [derivative_intros]:
```
```   371   assumes "f field_differentiable (at a within s)"
```
```   372     shows "(\<lambda>z. f z ^ n) field_differentiable (at a within s)"
```
```   373   using assms unfolding field_differentiable_def
```
```   374   by (metis DERIV_power)
```
```   375
```
```   376 lemma field_differentiable_transform_within:
```
```   377   "0 < d \<Longrightarrow>
```
```   378         x \<in> s \<Longrightarrow>
```
```   379         (\<And>x'. x' \<in> s \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x') \<Longrightarrow>
```
```   380         f field_differentiable (at x within s)
```
```   381         \<Longrightarrow> g field_differentiable (at x within s)"
```
```   382   unfolding field_differentiable_def has_field_derivative_def
```
```   383   by (blast intro: has_derivative_transform_within)
```
```   384
```
```   385 lemma field_differentiable_compose_within:
```
```   386   assumes "f field_differentiable (at a within s)"
```
```   387           "g field_differentiable (at (f a) within f`s)"
```
```   388     shows "(g o f) field_differentiable (at a within s)"
```
```   389   using assms unfolding field_differentiable_def
```
```   390   by (metis DERIV_image_chain)
```
```   391
```
```   392 lemma field_differentiable_compose:
```
```   393   "f field_differentiable at z \<Longrightarrow> g field_differentiable at (f z)
```
```   394           \<Longrightarrow> (g o f) field_differentiable at z"
```
```   395 by (metis field_differentiable_at_within field_differentiable_compose_within)
```
```   396
```
```   397 lemma field_differentiable_within_open:
```
```   398      "\<lbrakk>a \<in> s; open s\<rbrakk> \<Longrightarrow> f field_differentiable at a within s \<longleftrightarrow>
```
```   399                           f field_differentiable at a"
```
```   400   unfolding field_differentiable_def
```
```   401   by (metis at_within_open)
```
```   402
```
```   403 subsection\<open>Caratheodory characterization\<close>
```
```   404
```
```   405 lemma field_differentiable_caratheodory_at:
```
```   406   "f field_differentiable (at z) \<longleftrightarrow>
```
```   407          (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z) g)"
```
```   408   using CARAT_DERIV [of f]
```
```   409   by (simp add: field_differentiable_def has_field_derivative_def)
```
```   410
```
```   411 lemma field_differentiable_caratheodory_within:
```
```   412   "f field_differentiable (at z within s) \<longleftrightarrow>
```
```   413          (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z within s) g)"
```
```   414   using DERIV_caratheodory_within [of f]
```
```   415   by (simp add: field_differentiable_def has_field_derivative_def)
```
```   416
```
```   417 subsection\<open>Holomorphic\<close>
```
```   418
```
```   419 definition holomorphic_on :: "[complex \<Rightarrow> complex, complex set] \<Rightarrow> bool"
```
```   420            (infixl "(holomorphic'_on)" 50)
```
```   421   where "f holomorphic_on s \<equiv> \<forall>x\<in>s. f field_differentiable (at x within s)"
```
```   422
```
```   423 named_theorems holomorphic_intros "structural introduction rules for holomorphic_on"
```
```   424
```
```   425 lemma holomorphic_onI [intro?]: "(\<And>x. x \<in> s \<Longrightarrow> f field_differentiable (at x within s)) \<Longrightarrow> f holomorphic_on s"
```
```   426   by (simp add: holomorphic_on_def)
```
```   427
```
```   428 lemma holomorphic_onD [dest?]: "\<lbrakk>f holomorphic_on s; x \<in> s\<rbrakk> \<Longrightarrow> f field_differentiable (at x within s)"
```
```   429   by (simp add: holomorphic_on_def)
```
```   430
```
```   431 lemma holomorphic_on_imp_differentiable_at:
```
```   432    "\<lbrakk>f holomorphic_on s; open s; x \<in> s\<rbrakk> \<Longrightarrow> f field_differentiable (at x)"
```
```   433 using at_within_open holomorphic_on_def by fastforce
```
```   434
```
```   435 lemma holomorphic_on_empty [holomorphic_intros]: "f holomorphic_on {}"
```
```   436   by (simp add: holomorphic_on_def)
```
```   437
```
```   438 lemma holomorphic_on_open:
```
```   439     "open s \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> (\<forall>x \<in> s. \<exists>f'. DERIV f x :> f')"
```
```   440   by (auto simp: holomorphic_on_def field_differentiable_def has_field_derivative_def at_within_open [of _ s])
```
```   441
```
```   442 lemma holomorphic_on_imp_continuous_on:
```
```   443     "f holomorphic_on s \<Longrightarrow> continuous_on s f"
```
```   444   by (metis field_differentiable_imp_continuous_at continuous_on_eq_continuous_within holomorphic_on_def)
```
```   445
```
```   446 lemma holomorphic_on_subset [elim]:
```
```   447     "f holomorphic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f holomorphic_on t"
```
```   448   unfolding holomorphic_on_def
```
```   449   by (metis field_differentiable_within_subset subsetD)
```
```   450
```
```   451 lemma holomorphic_transform: "\<lbrakk>f holomorphic_on s; \<And>x. x \<in> s \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> g holomorphic_on s"
```
```   452   by (metis field_differentiable_transform_within linordered_field_no_ub holomorphic_on_def)
```
```   453
```
```   454 lemma holomorphic_cong: "s = t ==> (\<And>x. x \<in> s \<Longrightarrow> f x = g x) \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> g holomorphic_on t"
```
```   455   by (metis holomorphic_transform)
```
```   456
```
```   457 lemma holomorphic_on_linear [simp, holomorphic_intros]: "(op * c) holomorphic_on s"
```
```   458   unfolding holomorphic_on_def by (metis field_differentiable_linear)
```
```   459
```
```   460 lemma holomorphic_on_const [simp, holomorphic_intros]: "(\<lambda>z. c) holomorphic_on s"
```
```   461   unfolding holomorphic_on_def by (metis field_differentiable_const)
```
```   462
```
```   463 lemma holomorphic_on_ident [simp, holomorphic_intros]: "(\<lambda>x. x) holomorphic_on s"
```
```   464   unfolding holomorphic_on_def by (metis field_differentiable_ident)
```
```   465
```
```   466 lemma holomorphic_on_id [simp, holomorphic_intros]: "id holomorphic_on s"
```
```   467   unfolding id_def by (rule holomorphic_on_ident)
```
```   468
```
```   469 lemma holomorphic_on_compose:
```
```   470   "f holomorphic_on s \<Longrightarrow> g holomorphic_on (f ` s) \<Longrightarrow> (g o f) holomorphic_on s"
```
```   471   using field_differentiable_compose_within[of f _ s g]
```
```   472   by (auto simp: holomorphic_on_def)
```
```   473
```
```   474 lemma holomorphic_on_compose_gen:
```
```   475   "f holomorphic_on s \<Longrightarrow> g holomorphic_on t \<Longrightarrow> f ` s \<subseteq> t \<Longrightarrow> (g o f) holomorphic_on s"
```
```   476   by (metis holomorphic_on_compose holomorphic_on_subset)
```
```   477
```
```   478 lemma holomorphic_on_minus [holomorphic_intros]: "f holomorphic_on s \<Longrightarrow> (\<lambda>z. -(f z)) holomorphic_on s"
```
```   479   by (metis field_differentiable_minus holomorphic_on_def)
```
```   480
```
```   481 lemma holomorphic_on_add [holomorphic_intros]:
```
```   482   "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z + g z) holomorphic_on s"
```
```   483   unfolding holomorphic_on_def by (metis field_differentiable_add)
```
```   484
```
```   485 lemma holomorphic_on_diff [holomorphic_intros]:
```
```   486   "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z - g z) holomorphic_on s"
```
```   487   unfolding holomorphic_on_def by (metis field_differentiable_diff)
```
```   488
```
```   489 lemma holomorphic_on_mult [holomorphic_intros]:
```
```   490   "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z * g z) holomorphic_on s"
```
```   491   unfolding holomorphic_on_def by (metis field_differentiable_mult)
```
```   492
```
```   493 lemma holomorphic_on_inverse [holomorphic_intros]:
```
```   494   "\<lbrakk>f holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. inverse (f z)) holomorphic_on s"
```
```   495   unfolding holomorphic_on_def by (metis field_differentiable_inverse)
```
```   496
```
```   497 lemma holomorphic_on_divide [holomorphic_intros]:
```
```   498   "\<lbrakk>f holomorphic_on s; g holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. f z / g z) holomorphic_on s"
```
```   499   unfolding holomorphic_on_def by (metis field_differentiable_divide)
```
```   500
```
```   501 lemma holomorphic_on_power [holomorphic_intros]:
```
```   502   "f holomorphic_on s \<Longrightarrow> (\<lambda>z. (f z)^n) holomorphic_on s"
```
```   503   unfolding holomorphic_on_def by (metis field_differentiable_power)
```
```   504
```
```   505 lemma holomorphic_on_setsum [holomorphic_intros]:
```
```   506   "(\<And>i. i \<in> I \<Longrightarrow> (f i) holomorphic_on s) \<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) holomorphic_on s"
```
```   507   unfolding holomorphic_on_def by (metis field_differentiable_setsum)
```
```   508
```
```   509 lemma DERIV_deriv_iff_field_differentiable:
```
```   510   "DERIV f x :> deriv f x \<longleftrightarrow> f field_differentiable at x"
```
```   511   unfolding field_differentiable_def by (metis DERIV_imp_deriv)
```
```   512
```
```   513 lemma holomorphic_derivI:
```
```   514      "\<lbrakk>f holomorphic_on S; open S; x \<in> S\<rbrakk>
```
```   515       \<Longrightarrow> (f has_field_derivative deriv f x) (at x within T)"
```
```   516 by (metis DERIV_deriv_iff_field_differentiable at_within_open  holomorphic_on_def has_field_derivative_at_within)
```
```   517
```
```   518 lemma complex_derivative_chain:
```
```   519   "f field_differentiable at x \<Longrightarrow> g field_differentiable at (f x)
```
```   520     \<Longrightarrow> deriv (g o f) x = deriv g (f x) * deriv f x"
```
```   521   by (metis DERIV_deriv_iff_field_differentiable DERIV_chain DERIV_imp_deriv)
```
```   522
```
```   523 lemma deriv_linear [simp]: "deriv (\<lambda>w. c * w) = (\<lambda>z. c)"
```
```   524   by (metis DERIV_imp_deriv DERIV_cmult_Id)
```
```   525
```
```   526 lemma deriv_ident [simp]: "deriv (\<lambda>w. w) = (\<lambda>z. 1)"
```
```   527   by (metis DERIV_imp_deriv DERIV_ident)
```
```   528
```
```   529 lemma deriv_id [simp]: "deriv id = (\<lambda>z. 1)"
```
```   530   by (simp add: id_def)
```
```   531
```
```   532 lemma deriv_const [simp]: "deriv (\<lambda>w. c) = (\<lambda>z. 0)"
```
```   533   by (metis DERIV_imp_deriv DERIV_const)
```
```   534
```
```   535 lemma deriv_add [simp]:
```
```   536   "\<lbrakk>f field_differentiable at z; g field_differentiable at z\<rbrakk>
```
```   537    \<Longrightarrow> deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
```
```   538   unfolding DERIV_deriv_iff_field_differentiable[symmetric]
```
```   539   by (auto intro!: DERIV_imp_deriv derivative_intros)
```
```   540
```
```   541 lemma deriv_diff [simp]:
```
```   542   "\<lbrakk>f field_differentiable at z; g field_differentiable at z\<rbrakk>
```
```   543    \<Longrightarrow> deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
```
```   544   unfolding DERIV_deriv_iff_field_differentiable[symmetric]
```
```   545   by (auto intro!: DERIV_imp_deriv derivative_intros)
```
```   546
```
```   547 lemma deriv_mult [simp]:
```
```   548   "\<lbrakk>f field_differentiable at z; g field_differentiable at z\<rbrakk>
```
```   549    \<Longrightarrow> deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z"
```
```   550   unfolding DERIV_deriv_iff_field_differentiable[symmetric]
```
```   551   by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
```
```   552
```
```   553 lemma deriv_cmult [simp]:
```
```   554   "f field_differentiable at z \<Longrightarrow> deriv (\<lambda>w. c * f w) z = c * deriv f z"
```
```   555   unfolding DERIV_deriv_iff_field_differentiable[symmetric]
```
```   556   by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
```
```   557
```
```   558 lemma deriv_cmult_right [simp]:
```
```   559   "f field_differentiable at z \<Longrightarrow> deriv (\<lambda>w. f w * c) z = deriv f z * c"
```
```   560   unfolding DERIV_deriv_iff_field_differentiable[symmetric]
```
```   561   by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
```
```   562
```
```   563 lemma deriv_cdivide_right [simp]:
```
```   564   "f field_differentiable at z \<Longrightarrow> deriv (\<lambda>w. f w / c) z = deriv f z / c"
```
```   565   unfolding Fields.field_class.field_divide_inverse
```
```   566   by (blast intro: deriv_cmult_right)
```
```   567
```
```   568 lemma complex_derivative_transform_within_open:
```
```   569   "\<lbrakk>f holomorphic_on s; g holomorphic_on s; open s; z \<in> s; \<And>w. w \<in> s \<Longrightarrow> f w = g w\<rbrakk>
```
```   570    \<Longrightarrow> deriv f z = deriv g z"
```
```   571   unfolding holomorphic_on_def
```
```   572   by (rule DERIV_imp_deriv)
```
```   573      (metis DERIV_deriv_iff_field_differentiable DERIV_transform_within_open at_within_open)
```
```   574
```
```   575 lemma deriv_compose_linear:
```
```   576   "f field_differentiable at (c * z) \<Longrightarrow> deriv (\<lambda>w. f (c * w)) z = c * deriv f (c * z)"
```
```   577 apply (rule DERIV_imp_deriv)
```
```   578 apply (simp add: DERIV_deriv_iff_field_differentiable [symmetric])
```
```   579 apply (drule DERIV_chain' [of "times c" c z UNIV f "deriv f (c * z)", OF DERIV_cmult_Id])
```
```   580 apply (simp add: algebra_simps)
```
```   581 done
```
```   582
```
```   583 lemma nonzero_deriv_nonconstant:
```
```   584   assumes df: "DERIV f \<xi> :> df" and S: "open S" "\<xi> \<in> S" and "df \<noteq> 0"
```
```   585     shows "\<not> f constant_on S"
```
```   586 unfolding constant_on_def
```
```   587 by (metis \<open>df \<noteq> 0\<close> DERIV_transform_within_open [OF df S] DERIV_const DERIV_unique)
```
```   588
```
```   589 lemma holomorphic_nonconstant:
```
```   590   assumes holf: "f holomorphic_on S" and "open S" "\<xi> \<in> S" "deriv f \<xi> \<noteq> 0"
```
```   591     shows "\<not> f constant_on S"
```
```   592     apply (rule nonzero_deriv_nonconstant [of f "deriv f \<xi>" \<xi> S])
```
```   593     using assms
```
```   594     apply (auto simp: holomorphic_derivI)
```
```   595     done
```
```   596
```
```   597 subsection\<open>Analyticity on a set\<close>
```
```   598
```
```   599 definition analytic_on (infixl "(analytic'_on)" 50)
```
```   600   where
```
```   601    "f analytic_on s \<equiv> \<forall>x \<in> s. \<exists>e. 0 < e \<and> f holomorphic_on (ball x e)"
```
```   602
```
```   603 lemma analytic_imp_holomorphic: "f analytic_on s \<Longrightarrow> f holomorphic_on s"
```
```   604   by (simp add: at_within_open [OF _ open_ball] analytic_on_def holomorphic_on_def)
```
```   605      (metis centre_in_ball field_differentiable_at_within)
```
```   606
```
```   607 lemma analytic_on_open: "open s \<Longrightarrow> f analytic_on s \<longleftrightarrow> f holomorphic_on s"
```
```   608 apply (auto simp: analytic_imp_holomorphic)
```
```   609 apply (auto simp: analytic_on_def holomorphic_on_def)
```
```   610 by (metis holomorphic_on_def holomorphic_on_subset open_contains_ball)
```
```   611
```
```   612 lemma analytic_on_imp_differentiable_at:
```
```   613   "f analytic_on s \<Longrightarrow> x \<in> s \<Longrightarrow> f field_differentiable (at x)"
```
```   614  apply (auto simp: analytic_on_def holomorphic_on_def)
```
```   615 by (metis Topology_Euclidean_Space.open_ball centre_in_ball field_differentiable_within_open)
```
```   616
```
```   617 lemma analytic_on_subset: "f analytic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f analytic_on t"
```
```   618   by (auto simp: analytic_on_def)
```
```   619
```
```   620 lemma analytic_on_Un: "f analytic_on (s \<union> t) \<longleftrightarrow> f analytic_on s \<and> f analytic_on t"
```
```   621   by (auto simp: analytic_on_def)
```
```   622
```
```   623 lemma analytic_on_Union: "f analytic_on (\<Union>s) \<longleftrightarrow> (\<forall>t \<in> s. f analytic_on t)"
```
```   624   by (auto simp: analytic_on_def)
```
```   625
```
```   626 lemma analytic_on_UN: "f analytic_on (\<Union>i\<in>I. s i) \<longleftrightarrow> (\<forall>i\<in>I. f analytic_on (s i))"
```
```   627   by (auto simp: analytic_on_def)
```
```   628
```
```   629 lemma analytic_on_holomorphic:
```
```   630   "f analytic_on s \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f holomorphic_on t)"
```
```   631   (is "?lhs = ?rhs")
```
```   632 proof -
```
```   633   have "?lhs \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t)"
```
```   634   proof safe
```
```   635     assume "f analytic_on s"
```
```   636     then show "\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t"
```
```   637       apply (simp add: analytic_on_def)
```
```   638       apply (rule exI [where x="\<Union>{u. open u \<and> f analytic_on u}"], auto)
```
```   639       apply (metis Topology_Euclidean_Space.open_ball analytic_on_open centre_in_ball)
```
```   640       by (metis analytic_on_def)
```
```   641   next
```
```   642     fix t
```
```   643     assume "open t" "s \<subseteq> t" "f analytic_on t"
```
```   644     then show "f analytic_on s"
```
```   645         by (metis analytic_on_subset)
```
```   646   qed
```
```   647   also have "... \<longleftrightarrow> ?rhs"
```
```   648     by (auto simp: analytic_on_open)
```
```   649   finally show ?thesis .
```
```   650 qed
```
```   651
```
```   652 lemma analytic_on_linear: "(op * c) analytic_on s"
```
```   653   by (auto simp add: analytic_on_holomorphic holomorphic_on_linear)
```
```   654
```
```   655 lemma analytic_on_const: "(\<lambda>z. c) analytic_on s"
```
```   656   by (metis analytic_on_def holomorphic_on_const zero_less_one)
```
```   657
```
```   658 lemma analytic_on_ident: "(\<lambda>x. x) analytic_on s"
```
```   659   by (simp add: analytic_on_def holomorphic_on_ident gt_ex)
```
```   660
```
```   661 lemma analytic_on_id: "id analytic_on s"
```
```   662   unfolding id_def by (rule analytic_on_ident)
```
```   663
```
```   664 lemma analytic_on_compose:
```
```   665   assumes f: "f analytic_on s"
```
```   666       and g: "g analytic_on (f ` s)"
```
```   667     shows "(g o f) analytic_on s"
```
```   668 unfolding analytic_on_def
```
```   669 proof (intro ballI)
```
```   670   fix x
```
```   671   assume x: "x \<in> s"
```
```   672   then obtain e where e: "0 < e" and fh: "f holomorphic_on ball x e" using f
```
```   673     by (metis analytic_on_def)
```
```   674   obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball (f x) e'" using g
```
```   675     by (metis analytic_on_def g image_eqI x)
```
```   676   have "isCont f x"
```
```   677     by (metis analytic_on_imp_differentiable_at field_differentiable_imp_continuous_at f x)
```
```   678   with e' obtain d where d: "0 < d" and fd: "f ` ball x d \<subseteq> ball (f x) e'"
```
```   679      by (auto simp: continuous_at_ball)
```
```   680   have "g \<circ> f holomorphic_on ball x (min d e)"
```
```   681     apply (rule holomorphic_on_compose)
```
```   682     apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
```
```   683     by (metis fd gh holomorphic_on_subset image_mono min.cobounded1 subset_ball)
```
```   684   then show "\<exists>e>0. g \<circ> f holomorphic_on ball x e"
```
```   685     by (metis d e min_less_iff_conj)
```
```   686 qed
```
```   687
```
```   688 lemma analytic_on_compose_gen:
```
```   689   "f analytic_on s \<Longrightarrow> g analytic_on t \<Longrightarrow> (\<And>z. z \<in> s \<Longrightarrow> f z \<in> t)
```
```   690              \<Longrightarrow> g o f analytic_on s"
```
```   691 by (metis analytic_on_compose analytic_on_subset image_subset_iff)
```
```   692
```
```   693 lemma analytic_on_neg:
```
```   694   "f analytic_on s \<Longrightarrow> (\<lambda>z. -(f z)) analytic_on s"
```
```   695 by (metis analytic_on_holomorphic holomorphic_on_minus)
```
```   696
```
```   697 lemma analytic_on_add:
```
```   698   assumes f: "f analytic_on s"
```
```   699       and g: "g analytic_on s"
```
```   700     shows "(\<lambda>z. f z + g z) analytic_on s"
```
```   701 unfolding analytic_on_def
```
```   702 proof (intro ballI)
```
```   703   fix z
```
```   704   assume z: "z \<in> s"
```
```   705   then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
```
```   706     by (metis analytic_on_def)
```
```   707   obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
```
```   708     by (metis analytic_on_def g z)
```
```   709   have "(\<lambda>z. f z + g z) holomorphic_on ball z (min e e')"
```
```   710     apply (rule holomorphic_on_add)
```
```   711     apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
```
```   712     by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
```
```   713   then show "\<exists>e>0. (\<lambda>z. f z + g z) holomorphic_on ball z e"
```
```   714     by (metis e e' min_less_iff_conj)
```
```   715 qed
```
```   716
```
```   717 lemma analytic_on_diff:
```
```   718   assumes f: "f analytic_on s"
```
```   719       and g: "g analytic_on s"
```
```   720     shows "(\<lambda>z. f z - g z) analytic_on s"
```
```   721 unfolding analytic_on_def
```
```   722 proof (intro ballI)
```
```   723   fix z
```
```   724   assume z: "z \<in> s"
```
```   725   then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
```
```   726     by (metis analytic_on_def)
```
```   727   obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
```
```   728     by (metis analytic_on_def g z)
```
```   729   have "(\<lambda>z. f z - g z) holomorphic_on ball z (min e e')"
```
```   730     apply (rule holomorphic_on_diff)
```
```   731     apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
```
```   732     by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
```
```   733   then show "\<exists>e>0. (\<lambda>z. f z - g z) holomorphic_on ball z e"
```
```   734     by (metis e e' min_less_iff_conj)
```
```   735 qed
```
```   736
```
```   737 lemma analytic_on_mult:
```
```   738   assumes f: "f analytic_on s"
```
```   739       and g: "g analytic_on s"
```
```   740     shows "(\<lambda>z. f z * g z) analytic_on s"
```
```   741 unfolding analytic_on_def
```
```   742 proof (intro ballI)
```
```   743   fix z
```
```   744   assume z: "z \<in> s"
```
```   745   then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
```
```   746     by (metis analytic_on_def)
```
```   747   obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
```
```   748     by (metis analytic_on_def g z)
```
```   749   have "(\<lambda>z. f z * g z) holomorphic_on ball z (min e e')"
```
```   750     apply (rule holomorphic_on_mult)
```
```   751     apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
```
```   752     by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
```
```   753   then show "\<exists>e>0. (\<lambda>z. f z * g z) holomorphic_on ball z e"
```
```   754     by (metis e e' min_less_iff_conj)
```
```   755 qed
```
```   756
```
```   757 lemma analytic_on_inverse:
```
```   758   assumes f: "f analytic_on s"
```
```   759       and nz: "(\<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0)"
```
```   760     shows "(\<lambda>z. inverse (f z)) analytic_on s"
```
```   761 unfolding analytic_on_def
```
```   762 proof (intro ballI)
```
```   763   fix z
```
```   764   assume z: "z \<in> s"
```
```   765   then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
```
```   766     by (metis analytic_on_def)
```
```   767   have "continuous_on (ball z e) f"
```
```   768     by (metis fh holomorphic_on_imp_continuous_on)
```
```   769   then obtain e' where e': "0 < e'" and nz': "\<And>y. dist z y < e' \<Longrightarrow> f y \<noteq> 0"
```
```   770     by (metis Topology_Euclidean_Space.open_ball centre_in_ball continuous_on_open_avoid e z nz)
```
```   771   have "(\<lambda>z. inverse (f z)) holomorphic_on ball z (min e e')"
```
```   772     apply (rule holomorphic_on_inverse)
```
```   773     apply (metis fh holomorphic_on_subset min.cobounded2 min.commute subset_ball)
```
```   774     by (metis nz' mem_ball min_less_iff_conj)
```
```   775   then show "\<exists>e>0. (\<lambda>z. inverse (f z)) holomorphic_on ball z e"
```
```   776     by (metis e e' min_less_iff_conj)
```
```   777 qed
```
```   778
```
```   779 lemma analytic_on_divide:
```
```   780   assumes f: "f analytic_on s"
```
```   781       and g: "g analytic_on s"
```
```   782       and nz: "(\<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0)"
```
```   783     shows "(\<lambda>z. f z / g z) analytic_on s"
```
```   784 unfolding divide_inverse
```
```   785 by (metis analytic_on_inverse analytic_on_mult f g nz)
```
```   786
```
```   787 lemma analytic_on_power:
```
```   788   "f analytic_on s \<Longrightarrow> (\<lambda>z. (f z) ^ n) analytic_on s"
```
```   789 by (induct n) (auto simp: analytic_on_const analytic_on_mult)
```
```   790
```
```   791 lemma analytic_on_setsum:
```
```   792   "(\<And>i. i \<in> I \<Longrightarrow> (f i) analytic_on s) \<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) analytic_on s"
```
```   793   by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_const analytic_on_add)
```
```   794
```
```   795 lemma deriv_left_inverse:
```
```   796   assumes "f holomorphic_on S" and "g holomorphic_on T"
```
```   797       and "open S" and "open T"
```
```   798       and "f ` S \<subseteq> T"
```
```   799       and [simp]: "\<And>z. z \<in> S \<Longrightarrow> g (f z) = z"
```
```   800       and "w \<in> S"
```
```   801     shows "deriv f w * deriv g (f w) = 1"
```
```   802 proof -
```
```   803   have "deriv f w * deriv g (f w) = deriv g (f w) * deriv f w"
```
```   804     by (simp add: algebra_simps)
```
```   805   also have "... = deriv (g o f) w"
```
```   806     using assms
```
```   807     by (metis analytic_on_imp_differentiable_at analytic_on_open complex_derivative_chain image_subset_iff)
```
```   808   also have "... = deriv id w"
```
```   809     apply (rule complex_derivative_transform_within_open [where s=S])
```
```   810     apply (rule assms holomorphic_on_compose_gen holomorphic_intros)+
```
```   811     apply simp
```
```   812     done
```
```   813   also have "... = 1"
```
```   814     by simp
```
```   815   finally show ?thesis .
```
```   816 qed
```
```   817
```
```   818 subsection\<open>analyticity at a point\<close>
```
```   819
```
```   820 lemma analytic_at_ball:
```
```   821   "f analytic_on {z} \<longleftrightarrow> (\<exists>e. 0<e \<and> f holomorphic_on ball z e)"
```
```   822 by (metis analytic_on_def singleton_iff)
```
```   823
```
```   824 lemma analytic_at:
```
```   825     "f analytic_on {z} \<longleftrightarrow> (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s)"
```
```   826 by (metis analytic_on_holomorphic empty_subsetI insert_subset)
```
```   827
```
```   828 lemma analytic_on_analytic_at:
```
```   829     "f analytic_on s \<longleftrightarrow> (\<forall>z \<in> s. f analytic_on {z})"
```
```   830 by (metis analytic_at_ball analytic_on_def)
```
```   831
```
```   832 lemma analytic_at_two:
```
```   833   "f analytic_on {z} \<and> g analytic_on {z} \<longleftrightarrow>
```
```   834    (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s \<and> g holomorphic_on s)"
```
```   835   (is "?lhs = ?rhs")
```
```   836 proof
```
```   837   assume ?lhs
```
```   838   then obtain s t
```
```   839     where st: "open s" "z \<in> s" "f holomorphic_on s"
```
```   840               "open t" "z \<in> t" "g holomorphic_on t"
```
```   841     by (auto simp: analytic_at)
```
```   842   show ?rhs
```
```   843     apply (rule_tac x="s \<inter> t" in exI)
```
```   844     using st
```
```   845     apply (auto simp: Diff_subset holomorphic_on_subset)
```
```   846     done
```
```   847 next
```
```   848   assume ?rhs
```
```   849   then show ?lhs
```
```   850     by (force simp add: analytic_at)
```
```   851 qed
```
```   852
```
```   853 subsection\<open>Combining theorems for derivative with ``analytic at'' hypotheses\<close>
```
```   854
```
```   855 lemma
```
```   856   assumes "f analytic_on {z}" "g analytic_on {z}"
```
```   857   shows complex_derivative_add_at: "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
```
```   858     and complex_derivative_diff_at: "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
```
```   859     and complex_derivative_mult_at: "deriv (\<lambda>w. f w * g w) z =
```
```   860            f z * deriv g z + deriv f z * g z"
```
```   861 proof -
```
```   862   obtain s where s: "open s" "z \<in> s" "f holomorphic_on s" "g holomorphic_on s"
```
```   863     using assms by (metis analytic_at_two)
```
```   864   show "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
```
```   865     apply (rule DERIV_imp_deriv [OF DERIV_add])
```
```   866     using s
```
```   867     apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable)
```
```   868     done
```
```   869   show "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
```
```   870     apply (rule DERIV_imp_deriv [OF DERIV_diff])
```
```   871     using s
```
```   872     apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable)
```
```   873     done
```
```   874   show "deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z"
```
```   875     apply (rule DERIV_imp_deriv [OF DERIV_mult'])
```
```   876     using s
```
```   877     apply (auto simp: holomorphic_on_open field_differentiable_def DERIV_deriv_iff_field_differentiable)
```
```   878     done
```
```   879 qed
```
```   880
```
```   881 lemma deriv_cmult_at:
```
```   882   "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. c * f w) z = c * deriv f z"
```
```   883 by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const)
```
```   884
```
```   885 lemma deriv_cmult_right_at:
```
```   886   "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. f w * c) z = deriv f z * c"
```
```   887 by (auto simp: complex_derivative_mult_at deriv_const analytic_on_const)
```
```   888
```
```   889 subsection\<open>Complex differentiation of sequences and series\<close>
```
```   890
```
```   891 (* TODO: Could probably be simplified using Uniform_Limit *)
```
```   892 lemma has_complex_derivative_sequence:
```
```   893   fixes s :: "complex set"
```
```   894   assumes cvs: "convex s"
```
```   895       and df:  "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)"
```
```   896       and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s \<longrightarrow> norm (f' n x - g' x) \<le> e"
```
```   897       and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) \<longlongrightarrow> l) sequentially"
```
```   898     shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) \<longlongrightarrow> g x) sequentially \<and>
```
```   899                        (g has_field_derivative (g' x)) (at x within s)"
```
```   900 proof -
```
```   901   from assms obtain x l where x: "x \<in> s" and tf: "((\<lambda>n. f n x) \<longlongrightarrow> l) sequentially"
```
```   902     by blast
```
```   903   { fix e::real assume e: "e > 0"
```
```   904     then obtain N where N: "\<forall>n\<ge>N. \<forall>x. x \<in> s \<longrightarrow> cmod (f' n x - g' x) \<le> e"
```
```   905       by (metis conv)
```
```   906     have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h"
```
```   907     proof (rule exI [of _ N], clarify)
```
```   908       fix n y h
```
```   909       assume "N \<le> n" "y \<in> s"
```
```   910       then have "cmod (f' n y - g' y) \<le> e"
```
```   911         by (metis N)
```
```   912       then have "cmod h * cmod (f' n y - g' y) \<le> cmod h * e"
```
```   913         by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
```
```   914       then show "cmod (f' n y * h - g' y * h) \<le> e * cmod h"
```
```   915         by (simp add: norm_mult [symmetric] field_simps)
```
```   916     qed
```
```   917   } note ** = this
```
```   918   show ?thesis
```
```   919   unfolding has_field_derivative_def
```
```   920   proof (rule has_derivative_sequence [OF cvs _ _ x])
```
```   921     show "\<forall>n. \<forall>x\<in>s. (f n has_derivative (op * (f' n x))) (at x within s)"
```
```   922       by (metis has_field_derivative_def df)
```
```   923   next show "(\<lambda>n. f n x) \<longlonglongrightarrow> l"
```
```   924     by (rule tf)
```
```   925   next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h"
```
```   926     by (blast intro: **)
```
```   927   qed
```
```   928 qed
```
```   929
```
```   930 lemma has_complex_derivative_series:
```
```   931   fixes s :: "complex set"
```
```   932   assumes cvs: "convex s"
```
```   933       and df:  "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)"
```
```   934       and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s
```
```   935                 \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e"
```
```   936       and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) sums l)"
```
```   937     shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) sums g x) \<and> ((g has_field_derivative g' x) (at x within s))"
```
```   938 proof -
```
```   939   from assms obtain x l where x: "x \<in> s" and sf: "((\<lambda>n. f n x) sums l)"
```
```   940     by blast
```
```   941   { fix e::real assume e: "e > 0"
```
```   942     then obtain N where N: "\<forall>n x. n \<ge> N \<longrightarrow> x \<in> s
```
```   943             \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e"
```
```   944       by (metis conv)
```
```   945     have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h"
```
```   946     proof (rule exI [of _ N], clarify)
```
```   947       fix n y h
```
```   948       assume "N \<le> n" "y \<in> s"
```
```   949       then have "cmod ((\<Sum>i<n. f' i y) - g' y) \<le> e"
```
```   950         by (metis N)
```
```   951       then have "cmod h * cmod ((\<Sum>i<n. f' i y) - g' y) \<le> cmod h * e"
```
```   952         by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
```
```   953       then show "cmod ((\<Sum>i<n. h * f' i y) - g' y * h) \<le> e * cmod h"
```
```   954         by (simp add: norm_mult [symmetric] field_simps setsum_distrib_left)
```
```   955     qed
```
```   956   } note ** = this
```
```   957   show ?thesis
```
```   958   unfolding has_field_derivative_def
```
```   959   proof (rule has_derivative_series [OF cvs _ _ x])
```
```   960     fix n x
```
```   961     assume "x \<in> s"
```
```   962     then show "((f n) has_derivative (\<lambda>z. z * f' n x)) (at x within s)"
```
```   963       by (metis df has_field_derivative_def mult_commute_abs)
```
```   964   next show " ((\<lambda>n. f n x) sums l)"
```
```   965     by (rule sf)
```
```   966   next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h"
```
```   967     by (blast intro: **)
```
```   968   qed
```
```   969 qed
```
```   970
```
```   971
```
```   972 lemma field_differentiable_series:
```
```   973   fixes f :: "nat \<Rightarrow> complex \<Rightarrow> complex"
```
```   974   assumes "convex s" "open s"
```
```   975   assumes "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
```
```   976   assumes "uniformly_convergent_on s (\<lambda>n x. \<Sum>i<n. f' i x)"
```
```   977   assumes "x0 \<in> s" "summable (\<lambda>n. f n x0)" and x: "x \<in> s"
```
```   978   shows   "summable (\<lambda>n. f n x)" and "(\<lambda>x. \<Sum>n. f n x) field_differentiable (at x)"
```
```   979 proof -
```
```   980   from assms(4) obtain g' where A: "uniform_limit s (\<lambda>n x. \<Sum>i<n. f' i x) g' sequentially"
```
```   981     unfolding uniformly_convergent_on_def by blast
```
```   982   from x and \<open>open s\<close> have s: "at x within s = at x" by (rule at_within_open)
```
```   983   have "\<exists>g. \<forall>x\<in>s. (\<lambda>n. f n x) sums g x \<and> (g has_field_derivative g' x) (at x within s)"
```
```   984     by (intro has_field_derivative_series[of s f f' g' x0] assms A has_field_derivative_at_within)
```
```   985   then obtain g where g: "\<And>x. x \<in> s \<Longrightarrow> (\<lambda>n. f n x) sums g x"
```
```   986     "\<And>x. x \<in> s \<Longrightarrow> (g has_field_derivative g' x) (at x within s)" by blast
```
```   987   from g[OF x] show "summable (\<lambda>n. f n x)" by (auto simp: summable_def)
```
```   988   from g(2)[OF x] have g': "(g has_derivative op * (g' x)) (at x)"
```
```   989     by (simp add: has_field_derivative_def s)
```
```   990   have "((\<lambda>x. \<Sum>n. f n x) has_derivative op * (g' x)) (at x)"
```
```   991     by (rule has_derivative_transform_within_open[OF g' \<open>open s\<close> x])
```
```   992        (insert g, auto simp: sums_iff)
```
```   993   thus "(\<lambda>x. \<Sum>n. f n x) field_differentiable (at x)" unfolding differentiable_def
```
```   994     by (auto simp: summable_def field_differentiable_def has_field_derivative_def)
```
```   995 qed
```
```   996
```
```   997 lemma field_differentiable_series':
```
```   998   fixes f :: "nat \<Rightarrow> complex \<Rightarrow> complex"
```
```   999   assumes "convex s" "open s"
```
```  1000   assumes "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
```
```  1001   assumes "uniformly_convergent_on s (\<lambda>n x. \<Sum>i<n. f' i x)"
```
```  1002   assumes "x0 \<in> s" "summable (\<lambda>n. f n x0)"
```
```  1003   shows   "(\<lambda>x. \<Sum>n. f n x) field_differentiable (at x0)"
```
```  1004   using field_differentiable_series[OF assms, of x0] \<open>x0 \<in> s\<close> by blast+
```
```  1005
```
```  1006 subsection\<open>Bound theorem\<close>
```
```  1007
```
```  1008 lemma field_differentiable_bound:
```
```  1009   fixes s :: "complex set"
```
```  1010   assumes cvs: "convex s"
```
```  1011       and df:  "\<And>z. z \<in> s \<Longrightarrow> (f has_field_derivative f' z) (at z within s)"
```
```  1012       and dn:  "\<And>z. z \<in> s \<Longrightarrow> norm (f' z) \<le> B"
```
```  1013       and "x \<in> s"  "y \<in> s"
```
```  1014     shows "norm(f x - f y) \<le> B * norm(x - y)"
```
```  1015   apply (rule differentiable_bound [OF cvs])
```
```  1016   apply (rule ballI, erule df [unfolded has_field_derivative_def])
```
```  1017   apply (rule ballI, rule onorm_le, simp add: norm_mult mult_right_mono dn)
```
```  1018   apply fact
```
```  1019   apply fact
```
```  1020   done
```
```  1021
```
```  1022 subsection\<open>Inverse function theorem for complex derivatives\<close>
```
```  1023
```
```  1024 lemma has_complex_derivative_inverse_basic:
```
```  1025   fixes f :: "complex \<Rightarrow> complex"
```
```  1026   shows "DERIV f (g y) :> f' \<Longrightarrow>
```
```  1027         f' \<noteq> 0 \<Longrightarrow>
```
```  1028         continuous (at y) g \<Longrightarrow>
```
```  1029         open t \<Longrightarrow>
```
```  1030         y \<in> t \<Longrightarrow>
```
```  1031         (\<And>z. z \<in> t \<Longrightarrow> f (g z) = z)
```
```  1032         \<Longrightarrow> DERIV g y :> inverse (f')"
```
```  1033   unfolding has_field_derivative_def
```
```  1034   apply (rule has_derivative_inverse_basic)
```
```  1035   apply (auto simp:  bounded_linear_mult_right)
```
```  1036   done
```
```  1037
```
```  1038 (*Used only once, in Multivariate/cauchy.ml. *)
```
```  1039 lemma has_complex_derivative_inverse_strong:
```
```  1040   fixes f :: "complex \<Rightarrow> complex"
```
```  1041   shows "DERIV f x :> f' \<Longrightarrow>
```
```  1042          f' \<noteq> 0 \<Longrightarrow>
```
```  1043          open s \<Longrightarrow>
```
```  1044          x \<in> s \<Longrightarrow>
```
```  1045          continuous_on s f \<Longrightarrow>
```
```  1046          (\<And>z. z \<in> s \<Longrightarrow> g (f z) = z)
```
```  1047          \<Longrightarrow> DERIV g (f x) :> inverse (f')"
```
```  1048   unfolding has_field_derivative_def
```
```  1049   apply (rule has_derivative_inverse_strong [of s x f g ])
```
```  1050   by auto
```
```  1051
```
```  1052 lemma has_complex_derivative_inverse_strong_x:
```
```  1053   fixes f :: "complex \<Rightarrow> complex"
```
```  1054   shows  "DERIV f (g y) :> f' \<Longrightarrow>
```
```  1055           f' \<noteq> 0 \<Longrightarrow>
```
```  1056           open s \<Longrightarrow>
```
```  1057           continuous_on s f \<Longrightarrow>
```
```  1058           g y \<in> s \<Longrightarrow> f(g y) = y \<Longrightarrow>
```
```  1059           (\<And>z. z \<in> s \<Longrightarrow> g (f z) = z)
```
```  1060           \<Longrightarrow> DERIV g y :> inverse (f')"
```
```  1061   unfolding has_field_derivative_def
```
```  1062   apply (rule has_derivative_inverse_strong_x [of s g y f])
```
```  1063   by auto
```
```  1064
```
```  1065 subsection \<open>Taylor on Complex Numbers\<close>
```
```  1066
```
```  1067 lemma setsum_Suc_reindex:
```
```  1068   fixes f :: "nat \<Rightarrow> 'a::ab_group_add"
```
```  1069     shows  "setsum f {0..n} = f 0 - f (Suc n) + setsum (\<lambda>i. f (Suc i)) {0..n}"
```
```  1070 by (induct n) auto
```
```  1071
```
```  1072 lemma complex_taylor:
```
```  1073   assumes s: "convex s"
```
```  1074       and f: "\<And>i x. x \<in> s \<Longrightarrow> i \<le> n \<Longrightarrow> (f i has_field_derivative f (Suc i) x) (at x within s)"
```
```  1075       and B: "\<And>x. x \<in> s \<Longrightarrow> cmod (f (Suc n) x) \<le> B"
```
```  1076       and w: "w \<in> s"
```
```  1077       and z: "z \<in> s"
```
```  1078     shows "cmod(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / (fact i)))
```
```  1079           \<le> B * cmod(z - w)^(Suc n) / fact n"
```
```  1080 proof -
```
```  1081   have wzs: "closed_segment w z \<subseteq> s" using assms
```
```  1082     by (metis convex_contains_segment)
```
```  1083   { fix u
```
```  1084     assume "u \<in> closed_segment w z"
```
```  1085     then have "u \<in> s"
```
```  1086       by (metis wzs subsetD)
```
```  1087     have "(\<Sum>i\<le>n. f i u * (- of_nat i * (z-u)^(i - 1)) / (fact i) +
```
```  1088                       f (Suc i) u * (z-u)^i / (fact i)) =
```
```  1089               f (Suc n) u * (z-u) ^ n / (fact n)"
```
```  1090     proof (induction n)
```
```  1091       case 0 show ?case by simp
```
```  1092     next
```
```  1093       case (Suc n)
```
```  1094       have "(\<Sum>i\<le>Suc n. f i u * (- of_nat i * (z-u) ^ (i - 1)) / (fact i) +
```
```  1095                              f (Suc i) u * (z-u) ^ i / (fact i)) =
```
```  1096            f (Suc n) u * (z-u) ^ n / (fact n) +
```
```  1097            f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n) / (fact (Suc n)) -
```
```  1098            f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n) / (fact (Suc n))"
```
```  1099         using Suc by simp
```
```  1100       also have "... = f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n))"
```
```  1101       proof -
```
```  1102         have "(fact(Suc n)) *
```
```  1103              (f(Suc n) u *(z-u) ^ n / (fact n) +
```
```  1104                f(Suc(Suc n)) u *((z-u) *(z-u) ^ n) / (fact(Suc n)) -
```
```  1105                f(Suc n) u *((1 + of_nat n) *(z-u) ^ n) / (fact(Suc n))) =
```
```  1106             ((fact(Suc n)) *(f(Suc n) u *(z-u) ^ n)) / (fact n) +
```
```  1107             ((fact(Suc n)) *(f(Suc(Suc n)) u *((z-u) *(z-u) ^ n)) / (fact(Suc n))) -
```
```  1108             ((fact(Suc n)) *(f(Suc n) u *(of_nat(Suc n) *(z-u) ^ n))) / (fact(Suc n))"
```
```  1109           by (simp add: algebra_simps del: fact_Suc)
```
```  1110         also have "... = ((fact (Suc n)) * (f (Suc n) u * (z-u) ^ n)) / (fact n) +
```
```  1111                          (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
```
```  1112                          (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
```
```  1113           by (simp del: fact_Suc)
```
```  1114         also have "... = (of_nat (Suc n) * (f (Suc n) u * (z-u) ^ n)) +
```
```  1115                          (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
```
```  1116                          (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
```
```  1117           by (simp only: fact_Suc of_nat_mult ac_simps) simp
```
```  1118         also have "... = f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)"
```
```  1119           by (simp add: algebra_simps)
```
```  1120         finally show ?thesis
```
```  1121         by (simp add: mult_left_cancel [where c = "(fact (Suc n))", THEN iffD1] del: fact_Suc)
```
```  1122       qed
```
```  1123       finally show ?case .
```
```  1124     qed
```
```  1125     then have "((\<lambda>v. (\<Sum>i\<le>n. f i v * (z - v)^i / (fact i)))
```
```  1126                 has_field_derivative f (Suc n) u * (z-u) ^ n / (fact n))
```
```  1127                (at u within s)"
```
```  1128       apply (intro derivative_eq_intros)
```
```  1129       apply (blast intro: assms \<open>u \<in> s\<close>)
```
```  1130       apply (rule refl)+
```
```  1131       apply (auto simp: field_simps)
```
```  1132       done
```
```  1133   } note sum_deriv = this
```
```  1134   { fix u
```
```  1135     assume u: "u \<in> closed_segment w z"
```
```  1136     then have us: "u \<in> s"
```
```  1137       by (metis wzs subsetD)
```
```  1138     have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> cmod (f (Suc n) u) * cmod (u - z) ^ n"
```
```  1139       by (metis norm_minus_commute order_refl)
```
```  1140     also have "... \<le> cmod (f (Suc n) u) * cmod (z - w) ^ n"
```
```  1141       by (metis mult_left_mono norm_ge_zero power_mono segment_bound [OF u])
```
```  1142     also have "... \<le> B * cmod (z - w) ^ n"
```
```  1143       by (metis norm_ge_zero zero_le_power mult_right_mono  B [OF us])
```
```  1144     finally have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> B * cmod (z - w) ^ n" .
```
```  1145   } note cmod_bound = this
```
```  1146   have "(\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)) = (\<Sum>i\<le>n. (f i z / (fact i)) * 0 ^ i)"
```
```  1147     by simp
```
```  1148   also have "\<dots> = f 0 z / (fact 0)"
```
```  1149     by (subst setsum_zero_power) simp
```
```  1150   finally have "cmod (f 0 z - (\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i)))
```
```  1151                 \<le> cmod ((\<Sum>i\<le>n. f i w * (z - w) ^ i / (fact i)) -
```
```  1152                         (\<Sum>i\<le>n. f i z * (z - z) ^ i / (fact i)))"
```
```  1153     by (simp add: norm_minus_commute)
```
```  1154   also have "... \<le> B * cmod (z - w) ^ n / (fact n) * cmod (w - z)"
```
```  1155     apply (rule field_differentiable_bound
```
```  1156       [where f' = "\<lambda>w. f (Suc n) w * (z - w)^n / (fact n)"
```
```  1157          and s = "closed_segment w z", OF convex_closed_segment])
```
```  1158     apply (auto simp: ends_in_segment DERIV_subset [OF sum_deriv wzs]
```
```  1159                   norm_divide norm_mult norm_power divide_le_cancel cmod_bound)
```
```  1160     done
```
```  1161   also have "...  \<le> B * cmod (z - w) ^ Suc n / (fact n)"
```
```  1162     by (simp add: algebra_simps norm_minus_commute)
```
```  1163   finally show ?thesis .
```
```  1164 qed
```
```  1165
```
```  1166 text\<open>Something more like the traditional MVT for real components\<close>
```
```  1167
```
```  1168 lemma complex_mvt_line:
```
```  1169   assumes "\<And>u. u \<in> closed_segment w z \<Longrightarrow> (f has_field_derivative f'(u)) (at u)"
```
```  1170     shows "\<exists>u. u \<in> closed_segment w z \<and> Re(f z) - Re(f w) = Re(f'(u) * (z - w))"
```
```  1171 proof -
```
```  1172   have twz: "\<And>t. (1 - t) *\<^sub>R w + t *\<^sub>R z = w + t *\<^sub>R (z - w)"
```
```  1173     by (simp add: real_vector.scale_left_diff_distrib real_vector.scale_right_diff_distrib)
```
```  1174   note assms[unfolded has_field_derivative_def, derivative_intros]
```
```  1175   show ?thesis
```
```  1176     apply (cut_tac mvt_simple
```
```  1177                      [of 0 1 "Re o f o (\<lambda>t. (1 - t) *\<^sub>R w +  t *\<^sub>R z)"
```
```  1178                       "\<lambda>u. Re o (\<lambda>h. f'((1 - u) *\<^sub>R w + u *\<^sub>R z) * h) o (\<lambda>t. t *\<^sub>R (z - w))"])
```
```  1179     apply auto
```
```  1180     apply (rule_tac x="(1 - x) *\<^sub>R w + x *\<^sub>R z" in exI)
```
```  1181     apply (auto simp: closed_segment_def twz) []
```
```  1182     apply (intro derivative_eq_intros has_derivative_at_within, simp_all)
```
```  1183     apply (simp add: fun_eq_iff real_vector.scale_right_diff_distrib)
```
```  1184     apply (force simp: twz closed_segment_def)
```
```  1185     done
```
```  1186 qed
```
```  1187
```
```  1188 lemma complex_taylor_mvt:
```
```  1189   assumes "\<And>i x. \<lbrakk>x \<in> closed_segment w z; i \<le> n\<rbrakk> \<Longrightarrow> ((f i) has_field_derivative f (Suc i) x) (at x)"
```
```  1190     shows "\<exists>u. u \<in> closed_segment w z \<and>
```
```  1191             Re (f 0 z) =
```
```  1192             Re ((\<Sum>i = 0..n. f i w * (z - w) ^ i / (fact i)) +
```
```  1193                 (f (Suc n) u * (z-u)^n / (fact n)) * (z - w))"
```
```  1194 proof -
```
```  1195   { fix u
```
```  1196     assume u: "u \<in> closed_segment w z"
```
```  1197     have "(\<Sum>i = 0..n.
```
```  1198                (f (Suc i) u * (z-u) ^ i - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) /
```
```  1199                (fact i)) =
```
```  1200           f (Suc 0) u -
```
```  1201              (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
```
```  1202              (fact (Suc n)) +
```
```  1203              (\<Sum>i = 0..n.
```
```  1204                  (f (Suc (Suc i)) u * ((z-u) ^ Suc i) - of_nat (Suc i) * (f (Suc i) u * (z-u) ^ i)) /
```
```  1205                  (fact (Suc i)))"
```
```  1206        by (subst setsum_Suc_reindex) simp
```
```  1207     also have "... = f (Suc 0) u -
```
```  1208              (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
```
```  1209              (fact (Suc n)) +
```
```  1210              (\<Sum>i = 0..n.
```
```  1211                  f (Suc (Suc i)) u * ((z-u) ^ Suc i) / (fact (Suc i))  -
```
```  1212                  f (Suc i) u * (z-u) ^ i / (fact i))"
```
```  1213       by (simp only: diff_divide_distrib fact_cancel ac_simps)
```
```  1214     also have "... = f (Suc 0) u -
```
```  1215              (f (Suc (Suc n)) u * (z-u) ^ Suc n - of_nat (Suc n) * (z-u) ^ n * f (Suc n) u) /
```
```  1216              (fact (Suc n)) +
```
```  1217              f (Suc (Suc n)) u * (z-u) ^ Suc n / (fact (Suc n)) - f (Suc 0) u"
```
```  1218       by (subst setsum_Suc_diff) auto
```
```  1219     also have "... = f (Suc n) u * (z-u) ^ n / (fact n)"
```
```  1220       by (simp only: algebra_simps diff_divide_distrib fact_cancel)
```
```  1221     finally have "(\<Sum>i = 0..n. (f (Suc i) u * (z - u) ^ i
```
```  1222                              - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / (fact i)) =
```
```  1223                   f (Suc n) u * (z - u) ^ n / (fact n)" .
```
```  1224     then have "((\<lambda>u. \<Sum>i = 0..n. f i u * (z - u) ^ i / (fact i)) has_field_derivative
```
```  1225                 f (Suc n) u * (z - u) ^ n / (fact n))  (at u)"
```
```  1226       apply (intro derivative_eq_intros)+
```
```  1227       apply (force intro: u assms)
```
```  1228       apply (rule refl)+
```
```  1229       apply (auto simp: ac_simps)
```
```  1230       done
```
```  1231   }
```
```  1232   then show ?thesis
```
```  1233     apply (cut_tac complex_mvt_line [of w z "\<lambda>u. \<Sum>i = 0..n. f i u * (z-u) ^ i / (fact i)"
```
```  1234                "\<lambda>u. (f (Suc n) u * (z-u)^n / (fact n))"])
```
```  1235     apply (auto simp add: intro: open_closed_segment)
```
```  1236     done
```
```  1237 qed
```
```  1238
```
```  1239
```
```  1240 subsection \<open>Polynomal function extremal theorem, from HOL Light\<close>
```
```  1241
```
```  1242 lemma polyfun_extremal_lemma: (*COMPLEX_POLYFUN_EXTREMAL_LEMMA in HOL Light*)
```
```  1243     fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
```
```  1244   assumes "0 < e"
```
```  1245     shows "\<exists>M. \<forall>z. M \<le> norm(z) \<longrightarrow> norm (\<Sum>i\<le>n. c(i) * z^i) \<le> e * norm(z) ^ (Suc n)"
```
```  1246 proof (induct n)
```
```  1247   case 0 with assms
```
```  1248   show ?case
```
```  1249     apply (rule_tac x="norm (c 0) / e" in exI)
```
```  1250     apply (auto simp: field_simps)
```
```  1251     done
```
```  1252 next
```
```  1253   case (Suc n)
```
```  1254   obtain M where M: "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n"
```
```  1255     using Suc assms by blast
```
```  1256   show ?case
```
```  1257   proof (rule exI [where x= "max M (1 + norm(c(Suc n)) / e)"], clarsimp simp del: power_Suc)
```
```  1258     fix z::'a
```
```  1259     assume z1: "M \<le> norm z" and "1 + norm (c (Suc n)) / e \<le> norm z"
```
```  1260     then have z2: "e + norm (c (Suc n)) \<le> e * norm z"
```
```  1261       using assms by (simp add: field_simps)
```
```  1262     have "norm (\<Sum>i\<le>n. c i * z^i) \<le> e * norm z ^ Suc n"
```
```  1263       using M [OF z1] by simp
```
```  1264     then have "norm (\<Sum>i\<le>n. c i * z^i) + norm (c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)"
```
```  1265       by simp
```
```  1266     then have "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc n + norm (c (Suc n) * z ^ Suc n)"
```
```  1267       by (blast intro: norm_triangle_le elim: )
```
```  1268     also have "... \<le> (e + norm (c (Suc n))) * norm z ^ Suc n"
```
```  1269       by (simp add: norm_power norm_mult algebra_simps)
```
```  1270     also have "... \<le> (e * norm z) * norm z ^ Suc n"
```
```  1271       by (metis z2 mult.commute mult_left_mono norm_ge_zero norm_power)
```
```  1272     finally show "norm ((\<Sum>i\<le>n. c i * z^i) + c (Suc n) * z ^ Suc n) \<le> e * norm z ^ Suc (Suc n)"
```
```  1273       by simp
```
```  1274   qed
```
```  1275 qed
```
```  1276
```
```  1277 lemma polyfun_extremal: (*COMPLEX_POLYFUN_EXTREMAL in HOL Light*)
```
```  1278     fixes c :: "nat \<Rightarrow> 'a::real_normed_div_algebra"
```
```  1279   assumes k: "c k \<noteq> 0" "1\<le>k" and kn: "k\<le>n"
```
```  1280     shows "eventually (\<lambda>z. norm (\<Sum>i\<le>n. c(i) * z^i) \<ge> B) at_infinity"
```
```  1281 using kn
```
```  1282 proof (induction n)
```
```  1283   case 0
```
```  1284   then show ?case
```
```  1285     using k  by simp
```
```  1286 next
```
```  1287   case (Suc m)
```
```  1288   let ?even = ?case
```
```  1289   show ?even
```
```  1290   proof (cases "c (Suc m) = 0")
```
```  1291     case True
```
```  1292     then show ?even using Suc k
```
```  1293       by auto (metis antisym_conv less_eq_Suc_le not_le)
```
```  1294   next
```
```  1295     case False
```
```  1296     then obtain M where M:
```
```  1297           "\<And>z. M \<le> norm z \<Longrightarrow> norm (\<Sum>i\<le>m. c i * z^i) \<le> norm (c (Suc m)) / 2 * norm z ^ Suc m"
```
```  1298       using polyfun_extremal_lemma [of "norm(c (Suc m)) / 2" c m] Suc
```
```  1299       by auto
```
```  1300     have "\<exists>b. \<forall>z. b \<le> norm z \<longrightarrow> B \<le> norm (\<Sum>i\<le>Suc m. c i * z^i)"
```
```  1301     proof (rule exI [where x="max M (max 1 (\<bar>B\<bar> / (norm(c (Suc m)) / 2)))"], clarsimp simp del: power_Suc)
```
```  1302       fix z::'a
```
```  1303       assume z1: "M \<le> norm z" "1 \<le> norm z"
```
```  1304          and "\<bar>B\<bar> * 2 / norm (c (Suc m)) \<le> norm z"
```
```  1305       then have z2: "\<bar>B\<bar> \<le> norm (c (Suc m)) * norm z / 2"
```
```  1306         using False by (simp add: field_simps)
```
```  1307       have nz: "norm z \<le> norm z ^ Suc m"
```
```  1308         by (metis \<open>1 \<le> norm z\<close> One_nat_def less_eq_Suc_le power_increasing power_one_right zero_less_Suc)
```
```  1309       have *: "\<And>y x. norm (c (Suc m)) * norm z / 2 \<le> norm y - norm x \<Longrightarrow> B \<le> norm (x + y)"
```
```  1310         by (metis abs_le_iff add.commute norm_diff_ineq order_trans z2)
```
```  1311       have "norm z * norm (c (Suc m)) + 2 * norm (\<Sum>i\<le>m. c i * z^i)
```
```  1312             \<le> norm (c (Suc m)) * norm z + norm (c (Suc m)) * norm z ^ Suc m"
```
```  1313         using M [of z] Suc z1  by auto
```
```  1314       also have "... \<le> 2 * (norm (c (Suc m)) * norm z ^ Suc m)"
```
```  1315         using nz by (simp add: mult_mono del: power_Suc)
```
```  1316       finally show "B \<le> norm ((\<Sum>i\<le>m. c i * z^i) + c (Suc m) * z ^ Suc m)"
```
```  1317         using Suc.IH
```
```  1318         apply (auto simp: eventually_at_infinity)
```
```  1319         apply (rule *)
```
```  1320         apply (simp add: field_simps norm_mult norm_power)
```
```  1321         done
```
```  1322     qed
```
```  1323     then show ?even
```
```  1324       by (simp add: eventually_at_infinity)
```
```  1325   qed
```
```  1326 qed
```
```  1327
```
```  1328 end
```