src/HOL/Nominal/nominal.ML
author haftmann
Fri Jun 19 17:23:21 2009 +0200 (2009-06-19)
changeset 31723 f5cafe803b55
parent 31671 src/HOL/Nominal/nominal_package.ML@81e5e8ffe92f
child 31737 b3f63611784e
permissions -rw-r--r--
discontinued ancient tradition to suffix certain ML module names with "_package"
     1 (*  Title:      HOL/Nominal/nominal.ML
     2     Author:     Stefan Berghofer and Christian Urban, TU Muenchen
     3 
     4 Nominal datatype package for Isabelle/HOL.
     5 *)
     6 
     7 signature NOMINAL =
     8 sig
     9   val add_nominal_datatype : DatatypeAux.datatype_config -> string list ->
    10     (string list * bstring * mixfix *
    11       (bstring * string list * mixfix) list) list -> theory -> theory
    12   type descr
    13   type nominal_datatype_info
    14   val get_nominal_datatypes : theory -> nominal_datatype_info Symtab.table
    15   val get_nominal_datatype : theory -> string -> nominal_datatype_info option
    16   val mk_perm: typ list -> term -> term -> term
    17   val perm_of_pair: term * term -> term
    18   val mk_not_sym: thm list -> thm list
    19   val perm_simproc: simproc
    20   val fresh_const: typ -> typ -> term
    21   val fresh_star_const: typ -> typ -> term
    22 end
    23 
    24 structure Nominal : NOMINAL =
    25 struct
    26 
    27 val finite_emptyI = thm "finite.emptyI";
    28 val finite_Diff = thm "finite_Diff";
    29 val finite_Un = thm "finite_Un";
    30 val Un_iff = thm "Un_iff";
    31 val In0_eq = thm "In0_eq";
    32 val In1_eq = thm "In1_eq";
    33 val In0_not_In1 = thm "In0_not_In1";
    34 val In1_not_In0 = thm "In1_not_In0";
    35 val Un_assoc = thm "Un_assoc";
    36 val Collect_disj_eq = thm "Collect_disj_eq";
    37 val empty_def = thm "empty_def";
    38 val empty_iff = thm "empty_iff";
    39 
    40 open DatatypeAux;
    41 open NominalAtoms;
    42 
    43 (** FIXME: Datatype should export this function **)
    44 
    45 local
    46 
    47 fun dt_recs (DtTFree _) = []
    48   | dt_recs (DtType (_, dts)) = List.concat (map dt_recs dts)
    49   | dt_recs (DtRec i) = [i];
    50 
    51 fun dt_cases (descr: descr) (_, args, constrs) =
    52   let
    53     fun the_bname i = Long_Name.base_name (#1 (valOf (AList.lookup (op =) descr i)));
    54     val bnames = map the_bname (distinct op = (List.concat (map dt_recs args)));
    55   in map (fn (c, _) => space_implode "_" (Long_Name.base_name c :: bnames)) constrs end;
    56 
    57 
    58 fun induct_cases descr =
    59   DatatypeProp.indexify_names (List.concat (map (dt_cases descr) (map #2 descr)));
    60 
    61 fun exhaust_cases descr i = dt_cases descr (valOf (AList.lookup (op =) descr i));
    62 
    63 in
    64 
    65 fun mk_case_names_induct descr = RuleCases.case_names (induct_cases descr);
    66 
    67 fun mk_case_names_exhausts descr new =
    68   map (RuleCases.case_names o exhaust_cases descr o #1)
    69     (List.filter (fn ((_, (name, _, _))) => name mem_string new) descr);
    70 
    71 end;
    72 
    73 (* theory data *)
    74 
    75 type descr = (int * (string * dtyp list * (string * (dtyp list * dtyp) list) list)) list;
    76 
    77 type nominal_datatype_info =
    78   {index : int,
    79    descr : descr,
    80    sorts : (string * sort) list,
    81    rec_names : string list,
    82    rec_rewrites : thm list,
    83    induction : thm,
    84    distinct : thm list,
    85    inject : thm list};
    86 
    87 structure NominalDatatypesData = TheoryDataFun
    88 (
    89   type T = nominal_datatype_info Symtab.table;
    90   val empty = Symtab.empty;
    91   val copy = I;
    92   val extend = I;
    93   fun merge _ tabs : T = Symtab.merge (K true) tabs;
    94 );
    95 
    96 val get_nominal_datatypes = NominalDatatypesData.get;
    97 val put_nominal_datatypes = NominalDatatypesData.put;
    98 val map_nominal_datatypes = NominalDatatypesData.map;
    99 val get_nominal_datatype = Symtab.lookup o get_nominal_datatypes;
   100 
   101 
   102 (**** make datatype info ****)
   103 
   104 fun make_dt_info descr sorts induct reccomb_names rec_thms
   105     (((i, (_, (tname, _, _))), distinct), inject) =
   106   (tname,
   107    {index = i,
   108     descr = descr,
   109     sorts = sorts,
   110     rec_names = reccomb_names,
   111     rec_rewrites = rec_thms,
   112     induction = induct,
   113     distinct = distinct,
   114     inject = inject});
   115 
   116 (*******************************)
   117 
   118 val (_ $ (_ $ (_ $ (distinct_f $ _) $ _))) = hd (prems_of distinct_lemma);
   119 
   120 
   121 (** simplification procedure for sorting permutations **)
   122 
   123 val dj_cp = thm "dj_cp";
   124 
   125 fun dest_permT (Type ("fun", [Type ("List.list", [Type ("*", [T, _])]),
   126       Type ("fun", [_, U])])) = (T, U);
   127 
   128 fun permTs_of (Const ("Nominal.perm", T) $ t $ u) = fst (dest_permT T) :: permTs_of u
   129   | permTs_of _ = [];
   130 
   131 fun perm_simproc' thy ss (Const ("Nominal.perm", T) $ t $ (u as Const ("Nominal.perm", U) $ r $ s)) =
   132       let
   133         val (aT as Type (a, []), S) = dest_permT T;
   134         val (bT as Type (b, []), _) = dest_permT U
   135       in if aT mem permTs_of u andalso aT <> bT then
   136           let
   137             val cp = cp_inst_of thy a b;
   138             val dj = dj_thm_of thy b a;
   139             val dj_cp' = [cp, dj] MRS dj_cp;
   140             val cert = SOME o cterm_of thy
   141           in
   142             SOME (mk_meta_eq (Drule.instantiate' [SOME (ctyp_of thy S)]
   143               [cert t, cert r, cert s] dj_cp'))
   144           end
   145         else NONE
   146       end
   147   | perm_simproc' thy ss _ = NONE;
   148 
   149 val perm_simproc =
   150   Simplifier.simproc (the_context ()) "perm_simp" ["pi1 \<bullet> (pi2 \<bullet> x)"] perm_simproc';
   151 
   152 val meta_spec = thm "meta_spec";
   153 
   154 fun projections rule =
   155   ProjectRule.projections (ProofContext.init (Thm.theory_of_thm rule)) rule
   156   |> map (standard #> RuleCases.save rule);
   157 
   158 val supp_prod = thm "supp_prod";
   159 val fresh_prod = thm "fresh_prod";
   160 val supports_fresh = thm "supports_fresh";
   161 val supports_def = thm "Nominal.supports_def";
   162 val fresh_def = thm "fresh_def";
   163 val supp_def = thm "supp_def";
   164 val rev_simps = thms "rev.simps";
   165 val app_simps = thms "append.simps";
   166 val at_fin_set_supp = thm "at_fin_set_supp";
   167 val at_fin_set_fresh = thm "at_fin_set_fresh";
   168 val abs_fun_eq1 = thm "abs_fun_eq1";
   169 
   170 val collect_simp = rewrite_rule [mk_meta_eq mem_Collect_eq];
   171 
   172 fun mk_perm Ts t u =
   173   let
   174     val T = fastype_of1 (Ts, t);
   175     val U = fastype_of1 (Ts, u)
   176   in Const ("Nominal.perm", T --> U --> U) $ t $ u end;
   177 
   178 fun perm_of_pair (x, y) =
   179   let
   180     val T = fastype_of x;
   181     val pT = mk_permT T
   182   in Const ("List.list.Cons", HOLogic.mk_prodT (T, T) --> pT --> pT) $
   183     HOLogic.mk_prod (x, y) $ Const ("List.list.Nil", pT)
   184   end;
   185 
   186 fun mk_not_sym ths = maps (fn th => case prop_of th of
   187     _ $ (Const ("Not", _) $ (Const ("op =", _) $ _ $ _)) => [th, th RS not_sym]
   188   | _ => [th]) ths;
   189 
   190 fun fresh_const T U = Const ("Nominal.fresh", T --> U --> HOLogic.boolT);
   191 fun fresh_star_const T U =
   192   Const ("Nominal.fresh_star", HOLogic.mk_setT T --> U --> HOLogic.boolT);
   193 
   194 fun gen_add_nominal_datatype prep_typ config new_type_names dts thy =
   195   let
   196     (* this theory is used just for parsing *)
   197 
   198     val tmp_thy = thy |>
   199       Theory.copy |>
   200       Sign.add_types (map (fn (tvs, tname, mx, _) =>
   201         (Binding.name tname, length tvs, mx)) dts);
   202 
   203     val atoms = atoms_of thy;
   204 
   205     fun prep_constr ((constrs, sorts), (cname, cargs, mx)) =
   206       let val (cargs', sorts') = Library.foldl (prep_typ tmp_thy) (([], sorts), cargs)
   207       in (constrs @ [(cname, cargs', mx)], sorts') end
   208 
   209     fun prep_dt_spec ((dts, sorts), (tvs, tname, mx, constrs)) =
   210       let val (constrs', sorts') = Library.foldl prep_constr (([], sorts), constrs)
   211       in (dts @ [(tvs, tname, mx, constrs')], sorts') end
   212 
   213     val (dts', sorts) = Library.foldl prep_dt_spec (([], []), dts);
   214     val tyvars = map (map (fn s =>
   215       (s, the (AList.lookup (op =) sorts s))) o #1) dts';
   216 
   217     fun inter_sort thy S S' = Type.inter_sort (Sign.tsig_of thy) (S, S');
   218     fun augment_sort_typ thy S =
   219       let val S = Sign.certify_sort thy S
   220       in map_type_tfree (fn (s, S') => TFree (s,
   221         if member (op = o apsnd fst) sorts s then inter_sort thy S S' else S'))
   222       end;
   223     fun augment_sort thy S = map_types (augment_sort_typ thy S);
   224 
   225     val types_syntax = map (fn (tvs, tname, mx, constrs) => (tname, mx)) dts';
   226     val constr_syntax = map (fn (tvs, tname, mx, constrs) =>
   227       map (fn (cname, cargs, mx) => (cname, mx)) constrs) dts';
   228 
   229     val ps = map (fn (_, n, _, _) =>
   230       (Sign.full_bname tmp_thy n, Sign.full_bname tmp_thy (n ^ "_Rep"))) dts;
   231     val rps = map Library.swap ps;
   232 
   233     fun replace_types (Type ("Nominal.ABS", [T, U])) =
   234           Type ("fun", [T, Type ("Nominal.noption", [replace_types U])])
   235       | replace_types (Type (s, Ts)) =
   236           Type (getOpt (AList.lookup op = ps s, s), map replace_types Ts)
   237       | replace_types T = T;
   238 
   239     val dts'' = map (fn (tvs, tname, mx, constrs) => (tvs, Binding.name (tname ^ "_Rep"), NoSyn,
   240       map (fn (cname, cargs, mx) => (Binding.name (cname ^ "_Rep"),
   241         map replace_types cargs, NoSyn)) constrs)) dts';
   242 
   243     val new_type_names' = map (fn n => n ^ "_Rep") new_type_names;
   244     val full_new_type_names' = map (Sign.full_bname thy) new_type_names';
   245 
   246     val ({induction, ...},thy1) =
   247       Datatype.add_datatype config new_type_names' dts'' thy;
   248 
   249     val SOME {descr, ...} = Symtab.lookup
   250       (Datatype.get_datatypes thy1) (hd full_new_type_names');
   251     fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
   252 
   253     val big_name = space_implode "_" new_type_names;
   254 
   255 
   256     (**** define permutation functions ****)
   257 
   258     val permT = mk_permT (TFree ("'x", HOLogic.typeS));
   259     val pi = Free ("pi", permT);
   260     val perm_types = map (fn (i, _) =>
   261       let val T = nth_dtyp i
   262       in permT --> T --> T end) descr;
   263     val perm_names' = DatatypeProp.indexify_names (map (fn (i, _) =>
   264       "perm_" ^ name_of_typ (nth_dtyp i)) descr);
   265     val perm_names = replicate (length new_type_names) "Nominal.perm" @
   266       map (Sign.full_bname thy1) (List.drop (perm_names', length new_type_names));
   267     val perm_names_types = perm_names ~~ perm_types;
   268     val perm_names_types' = perm_names' ~~ perm_types;
   269 
   270     val perm_eqs = maps (fn (i, (_, _, constrs)) =>
   271       let val T = nth_dtyp i
   272       in map (fn (cname, dts) =>
   273         let
   274           val Ts = map (typ_of_dtyp descr sorts) dts;
   275           val names = Name.variant_list ["pi"] (DatatypeProp.make_tnames Ts);
   276           val args = map Free (names ~~ Ts);
   277           val c = Const (cname, Ts ---> T);
   278           fun perm_arg (dt, x) =
   279             let val T = type_of x
   280             in if is_rec_type dt then
   281                 let val (Us, _) = strip_type T
   282                 in list_abs (map (pair "x") Us,
   283                   Free (nth perm_names_types' (body_index dt)) $ pi $
   284                     list_comb (x, map (fn (i, U) =>
   285                       Const ("Nominal.perm", permT --> U --> U) $
   286                         (Const ("List.rev", permT --> permT) $ pi) $
   287                         Bound i) ((length Us - 1 downto 0) ~~ Us)))
   288                 end
   289               else Const ("Nominal.perm", permT --> T --> T) $ pi $ x
   290             end;
   291         in
   292           (Attrib.empty_binding, HOLogic.mk_Trueprop (HOLogic.mk_eq
   293             (Free (nth perm_names_types' i) $
   294                Free ("pi", mk_permT (TFree ("'x", HOLogic.typeS))) $
   295                list_comb (c, args),
   296              list_comb (c, map perm_arg (dts ~~ args)))))
   297         end) constrs
   298       end) descr;
   299 
   300     val (perm_simps, thy2) =
   301       Primrec.add_primrec_overloaded
   302         (map (fn (s, sT) => (s, sT, false))
   303            (List.take (perm_names' ~~ perm_names_types, length new_type_names)))
   304         (map (fn s => (Binding.name s, NONE, NoSyn)) perm_names') perm_eqs thy1;
   305 
   306     (**** prove that permutation functions introduced by unfolding are ****)
   307     (**** equivalent to already existing permutation functions         ****)
   308 
   309     val _ = warning ("length descr: " ^ string_of_int (length descr));
   310     val _ = warning ("length new_type_names: " ^ string_of_int (length new_type_names));
   311 
   312     val perm_indnames = DatatypeProp.make_tnames (map body_type perm_types);
   313     val perm_fun_def = PureThy.get_thm thy2 "perm_fun_def";
   314 
   315     val unfolded_perm_eq_thms =
   316       if length descr = length new_type_names then []
   317       else map standard (List.drop (split_conj_thm
   318         (Goal.prove_global thy2 [] []
   319           (HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
   320             (map (fn (c as (s, T), x) =>
   321                let val [T1, T2] = binder_types T
   322                in HOLogic.mk_eq (Const c $ pi $ Free (x, T2),
   323                  Const ("Nominal.perm", T) $ pi $ Free (x, T2))
   324                end)
   325              (perm_names_types ~~ perm_indnames))))
   326           (fn _ => EVERY [indtac induction perm_indnames 1,
   327             ALLGOALS (asm_full_simp_tac
   328               (simpset_of thy2 addsimps [perm_fun_def]))])),
   329         length new_type_names));
   330 
   331     (**** prove [] \<bullet> t = t ****)
   332 
   333     val _ = warning "perm_empty_thms";
   334 
   335     val perm_empty_thms = List.concat (map (fn a =>
   336       let val permT = mk_permT (Type (a, []))
   337       in map standard (List.take (split_conj_thm
   338         (Goal.prove_global thy2 [] []
   339           (augment_sort thy2 [pt_class_of thy2 a]
   340             (HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
   341               (map (fn ((s, T), x) => HOLogic.mk_eq
   342                   (Const (s, permT --> T --> T) $
   343                      Const ("List.list.Nil", permT) $ Free (x, T),
   344                    Free (x, T)))
   345                (perm_names ~~
   346                 map body_type perm_types ~~ perm_indnames)))))
   347           (fn _ => EVERY [indtac induction perm_indnames 1,
   348             ALLGOALS (asm_full_simp_tac (simpset_of thy2))])),
   349         length new_type_names))
   350       end)
   351       atoms);
   352 
   353     (**** prove (pi1 @ pi2) \<bullet> t = pi1 \<bullet> (pi2 \<bullet> t) ****)
   354 
   355     val _ = warning "perm_append_thms";
   356 
   357     (*FIXME: these should be looked up statically*)
   358     val at_pt_inst = PureThy.get_thm thy2 "at_pt_inst";
   359     val pt2 = PureThy.get_thm thy2 "pt2";
   360 
   361     val perm_append_thms = List.concat (map (fn a =>
   362       let
   363         val permT = mk_permT (Type (a, []));
   364         val pi1 = Free ("pi1", permT);
   365         val pi2 = Free ("pi2", permT);
   366         val pt_inst = pt_inst_of thy2 a;
   367         val pt2' = pt_inst RS pt2;
   368         val pt2_ax = PureThy.get_thm thy2 (Long_Name.map_base_name (fn s => "pt_" ^ s ^ "2") a);
   369       in List.take (map standard (split_conj_thm
   370         (Goal.prove_global thy2 [] []
   371            (augment_sort thy2 [pt_class_of thy2 a]
   372              (HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
   373                 (map (fn ((s, T), x) =>
   374                     let val perm = Const (s, permT --> T --> T)
   375                     in HOLogic.mk_eq
   376                       (perm $ (Const ("List.append", permT --> permT --> permT) $
   377                          pi1 $ pi2) $ Free (x, T),
   378                        perm $ pi1 $ (perm $ pi2 $ Free (x, T)))
   379                     end)
   380                   (perm_names ~~
   381                    map body_type perm_types ~~ perm_indnames)))))
   382            (fn _ => EVERY [indtac induction perm_indnames 1,
   383               ALLGOALS (asm_full_simp_tac (simpset_of thy2 addsimps [pt2', pt2_ax]))]))),
   384          length new_type_names)
   385       end) atoms);
   386 
   387     (**** prove pi1 ~ pi2 ==> pi1 \<bullet> t = pi2 \<bullet> t ****)
   388 
   389     val _ = warning "perm_eq_thms";
   390 
   391     val pt3 = PureThy.get_thm thy2 "pt3";
   392     val pt3_rev = PureThy.get_thm thy2 "pt3_rev";
   393 
   394     val perm_eq_thms = List.concat (map (fn a =>
   395       let
   396         val permT = mk_permT (Type (a, []));
   397         val pi1 = Free ("pi1", permT);
   398         val pi2 = Free ("pi2", permT);
   399         val at_inst = at_inst_of thy2 a;
   400         val pt_inst = pt_inst_of thy2 a;
   401         val pt3' = pt_inst RS pt3;
   402         val pt3_rev' = at_inst RS (pt_inst RS pt3_rev);
   403         val pt3_ax = PureThy.get_thm thy2 (Long_Name.map_base_name (fn s => "pt_" ^ s ^ "3") a);
   404       in List.take (map standard (split_conj_thm
   405         (Goal.prove_global thy2 [] []
   406           (augment_sort thy2 [pt_class_of thy2 a] (Logic.mk_implies
   407              (HOLogic.mk_Trueprop (Const ("Nominal.prm_eq",
   408                 permT --> permT --> HOLogic.boolT) $ pi1 $ pi2),
   409               HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
   410                 (map (fn ((s, T), x) =>
   411                     let val perm = Const (s, permT --> T --> T)
   412                     in HOLogic.mk_eq
   413                       (perm $ pi1 $ Free (x, T),
   414                        perm $ pi2 $ Free (x, T))
   415                     end)
   416                   (perm_names ~~
   417                    map body_type perm_types ~~ perm_indnames))))))
   418            (fn _ => EVERY [indtac induction perm_indnames 1,
   419               ALLGOALS (asm_full_simp_tac (simpset_of thy2 addsimps [pt3', pt3_rev', pt3_ax]))]))),
   420          length new_type_names)
   421       end) atoms);
   422 
   423     (**** prove pi1 \<bullet> (pi2 \<bullet> t) = (pi1 \<bullet> pi2) \<bullet> (pi1 \<bullet> t) ****)
   424 
   425     val cp1 = PureThy.get_thm thy2 "cp1";
   426     val dj_cp = PureThy.get_thm thy2 "dj_cp";
   427     val pt_perm_compose = PureThy.get_thm thy2 "pt_perm_compose";
   428     val pt_perm_compose_rev = PureThy.get_thm thy2 "pt_perm_compose_rev";
   429     val dj_perm_perm_forget = PureThy.get_thm thy2 "dj_perm_perm_forget";
   430 
   431     fun composition_instance name1 name2 thy =
   432       let
   433         val cp_class = cp_class_of thy name1 name2;
   434         val pt_class =
   435           if name1 = name2 then [pt_class_of thy name1]
   436           else [];
   437         val permT1 = mk_permT (Type (name1, []));
   438         val permT2 = mk_permT (Type (name2, []));
   439         val Ts = map body_type perm_types;
   440         val cp_inst = cp_inst_of thy name1 name2;
   441         val simps = simpset_of thy addsimps (perm_fun_def ::
   442           (if name1 <> name2 then
   443              let val dj = dj_thm_of thy name2 name1
   444              in [dj RS (cp_inst RS dj_cp), dj RS dj_perm_perm_forget] end
   445            else
   446              let
   447                val at_inst = at_inst_of thy name1;
   448                val pt_inst = pt_inst_of thy name1;
   449              in
   450                [cp_inst RS cp1 RS sym,
   451                 at_inst RS (pt_inst RS pt_perm_compose) RS sym,
   452                 at_inst RS (pt_inst RS pt_perm_compose_rev) RS sym]
   453             end))
   454         val sort = Sign.certify_sort thy (cp_class :: pt_class);
   455         val thms = split_conj_thm (Goal.prove_global thy [] []
   456           (augment_sort thy sort
   457             (HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
   458               (map (fn ((s, T), x) =>
   459                   let
   460                     val pi1 = Free ("pi1", permT1);
   461                     val pi2 = Free ("pi2", permT2);
   462                     val perm1 = Const (s, permT1 --> T --> T);
   463                     val perm2 = Const (s, permT2 --> T --> T);
   464                     val perm3 = Const ("Nominal.perm", permT1 --> permT2 --> permT2)
   465                   in HOLogic.mk_eq
   466                     (perm1 $ pi1 $ (perm2 $ pi2 $ Free (x, T)),
   467                      perm2 $ (perm3 $ pi1 $ pi2) $ (perm1 $ pi1 $ Free (x, T)))
   468                   end)
   469                 (perm_names ~~ Ts ~~ perm_indnames)))))
   470           (fn _ => EVERY [indtac induction perm_indnames 1,
   471              ALLGOALS (asm_full_simp_tac simps)]))
   472       in
   473         fold (fn (s, tvs) => fn thy => AxClass.prove_arity
   474             (s, map (inter_sort thy sort o snd) tvs, [cp_class])
   475             (Class.intro_classes_tac [] THEN ALLGOALS (resolve_tac thms)) thy)
   476           (full_new_type_names' ~~ tyvars) thy
   477       end;
   478 
   479     val (perm_thmss,thy3) = thy2 |>
   480       fold (fn name1 => fold (composition_instance name1) atoms) atoms |>
   481       fold (fn atom => fn thy =>
   482         let val pt_name = pt_class_of thy atom
   483         in
   484           fold (fn (s, tvs) => fn thy => AxClass.prove_arity
   485               (s, map (inter_sort thy [pt_name] o snd) tvs, [pt_name])
   486               (EVERY
   487                 [Class.intro_classes_tac [],
   488                  resolve_tac perm_empty_thms 1,
   489                  resolve_tac perm_append_thms 1,
   490                  resolve_tac perm_eq_thms 1, assume_tac 1]) thy)
   491             (full_new_type_names' ~~ tyvars) thy
   492         end) atoms |>
   493       PureThy.add_thmss
   494         [((Binding.name (space_implode "_" new_type_names ^ "_unfolded_perm_eq"),
   495           unfolded_perm_eq_thms), [Simplifier.simp_add]),
   496          ((Binding.name (space_implode "_" new_type_names ^ "_perm_empty"),
   497           perm_empty_thms), [Simplifier.simp_add]),
   498          ((Binding.name (space_implode "_" new_type_names ^ "_perm_append"),
   499           perm_append_thms), [Simplifier.simp_add]),
   500          ((Binding.name (space_implode "_" new_type_names ^ "_perm_eq"),
   501           perm_eq_thms), [Simplifier.simp_add])];
   502 
   503     (**** Define representing sets ****)
   504 
   505     val _ = warning "representing sets";
   506 
   507     val rep_set_names = DatatypeProp.indexify_names
   508       (map (fn (i, _) => name_of_typ (nth_dtyp i) ^ "_set") descr);
   509     val big_rep_name =
   510       space_implode "_" (DatatypeProp.indexify_names (List.mapPartial
   511         (fn (i, ("Nominal.noption", _, _)) => NONE
   512           | (i, _) => SOME (name_of_typ (nth_dtyp i))) descr)) ^ "_set";
   513     val _ = warning ("big_rep_name: " ^ big_rep_name);
   514 
   515     fun strip_option (dtf as DtType ("fun", [dt, DtRec i])) =
   516           (case AList.lookup op = descr i of
   517              SOME ("Nominal.noption", _, [(_, [dt']), _]) =>
   518                apfst (cons dt) (strip_option dt')
   519            | _ => ([], dtf))
   520       | strip_option (DtType ("fun", [dt, DtType ("Nominal.noption", [dt'])])) =
   521           apfst (cons dt) (strip_option dt')
   522       | strip_option dt = ([], dt);
   523 
   524     val dt_atomTs = distinct op = (map (typ_of_dtyp descr sorts)
   525       (List.concat (map (fn (_, (_, _, cs)) => List.concat
   526         (map (List.concat o map (fst o strip_option) o snd) cs)) descr)));
   527     val dt_atoms = map (fst o dest_Type) dt_atomTs;
   528 
   529     fun make_intr s T (cname, cargs) =
   530       let
   531         fun mk_prem (dt, (j, j', prems, ts)) =
   532           let
   533             val (dts, dt') = strip_option dt;
   534             val (dts', dt'') = strip_dtyp dt';
   535             val Ts = map (typ_of_dtyp descr sorts) dts;
   536             val Us = map (typ_of_dtyp descr sorts) dts';
   537             val T = typ_of_dtyp descr sorts dt'';
   538             val free = mk_Free "x" (Us ---> T) j;
   539             val free' = app_bnds free (length Us);
   540             fun mk_abs_fun (T, (i, t)) =
   541               let val U = fastype_of t
   542               in (i + 1, Const ("Nominal.abs_fun", [T, U, T] --->
   543                 Type ("Nominal.noption", [U])) $ mk_Free "y" T i $ t)
   544               end
   545           in (j + 1, j' + length Ts,
   546             case dt'' of
   547                 DtRec k => list_all (map (pair "x") Us,
   548                   HOLogic.mk_Trueprop (Free (List.nth (rep_set_names, k),
   549                     T --> HOLogic.boolT) $ free')) :: prems
   550               | _ => prems,
   551             snd (List.foldr mk_abs_fun (j', free) Ts) :: ts)
   552           end;
   553 
   554         val (_, _, prems, ts) = List.foldr mk_prem (1, 1, [], []) cargs;
   555         val concl = HOLogic.mk_Trueprop (Free (s, T --> HOLogic.boolT) $
   556           list_comb (Const (cname, map fastype_of ts ---> T), ts))
   557       in Logic.list_implies (prems, concl)
   558       end;
   559 
   560     val (intr_ts, (rep_set_names', recTs')) =
   561       apfst List.concat (apsnd ListPair.unzip (ListPair.unzip (List.mapPartial
   562         (fn ((_, ("Nominal.noption", _, _)), _) => NONE
   563           | ((i, (_, _, constrs)), rep_set_name) =>
   564               let val T = nth_dtyp i
   565               in SOME (map (make_intr rep_set_name T) constrs,
   566                 (rep_set_name, T))
   567               end)
   568                 (descr ~~ rep_set_names))));
   569     val rep_set_names'' = map (Sign.full_bname thy3) rep_set_names';
   570 
   571     val ({raw_induct = rep_induct, intrs = rep_intrs, ...}, thy4) =
   572         Inductive.add_inductive_global (serial_string ())
   573           {quiet_mode = false, verbose = false, kind = Thm.internalK,
   574            alt_name = Binding.name big_rep_name, coind = false, no_elim = true, no_ind = false,
   575            skip_mono = true, fork_mono = false}
   576           (map (fn (s, T) => ((Binding.name s, T --> HOLogic.boolT), NoSyn))
   577              (rep_set_names' ~~ recTs'))
   578           [] (map (fn x => (Attrib.empty_binding, x)) intr_ts) [] thy3;
   579 
   580     (**** Prove that representing set is closed under permutation ****)
   581 
   582     val _ = warning "proving closure under permutation...";
   583 
   584     val abs_perm = PureThy.get_thms thy4 "abs_perm";
   585 
   586     val perm_indnames' = List.mapPartial
   587       (fn (x, (_, ("Nominal.noption", _, _))) => NONE | (x, _) => SOME x)
   588       (perm_indnames ~~ descr);
   589 
   590     fun mk_perm_closed name = map (fn th => standard (th RS mp))
   591       (List.take (split_conj_thm (Goal.prove_global thy4 [] []
   592         (augment_sort thy4
   593           (pt_class_of thy4 name :: map (cp_class_of thy4 name) (dt_atoms \ name))
   594           (HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj (map
   595             (fn ((s, T), x) =>
   596                let
   597                  val S = Const (s, T --> HOLogic.boolT);
   598                  val permT = mk_permT (Type (name, []))
   599                in HOLogic.mk_imp (S $ Free (x, T),
   600                  S $ (Const ("Nominal.perm", permT --> T --> T) $
   601                    Free ("pi", permT) $ Free (x, T)))
   602                end) (rep_set_names'' ~~ recTs' ~~ perm_indnames')))))
   603         (fn _ => EVERY
   604            [indtac rep_induct [] 1,
   605             ALLGOALS (simp_tac (simpset_of thy4 addsimps
   606               (symmetric perm_fun_def :: abs_perm))),
   607             ALLGOALS (resolve_tac rep_intrs THEN_ALL_NEW assume_tac)])),
   608         length new_type_names));
   609 
   610     val perm_closed_thmss = map mk_perm_closed atoms;
   611 
   612     (**** typedef ****)
   613 
   614     val _ = warning "defining type...";
   615 
   616     val (typedefs, thy6) =
   617       thy4
   618       |> fold_map (fn ((((name, mx), tvs), (cname, U)), name') => fn thy =>
   619           Typedef.add_typedef false (SOME (Binding.name name'))
   620             (Binding.name name, map fst tvs, mx)
   621             (Const ("Collect", (U --> HOLogic.boolT) --> HOLogic.mk_setT U) $
   622                Const (cname, U --> HOLogic.boolT)) NONE
   623             (rtac exI 1 THEN rtac CollectI 1 THEN
   624               QUIET_BREADTH_FIRST (has_fewer_prems 1)
   625               (resolve_tac rep_intrs 1)) thy |> (fn ((_, r), thy) =>
   626         let
   627           val permT = mk_permT
   628             (TFree (Name.variant (map fst tvs) "'a", HOLogic.typeS));
   629           val pi = Free ("pi", permT);
   630           val T = Type (Sign.intern_type thy name, map TFree tvs);
   631         in apfst (pair r o hd)
   632           (PureThy.add_defs_unchecked true [((Binding.name ("prm_" ^ name ^ "_def"), Logic.mk_equals
   633             (Const ("Nominal.perm", permT --> T --> T) $ pi $ Free ("x", T),
   634              Const (Sign.intern_const thy ("Abs_" ^ name), U --> T) $
   635                (Const ("Nominal.perm", permT --> U --> U) $ pi $
   636                  (Const (Sign.intern_const thy ("Rep_" ^ name), T --> U) $
   637                    Free ("x", T))))), [])] thy)
   638         end))
   639           (types_syntax ~~ tyvars ~~
   640             List.take (rep_set_names'' ~~ recTs', length new_type_names) ~~
   641             new_type_names);
   642 
   643     val perm_defs = map snd typedefs;
   644     val Abs_inverse_thms = map (collect_simp o #Abs_inverse o fst) typedefs;
   645     val Rep_inverse_thms = map (#Rep_inverse o fst) typedefs;
   646     val Rep_thms = map (collect_simp o #Rep o fst) typedefs;
   647 
   648 
   649     (** prove that new types are in class pt_<name> **)
   650 
   651     val _ = warning "prove that new types are in class pt_<name> ...";
   652 
   653     fun pt_instance (atom, perm_closed_thms) =
   654       fold (fn ((((((Abs_inverse, Rep_inverse), Rep),
   655         perm_def), name), tvs), perm_closed) => fn thy =>
   656           let
   657             val pt_class = pt_class_of thy atom;
   658             val sort = Sign.certify_sort thy
   659               (pt_class :: map (cp_class_of thy atom) (dt_atoms \ atom))
   660           in AxClass.prove_arity
   661             (Sign.intern_type thy name,
   662               map (inter_sort thy sort o snd) tvs, [pt_class])
   663             (EVERY [Class.intro_classes_tac [],
   664               rewrite_goals_tac [perm_def],
   665               asm_full_simp_tac (simpset_of thy addsimps [Rep_inverse]) 1,
   666               asm_full_simp_tac (simpset_of thy addsimps
   667                 [Rep RS perm_closed RS Abs_inverse]) 1,
   668               asm_full_simp_tac (HOL_basic_ss addsimps [PureThy.get_thm thy
   669                 ("pt_" ^ Long_Name.base_name atom ^ "3")]) 1]) thy
   670           end)
   671         (Abs_inverse_thms ~~ Rep_inverse_thms ~~ Rep_thms ~~ perm_defs ~~
   672            new_type_names ~~ tyvars ~~ perm_closed_thms);
   673 
   674 
   675     (** prove that new types are in class cp_<name1>_<name2> **)
   676 
   677     val _ = warning "prove that new types are in class cp_<name1>_<name2> ...";
   678 
   679     fun cp_instance (atom1, perm_closed_thms1) (atom2, perm_closed_thms2) thy =
   680       let
   681         val cp_class = cp_class_of thy atom1 atom2;
   682         val sort = Sign.certify_sort thy
   683           (pt_class_of thy atom1 :: map (cp_class_of thy atom1) (dt_atoms \ atom1) @
   684            (if atom1 = atom2 then [cp_class_of thy atom1 atom1] else
   685             pt_class_of thy atom2 :: map (cp_class_of thy atom2) (dt_atoms \ atom2)));
   686         val cp1' = cp_inst_of thy atom1 atom2 RS cp1
   687       in fold (fn ((((((Abs_inverse, Rep),
   688         perm_def), name), tvs), perm_closed1), perm_closed2) => fn thy =>
   689           AxClass.prove_arity
   690             (Sign.intern_type thy name,
   691               map (inter_sort thy sort o snd) tvs, [cp_class])
   692             (EVERY [Class.intro_classes_tac [],
   693               rewrite_goals_tac [perm_def],
   694               asm_full_simp_tac (simpset_of thy addsimps
   695                 ((Rep RS perm_closed1 RS Abs_inverse) ::
   696                  (if atom1 = atom2 then []
   697                   else [Rep RS perm_closed2 RS Abs_inverse]))) 1,
   698               cong_tac 1,
   699               rtac refl 1,
   700               rtac cp1' 1]) thy)
   701         (Abs_inverse_thms ~~ Rep_thms ~~ perm_defs ~~ new_type_names ~~
   702            tyvars ~~ perm_closed_thms1 ~~ perm_closed_thms2) thy
   703       end;
   704 
   705     val thy7 = fold (fn x => fn thy => thy |>
   706       pt_instance x |>
   707       fold (cp_instance x) (atoms ~~ perm_closed_thmss))
   708         (atoms ~~ perm_closed_thmss) thy6;
   709 
   710     (**** constructors ****)
   711 
   712     fun mk_abs_fun (x, t) =
   713       let
   714         val T = fastype_of x;
   715         val U = fastype_of t
   716       in
   717         Const ("Nominal.abs_fun", T --> U --> T -->
   718           Type ("Nominal.noption", [U])) $ x $ t
   719       end;
   720 
   721     val (ty_idxs, _) = List.foldl
   722       (fn ((i, ("Nominal.noption", _, _)), p) => p
   723         | ((i, _), (ty_idxs, j)) => (ty_idxs @ [(i, j)], j + 1)) ([], 0) descr;
   724 
   725     fun reindex (DtType (s, dts)) = DtType (s, map reindex dts)
   726       | reindex (DtRec i) = DtRec (the (AList.lookup op = ty_idxs i))
   727       | reindex dt = dt;
   728 
   729     fun strip_suffix i s = implode (List.take (explode s, size s - i));
   730 
   731     (** strips the "_Rep" in type names *)
   732     fun strip_nth_name i s =
   733       let val xs = Long_Name.explode s;
   734       in Long_Name.implode (Library.nth_map (length xs - i) (strip_suffix 4) xs) end;
   735 
   736     val (descr'', ndescr) = ListPair.unzip (map_filter
   737       (fn (i, ("Nominal.noption", _, _)) => NONE
   738         | (i, (s, dts, constrs)) =>
   739              let
   740                val SOME index = AList.lookup op = ty_idxs i;
   741                val (constrs2, constrs1) =
   742                  map_split (fn (cname, cargs) =>
   743                    apsnd (pair (strip_nth_name 2 (strip_nth_name 1 cname)))
   744                    (fold_map (fn dt => fn dts =>
   745                      let val (dts', dt') = strip_option dt
   746                      in ((length dts, length dts'), dts @ dts' @ [reindex dt']) end)
   747                        cargs [])) constrs
   748              in SOME ((index, (strip_nth_name 1 s,  map reindex dts, constrs1)),
   749                (index, constrs2))
   750              end) descr);
   751 
   752     val (descr1, descr2) = chop (length new_type_names) descr'';
   753     val descr' = [descr1, descr2];
   754 
   755     fun partition_cargs idxs xs = map (fn (i, j) =>
   756       (List.take (List.drop (xs, i), j), List.nth (xs, i + j))) idxs;
   757 
   758     val pdescr = map (fn ((i, (s, dts, constrs)), (_, idxss)) => (i, (s, dts,
   759       map (fn ((cname, cargs), idxs) => (cname, partition_cargs idxs cargs))
   760         (constrs ~~ idxss)))) (descr'' ~~ ndescr);
   761 
   762     fun nth_dtyp' i = typ_of_dtyp descr'' sorts (DtRec i);
   763 
   764     val rep_names = map (fn s =>
   765       Sign.intern_const thy7 ("Rep_" ^ s)) new_type_names;
   766     val abs_names = map (fn s =>
   767       Sign.intern_const thy7 ("Abs_" ^ s)) new_type_names;
   768 
   769     val recTs = get_rec_types descr'' sorts;
   770     val newTs' = Library.take (length new_type_names, recTs');
   771     val newTs = Library.take (length new_type_names, recTs);
   772 
   773     val full_new_type_names = map (Sign.full_bname thy) new_type_names;
   774 
   775     fun make_constr_def tname T T' ((thy, defs, eqns),
   776         (((cname_rep, _), (cname, cargs)), (cname', mx))) =
   777       let
   778         fun constr_arg ((dts, dt), (j, l_args, r_args)) =
   779           let
   780             val xs = map (fn (dt, i) => mk_Free "x" (typ_of_dtyp descr'' sorts dt) i)
   781               (dts ~~ (j upto j + length dts - 1))
   782             val x = mk_Free "x" (typ_of_dtyp descr'' sorts dt) (j + length dts)
   783           in
   784             (j + length dts + 1,
   785              xs @ x :: l_args,
   786              List.foldr mk_abs_fun
   787                (case dt of
   788                   DtRec k => if k < length new_type_names then
   789                       Const (List.nth (rep_names, k), typ_of_dtyp descr'' sorts dt -->
   790                         typ_of_dtyp descr sorts dt) $ x
   791                     else error "nested recursion not (yet) supported"
   792                 | _ => x) xs :: r_args)
   793           end
   794 
   795         val (_, l_args, r_args) = List.foldr constr_arg (1, [], []) cargs;
   796         val abs_name = Sign.intern_const thy ("Abs_" ^ tname);
   797         val rep_name = Sign.intern_const thy ("Rep_" ^ tname);
   798         val constrT = map fastype_of l_args ---> T;
   799         val lhs = list_comb (Const (cname, constrT), l_args);
   800         val rhs = list_comb (Const (cname_rep, map fastype_of r_args ---> T'), r_args);
   801         val def = Logic.mk_equals (lhs, Const (abs_name, T' --> T) $ rhs);
   802         val eqn = HOLogic.mk_Trueprop (HOLogic.mk_eq
   803           (Const (rep_name, T --> T') $ lhs, rhs));
   804         val def_name = (Long_Name.base_name cname) ^ "_def";
   805         val ([def_thm], thy') = thy |>
   806           Sign.add_consts_i [(Binding.name cname', constrT, mx)] |>
   807           (PureThy.add_defs false o map Thm.no_attributes) [(Binding.name def_name, def)]
   808       in (thy', defs @ [def_thm], eqns @ [eqn]) end;
   809 
   810     fun dt_constr_defs ((thy, defs, eqns, dist_lemmas), ((((((_, (_, _, constrs)),
   811         (_, (_, _, constrs'))), tname), T), T'), constr_syntax)) =
   812       let
   813         val rep_const = cterm_of thy
   814           (Const (Sign.intern_const thy ("Rep_" ^ tname), T --> T'));
   815         val dist = standard (cterm_instantiate [(cterm_of thy distinct_f, rep_const)] distinct_lemma);
   816         val (thy', defs', eqns') = Library.foldl (make_constr_def tname T T')
   817           ((Sign.add_path tname thy, defs, []), constrs ~~ constrs' ~~ constr_syntax)
   818       in
   819         (parent_path (#flat_names config) thy', defs', eqns @ [eqns'], dist_lemmas @ [dist])
   820       end;
   821 
   822     val (thy8, constr_defs, constr_rep_eqns, dist_lemmas) = Library.foldl dt_constr_defs
   823       ((thy7, [], [], []), List.take (descr, length new_type_names) ~~
   824         List.take (pdescr, length new_type_names) ~~
   825         new_type_names ~~ newTs ~~ newTs' ~~ constr_syntax);
   826 
   827     val abs_inject_thms = map (collect_simp o #Abs_inject o fst) typedefs
   828     val rep_inject_thms = map (#Rep_inject o fst) typedefs
   829 
   830     (* prove theorem  Rep_i (Constr_j ...) = Constr'_j ...  *)
   831 
   832     fun prove_constr_rep_thm eqn =
   833       let
   834         val inj_thms = map (fn r => r RS iffD1) abs_inject_thms;
   835         val rewrites = constr_defs @ map mk_meta_eq Rep_inverse_thms
   836       in Goal.prove_global thy8 [] [] eqn (fn _ => EVERY
   837         [resolve_tac inj_thms 1,
   838          rewrite_goals_tac rewrites,
   839          rtac refl 3,
   840          resolve_tac rep_intrs 2,
   841          REPEAT (resolve_tac Rep_thms 1)])
   842       end;
   843 
   844     val constr_rep_thmss = map (map prove_constr_rep_thm) constr_rep_eqns;
   845 
   846     (* prove theorem  pi \<bullet> Rep_i x = Rep_i (pi \<bullet> x) *)
   847 
   848     fun prove_perm_rep_perm (atom, perm_closed_thms) = map (fn th =>
   849       let
   850         val _ $ (_ $ (Rep $ x)) = Logic.unvarify (prop_of th);
   851         val Type ("fun", [T, U]) = fastype_of Rep;
   852         val permT = mk_permT (Type (atom, []));
   853         val pi = Free ("pi", permT);
   854       in
   855         Goal.prove_global thy8 [] []
   856           (augment_sort thy8
   857             (pt_class_of thy8 atom :: map (cp_class_of thy8 atom) (dt_atoms \ atom))
   858             (HOLogic.mk_Trueprop (HOLogic.mk_eq
   859               (Const ("Nominal.perm", permT --> U --> U) $ pi $ (Rep $ x),
   860                Rep $ (Const ("Nominal.perm", permT --> T --> T) $ pi $ x)))))
   861           (fn _ => simp_tac (HOL_basic_ss addsimps (perm_defs @ Abs_inverse_thms @
   862             perm_closed_thms @ Rep_thms)) 1)
   863       end) Rep_thms;
   864 
   865     val perm_rep_perm_thms = List.concat (map prove_perm_rep_perm
   866       (atoms ~~ perm_closed_thmss));
   867 
   868     (* prove distinctness theorems *)
   869 
   870     val distinct_props = DatatypeProp.make_distincts descr' sorts;
   871     val dist_rewrites = map2 (fn rep_thms => fn dist_lemma =>
   872       dist_lemma :: rep_thms @ [In0_eq, In1_eq, In0_not_In1, In1_not_In0])
   873         constr_rep_thmss dist_lemmas;
   874 
   875     fun prove_distinct_thms _ (_, []) = []
   876       | prove_distinct_thms (p as (rep_thms, dist_lemma)) (k, t :: ts) =
   877           let
   878             val dist_thm = Goal.prove_global thy8 [] [] t (fn _ =>
   879               simp_tac (simpset_of thy8 addsimps (dist_lemma :: rep_thms)) 1)
   880           in dist_thm :: standard (dist_thm RS not_sym) ::
   881             prove_distinct_thms p (k, ts)
   882           end;
   883 
   884     val distinct_thms = map2 prove_distinct_thms
   885       (constr_rep_thmss ~~ dist_lemmas) distinct_props;
   886 
   887     (** prove equations for permutation functions **)
   888 
   889     val perm_simps' = map (fn (((i, (_, _, constrs)), tname), constr_rep_thms) =>
   890       let val T = nth_dtyp' i
   891       in List.concat (map (fn (atom, perm_closed_thms) =>
   892           map (fn ((cname, dts), constr_rep_thm) =>
   893         let
   894           val cname = Sign.intern_const thy8
   895             (Long_Name.append tname (Long_Name.base_name cname));
   896           val permT = mk_permT (Type (atom, []));
   897           val pi = Free ("pi", permT);
   898 
   899           fun perm t =
   900             let val T = fastype_of t
   901             in Const ("Nominal.perm", permT --> T --> T) $ pi $ t end;
   902 
   903           fun constr_arg ((dts, dt), (j, l_args, r_args)) =
   904             let
   905               val Ts = map (typ_of_dtyp descr'' sorts) dts;
   906               val xs = map (fn (T, i) => mk_Free "x" T i)
   907                 (Ts ~~ (j upto j + length dts - 1))
   908               val x = mk_Free "x" (typ_of_dtyp descr'' sorts dt) (j + length dts)
   909             in
   910               (j + length dts + 1,
   911                xs @ x :: l_args,
   912                map perm (xs @ [x]) @ r_args)
   913             end
   914 
   915           val (_, l_args, r_args) = List.foldr constr_arg (1, [], []) dts;
   916           val c = Const (cname, map fastype_of l_args ---> T)
   917         in
   918           Goal.prove_global thy8 [] []
   919             (augment_sort thy8
   920               (pt_class_of thy8 atom :: map (cp_class_of thy8 atom) (dt_atoms \ atom))
   921               (HOLogic.mk_Trueprop (HOLogic.mk_eq
   922                 (perm (list_comb (c, l_args)), list_comb (c, r_args)))))
   923             (fn _ => EVERY
   924               [simp_tac (simpset_of thy8 addsimps (constr_rep_thm :: perm_defs)) 1,
   925                simp_tac (HOL_basic_ss addsimps (Rep_thms @ Abs_inverse_thms @
   926                  constr_defs @ perm_closed_thms)) 1,
   927                TRY (simp_tac (HOL_basic_ss addsimps
   928                  (symmetric perm_fun_def :: abs_perm)) 1),
   929                TRY (simp_tac (HOL_basic_ss addsimps
   930                  (perm_fun_def :: perm_defs @ Rep_thms @ Abs_inverse_thms @
   931                     perm_closed_thms)) 1)])
   932         end) (constrs ~~ constr_rep_thms)) (atoms ~~ perm_closed_thmss))
   933       end) (List.take (pdescr, length new_type_names) ~~ new_type_names ~~ constr_rep_thmss);
   934 
   935     (** prove injectivity of constructors **)
   936 
   937     val rep_inject_thms' = map (fn th => th RS sym) rep_inject_thms;
   938     val alpha = PureThy.get_thms thy8 "alpha";
   939     val abs_fresh = PureThy.get_thms thy8 "abs_fresh";
   940 
   941     val pt_cp_sort =
   942       map (pt_class_of thy8) dt_atoms @
   943       maps (fn s => map (cp_class_of thy8 s) (dt_atoms \ s)) dt_atoms;
   944 
   945     val inject_thms = map (fn (((i, (_, _, constrs)), tname), constr_rep_thms) =>
   946       let val T = nth_dtyp' i
   947       in List.mapPartial (fn ((cname, dts), constr_rep_thm) =>
   948         if null dts then NONE else SOME
   949         let
   950           val cname = Sign.intern_const thy8
   951             (Long_Name.append tname (Long_Name.base_name cname));
   952 
   953           fun make_inj ((dts, dt), (j, args1, args2, eqs)) =
   954             let
   955               val Ts_idx = map (typ_of_dtyp descr'' sorts) dts ~~ (j upto j + length dts - 1);
   956               val xs = map (fn (T, i) => mk_Free "x" T i) Ts_idx;
   957               val ys = map (fn (T, i) => mk_Free "y" T i) Ts_idx;
   958               val x = mk_Free "x" (typ_of_dtyp descr'' sorts dt) (j + length dts);
   959               val y = mk_Free "y" (typ_of_dtyp descr'' sorts dt) (j + length dts)
   960             in
   961               (j + length dts + 1,
   962                xs @ (x :: args1), ys @ (y :: args2),
   963                HOLogic.mk_eq
   964                  (List.foldr mk_abs_fun x xs, List.foldr mk_abs_fun y ys) :: eqs)
   965             end;
   966 
   967           val (_, args1, args2, eqs) = List.foldr make_inj (1, [], [], []) dts;
   968           val Ts = map fastype_of args1;
   969           val c = Const (cname, Ts ---> T)
   970         in
   971           Goal.prove_global thy8 [] []
   972             (augment_sort thy8 pt_cp_sort
   973               (HOLogic.mk_Trueprop (HOLogic.mk_eq
   974                 (HOLogic.mk_eq (list_comb (c, args1), list_comb (c, args2)),
   975                  foldr1 HOLogic.mk_conj eqs))))
   976             (fn _ => EVERY
   977                [asm_full_simp_tac (simpset_of thy8 addsimps (constr_rep_thm ::
   978                   rep_inject_thms')) 1,
   979                 TRY (asm_full_simp_tac (HOL_basic_ss addsimps (fresh_def :: supp_def ::
   980                   alpha @ abs_perm @ abs_fresh @ rep_inject_thms @
   981                   perm_rep_perm_thms)) 1)])
   982         end) (constrs ~~ constr_rep_thms)
   983       end) (List.take (pdescr, length new_type_names) ~~ new_type_names ~~ constr_rep_thmss);
   984 
   985     (** equations for support and freshness **)
   986 
   987     val (supp_thms, fresh_thms) = ListPair.unzip (map ListPair.unzip
   988       (map (fn ((((i, (_, _, constrs)), tname), inject_thms'), perm_thms') =>
   989       let val T = nth_dtyp' i
   990       in List.concat (map (fn (cname, dts) => map (fn atom =>
   991         let
   992           val cname = Sign.intern_const thy8
   993             (Long_Name.append tname (Long_Name.base_name cname));
   994           val atomT = Type (atom, []);
   995 
   996           fun process_constr ((dts, dt), (j, args1, args2)) =
   997             let
   998               val Ts_idx = map (typ_of_dtyp descr'' sorts) dts ~~ (j upto j + length dts - 1);
   999               val xs = map (fn (T, i) => mk_Free "x" T i) Ts_idx;
  1000               val x = mk_Free "x" (typ_of_dtyp descr'' sorts dt) (j + length dts)
  1001             in
  1002               (j + length dts + 1,
  1003                xs @ (x :: args1), List.foldr mk_abs_fun x xs :: args2)
  1004             end;
  1005 
  1006           val (_, args1, args2) = List.foldr process_constr (1, [], []) dts;
  1007           val Ts = map fastype_of args1;
  1008           val c = list_comb (Const (cname, Ts ---> T), args1);
  1009           fun supp t =
  1010             Const ("Nominal.supp", fastype_of t --> HOLogic.mk_setT atomT) $ t;
  1011           fun fresh t = fresh_const atomT (fastype_of t) $ Free ("a", atomT) $ t;
  1012           val supp_thm = Goal.prove_global thy8 [] []
  1013             (augment_sort thy8 pt_cp_sort
  1014               (HOLogic.mk_Trueprop (HOLogic.mk_eq
  1015                 (supp c,
  1016                  if null dts then HOLogic.mk_set atomT []
  1017                  else foldr1 (HOLogic.mk_binop @{const_name Un}) (map supp args2)))))
  1018             (fn _ =>
  1019               simp_tac (HOL_basic_ss addsimps (supp_def ::
  1020                  Un_assoc :: de_Morgan_conj :: Collect_disj_eq :: finite_Un ::
  1021                  symmetric empty_def :: finite_emptyI :: simp_thms @
  1022                  abs_perm @ abs_fresh @ inject_thms' @ perm_thms')) 1)
  1023         in
  1024           (supp_thm,
  1025            Goal.prove_global thy8 [] [] (augment_sort thy8 pt_cp_sort
  1026              (HOLogic.mk_Trueprop (HOLogic.mk_eq
  1027                (fresh c,
  1028                 if null dts then HOLogic.true_const
  1029                 else foldr1 HOLogic.mk_conj (map fresh args2)))))
  1030              (fn _ =>
  1031                simp_tac (HOL_ss addsimps [Un_iff, empty_iff, fresh_def, supp_thm]) 1))
  1032         end) atoms) constrs)
  1033       end) (List.take (pdescr, length new_type_names) ~~ new_type_names ~~ inject_thms ~~ perm_simps')));
  1034 
  1035     (**** weak induction theorem ****)
  1036 
  1037     fun mk_indrule_lemma ((prems, concls), (((i, _), T), U)) =
  1038       let
  1039         val Rep_t = Const (List.nth (rep_names, i), T --> U) $
  1040           mk_Free "x" T i;
  1041 
  1042         val Abs_t =  Const (List.nth (abs_names, i), U --> T)
  1043 
  1044       in (prems @ [HOLogic.imp $
  1045             (Const (List.nth (rep_set_names'', i), U --> HOLogic.boolT) $ Rep_t) $
  1046               (mk_Free "P" (T --> HOLogic.boolT) (i + 1) $ (Abs_t $ Rep_t))],
  1047           concls @ [mk_Free "P" (T --> HOLogic.boolT) (i + 1) $ mk_Free "x" T i])
  1048       end;
  1049 
  1050     val (indrule_lemma_prems, indrule_lemma_concls) =
  1051       Library.foldl mk_indrule_lemma (([], []), (descr'' ~~ recTs ~~ recTs'));
  1052 
  1053     val indrule_lemma = Goal.prove_global thy8 [] []
  1054       (Logic.mk_implies
  1055         (HOLogic.mk_Trueprop (mk_conj indrule_lemma_prems),
  1056          HOLogic.mk_Trueprop (mk_conj indrule_lemma_concls))) (fn _ => EVERY
  1057            [REPEAT (etac conjE 1),
  1058             REPEAT (EVERY
  1059               [TRY (rtac conjI 1), full_simp_tac (HOL_basic_ss addsimps Rep_inverse_thms) 1,
  1060                etac mp 1, resolve_tac Rep_thms 1])]);
  1061 
  1062     val Ps = map head_of (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of indrule_lemma)));
  1063     val frees = if length Ps = 1 then [Free ("P", snd (dest_Var (hd Ps)))] else
  1064       map (Free o apfst fst o dest_Var) Ps;
  1065     val indrule_lemma' = cterm_instantiate
  1066       (map (cterm_of thy8) Ps ~~ map (cterm_of thy8) frees) indrule_lemma;
  1067 
  1068     val Abs_inverse_thms' = map (fn r => r RS subst) Abs_inverse_thms;
  1069 
  1070     val dt_induct_prop = DatatypeProp.make_ind descr' sorts;
  1071     val dt_induct = Goal.prove_global thy8 []
  1072       (Logic.strip_imp_prems dt_induct_prop) (Logic.strip_imp_concl dt_induct_prop)
  1073       (fn {prems, ...} => EVERY
  1074         [rtac indrule_lemma' 1,
  1075          (indtac rep_induct [] THEN_ALL_NEW ObjectLogic.atomize_prems_tac) 1,
  1076          EVERY (map (fn (prem, r) => (EVERY
  1077            [REPEAT (eresolve_tac Abs_inverse_thms' 1),
  1078             simp_tac (HOL_basic_ss addsimps [symmetric r]) 1,
  1079             DEPTH_SOLVE_1 (ares_tac [prem] 1 ORELSE etac allE 1)]))
  1080                 (prems ~~ constr_defs))]);
  1081 
  1082     val case_names_induct = mk_case_names_induct descr'';
  1083 
  1084     (**** prove that new datatypes have finite support ****)
  1085 
  1086     val _ = warning "proving finite support for the new datatype";
  1087 
  1088     val indnames = DatatypeProp.make_tnames recTs;
  1089 
  1090     val abs_supp = PureThy.get_thms thy8 "abs_supp";
  1091     val supp_atm = PureThy.get_thms thy8 "supp_atm";
  1092 
  1093     val finite_supp_thms = map (fn atom =>
  1094       let val atomT = Type (atom, [])
  1095       in map standard (List.take
  1096         (split_conj_thm (Goal.prove_global thy8 [] []
  1097            (augment_sort thy8 (fs_class_of thy8 atom :: pt_cp_sort)
  1098              (HOLogic.mk_Trueprop
  1099                (foldr1 HOLogic.mk_conj (map (fn (s, T) =>
  1100                  Const ("Finite_Set.finite", HOLogic.mk_setT atomT --> HOLogic.boolT) $
  1101                    (Const ("Nominal.supp", T --> HOLogic.mk_setT atomT) $ Free (s, T)))
  1102                    (indnames ~~ recTs)))))
  1103            (fn _ => indtac dt_induct indnames 1 THEN
  1104             ALLGOALS (asm_full_simp_tac (simpset_of thy8 addsimps
  1105               (abs_supp @ supp_atm @
  1106                PureThy.get_thms thy8 ("fs_" ^ Long_Name.base_name atom ^ "1") @
  1107                List.concat supp_thms))))),
  1108          length new_type_names))
  1109       end) atoms;
  1110 
  1111     val simp_atts = replicate (length new_type_names) [Simplifier.simp_add];
  1112 
  1113 	(* Function to add both the simp and eqvt attributes *)
  1114         (* These two attributes are duplicated on all the types in the mutual nominal datatypes *)
  1115 
  1116     val simp_eqvt_atts = replicate (length new_type_names) [Simplifier.simp_add, NominalThmDecls.eqvt_add];
  1117  
  1118     val (_, thy9) = thy8 |>
  1119       Sign.add_path big_name |>
  1120       PureThy.add_thms [((Binding.name "induct", dt_induct), [case_names_induct])] ||>>
  1121       PureThy.add_thmss [((Binding.name "inducts", projections dt_induct), [case_names_induct])] ||>
  1122       Sign.parent_path ||>>
  1123       DatatypeAux.store_thmss_atts "distinct" new_type_names simp_atts distinct_thms ||>>
  1124       DatatypeAux.store_thmss "constr_rep" new_type_names constr_rep_thmss ||>>
  1125       DatatypeAux.store_thmss_atts "perm" new_type_names simp_eqvt_atts perm_simps' ||>>
  1126       DatatypeAux.store_thmss "inject" new_type_names inject_thms ||>>
  1127       DatatypeAux.store_thmss "supp" new_type_names supp_thms ||>>
  1128       DatatypeAux.store_thmss_atts "fresh" new_type_names simp_atts fresh_thms ||>
  1129       fold (fn (atom, ths) => fn thy =>
  1130         let
  1131           val class = fs_class_of thy atom;
  1132           val sort = Sign.certify_sort thy (class :: pt_cp_sort)
  1133         in fold (fn Type (s, Ts) => AxClass.prove_arity
  1134           (s, map (inter_sort thy sort o snd o dest_TFree) Ts, [class])
  1135           (Class.intro_classes_tac [] THEN resolve_tac ths 1)) newTs thy
  1136         end) (atoms ~~ finite_supp_thms);
  1137 
  1138     (**** strong induction theorem ****)
  1139 
  1140     val pnames = if length descr'' = 1 then ["P"]
  1141       else map (fn i => "P" ^ string_of_int i) (1 upto length descr'');
  1142     val ind_sort = if null dt_atomTs then HOLogic.typeS
  1143       else Sign.certify_sort thy9 (map (fs_class_of thy9) dt_atoms);
  1144     val fsT = TFree ("'n", ind_sort);
  1145     val fsT' = TFree ("'n", HOLogic.typeS);
  1146 
  1147     val fresh_fs = map (fn (s, T) => (T, Free (s, fsT' --> HOLogic.mk_setT T)))
  1148       (DatatypeProp.indexify_names (replicate (length dt_atomTs) "f") ~~ dt_atomTs);
  1149 
  1150     fun make_pred fsT i T =
  1151       Free (List.nth (pnames, i), fsT --> T --> HOLogic.boolT);
  1152 
  1153     fun mk_fresh1 xs [] = []
  1154       | mk_fresh1 xs ((y as (_, T)) :: ys) = map (fn x => HOLogic.mk_Trueprop
  1155             (HOLogic.mk_not (HOLogic.mk_eq (Free y, Free x))))
  1156               (filter (fn (_, U) => T = U) (rev xs)) @
  1157           mk_fresh1 (y :: xs) ys;
  1158 
  1159     fun mk_fresh2 xss [] = []
  1160       | mk_fresh2 xss ((p as (ys, _)) :: yss) = List.concat (map (fn y as (_, T) =>
  1161             map (fn (_, x as (_, U)) => HOLogic.mk_Trueprop
  1162               (fresh_const T U $ Free y $ Free x)) (rev xss @ yss)) ys) @
  1163           mk_fresh2 (p :: xss) yss;
  1164 
  1165     fun make_ind_prem fsT f k T ((cname, cargs), idxs) =
  1166       let
  1167         val recs = List.filter is_rec_type cargs;
  1168         val Ts = map (typ_of_dtyp descr'' sorts) cargs;
  1169         val recTs' = map (typ_of_dtyp descr'' sorts) recs;
  1170         val tnames = Name.variant_list pnames (DatatypeProp.make_tnames Ts);
  1171         val rec_tnames = map fst (List.filter (is_rec_type o snd) (tnames ~~ cargs));
  1172         val frees = tnames ~~ Ts;
  1173         val frees' = partition_cargs idxs frees;
  1174         val z = (Name.variant tnames "z", fsT);
  1175 
  1176         fun mk_prem ((dt, s), T) =
  1177           let
  1178             val (Us, U) = strip_type T;
  1179             val l = length Us
  1180           in list_all (z :: map (pair "x") Us, HOLogic.mk_Trueprop
  1181             (make_pred fsT (body_index dt) U $ Bound l $ app_bnds (Free (s, T)) l))
  1182           end;
  1183 
  1184         val prems = map mk_prem (recs ~~ rec_tnames ~~ recTs');
  1185         val prems' = map (fn p as (_, T) => HOLogic.mk_Trueprop
  1186             (f T (Free p) (Free z))) (List.concat (map fst frees')) @
  1187           mk_fresh1 [] (List.concat (map fst frees')) @
  1188           mk_fresh2 [] frees'
  1189 
  1190       in list_all_free (frees @ [z], Logic.list_implies (prems' @ prems,
  1191         HOLogic.mk_Trueprop (make_pred fsT k T $ Free z $
  1192           list_comb (Const (cname, Ts ---> T), map Free frees))))
  1193       end;
  1194 
  1195     val ind_prems = List.concat (map (fn (((i, (_, _, constrs)), (_, idxss)), T) =>
  1196       map (make_ind_prem fsT (fn T => fn t => fn u =>
  1197         fresh_const T fsT $ t $ u) i T)
  1198           (constrs ~~ idxss)) (descr'' ~~ ndescr ~~ recTs));
  1199     val tnames = DatatypeProp.make_tnames recTs;
  1200     val zs = Name.variant_list tnames (replicate (length descr'') "z");
  1201     val ind_concl = HOLogic.mk_Trueprop (foldr1 (HOLogic.mk_binop "op &")
  1202       (map (fn ((((i, _), T), tname), z) =>
  1203         make_pred fsT i T $ Free (z, fsT) $ Free (tname, T))
  1204         (descr'' ~~ recTs ~~ tnames ~~ zs)));
  1205     val induct = Logic.list_implies (ind_prems, ind_concl);
  1206 
  1207     val ind_prems' =
  1208       map (fn (_, f as Free (_, T)) => list_all_free ([("x", fsT')],
  1209         HOLogic.mk_Trueprop (Const ("Finite_Set.finite",
  1210           (snd (split_last (binder_types T)) --> HOLogic.boolT) -->
  1211             HOLogic.boolT) $ (f $ Free ("x", fsT'))))) fresh_fs @
  1212       List.concat (map (fn (((i, (_, _, constrs)), (_, idxss)), T) =>
  1213         map (make_ind_prem fsT' (fn T => fn t => fn u => HOLogic.Not $
  1214           HOLogic.mk_mem (t, the (AList.lookup op = fresh_fs T) $ u)) i T)
  1215             (constrs ~~ idxss)) (descr'' ~~ ndescr ~~ recTs));
  1216     val ind_concl' = HOLogic.mk_Trueprop (foldr1 (HOLogic.mk_binop "op &")
  1217       (map (fn ((((i, _), T), tname), z) =>
  1218         make_pred fsT' i T $ Free (z, fsT') $ Free (tname, T))
  1219         (descr'' ~~ recTs ~~ tnames ~~ zs)));
  1220     val induct' = Logic.list_implies (ind_prems', ind_concl');
  1221 
  1222     val aux_ind_vars =
  1223       (DatatypeProp.indexify_names (replicate (length dt_atomTs) "pi") ~~
  1224        map mk_permT dt_atomTs) @ [("z", fsT')];
  1225     val aux_ind_Ts = rev (map snd aux_ind_vars);
  1226     val aux_ind_concl = HOLogic.mk_Trueprop (foldr1 (HOLogic.mk_binop "op &")
  1227       (map (fn (((i, _), T), tname) =>
  1228         HOLogic.list_all (aux_ind_vars, make_pred fsT' i T $ Bound 0 $
  1229           fold_rev (mk_perm aux_ind_Ts) (map Bound (length dt_atomTs downto 1))
  1230             (Free (tname, T))))
  1231         (descr'' ~~ recTs ~~ tnames)));
  1232 
  1233     val fin_set_supp = map (fn s =>
  1234       at_inst_of thy9 s RS at_fin_set_supp) dt_atoms;
  1235     val fin_set_fresh = map (fn s =>
  1236       at_inst_of thy9 s RS at_fin_set_fresh) dt_atoms;
  1237     val pt1_atoms = map (fn Type (s, _) =>
  1238       PureThy.get_thm thy9 ("pt_" ^ Long_Name.base_name s ^ "1")) dt_atomTs;
  1239     val pt2_atoms = map (fn Type (s, _) =>
  1240       PureThy.get_thm thy9 ("pt_" ^ Long_Name.base_name s ^ "2") RS sym) dt_atomTs;
  1241     val exists_fresh' = PureThy.get_thms thy9 "exists_fresh'";
  1242     val fs_atoms = PureThy.get_thms thy9 "fin_supp";
  1243     val abs_supp = PureThy.get_thms thy9 "abs_supp";
  1244     val perm_fresh_fresh = PureThy.get_thms thy9 "perm_fresh_fresh";
  1245     val calc_atm = PureThy.get_thms thy9 "calc_atm";
  1246     val fresh_atm = PureThy.get_thms thy9 "fresh_atm";
  1247     val fresh_left = PureThy.get_thms thy9 "fresh_left";
  1248     val perm_swap = PureThy.get_thms thy9 "perm_swap";
  1249 
  1250     fun obtain_fresh_name' ths ts T (freshs1, freshs2, ctxt) =
  1251       let
  1252         val p = foldr1 HOLogic.mk_prod (ts @ freshs1);
  1253         val ex = Goal.prove ctxt [] [] (HOLogic.mk_Trueprop
  1254             (HOLogic.exists_const T $ Abs ("x", T,
  1255               fresh_const T (fastype_of p) $
  1256                 Bound 0 $ p)))
  1257           (fn _ => EVERY
  1258             [resolve_tac exists_fresh' 1,
  1259              simp_tac (HOL_ss addsimps (supp_prod :: finite_Un :: fs_atoms @
  1260                fin_set_supp @ ths)) 1]);
  1261         val (([cx], ths), ctxt') = Obtain.result
  1262           (fn _ => EVERY
  1263             [etac exE 1,
  1264              full_simp_tac (HOL_ss addsimps (fresh_prod :: fresh_atm)) 1,
  1265              REPEAT (etac conjE 1)])
  1266           [ex] ctxt
  1267       in (freshs1 @ [term_of cx], freshs2 @ ths, ctxt') end;
  1268 
  1269     fun fresh_fresh_inst thy a b =
  1270       let
  1271         val T = fastype_of a;
  1272         val SOME th = find_first (fn th => case prop_of th of
  1273             _ $ (_ $ (Const (_, Type (_, [U, _])) $ _ $ _)) $ _ => U = T
  1274           | _ => false) perm_fresh_fresh
  1275       in
  1276         Drule.instantiate' []
  1277           [SOME (cterm_of thy a), NONE, SOME (cterm_of thy b)] th
  1278       end;
  1279 
  1280     val fs_cp_sort =
  1281       map (fs_class_of thy9) dt_atoms @
  1282       maps (fn s => map (cp_class_of thy9 s) (dt_atoms \ s)) dt_atoms;
  1283 
  1284     (**********************************************************************
  1285       The subgoals occurring in the proof of induct_aux have the
  1286       following parameters:
  1287 
  1288         x_1 ... x_k p_1 ... p_m z
  1289 
  1290       where
  1291 
  1292         x_i : constructor arguments (introduced by weak induction rule)
  1293         p_i : permutations (one for each atom type in the data type)
  1294         z   : freshness context
  1295     ***********************************************************************)
  1296 
  1297     val _ = warning "proving strong induction theorem ...";
  1298 
  1299     val induct_aux = Goal.prove_global thy9 []
  1300         (map (augment_sort thy9 fs_cp_sort) ind_prems')
  1301         (augment_sort thy9 fs_cp_sort ind_concl') (fn {prems, context} =>
  1302       let
  1303         val (prems1, prems2) = chop (length dt_atomTs) prems;
  1304         val ind_ss2 = HOL_ss addsimps
  1305           finite_Diff :: abs_fresh @ abs_supp @ fs_atoms;
  1306         val ind_ss1 = ind_ss2 addsimps fresh_left @ calc_atm @
  1307           fresh_atm @ rev_simps @ app_simps;
  1308         val ind_ss3 = HOL_ss addsimps abs_fun_eq1 ::
  1309           abs_perm @ calc_atm @ perm_swap;
  1310         val ind_ss4 = HOL_basic_ss addsimps fresh_left @ prems1 @
  1311           fin_set_fresh @ calc_atm;
  1312         val ind_ss5 = HOL_basic_ss addsimps pt1_atoms;
  1313         val ind_ss6 = HOL_basic_ss addsimps flat perm_simps';
  1314         val th = Goal.prove context [] []
  1315           (augment_sort thy9 fs_cp_sort aux_ind_concl)
  1316           (fn {context = context1, ...} =>
  1317              EVERY (indtac dt_induct tnames 1 ::
  1318                maps (fn ((_, (_, _, constrs)), (_, constrs')) =>
  1319                  map (fn ((cname, cargs), is) =>
  1320                    REPEAT (rtac allI 1) THEN
  1321                    SUBPROOF (fn {prems = iprems, params, concl,
  1322                        context = context2, ...} =>
  1323                      let
  1324                        val concl' = term_of concl;
  1325                        val _ $ (_ $ _ $ u) = concl';
  1326                        val U = fastype_of u;
  1327                        val (xs, params') =
  1328                          chop (length cargs) (map term_of params);
  1329                        val Ts = map fastype_of xs;
  1330                        val cnstr = Const (cname, Ts ---> U);
  1331                        val (pis, z) = split_last params';
  1332                        val mk_pi = fold_rev (mk_perm []) pis;
  1333                        val xs' = partition_cargs is xs;
  1334                        val xs'' = map (fn (ts, u) => (map mk_pi ts, mk_pi u)) xs';
  1335                        val ts = maps (fn (ts, u) => ts @ [u]) xs'';
  1336                        val (freshs1, freshs2, context3) = fold (fn t =>
  1337                          let val T = fastype_of t
  1338                          in obtain_fresh_name' prems1
  1339                            (the (AList.lookup op = fresh_fs T) $ z :: ts) T
  1340                          end) (maps fst xs') ([], [], context2);
  1341                        val freshs1' = unflat (map fst xs') freshs1;
  1342                        val freshs2' = map (Simplifier.simplify ind_ss4)
  1343                          (mk_not_sym freshs2);
  1344                        val ind_ss1' = ind_ss1 addsimps freshs2';
  1345                        val ind_ss3' = ind_ss3 addsimps freshs2';
  1346                        val rename_eq =
  1347                          if forall (null o fst) xs' then []
  1348                          else [Goal.prove context3 [] []
  1349                            (HOLogic.mk_Trueprop (HOLogic.mk_eq
  1350                              (list_comb (cnstr, ts),
  1351                               list_comb (cnstr, maps (fn ((bs, t), cs) =>
  1352                                 cs @ [fold_rev (mk_perm []) (map perm_of_pair
  1353                                   (bs ~~ cs)) t]) (xs'' ~~ freshs1')))))
  1354                            (fn _ => EVERY
  1355                               (simp_tac (HOL_ss addsimps flat inject_thms) 1 ::
  1356                                REPEAT (FIRSTGOAL (rtac conjI)) ::
  1357                                maps (fn ((bs, t), cs) =>
  1358                                  if null bs then []
  1359                                  else rtac sym 1 :: maps (fn (b, c) =>
  1360                                    [rtac trans 1, rtac sym 1,
  1361                                     rtac (fresh_fresh_inst thy9 b c) 1,
  1362                                     simp_tac ind_ss1' 1,
  1363                                     simp_tac ind_ss2 1,
  1364                                     simp_tac ind_ss3' 1]) (bs ~~ cs))
  1365                                  (xs'' ~~ freshs1')))];
  1366                        val th = Goal.prove context3 [] [] concl' (fn _ => EVERY
  1367                          [simp_tac (ind_ss6 addsimps rename_eq) 1,
  1368                           cut_facts_tac iprems 1,
  1369                           (resolve_tac prems THEN_ALL_NEW
  1370                             SUBGOAL (fn (t, i) => case Logic.strip_assums_concl t of
  1371                                 _ $ (Const ("Nominal.fresh", _) $ _ $ _) =>
  1372                                   simp_tac ind_ss1' i
  1373                               | _ $ (Const ("Not", _) $ _) =>
  1374                                   resolve_tac freshs2' i
  1375                               | _ => asm_simp_tac (HOL_basic_ss addsimps
  1376                                   pt2_atoms addsimprocs [perm_simproc]) i)) 1])
  1377                        val final = ProofContext.export context3 context2 [th]
  1378                      in
  1379                        resolve_tac final 1
  1380                      end) context1 1) (constrs ~~ constrs')) (descr'' ~~ ndescr)))
  1381       in
  1382         EVERY
  1383           [cut_facts_tac [th] 1,
  1384            REPEAT (eresolve_tac [conjE, @{thm allE_Nil}] 1),
  1385            REPEAT (etac allE 1),
  1386            REPEAT (TRY (rtac conjI 1) THEN asm_full_simp_tac ind_ss5 1)]
  1387       end);
  1388 
  1389     val induct_aux' = Thm.instantiate ([],
  1390       map (fn (s, v as Var (_, T)) =>
  1391         (cterm_of thy9 v, cterm_of thy9 (Free (s, T))))
  1392           (pnames ~~ map head_of (HOLogic.dest_conj
  1393              (HOLogic.dest_Trueprop (concl_of induct_aux)))) @
  1394       map (fn (_, f) =>
  1395         let val f' = Logic.varify f
  1396         in (cterm_of thy9 f',
  1397           cterm_of thy9 (Const ("Nominal.supp", fastype_of f')))
  1398         end) fresh_fs) induct_aux;
  1399 
  1400     val induct = Goal.prove_global thy9 []
  1401       (map (augment_sort thy9 fs_cp_sort) ind_prems)
  1402       (augment_sort thy9 fs_cp_sort ind_concl)
  1403       (fn {prems, ...} => EVERY
  1404          [rtac induct_aux' 1,
  1405           REPEAT (resolve_tac fs_atoms 1),
  1406           REPEAT ((resolve_tac prems THEN_ALL_NEW
  1407             (etac meta_spec ORELSE' full_simp_tac (HOL_basic_ss addsimps [fresh_def]))) 1)])
  1408 
  1409     val (_, thy10) = thy9 |>
  1410       Sign.add_path big_name |>
  1411       PureThy.add_thms [((Binding.name "strong_induct'", induct_aux), [])] ||>>
  1412       PureThy.add_thms [((Binding.name "strong_induct", induct), [case_names_induct])] ||>>
  1413       PureThy.add_thmss [((Binding.name "strong_inducts", projections induct), [case_names_induct])];
  1414 
  1415     (**** recursion combinator ****)
  1416 
  1417     val _ = warning "defining recursion combinator ...";
  1418 
  1419     val used = List.foldr OldTerm.add_typ_tfree_names [] recTs;
  1420 
  1421     val (rec_result_Ts', rec_fn_Ts') = DatatypeProp.make_primrec_Ts descr' sorts used;
  1422 
  1423     val rec_sort = if null dt_atomTs then HOLogic.typeS else
  1424       Sign.certify_sort thy10 pt_cp_sort;
  1425 
  1426     val rec_result_Ts = map (fn TFree (s, _) => TFree (s, rec_sort)) rec_result_Ts';
  1427     val rec_fn_Ts = map (typ_subst_atomic (rec_result_Ts' ~~ rec_result_Ts)) rec_fn_Ts';
  1428 
  1429     val rec_set_Ts = map (fn (T1, T2) =>
  1430       rec_fn_Ts @ [T1, T2] ---> HOLogic.boolT) (recTs ~~ rec_result_Ts);
  1431 
  1432     val big_rec_name = big_name ^ "_rec_set";
  1433     val rec_set_names' =
  1434       if length descr'' = 1 then [big_rec_name] else
  1435         map ((curry (op ^) (big_rec_name ^ "_")) o string_of_int)
  1436           (1 upto (length descr''));
  1437     val rec_set_names =  map (Sign.full_bname thy10) rec_set_names';
  1438 
  1439     val rec_fns = map (uncurry (mk_Free "f"))
  1440       (rec_fn_Ts ~~ (1 upto (length rec_fn_Ts)));
  1441     val rec_sets' = map (fn c => list_comb (Free c, rec_fns))
  1442       (rec_set_names' ~~ rec_set_Ts);
  1443     val rec_sets = map (fn c => list_comb (Const c, rec_fns))
  1444       (rec_set_names ~~ rec_set_Ts);
  1445 
  1446     (* introduction rules for graph of recursion function *)
  1447 
  1448     val rec_preds = map (fn (a, T) =>
  1449       Free (a, T --> HOLogic.boolT)) (pnames ~~ rec_result_Ts);
  1450 
  1451     fun mk_fresh3 rs [] = []
  1452       | mk_fresh3 rs ((p as (ys, z)) :: yss) = List.concat (map (fn y as (_, T) =>
  1453             List.mapPartial (fn ((_, (_, x)), r as (_, U)) => if z = x then NONE
  1454               else SOME (HOLogic.mk_Trueprop
  1455                 (fresh_const T U $ Free y $ Free r))) rs) ys) @
  1456           mk_fresh3 rs yss;
  1457 
  1458     (* FIXME: avoid collisions with other variable names? *)
  1459     val rec_ctxt = Free ("z", fsT');
  1460 
  1461     fun make_rec_intr T p rec_set ((rec_intr_ts, rec_prems, rec_prems',
  1462           rec_eq_prems, l), ((cname, cargs), idxs)) =
  1463       let
  1464         val Ts = map (typ_of_dtyp descr'' sorts) cargs;
  1465         val frees = map (fn i => "x" ^ string_of_int i) (1 upto length Ts) ~~ Ts;
  1466         val frees' = partition_cargs idxs frees;
  1467         val binders = List.concat (map fst frees');
  1468         val atomTs = distinct op = (maps (map snd o fst) frees');
  1469         val recs = List.mapPartial
  1470           (fn ((_, DtRec i), p) => SOME (i, p) | _ => NONE)
  1471           (partition_cargs idxs cargs ~~ frees');
  1472         val frees'' = map (fn i => "y" ^ string_of_int i) (1 upto length recs) ~~
  1473           map (fn (i, _) => List.nth (rec_result_Ts, i)) recs;
  1474         val prems1 = map (fn ((i, (_, x)), y) => HOLogic.mk_Trueprop
  1475           (List.nth (rec_sets', i) $ Free x $ Free y)) (recs ~~ frees'');
  1476         val prems2 =
  1477           map (fn f => map (fn p as (_, T) => HOLogic.mk_Trueprop
  1478             (fresh_const T (fastype_of f) $ Free p $ f)) binders) rec_fns;
  1479         val prems3 = mk_fresh1 [] binders @ mk_fresh2 [] frees';
  1480         val prems4 = map (fn ((i, _), y) =>
  1481           HOLogic.mk_Trueprop (List.nth (rec_preds, i) $ Free y)) (recs ~~ frees'');
  1482         val prems5 = mk_fresh3 (recs ~~ frees'') frees';
  1483         val prems6 = maps (fn aT => map (fn y as (_, T) => HOLogic.mk_Trueprop
  1484           (Const ("Finite_Set.finite", HOLogic.mk_setT aT --> HOLogic.boolT) $
  1485              (Const ("Nominal.supp", T --> HOLogic.mk_setT aT) $ Free y)))
  1486                frees'') atomTs;
  1487         val prems7 = map (fn x as (_, T) => HOLogic.mk_Trueprop
  1488           (fresh_const T fsT' $ Free x $ rec_ctxt)) binders;
  1489         val result = list_comb (List.nth (rec_fns, l), map Free (frees @ frees''));
  1490         val result_freshs = map (fn p as (_, T) =>
  1491           fresh_const T (fastype_of result) $ Free p $ result) binders;
  1492         val P = HOLogic.mk_Trueprop (p $ result)
  1493       in
  1494         (rec_intr_ts @ [Logic.list_implies (List.concat prems2 @ prems3 @ prems1,
  1495            HOLogic.mk_Trueprop (rec_set $
  1496              list_comb (Const (cname, Ts ---> T), map Free frees) $ result))],
  1497          rec_prems @ [list_all_free (frees @ frees'', Logic.list_implies (prems4, P))],
  1498          rec_prems' @ map (fn fr => list_all_free (frees @ frees'',
  1499            Logic.list_implies (List.nth (prems2, l) @ prems3 @ prems5 @ prems7 @ prems6 @ [P],
  1500              HOLogic.mk_Trueprop fr))) result_freshs,
  1501          rec_eq_prems @ [List.concat prems2 @ prems3],
  1502          l + 1)
  1503       end;
  1504 
  1505     val (rec_intr_ts, rec_prems, rec_prems', rec_eq_prems, _) =
  1506       Library.foldl (fn (x, ((((d, d'), T), p), rec_set)) =>
  1507         Library.foldl (make_rec_intr T p rec_set) (x, #3 (snd d) ~~ snd d'))
  1508           (([], [], [], [], 0), descr'' ~~ ndescr ~~ recTs ~~ rec_preds ~~ rec_sets');
  1509 
  1510     val ({intrs = rec_intrs, elims = rec_elims, raw_induct = rec_induct, ...}, thy11) =
  1511       thy10 |>
  1512         Inductive.add_inductive_global (serial_string ())
  1513           {quiet_mode = #quiet config, verbose = false, kind = Thm.internalK,
  1514            alt_name = Binding.name big_rec_name, coind = false, no_elim = false, no_ind = false,
  1515            skip_mono = true, fork_mono = false}
  1516           (map (fn (s, T) => ((Binding.name s, T), NoSyn)) (rec_set_names' ~~ rec_set_Ts))
  1517           (map dest_Free rec_fns)
  1518           (map (fn x => (Attrib.empty_binding, x)) rec_intr_ts) [] ||>
  1519       PureThy.hide_fact true (Long_Name.append (Sign.full_bname thy10 big_rec_name) "induct");
  1520 
  1521     (** equivariance **)
  1522 
  1523     val fresh_bij = PureThy.get_thms thy11 "fresh_bij";
  1524     val perm_bij = PureThy.get_thms thy11 "perm_bij";
  1525 
  1526     val (rec_equiv_thms, rec_equiv_thms') = ListPair.unzip (map (fn aT =>
  1527       let
  1528         val permT = mk_permT aT;
  1529         val pi = Free ("pi", permT);
  1530         val rec_fns_pi = map (mk_perm [] pi o uncurry (mk_Free "f"))
  1531           (rec_fn_Ts ~~ (1 upto (length rec_fn_Ts)));
  1532         val rec_sets_pi = map (fn c => list_comb (Const c, rec_fns_pi))
  1533           (rec_set_names ~~ rec_set_Ts);
  1534         val ps = map (fn ((((T, U), R), R'), i) =>
  1535           let
  1536             val x = Free ("x" ^ string_of_int i, T);
  1537             val y = Free ("y" ^ string_of_int i, U)
  1538           in
  1539             (R $ x $ y, R' $ mk_perm [] pi x $ mk_perm [] pi y)
  1540           end) (recTs ~~ rec_result_Ts ~~ rec_sets ~~ rec_sets_pi ~~ (1 upto length recTs));
  1541         val ths = map (fn th => standard (th RS mp)) (split_conj_thm
  1542           (Goal.prove_global thy11 [] []
  1543             (augment_sort thy1 pt_cp_sort
  1544               (HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj (map HOLogic.mk_imp ps))))
  1545             (fn _ => rtac rec_induct 1 THEN REPEAT
  1546                (simp_tac (Simplifier.theory_context thy11 HOL_basic_ss
  1547                   addsimps flat perm_simps'
  1548                   addsimprocs [NominalPermeq.perm_simproc_app]) 1 THEN
  1549                 (resolve_tac rec_intrs THEN_ALL_NEW
  1550                  asm_simp_tac (HOL_ss addsimps (fresh_bij @ perm_bij))) 1))))
  1551         val ths' = map (fn ((P, Q), th) =>
  1552           Goal.prove_global thy11 [] []
  1553             (augment_sort thy1 pt_cp_sort
  1554               (Logic.mk_implies (HOLogic.mk_Trueprop Q, HOLogic.mk_Trueprop P)))
  1555             (fn _ => dtac (Thm.instantiate ([],
  1556                  [(cterm_of thy11 (Var (("pi", 0), permT)),
  1557                    cterm_of thy11 (Const ("List.rev", permT --> permT) $ pi))]) th) 1 THEN
  1558                NominalPermeq.perm_simp_tac HOL_ss 1)) (ps ~~ ths)
  1559       in (ths, ths') end) dt_atomTs);
  1560 
  1561     (** finite support **)
  1562 
  1563     val rec_fin_supp_thms = map (fn aT =>
  1564       let
  1565         val name = Long_Name.base_name (fst (dest_Type aT));
  1566         val fs_name = PureThy.get_thm thy11 ("fs_" ^ name ^ "1");
  1567         val aset = HOLogic.mk_setT aT;
  1568         val finite = Const ("Finite_Set.finite", aset --> HOLogic.boolT);
  1569         val fins = map (fn (f, T) => HOLogic.mk_Trueprop
  1570           (finite $ (Const ("Nominal.supp", T --> aset) $ f)))
  1571             (rec_fns ~~ rec_fn_Ts)
  1572       in
  1573         map (fn th => standard (th RS mp)) (split_conj_thm
  1574           (Goal.prove_global thy11 []
  1575             (map (augment_sort thy11 fs_cp_sort) fins)
  1576             (augment_sort thy11 fs_cp_sort
  1577               (HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
  1578                 (map (fn (((T, U), R), i) =>
  1579                    let
  1580                      val x = Free ("x" ^ string_of_int i, T);
  1581                      val y = Free ("y" ^ string_of_int i, U)
  1582                    in
  1583                      HOLogic.mk_imp (R $ x $ y,
  1584                        finite $ (Const ("Nominal.supp", U --> aset) $ y))
  1585                    end) (recTs ~~ rec_result_Ts ~~ rec_sets ~~
  1586                      (1 upto length recTs))))))
  1587             (fn {prems = fins, ...} =>
  1588               (rtac rec_induct THEN_ALL_NEW cut_facts_tac fins) 1 THEN REPEAT
  1589                (NominalPermeq.finite_guess_tac (HOL_ss addsimps [fs_name]) 1))))
  1590       end) dt_atomTs;
  1591 
  1592     (** freshness **)
  1593 
  1594     val finite_premss = map (fn aT =>
  1595       map (fn (f, T) => HOLogic.mk_Trueprop
  1596         (Const ("Finite_Set.finite", HOLogic.mk_setT aT --> HOLogic.boolT) $
  1597            (Const ("Nominal.supp", T --> HOLogic.mk_setT aT) $ f)))
  1598            (rec_fns ~~ rec_fn_Ts)) dt_atomTs;
  1599 
  1600     val rec_fns' = map (augment_sort thy11 fs_cp_sort) rec_fns;
  1601 
  1602     val rec_fresh_thms = map (fn ((aT, eqvt_ths), finite_prems) =>
  1603       let
  1604         val name = Long_Name.base_name (fst (dest_Type aT));
  1605         val fs_name = PureThy.get_thm thy11 ("fs_" ^ name ^ "1");
  1606         val a = Free ("a", aT);
  1607         val freshs = map (fn (f, fT) => HOLogic.mk_Trueprop
  1608           (fresh_const aT fT $ a $ f)) (rec_fns ~~ rec_fn_Ts)
  1609       in
  1610         map (fn (((T, U), R), eqvt_th) =>
  1611           let
  1612             val x = Free ("x", augment_sort_typ thy11 fs_cp_sort T);
  1613             val y = Free ("y", U);
  1614             val y' = Free ("y'", U)
  1615           in
  1616             standard (Goal.prove (ProofContext.init thy11) []
  1617               (map (augment_sort thy11 fs_cp_sort)
  1618                 (finite_prems @
  1619                    [HOLogic.mk_Trueprop (R $ x $ y),
  1620                     HOLogic.mk_Trueprop (HOLogic.mk_all ("y'", U,
  1621                       HOLogic.mk_imp (R $ x $ y', HOLogic.mk_eq (y', y)))),
  1622                     HOLogic.mk_Trueprop (fresh_const aT T $ a $ x)] @
  1623                  freshs))
  1624               (HOLogic.mk_Trueprop (fresh_const aT U $ a $ y))
  1625               (fn {prems, context} =>
  1626                  let
  1627                    val (finite_prems, rec_prem :: unique_prem ::
  1628                      fresh_prems) = chop (length finite_prems) prems;
  1629                    val unique_prem' = unique_prem RS spec RS mp;
  1630                    val unique = [unique_prem', unique_prem' RS sym] MRS trans;
  1631                    val _ $ (_ $ (_ $ S $ _)) $ _ = prop_of supports_fresh;
  1632                    val tuple = foldr1 HOLogic.mk_prod (x :: rec_fns')
  1633                  in EVERY
  1634                    [rtac (Drule.cterm_instantiate
  1635                       [(cterm_of thy11 S,
  1636                         cterm_of thy11 (Const ("Nominal.supp",
  1637                           fastype_of tuple --> HOLogic.mk_setT aT) $ tuple))]
  1638                       supports_fresh) 1,
  1639                     simp_tac (HOL_basic_ss addsimps
  1640                       [supports_def, symmetric fresh_def, fresh_prod]) 1,
  1641                     REPEAT_DETERM (resolve_tac [allI, impI] 1),
  1642                     REPEAT_DETERM (etac conjE 1),
  1643                     rtac unique 1,
  1644                     SUBPROOF (fn {prems = prems', params = [a, b], ...} => EVERY
  1645                       [cut_facts_tac [rec_prem] 1,
  1646                        rtac (Thm.instantiate ([],
  1647                          [(cterm_of thy11 (Var (("pi", 0), mk_permT aT)),
  1648                            cterm_of thy11 (perm_of_pair (term_of a, term_of b)))]) eqvt_th) 1,
  1649                        asm_simp_tac (HOL_ss addsimps
  1650                          (prems' @ perm_swap @ perm_fresh_fresh)) 1]) context 1,
  1651                     rtac rec_prem 1,
  1652                     simp_tac (HOL_ss addsimps (fs_name ::
  1653                       supp_prod :: finite_Un :: finite_prems)) 1,
  1654                     simp_tac (HOL_ss addsimps (symmetric fresh_def ::
  1655                       fresh_prod :: fresh_prems)) 1]
  1656                  end))
  1657           end) (recTs ~~ rec_result_Ts ~~ rec_sets ~~ eqvt_ths)
  1658       end) (dt_atomTs ~~ rec_equiv_thms' ~~ finite_premss);
  1659 
  1660     (** uniqueness **)
  1661 
  1662     val fun_tuple = foldr1 HOLogic.mk_prod (rec_ctxt :: rec_fns);
  1663     val fun_tupleT = fastype_of fun_tuple;
  1664     val rec_unique_frees =
  1665       DatatypeProp.indexify_names (replicate (length recTs) "x") ~~ recTs;
  1666     val rec_unique_frees'' = map (fn (s, T) => (s ^ "'", T)) rec_unique_frees;
  1667     val rec_unique_frees' =
  1668       DatatypeProp.indexify_names (replicate (length recTs) "y") ~~ rec_result_Ts;
  1669     val rec_unique_concls = map (fn ((x, U), R) =>
  1670         Const ("Ex1", (U --> HOLogic.boolT) --> HOLogic.boolT) $
  1671           Abs ("y", U, R $ Free x $ Bound 0))
  1672       (rec_unique_frees ~~ rec_result_Ts ~~ rec_sets);
  1673 
  1674     val induct_aux_rec = Drule.cterm_instantiate
  1675       (map (pairself (cterm_of thy11) o apsnd (augment_sort thy11 fs_cp_sort))
  1676          (map (fn (aT, f) => (Logic.varify f, Abs ("z", HOLogic.unitT,
  1677             Const ("Nominal.supp", fun_tupleT --> HOLogic.mk_setT aT) $ fun_tuple)))
  1678               fresh_fs @
  1679           map (fn (((P, T), (x, U)), Q) =>
  1680            (Var ((P, 0), Logic.varifyT (fsT' --> T --> HOLogic.boolT)),
  1681             Abs ("z", HOLogic.unitT, absfree (x, U, Q))))
  1682               (pnames ~~ recTs ~~ rec_unique_frees ~~ rec_unique_concls) @
  1683           map (fn (s, T) => (Var ((s, 0), Logic.varifyT T), Free (s, T)))
  1684             rec_unique_frees)) induct_aux;
  1685 
  1686     fun obtain_fresh_name vs ths rec_fin_supp T (freshs1, freshs2, ctxt) =
  1687       let
  1688         val p = foldr1 HOLogic.mk_prod (vs @ freshs1);
  1689         val ex = Goal.prove ctxt [] [] (HOLogic.mk_Trueprop
  1690             (HOLogic.exists_const T $ Abs ("x", T,
  1691               fresh_const T (fastype_of p) $ Bound 0 $ p)))
  1692           (fn _ => EVERY
  1693             [cut_facts_tac ths 1,
  1694              REPEAT_DETERM (dresolve_tac (the (AList.lookup op = rec_fin_supp T)) 1),
  1695              resolve_tac exists_fresh' 1,
  1696              asm_simp_tac (HOL_ss addsimps (supp_prod :: finite_Un :: fs_atoms)) 1]);
  1697         val (([cx], ths), ctxt') = Obtain.result
  1698           (fn _ => EVERY
  1699             [etac exE 1,
  1700              full_simp_tac (HOL_ss addsimps (fresh_prod :: fresh_atm)) 1,
  1701              REPEAT (etac conjE 1)])
  1702           [ex] ctxt
  1703       in (freshs1 @ [term_of cx], freshs2 @ ths, ctxt') end;
  1704 
  1705     val finite_ctxt_prems = map (fn aT =>
  1706       HOLogic.mk_Trueprop
  1707         (Const ("Finite_Set.finite", HOLogic.mk_setT aT --> HOLogic.boolT) $
  1708            (Const ("Nominal.supp", fsT' --> HOLogic.mk_setT aT) $ rec_ctxt))) dt_atomTs;
  1709 
  1710     val rec_unique_thms = split_conj_thm (Goal.prove
  1711       (ProofContext.init thy11) (map fst rec_unique_frees)
  1712       (map (augment_sort thy11 fs_cp_sort)
  1713         (List.concat finite_premss @ finite_ctxt_prems @ rec_prems @ rec_prems'))
  1714       (augment_sort thy11 fs_cp_sort
  1715         (HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj rec_unique_concls)))
  1716       (fn {prems, context} =>
  1717          let
  1718            val k = length rec_fns;
  1719            val (finite_thss, ths1) = fold_map (fn T => fn xs =>
  1720              apfst (pair T) (chop k xs)) dt_atomTs prems;
  1721            val (finite_ctxt_ths, ths2) = chop (length dt_atomTs) ths1;
  1722            val (P_ind_ths, fcbs) = chop k ths2;
  1723            val P_ths = map (fn th => th RS mp) (split_conj_thm
  1724              (Goal.prove context
  1725                (map fst (rec_unique_frees'' @ rec_unique_frees')) []
  1726                (augment_sort thy11 fs_cp_sort
  1727                  (HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
  1728                     (map (fn (((x, y), S), P) => HOLogic.mk_imp
  1729                       (S $ Free x $ Free y, P $ (Free y)))
  1730                         (rec_unique_frees'' ~~ rec_unique_frees' ~~
  1731                            rec_sets ~~ rec_preds)))))
  1732                (fn _ =>
  1733                   rtac rec_induct 1 THEN
  1734                   REPEAT ((resolve_tac P_ind_ths THEN_ALL_NEW assume_tac) 1))));
  1735            val rec_fin_supp_thms' = map
  1736              (fn (ths, (T, fin_ths)) => (T, map (curry op MRS fin_ths) ths))
  1737              (rec_fin_supp_thms ~~ finite_thss);
  1738          in EVERY
  1739            ([rtac induct_aux_rec 1] @
  1740             maps (fn ((_, finite_ths), finite_th) =>
  1741               [cut_facts_tac (finite_th :: finite_ths) 1,
  1742                asm_simp_tac (HOL_ss addsimps [supp_prod, finite_Un]) 1])
  1743                 (finite_thss ~~ finite_ctxt_ths) @
  1744             maps (fn ((_, idxss), elim) => maps (fn idxs =>
  1745               [full_simp_tac (HOL_ss addsimps [symmetric fresh_def, supp_prod, Un_iff]) 1,
  1746                REPEAT_DETERM (eresolve_tac [conjE, ex1E] 1),
  1747                rtac ex1I 1,
  1748                (resolve_tac rec_intrs THEN_ALL_NEW atac) 1,
  1749                rotate_tac ~1 1,
  1750                ((DETERM o etac elim) THEN_ALL_NEW full_simp_tac
  1751                   (HOL_ss addsimps List.concat distinct_thms)) 1] @
  1752                (if null idxs then [] else [hyp_subst_tac 1,
  1753                 SUBPROOF (fn {asms, concl, prems = prems', params, context = context', ...} =>
  1754                   let
  1755                     val SOME prem = find_first (can (HOLogic.dest_eq o
  1756                       HOLogic.dest_Trueprop o prop_of)) prems';
  1757                     val _ $ (_ $ lhs $ rhs) = prop_of prem;
  1758                     val _ $ (_ $ lhs' $ rhs') = term_of concl;
  1759                     val rT = fastype_of lhs';
  1760                     val (c, cargsl) = strip_comb lhs;
  1761                     val cargsl' = partition_cargs idxs cargsl;
  1762                     val boundsl = List.concat (map fst cargsl');
  1763                     val (_, cargsr) = strip_comb rhs;
  1764                     val cargsr' = partition_cargs idxs cargsr;
  1765                     val boundsr = List.concat (map fst cargsr');
  1766                     val (params1, _ :: params2) =
  1767                       chop (length params div 2) (map term_of params);
  1768                     val params' = params1 @ params2;
  1769                     val rec_prems = filter (fn th => case prop_of th of
  1770                         _ $ p => (case head_of p of
  1771                           Const (s, _) => s mem rec_set_names
  1772                         | _ => false)
  1773                       | _ => false) prems';
  1774                     val fresh_prems = filter (fn th => case prop_of th of
  1775                         _ $ (Const ("Nominal.fresh", _) $ _ $ _) => true
  1776                       | _ $ (Const ("Not", _) $ _) => true
  1777                       | _ => false) prems';
  1778                     val Ts = map fastype_of boundsl;
  1779 
  1780                     val _ = warning "step 1: obtaining fresh names";
  1781                     val (freshs1, freshs2, context'') = fold
  1782                       (obtain_fresh_name (rec_ctxt :: rec_fns' @ params')
  1783                          (List.concat (map snd finite_thss) @
  1784                             finite_ctxt_ths @ rec_prems)
  1785                          rec_fin_supp_thms')
  1786                       Ts ([], [], context');
  1787                     val pi1 = map perm_of_pair (boundsl ~~ freshs1);
  1788                     val rpi1 = rev pi1;
  1789                     val pi2 = map perm_of_pair (boundsr ~~ freshs1);
  1790                     val rpi2 = rev pi2;
  1791 
  1792                     val fresh_prems' = mk_not_sym fresh_prems;
  1793                     val freshs2' = mk_not_sym freshs2;
  1794 
  1795                     (** as, bs, cs # K as ts, K bs us **)
  1796                     val _ = warning "step 2: as, bs, cs # K as ts, K bs us";
  1797                     val prove_fresh_ss = HOL_ss addsimps
  1798                       (finite_Diff :: List.concat fresh_thms @
  1799                        fs_atoms @ abs_fresh @ abs_supp @ fresh_atm);
  1800                     (* FIXME: avoid asm_full_simp_tac ? *)
  1801                     fun prove_fresh ths y x = Goal.prove context'' [] []
  1802                       (HOLogic.mk_Trueprop (fresh_const
  1803                          (fastype_of x) (fastype_of y) $ x $ y))
  1804                       (fn _ => cut_facts_tac ths 1 THEN asm_full_simp_tac prove_fresh_ss 1);
  1805                     val constr_fresh_thms =
  1806                       map (prove_fresh fresh_prems lhs) boundsl @
  1807                       map (prove_fresh fresh_prems rhs) boundsr @
  1808                       map (prove_fresh freshs2 lhs) freshs1 @
  1809                       map (prove_fresh freshs2 rhs) freshs1;
  1810 
  1811                     (** pi1 o (K as ts) = pi2 o (K bs us) **)
  1812                     val _ = warning "step 3: pi1 o (K as ts) = pi2 o (K bs us)";
  1813                     val pi1_pi2_eq = Goal.prove context'' [] []
  1814                       (HOLogic.mk_Trueprop (HOLogic.mk_eq
  1815                         (fold_rev (mk_perm []) pi1 lhs, fold_rev (mk_perm []) pi2 rhs)))
  1816                       (fn _ => EVERY
  1817                          [cut_facts_tac constr_fresh_thms 1,
  1818                           asm_simp_tac (HOL_basic_ss addsimps perm_fresh_fresh) 1,
  1819                           rtac prem 1]);
  1820 
  1821                     (** pi1 o ts = pi2 o us **)
  1822                     val _ = warning "step 4: pi1 o ts = pi2 o us";
  1823                     val pi1_pi2_eqs = map (fn (t, u) =>
  1824                       Goal.prove context'' [] []
  1825                         (HOLogic.mk_Trueprop (HOLogic.mk_eq
  1826                           (fold_rev (mk_perm []) pi1 t, fold_rev (mk_perm []) pi2 u)))
  1827                         (fn _ => EVERY
  1828                            [cut_facts_tac [pi1_pi2_eq] 1,
  1829                             asm_full_simp_tac (HOL_ss addsimps
  1830                               (calc_atm @ List.concat perm_simps' @
  1831                                fresh_prems' @ freshs2' @ abs_perm @
  1832                                alpha @ List.concat inject_thms)) 1]))
  1833                         (map snd cargsl' ~~ map snd cargsr');
  1834 
  1835                     (** pi1^-1 o pi2 o us = ts **)
  1836                     val _ = warning "step 5: pi1^-1 o pi2 o us = ts";
  1837                     val rpi1_pi2_eqs = map (fn ((t, u), eq) =>
  1838                       Goal.prove context'' [] []
  1839                         (HOLogic.mk_Trueprop (HOLogic.mk_eq
  1840                           (fold_rev (mk_perm []) (rpi1 @ pi2) u, t)))
  1841                         (fn _ => simp_tac (HOL_ss addsimps
  1842                            ((eq RS sym) :: perm_swap)) 1))
  1843                         (map snd cargsl' ~~ map snd cargsr' ~~ pi1_pi2_eqs);
  1844 
  1845                     val (rec_prems1, rec_prems2) =
  1846                       chop (length rec_prems div 2) rec_prems;
  1847 
  1848                     (** (ts, pi1^-1 o pi2 o vs) in rec_set **)
  1849                     val _ = warning "step 6: (ts, pi1^-1 o pi2 o vs) in rec_set";
  1850                     val rec_prems' = map (fn th =>
  1851                       let
  1852                         val _ $ (S $ x $ y) = prop_of th;
  1853                         val Const (s, _) = head_of S;
  1854                         val k = find_index (equal s) rec_set_names;
  1855                         val pi = rpi1 @ pi2;
  1856                         fun mk_pi z = fold_rev (mk_perm []) pi z;
  1857                         fun eqvt_tac p =
  1858                           let
  1859                             val U as Type (_, [Type (_, [T, _])]) = fastype_of p;
  1860                             val l = find_index (equal T) dt_atomTs;
  1861                             val th = List.nth (List.nth (rec_equiv_thms', l), k);
  1862                             val th' = Thm.instantiate ([],
  1863                               [(cterm_of thy11 (Var (("pi", 0), U)),
  1864                                 cterm_of thy11 p)]) th;
  1865                           in rtac th' 1 end;
  1866                         val th' = Goal.prove context'' [] []
  1867                           (HOLogic.mk_Trueprop (S $ mk_pi x $ mk_pi y))
  1868                           (fn _ => EVERY
  1869                              (map eqvt_tac pi @
  1870                               [simp_tac (HOL_ss addsimps (fresh_prems' @ freshs2' @
  1871                                  perm_swap @ perm_fresh_fresh)) 1,
  1872                                rtac th 1]))
  1873                       in
  1874                         Simplifier.simplify
  1875                           (HOL_basic_ss addsimps rpi1_pi2_eqs) th'
  1876                       end) rec_prems2;
  1877 
  1878                     val ihs = filter (fn th => case prop_of th of
  1879                       _ $ (Const ("All", _) $ _) => true | _ => false) prems';
  1880 
  1881                     (** pi1 o rs = pi2 o vs , rs = pi1^-1 o pi2 o vs **)
  1882                     val _ = warning "step 7: pi1 o rs = pi2 o vs , rs = pi1^-1 o pi2 o vs";
  1883                     val rec_eqns = map (fn (th, ih) =>
  1884                       let
  1885                         val th' = th RS (ih RS spec RS mp) RS sym;
  1886                         val _ $ (_ $ lhs $ rhs) = prop_of th';
  1887                         fun strip_perm (_ $ _ $ t) = strip_perm t
  1888                           | strip_perm t = t;
  1889                       in
  1890                         Goal.prove context'' [] []
  1891                            (HOLogic.mk_Trueprop (HOLogic.mk_eq
  1892                               (fold_rev (mk_perm []) pi1 lhs,
  1893                                fold_rev (mk_perm []) pi2 (strip_perm rhs))))
  1894                            (fn _ => simp_tac (HOL_basic_ss addsimps
  1895                               (th' :: perm_swap)) 1)
  1896                       end) (rec_prems' ~~ ihs);
  1897 
  1898                     (** as # rs **)
  1899                     val _ = warning "step 8: as # rs";
  1900                     val rec_freshs = List.concat
  1901                       (map (fn (rec_prem, ih) =>
  1902                         let
  1903                           val _ $ (S $ x $ (y as Free (_, T))) =
  1904                             prop_of rec_prem;
  1905                           val k = find_index (equal S) rec_sets;
  1906                           val atoms = List.concat (List.mapPartial (fn (bs, z) =>
  1907                             if z = x then NONE else SOME bs) cargsl')
  1908                         in
  1909                           map (fn a as Free (_, aT) =>
  1910                             let val l = find_index (equal aT) dt_atomTs;
  1911                             in
  1912                               Goal.prove context'' [] []
  1913                                 (HOLogic.mk_Trueprop (fresh_const aT T $ a $ y))
  1914                                 (fn _ => EVERY
  1915                                    (rtac (List.nth (List.nth (rec_fresh_thms, l), k)) 1 ::
  1916                                     map (fn th => rtac th 1)
  1917                                       (snd (List.nth (finite_thss, l))) @
  1918                                     [rtac rec_prem 1, rtac ih 1,
  1919                                      REPEAT_DETERM (resolve_tac fresh_prems 1)]))
  1920                             end) atoms
  1921                         end) (rec_prems1 ~~ ihs));
  1922 
  1923                     (** as # fK as ts rs , bs # fK bs us vs **)
  1924                     val _ = warning "step 9: as # fK as ts rs , bs # fK bs us vs";
  1925                     fun prove_fresh_result (a as Free (_, aT)) =
  1926                       Goal.prove context'' [] []
  1927                         (HOLogic.mk_Trueprop (fresh_const aT rT $ a $ rhs'))
  1928                         (fn _ => EVERY
  1929                            [resolve_tac fcbs 1,
  1930                             REPEAT_DETERM (resolve_tac
  1931                               (fresh_prems @ rec_freshs) 1),
  1932                             REPEAT_DETERM (resolve_tac (maps snd rec_fin_supp_thms') 1
  1933                               THEN resolve_tac rec_prems 1),
  1934                             resolve_tac P_ind_ths 1,
  1935                             REPEAT_DETERM (resolve_tac (P_ths @ rec_prems) 1)]);
  1936 
  1937                     val fresh_results'' = map prove_fresh_result boundsl;
  1938 
  1939                     fun prove_fresh_result'' ((a as Free (_, aT), b), th) =
  1940                       let val th' = Goal.prove context'' [] []
  1941                         (HOLogic.mk_Trueprop (fresh_const aT rT $
  1942                             fold_rev (mk_perm []) (rpi2 @ pi1) a $
  1943                             fold_rev (mk_perm []) (rpi2 @ pi1) rhs'))
  1944                         (fn _ => simp_tac (HOL_ss addsimps fresh_bij) 1 THEN
  1945                            rtac th 1)
  1946                       in
  1947                         Goal.prove context'' [] []
  1948                           (HOLogic.mk_Trueprop (fresh_const aT rT $ b $ lhs'))
  1949                           (fn _ => EVERY
  1950                              [cut_facts_tac [th'] 1,
  1951                               full_simp_tac (Simplifier.theory_context thy11 HOL_ss
  1952                                 addsimps rec_eqns @ pi1_pi2_eqs @ perm_swap
  1953                                 addsimprocs [NominalPermeq.perm_simproc_app]) 1,
  1954                               full_simp_tac (HOL_ss addsimps (calc_atm @
  1955                                 fresh_prems' @ freshs2' @ perm_fresh_fresh)) 1])
  1956                       end;
  1957 
  1958                     val fresh_results = fresh_results'' @ map prove_fresh_result''
  1959                       (boundsl ~~ boundsr ~~ fresh_results'');
  1960 
  1961                     (** cs # fK as ts rs , cs # fK bs us vs **)
  1962                     val _ = warning "step 10: cs # fK as ts rs , cs # fK bs us vs";
  1963                     fun prove_fresh_result' recs t (a as Free (_, aT)) =
  1964                       Goal.prove context'' [] []
  1965                         (HOLogic.mk_Trueprop (fresh_const aT rT $ a $ t))
  1966                         (fn _ => EVERY
  1967                           [cut_facts_tac recs 1,
  1968                            REPEAT_DETERM (dresolve_tac
  1969                              (the (AList.lookup op = rec_fin_supp_thms' aT)) 1),
  1970                            NominalPermeq.fresh_guess_tac
  1971                              (HOL_ss addsimps (freshs2 @
  1972                                 fs_atoms @ fresh_atm @
  1973                                 List.concat (map snd finite_thss))) 1]);
  1974 
  1975                     val fresh_results' =
  1976                       map (prove_fresh_result' rec_prems1 rhs') freshs1 @
  1977                       map (prove_fresh_result' rec_prems2 lhs') freshs1;
  1978 
  1979                     (** pi1 o (fK as ts rs) = pi2 o (fK bs us vs) **)
  1980                     val _ = warning "step 11: pi1 o (fK as ts rs) = pi2 o (fK bs us vs)";
  1981                     val pi1_pi2_result = Goal.prove context'' [] []
  1982                       (HOLogic.mk_Trueprop (HOLogic.mk_eq
  1983                         (fold_rev (mk_perm []) pi1 rhs', fold_rev (mk_perm []) pi2 lhs')))
  1984                       (fn _ => simp_tac (Simplifier.context context'' HOL_ss
  1985                            addsimps pi1_pi2_eqs @ rec_eqns
  1986                            addsimprocs [NominalPermeq.perm_simproc_app]) 1 THEN
  1987                          TRY (simp_tac (HOL_ss addsimps
  1988                            (fresh_prems' @ freshs2' @ calc_atm @ perm_fresh_fresh)) 1));
  1989 
  1990                     val _ = warning "final result";
  1991                     val final = Goal.prove context'' [] [] (term_of concl)
  1992                       (fn _ => cut_facts_tac [pi1_pi2_result RS sym] 1 THEN
  1993                         full_simp_tac (HOL_basic_ss addsimps perm_fresh_fresh @
  1994                           fresh_results @ fresh_results') 1);
  1995                     val final' = ProofContext.export context'' context' [final];
  1996                     val _ = warning "finished!"
  1997                   in
  1998                     resolve_tac final' 1
  1999                   end) context 1])) idxss) (ndescr ~~ rec_elims))
  2000          end));
  2001 
  2002     val rec_total_thms = map (fn r => r RS theI') rec_unique_thms;
  2003 
  2004     (* define primrec combinators *)
  2005 
  2006     val big_reccomb_name = (space_implode "_" new_type_names) ^ "_rec";
  2007     val reccomb_names = map (Sign.full_bname thy11)
  2008       (if length descr'' = 1 then [big_reccomb_name] else
  2009         (map ((curry (op ^) (big_reccomb_name ^ "_")) o string_of_int)
  2010           (1 upto (length descr''))));
  2011     val reccombs = map (fn ((name, T), T') => list_comb
  2012       (Const (name, rec_fn_Ts @ [T] ---> T'), rec_fns))
  2013         (reccomb_names ~~ recTs ~~ rec_result_Ts);
  2014 
  2015     val (reccomb_defs, thy12) =
  2016       thy11
  2017       |> Sign.add_consts_i (map (fn ((name, T), T') =>
  2018           (Binding.name (Long_Name.base_name name), rec_fn_Ts @ [T] ---> T', NoSyn))
  2019           (reccomb_names ~~ recTs ~~ rec_result_Ts))
  2020       |> (PureThy.add_defs false o map Thm.no_attributes) (map (fn ((((name, comb), set), T), T') =>
  2021           (Binding.name (Long_Name.base_name name ^ "_def"), Logic.mk_equals (comb, absfree ("x", T,
  2022            Const ("The", (T' --> HOLogic.boolT) --> T') $ absfree ("y", T',
  2023              set $ Free ("x", T) $ Free ("y", T'))))))
  2024                (reccomb_names ~~ reccombs ~~ rec_sets ~~ recTs ~~ rec_result_Ts));
  2025 
  2026     (* prove characteristic equations for primrec combinators *)
  2027 
  2028     val rec_thms = map (fn (prems, concl) =>
  2029       let
  2030         val _ $ (_ $ (_ $ x) $ _) = concl;
  2031         val (_, cargs) = strip_comb x;
  2032         val ps = map (fn (x as Free (_, T), i) =>
  2033           (Free ("x" ^ string_of_int i, T), x)) (cargs ~~ (1 upto length cargs));
  2034         val concl' = subst_atomic_types (rec_result_Ts' ~~ rec_result_Ts) concl;
  2035         val prems' = List.concat finite_premss @ finite_ctxt_prems @
  2036           rec_prems @ rec_prems' @ map (subst_atomic ps) prems;
  2037         fun solve rules prems = resolve_tac rules THEN_ALL_NEW
  2038           (resolve_tac prems THEN_ALL_NEW atac)
  2039       in
  2040         Goal.prove_global thy12 []
  2041           (map (augment_sort thy12 fs_cp_sort) prems')
  2042           (augment_sort thy12 fs_cp_sort concl')
  2043           (fn {prems, ...} => EVERY
  2044             [rewrite_goals_tac reccomb_defs,
  2045              rtac the1_equality 1,
  2046              solve rec_unique_thms prems 1,
  2047              resolve_tac rec_intrs 1,
  2048              REPEAT (solve (prems @ rec_total_thms) prems 1)])
  2049       end) (rec_eq_prems ~~
  2050         DatatypeProp.make_primrecs new_type_names descr' sorts thy12);
  2051 
  2052     val dt_infos = map (make_dt_info pdescr sorts induct reccomb_names rec_thms)
  2053       ((0 upto length descr1 - 1) ~~ descr1 ~~ distinct_thms ~~ inject_thms);
  2054 
  2055     (* FIXME: theorems are stored in database for testing only *)
  2056     val (_, thy13) = thy12 |>
  2057       PureThy.add_thmss
  2058         [((Binding.name "rec_equiv", List.concat rec_equiv_thms), []),
  2059          ((Binding.name "rec_equiv'", List.concat rec_equiv_thms'), []),
  2060          ((Binding.name "rec_fin_supp", List.concat rec_fin_supp_thms), []),
  2061          ((Binding.name "rec_fresh", List.concat rec_fresh_thms), []),
  2062          ((Binding.name "rec_unique", map standard rec_unique_thms), []),
  2063          ((Binding.name "recs", rec_thms), [])] ||>
  2064       Sign.parent_path ||>
  2065       map_nominal_datatypes (fold Symtab.update dt_infos);
  2066 
  2067   in
  2068     thy13
  2069   end;
  2070 
  2071 val add_nominal_datatype = gen_add_nominal_datatype Datatype.read_typ;
  2072 
  2073 
  2074 (* FIXME: The following stuff should be exported by Datatype *)
  2075 
  2076 local structure P = OuterParse and K = OuterKeyword in
  2077 
  2078 val datatype_decl =
  2079   Scan.option (P.$$$ "(" |-- P.name --| P.$$$ ")") -- P.type_args -- P.name -- P.opt_infix --
  2080     (P.$$$ "=" |-- P.enum1 "|" (P.name -- Scan.repeat P.typ -- P.opt_mixfix));
  2081 
  2082 fun mk_datatype args =
  2083   let
  2084     val names = map (fn ((((NONE, _), t), _), _) => t | ((((SOME t, _), _), _), _) => t) args;
  2085     val specs = map (fn ((((_, vs), t), mx), cons) =>
  2086       (vs, t, mx, map (fn ((x, y), z) => (x, y, z)) cons)) args;
  2087   in add_nominal_datatype DatatypeAux.default_datatype_config names specs end;
  2088 
  2089 val _ =
  2090   OuterSyntax.command "nominal_datatype" "define inductive datatypes" K.thy_decl
  2091     (P.and_list1 datatype_decl >> (Toplevel.theory o mk_datatype));
  2092 
  2093 end;
  2094 
  2095 end