src/HOL/Tools/record.ML
author haftmann
Fri Jun 19 17:23:21 2009 +0200 (2009-06-19)
changeset 31723 f5cafe803b55
parent 31136 src/HOL/Tools/record_package.ML@85d04515abb3
child 31902 862ae16a799d
permissions -rw-r--r--
discontinued ancient tradition to suffix certain ML module names with "_package"
     1 (*  Title:      HOL/Tools/record.ML
     2     Author:     Wolfgang Naraschewski, Norbert Schirmer and Markus Wenzel, TU Muenchen
     3 
     4 Extensible records with structural subtyping in HOL.
     5 *)
     6 
     7 
     8 signature BASIC_RECORD =
     9 sig
    10   val record_simproc: simproc
    11   val record_eq_simproc: simproc
    12   val record_upd_simproc: simproc
    13   val record_split_simproc: (term -> int) -> simproc
    14   val record_ex_sel_eq_simproc: simproc
    15   val record_split_tac: int -> tactic
    16   val record_split_simp_tac: thm list -> (term -> int) -> int -> tactic
    17   val record_split_name: string
    18   val record_split_wrapper: string * wrapper
    19   val print_record_type_abbr: bool ref
    20   val print_record_type_as_fields: bool ref
    21 end;
    22 
    23 signature RECORD =
    24 sig
    25   include BASIC_RECORD
    26   val timing: bool ref
    27   val record_quick_and_dirty_sensitive: bool ref
    28   val updateN: string
    29   val updN: string
    30   val ext_typeN: string
    31   val extN: string
    32   val makeN: string
    33   val moreN: string
    34   val ext_dest: string
    35 
    36   val last_extT: typ -> (string * typ list) option
    37   val dest_recTs : typ -> (string * typ list) list
    38   val get_extT_fields:  theory -> typ -> (string * typ) list * (string * typ)
    39   val get_recT_fields:  theory -> typ -> (string * typ) list * (string * typ)
    40   val get_parent: theory -> string -> (typ list * string) option
    41   val get_extension: theory -> string -> (string * typ list) option
    42   val get_extinjects: theory -> thm list
    43   val get_simpset: theory -> simpset
    44   val print_records: theory -> unit
    45   val read_typ: Proof.context -> string -> (string * sort) list -> typ * (string * sort) list
    46   val cert_typ: Proof.context -> typ -> (string * sort) list -> typ * (string * sort) list
    47   val add_record: bool -> string list * string -> string option -> (string * string * mixfix) list
    48     -> theory -> theory
    49   val add_record_i: bool -> string list * string -> (typ list * string) option
    50     -> (string * typ * mixfix) list -> theory -> theory
    51   val setup: theory -> theory
    52 end;
    53 
    54 
    55 structure Record: RECORD =
    56 struct
    57 
    58 val eq_reflection = thm "eq_reflection";
    59 val rec_UNIV_I = thm "rec_UNIV_I";
    60 val rec_True_simp = thm "rec_True_simp";
    61 val Pair_eq = thm "Product_Type.prod.inject";
    62 val atomize_all = thm "HOL.atomize_all";
    63 val atomize_imp = thm "HOL.atomize_imp";
    64 val meta_allE = thm "Pure.meta_allE";
    65 val prop_subst = thm "prop_subst";
    66 val Pair_sel_convs = [fst_conv,snd_conv];
    67 val K_record_comp = @{thm "K_record_comp"};
    68 val K_comp_convs = [@{thm o_apply}, K_record_comp]
    69 
    70 (** name components **)
    71 
    72 val rN = "r";
    73 val wN = "w";
    74 val moreN = "more";
    75 val schemeN = "_scheme";
    76 val ext_typeN = "_ext_type";
    77 val extN ="_ext";
    78 val casesN = "_cases";
    79 val ext_dest = "_sel";
    80 val updateN = "_update";
    81 val updN = "_upd";
    82 val makeN = "make";
    83 val fields_selN = "fields";
    84 val extendN = "extend";
    85 val truncateN = "truncate";
    86 
    87 (*see typedef.ML*)
    88 val RepN = "Rep_";
    89 val AbsN = "Abs_";
    90 
    91 (*** utilities ***)
    92 
    93 fun but_last xs = fst (split_last xs);
    94 
    95 fun varifyT midx =
    96   let fun varify (a, S) = TVar ((a, midx + 1), S);
    97   in map_type_tfree varify end;
    98 
    99 fun domain_type' T =
   100     domain_type T handle Match => T;
   101 
   102 fun range_type' T =
   103     range_type T handle Match => T;
   104 
   105 (* messages *)
   106 
   107 fun trace_thm str thm =
   108     tracing (str ^ (Pretty.string_of (Display.pretty_thm thm)));
   109 
   110 fun trace_thms str thms =
   111     (tracing str; map (trace_thm "") thms);
   112 
   113 fun trace_term str t =
   114     tracing (str ^ Syntax.string_of_term_global Pure.thy t);
   115 
   116 (* timing *)
   117 
   118 val timing = ref false;
   119 fun timeit_msg s x = if !timing then (warning s; timeit x) else x ();
   120 fun timing_msg s = if !timing then warning s else ();
   121 
   122 (* syntax *)
   123 
   124 fun prune n xs = Library.drop (n, xs);
   125 fun prefix_base s = Long_Name.map_base_name (fn bname => s ^ bname);
   126 
   127 val Trueprop = HOLogic.mk_Trueprop;
   128 fun All xs t = Term.list_all_free (xs, t);
   129 
   130 infix 9 $$;
   131 infix 0 :== ===;
   132 infixr 0 ==>;
   133 
   134 val (op $$) = Term.list_comb;
   135 val (op :==) = PrimitiveDefs.mk_defpair;
   136 val (op ===) = Trueprop o HOLogic.mk_eq;
   137 val (op ==>) = Logic.mk_implies;
   138 
   139 (* morphisms *)
   140 
   141 fun mk_RepN name = suffix ext_typeN (prefix_base RepN name);
   142 fun mk_AbsN name = suffix ext_typeN (prefix_base AbsN name);
   143 
   144 fun mk_Rep name repT absT  =
   145   Const (suffix ext_typeN (prefix_base RepN name),absT --> repT);
   146 
   147 fun mk_Abs name repT absT =
   148   Const (mk_AbsN name,repT --> absT);
   149 
   150 (* constructor *)
   151 
   152 fun mk_extC (name,T) Ts  = (suffix extN name, Ts ---> T);
   153 
   154 fun mk_ext (name,T) ts =
   155   let val Ts = map fastype_of ts
   156   in list_comb (Const (mk_extC (name,T) Ts),ts) end;
   157 
   158 (* cases *)
   159 
   160 fun mk_casesC (name,T,vT) Ts = (suffix casesN name, (Ts ---> vT) --> T --> vT)
   161 
   162 fun mk_cases (name,T,vT) f =
   163   let val Ts = binder_types (fastype_of f)
   164   in Const (mk_casesC (name,T,vT) Ts) $ f end;
   165 
   166 (* selector *)
   167 
   168 fun mk_selC sT (c,T) = (c,sT --> T);
   169 
   170 fun mk_sel s (c,T) =
   171   let val sT = fastype_of s
   172   in Const (mk_selC sT (c,T)) $ s end;
   173 
   174 (* updates *)
   175 
   176 fun mk_updC sfx sT (c,T) = (suffix sfx c, (T --> T) --> sT --> sT);
   177 
   178 fun mk_upd' sfx c v sT =
   179   let val vT = domain_type (fastype_of v);
   180   in Const (mk_updC sfx sT (c, vT)) $ v  end;
   181 
   182 fun mk_upd sfx c v s = mk_upd' sfx c v (fastype_of s) $ s
   183 
   184 (* types *)
   185 
   186 fun dest_recT (typ as Type (c_ext_type, Ts as (T::_))) =
   187       (case try (unsuffix ext_typeN) c_ext_type of
   188         NONE => raise TYPE ("Record.dest_recT", [typ], [])
   189       | SOME c => ((c, Ts), List.last Ts))
   190   | dest_recT typ = raise TYPE ("Record.dest_recT", [typ], []);
   191 
   192 fun is_recT T =
   193   (case try dest_recT T of NONE => false | SOME _ => true);
   194 
   195 fun dest_recTs T =
   196   let val ((c, Ts), U) = dest_recT T
   197   in (c, Ts) :: dest_recTs U
   198   end handle TYPE _ => [];
   199 
   200 fun last_extT T =
   201   let val ((c, Ts), U) = dest_recT T
   202   in (case last_extT U of
   203         NONE => SOME (c,Ts)
   204       | SOME l => SOME l)
   205   end handle TYPE _ => NONE
   206 
   207 fun rec_id i T =
   208   let val rTs = dest_recTs T
   209       val rTs' = if i < 0 then rTs else Library.take (i,rTs)
   210   in Library.foldl (fn (s,(c,T)) => s ^ c) ("",rTs') end;
   211 
   212 (*** extend theory by record definition ***)
   213 
   214 (** record info **)
   215 
   216 (* type record_info and parent_info  *)
   217 
   218 type record_info =
   219  {args: (string * sort) list,
   220   parent: (typ list * string) option,
   221   fields: (string * typ) list,
   222   extension: (string * typ list),
   223   induct: thm
   224  };
   225 
   226 fun make_record_info args parent fields extension induct =
   227  {args = args, parent = parent, fields = fields, extension = extension,
   228   induct = induct}: record_info;
   229 
   230 
   231 type parent_info =
   232  {name: string,
   233   fields: (string * typ) list,
   234   extension: (string * typ list),
   235   induct: thm
   236 };
   237 
   238 fun make_parent_info name fields extension induct =
   239  {name = name, fields = fields, extension = extension, induct = induct}: parent_info;
   240 
   241 
   242 (* theory data *)
   243 
   244 type record_data =
   245  {records: record_info Symtab.table,
   246   sel_upd:
   247    {selectors: unit Symtab.table,
   248     updates: string Symtab.table,
   249     simpset: Simplifier.simpset},
   250   equalities: thm Symtab.table,
   251   extinjects: thm list,
   252   extsplit: thm Symtab.table, (* maps extension name to split rule *)
   253   splits: (thm*thm*thm*thm) Symtab.table,    (* !!,!,EX - split-equalities,induct rule *)
   254   extfields: (string*typ) list Symtab.table, (* maps extension to its fields *)
   255   fieldext: (string*typ list) Symtab.table   (* maps field to its extension *)
   256 };
   257 
   258 fun make_record_data
   259       records sel_upd equalities extinjects extsplit splits extfields fieldext =
   260  {records = records, sel_upd = sel_upd,
   261   equalities = equalities, extinjects=extinjects, extsplit = extsplit, splits = splits,
   262   extfields = extfields, fieldext = fieldext }: record_data;
   263 
   264 structure RecordsData = TheoryDataFun
   265 (
   266   type T = record_data;
   267   val empty =
   268     make_record_data Symtab.empty
   269       {selectors = Symtab.empty, updates = Symtab.empty, simpset = HOL_basic_ss}
   270        Symtab.empty [] Symtab.empty Symtab.empty Symtab.empty Symtab.empty;
   271 
   272   val copy = I;
   273   val extend = I;
   274   fun merge _
   275    ({records = recs1,
   276      sel_upd = {selectors = sels1, updates = upds1, simpset = ss1},
   277      equalities = equalities1,
   278      extinjects = extinjects1,
   279      extsplit = extsplit1,
   280      splits = splits1,
   281      extfields = extfields1,
   282      fieldext = fieldext1},
   283     {records = recs2,
   284      sel_upd = {selectors = sels2, updates = upds2, simpset = ss2},
   285      equalities = equalities2,
   286      extinjects = extinjects2,
   287      extsplit = extsplit2,
   288      splits = splits2,
   289      extfields = extfields2,
   290      fieldext = fieldext2}) =
   291     make_record_data
   292       (Symtab.merge (K true) (recs1, recs2))
   293       {selectors = Symtab.merge (K true) (sels1, sels2),
   294         updates = Symtab.merge (K true) (upds1, upds2),
   295         simpset = Simplifier.merge_ss (ss1, ss2)}
   296       (Symtab.merge Thm.eq_thm_prop (equalities1, equalities2))
   297       (Library.merge Thm.eq_thm_prop (extinjects1, extinjects2))
   298       (Symtab.merge Thm.eq_thm_prop (extsplit1,extsplit2))
   299       (Symtab.merge (fn ((a,b,c,d),(w,x,y,z))
   300                      => Thm.eq_thm (a,w) andalso Thm.eq_thm (b,x) andalso
   301                         Thm.eq_thm (c,y) andalso Thm.eq_thm (d,z))
   302                     (splits1, splits2))
   303       (Symtab.merge (K true) (extfields1,extfields2))
   304       (Symtab.merge (K true) (fieldext1,fieldext2));
   305 );
   306 
   307 fun print_records thy =
   308   let
   309     val {records = recs, ...} = RecordsData.get thy;
   310     val prt_typ = Syntax.pretty_typ_global thy;
   311 
   312     fun pretty_parent NONE = []
   313       | pretty_parent (SOME (Ts, name)) =
   314           [Pretty.block [prt_typ (Type (name, Ts)), Pretty.str " +"]];
   315 
   316     fun pretty_field (c, T) = Pretty.block
   317       [Pretty.str (Sign.extern_const thy c), Pretty.str " ::",
   318         Pretty.brk 1, Pretty.quote (prt_typ T)];
   319 
   320     fun pretty_record (name, {args, parent, fields, ...}: record_info) =
   321       Pretty.block (Pretty.fbreaks (Pretty.block
   322         [prt_typ (Type (name, map TFree args)), Pretty.str " = "] ::
   323         pretty_parent parent @ map pretty_field fields));
   324   in map pretty_record (Symtab.dest recs) |> Pretty.chunks |> Pretty.writeln end;
   325 
   326 
   327 (* access 'records' *)
   328 
   329 val get_record = Symtab.lookup o #records o RecordsData.get;
   330 
   331 fun put_record name info thy =
   332   let
   333     val {records, sel_upd, equalities, extinjects,extsplit,splits,extfields,fieldext} =
   334           RecordsData.get thy;
   335     val data = make_record_data (Symtab.update (name, info) records)
   336       sel_upd equalities extinjects extsplit splits extfields fieldext;
   337   in RecordsData.put data thy end;
   338 
   339 
   340 (* access 'sel_upd' *)
   341 
   342 val get_sel_upd = #sel_upd o RecordsData.get;
   343 
   344 val is_selector = Symtab.defined o #selectors o get_sel_upd;
   345 val get_updates = Symtab.lookup o #updates o get_sel_upd;
   346 fun get_simpset thy = Simplifier.theory_context thy (#simpset (get_sel_upd thy));
   347 
   348 fun put_sel_upd names simps = RecordsData.map (fn {records,
   349   sel_upd = {selectors, updates, simpset},
   350     equalities, extinjects, extsplit, splits, extfields, fieldext} =>
   351   make_record_data records
   352     {selectors = fold (fn name => Symtab.update (name, ())) names selectors,
   353       updates = fold (fn name => Symtab.update ((suffix updateN) name, name)) names updates,
   354       simpset = Simplifier.addsimps (simpset, simps)}
   355       equalities extinjects extsplit splits extfields fieldext);
   356 
   357 
   358 (* access 'equalities' *)
   359 
   360 fun add_record_equalities name thm thy =
   361   let
   362     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields,fieldext} =
   363           RecordsData.get thy;
   364     val data = make_record_data records sel_upd
   365            (Symtab.update_new (name, thm) equalities) extinjects extsplit
   366            splits extfields fieldext;
   367   in RecordsData.put data thy end;
   368 
   369 val get_equalities =Symtab.lookup o #equalities o RecordsData.get;
   370 
   371 
   372 (* access 'extinjects' *)
   373 
   374 fun add_extinjects thm thy =
   375   let
   376     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields,fieldext} =
   377           RecordsData.get thy;
   378     val data =
   379       make_record_data records sel_upd equalities (insert Thm.eq_thm_prop thm extinjects) extsplit
   380         splits extfields fieldext;
   381   in RecordsData.put data thy end;
   382 
   383 val get_extinjects = rev o #extinjects o RecordsData.get;
   384 
   385 
   386 (* access 'extsplit' *)
   387 
   388 fun add_extsplit name thm thy =
   389   let
   390     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields,fieldext} =
   391           RecordsData.get thy;
   392     val data = make_record_data records sel_upd
   393       equalities extinjects (Symtab.update_new (name, thm) extsplit) splits
   394       extfields fieldext;
   395   in RecordsData.put data thy end;
   396 
   397 val get_extsplit = Symtab.lookup o #extsplit o RecordsData.get;
   398 
   399 
   400 (* access 'splits' *)
   401 
   402 fun add_record_splits name thmP thy =
   403   let
   404     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields,fieldext} =
   405           RecordsData.get thy;
   406     val data = make_record_data records sel_upd
   407       equalities extinjects extsplit (Symtab.update_new (name, thmP) splits)
   408       extfields fieldext;
   409   in RecordsData.put data thy end;
   410 
   411 val get_splits = Symtab.lookup o #splits o RecordsData.get;
   412 
   413 
   414 (* parent/extension of named record *)
   415 
   416 val get_parent = (Option.join o Option.map #parent) oo (Symtab.lookup o #records o RecordsData.get);
   417 val get_extension = Option.map #extension oo (Symtab.lookup o #records o RecordsData.get);
   418 
   419 
   420 (* access 'extfields' *)
   421 
   422 fun add_extfields name fields thy =
   423   let
   424     val {records, sel_upd, equalities, extinjects, extsplit,splits, extfields, fieldext} =
   425           RecordsData.get thy;
   426     val data = make_record_data records sel_upd
   427          equalities extinjects extsplit splits
   428          (Symtab.update_new (name, fields) extfields) fieldext;
   429   in RecordsData.put data thy end;
   430 
   431 val get_extfields = Symtab.lookup o #extfields o RecordsData.get;
   432 
   433 fun get_extT_fields thy T =
   434   let
   435     val ((name,Ts),moreT) = dest_recT T;
   436     val recname = let val (nm::recn::rst) = rev (Long_Name.explode name)
   437                   in Long_Name.implode (rev (nm::rst)) end;
   438     val midx = maxidx_of_typs (moreT::Ts);
   439     val varifyT = varifyT midx;
   440     val {records,extfields,...} = RecordsData.get thy;
   441     val (flds,(more,_)) = split_last (Symtab.lookup_list extfields name);
   442     val args = map varifyT (snd (#extension (the (Symtab.lookup records recname))));
   443 
   444     val subst = fold (Sign.typ_match thy) (but_last args ~~ but_last Ts) (Vartab.empty);
   445     val flds' = map (apsnd ((Envir.norm_type subst) o varifyT)) flds;
   446   in (flds',(more,moreT)) end;
   447 
   448 fun get_recT_fields thy T =
   449   let
   450     val (root_flds,(root_more,root_moreT)) = get_extT_fields thy T;
   451     val (rest_flds,rest_more) =
   452            if is_recT root_moreT then get_recT_fields thy root_moreT
   453            else ([],(root_more,root_moreT));
   454   in (root_flds@rest_flds,rest_more) end;
   455 
   456 
   457 (* access 'fieldext' *)
   458 
   459 fun add_fieldext extname_types fields thy =
   460   let
   461     val {records, sel_upd, equalities, extinjects, extsplit, splits, extfields, fieldext} =
   462            RecordsData.get thy;
   463     val fieldext' =
   464       fold (fn field => Symtab.update_new (field, extname_types)) fields fieldext;
   465     val data=make_record_data records sel_upd equalities extinjects extsplit
   466               splits extfields fieldext';
   467   in RecordsData.put data thy end;
   468 
   469 
   470 val get_fieldext = Symtab.lookup o #fieldext o RecordsData.get;
   471 
   472 
   473 (* parent records *)
   474 
   475 fun add_parents thy NONE parents = parents
   476   | add_parents thy (SOME (types, name)) parents =
   477       let
   478         fun err msg = error (msg ^ " parent record " ^ quote name);
   479 
   480         val {args, parent, fields, extension, induct} =
   481           (case get_record thy name of SOME info => info | NONE => err "Unknown");
   482         val _ = if length types <> length args then err "Bad number of arguments for" else ();
   483 
   484         fun bad_inst ((x, S), T) =
   485           if Sign.of_sort thy (T, S) then NONE else SOME x
   486         val bads = List.mapPartial bad_inst (args ~~ types);
   487         val _ = null bads orelse err ("Ill-sorted instantiation of " ^ commas bads ^ " in");
   488 
   489         val inst = map fst args ~~ types;
   490         val subst = Term.map_type_tfree (the o AList.lookup (op =) inst o fst);
   491         val parent' = Option.map (apfst (map subst)) parent;
   492         val fields' = map (apsnd subst) fields;
   493         val extension' = apsnd (map subst) extension;
   494       in
   495         add_parents thy parent'
   496           (make_parent_info name fields' extension' induct :: parents)
   497       end;
   498 
   499 
   500 
   501 (** concrete syntax for records **)
   502 
   503 (* decode type *)
   504 
   505 fun decode_type thy t =
   506   let
   507     fun get_sort xs n = AList.lookup (op =) xs (n: indexname) |> the_default (Sign.defaultS thy);
   508     val map_sort = Sign.intern_sort thy;
   509   in
   510     Syntax.typ_of_term (get_sort (Syntax.term_sorts map_sort t)) map_sort t
   511     |> Sign.intern_tycons thy
   512   end;
   513 
   514 
   515 (* parse translations *)
   516 
   517 fun gen_field_tr mark sfx (t as Const (c, _) $ Const (name, _) $ arg) =
   518       if c = mark then Syntax.const (suffix sfx name) $ (Abs ("_",dummyT, arg))
   519       else raise TERM ("gen_field_tr: " ^ mark, [t])
   520   | gen_field_tr mark _ t = raise TERM ("gen_field_tr: " ^ mark, [t]);
   521 
   522 fun gen_fields_tr sep mark sfx (tm as Const (c, _) $ t $ u) =
   523       if c = sep then gen_field_tr mark sfx t :: gen_fields_tr sep mark sfx u
   524       else [gen_field_tr mark sfx tm]
   525   | gen_fields_tr _ mark sfx tm = [gen_field_tr mark sfx tm];
   526 
   527 
   528 fun record_update_tr [t, u] =
   529       Library.foldr (op $) (rev (gen_fields_tr "_updates" "_update" updateN u), t)
   530   | record_update_tr ts = raise TERM ("record_update_tr", ts);
   531 
   532 fun update_name_tr (Free (x, T) :: ts) = Free (suffix updateN x, T) $$ ts
   533   | update_name_tr (Const (x, T) :: ts) = Const (suffix updateN x, T) $$ ts
   534   | update_name_tr (((c as Const ("_constrain", _)) $ t $ ty) :: ts) =
   535       (c $ update_name_tr [t] $ (Syntax.const "fun" $ ty $ Syntax.const "dummy")) $$ ts
   536   | update_name_tr ts = raise TERM ("update_name_tr", ts);
   537 
   538 fun dest_ext_field mark (t as (Const (c,_) $ Const (name,_) $ arg)) =
   539      if c = mark then (name,arg) else raise TERM ("dest_ext_field: " ^ mark, [t])
   540   | dest_ext_field _ t = raise TERM ("dest_ext_field", [t])
   541 
   542 fun dest_ext_fields sep mark (trm as (Const (c,_) $ t $ u)) =
   543      if c = sep then dest_ext_field mark t::dest_ext_fields sep mark u
   544      else [dest_ext_field mark trm]
   545   | dest_ext_fields _ mark t = [dest_ext_field mark t]
   546 
   547 fun gen_ext_fields_tr sep mark sfx more ctxt t =
   548   let
   549     val thy = ProofContext.theory_of ctxt;
   550     val msg = "error in record input: ";
   551     val fieldargs = dest_ext_fields sep mark t;
   552     fun splitargs (field::fields) ((name,arg)::fargs) =
   553           if can (unsuffix name) field
   554           then let val (args,rest) = splitargs fields fargs
   555                in (arg::args,rest) end
   556           else raise TERM (msg ^ "expecting field " ^ field ^ " but got " ^ name, [t])
   557       | splitargs [] (fargs as (_::_)) = ([],fargs)
   558       | splitargs (_::_) [] = raise TERM (msg ^ "expecting more fields", [t])
   559       | splitargs _ _ = ([],[]);
   560 
   561     fun mk_ext (fargs as (name,arg)::_) =
   562          (case get_fieldext thy (Sign.intern_const thy name) of
   563             SOME (ext,_) => (case get_extfields thy ext of
   564                                SOME flds
   565                                  => let val (args,rest) =
   566                                                splitargs (map fst (but_last flds)) fargs;
   567                                         val more' = mk_ext rest;
   568                                     in list_comb (Syntax.const (suffix sfx ext),args@[more'])
   569                                     end
   570                              | NONE => raise TERM(msg ^ "no fields defined for "
   571                                                    ^ ext,[t]))
   572           | NONE => raise TERM (msg ^ name ^" is no proper field",[t]))
   573       | mk_ext [] = more
   574 
   575   in mk_ext fieldargs end;
   576 
   577 fun gen_ext_type_tr sep mark sfx more ctxt t =
   578   let
   579     val thy = ProofContext.theory_of ctxt;
   580     val msg = "error in record-type input: ";
   581     val fieldargs = dest_ext_fields sep mark t;
   582     fun splitargs (field::fields) ((name,arg)::fargs) =
   583           if can (unsuffix name) field
   584           then let val (args,rest) = splitargs fields fargs
   585                in (arg::args,rest) end
   586           else raise TERM (msg ^ "expecting field " ^ field ^ " but got " ^ name, [t])
   587       | splitargs [] (fargs as (_::_)) = ([],fargs)
   588       | splitargs (_::_) [] = raise TERM (msg ^ "expecting more fields", [t])
   589       | splitargs _ _ = ([],[]);
   590 
   591     fun mk_ext (fargs as (name,arg)::_) =
   592          (case get_fieldext thy (Sign.intern_const thy name) of
   593             SOME (ext,alphas) =>
   594               (case get_extfields thy ext of
   595                  SOME flds
   596                   => (let
   597                        val flds' = but_last flds;
   598                        val types = map snd flds';
   599                        val (args,rest) = splitargs (map fst flds') fargs;
   600                        val argtypes = map (Sign.certify_typ thy o decode_type thy) args;
   601                        val midx =  fold (fn T => fn i => Int.max (maxidx_of_typ T, i))
   602                                     argtypes 0;
   603                        val varifyT = varifyT midx;
   604                        val vartypes = map varifyT types;
   605 
   606                        val subst = fold (Sign.typ_match thy) (vartypes ~~ argtypes)
   607                                             Vartab.empty;
   608                        val alphas' = map ((Syntax.term_of_typ (! Syntax.show_sorts)) o
   609                                           Envir.norm_type subst o varifyT)
   610                                          (but_last alphas);
   611 
   612                        val more' = mk_ext rest;
   613                      in list_comb (Syntax.const (suffix sfx ext),alphas'@[more'])
   614                      end handle TYPE_MATCH => raise
   615                            TERM (msg ^ "type is no proper record (extension)", [t]))
   616                | NONE => raise TERM (msg ^ "no fields defined for " ^ ext,[t]))
   617           | NONE => raise TERM (msg ^ name ^" is no proper field",[t]))
   618       | mk_ext [] = more
   619 
   620   in mk_ext fieldargs end;
   621 
   622 fun gen_adv_record_tr sep mark sfx unit ctxt [t] =
   623       gen_ext_fields_tr sep mark sfx unit ctxt t
   624   | gen_adv_record_tr _ _ _ _ _ ts = raise TERM ("gen_record_tr", ts);
   625 
   626 fun gen_adv_record_scheme_tr sep mark sfx ctxt [t, more] =
   627       gen_ext_fields_tr sep mark sfx more ctxt t
   628   | gen_adv_record_scheme_tr _ _ _ _ ts = raise TERM ("gen_record_scheme_tr", ts);
   629 
   630 fun gen_adv_record_type_tr sep mark sfx unit ctxt [t] =
   631       gen_ext_type_tr sep mark sfx unit ctxt t
   632   | gen_adv_record_type_tr _ _ _ _ _ ts = raise TERM ("gen_record_tr", ts);
   633 
   634 fun gen_adv_record_type_scheme_tr sep mark sfx ctxt [t, more] =
   635       gen_ext_type_tr sep mark sfx more ctxt t
   636   | gen_adv_record_type_scheme_tr _ _ _ _ ts = raise TERM ("gen_record_scheme_tr", ts);
   637 
   638 val adv_record_tr = gen_adv_record_tr "_fields" "_field" extN HOLogic.unit;
   639 val adv_record_scheme_tr = gen_adv_record_scheme_tr "_fields" "_field" extN;
   640 
   641 val adv_record_type_tr =
   642       gen_adv_record_type_tr "_field_types" "_field_type" ext_typeN
   643         (Syntax.term_of_typ false (HOLogic.unitT));
   644 val adv_record_type_scheme_tr =
   645       gen_adv_record_type_scheme_tr "_field_types" "_field_type" ext_typeN;
   646 
   647 
   648 val parse_translation =
   649  [("_record_update", record_update_tr),
   650   ("_update_name", update_name_tr)];
   651 
   652 
   653 val adv_parse_translation =
   654  [("_record",adv_record_tr),
   655   ("_record_scheme",adv_record_scheme_tr),
   656   ("_record_type",adv_record_type_tr),
   657   ("_record_type_scheme",adv_record_type_scheme_tr)];
   658 
   659 
   660 (* print translations *)
   661 
   662 val print_record_type_abbr = ref true;
   663 val print_record_type_as_fields = ref true;
   664 
   665 fun gen_field_upds_tr' mark sfx (tm as Const (name_field, _) $ k $ u) =
   666   let val t = (case k of (Abs (_,_,(Abs (_,_,t)$Bound 0))) 
   667                   => if null (loose_bnos t) then t else raise Match
   668                | Abs (x,_,t) => if null (loose_bnos t) then t else raise Match
   669                | _ => raise Match)
   670 
   671       (* (case k of (Const ("K_record",_)$t) => t
   672                | Abs (x,_,Const ("K_record",_)$t$Bound 0) => t
   673                | _ => raise Match)*)
   674   in
   675     (case try (unsuffix sfx) name_field of
   676       SOME name =>
   677         apfst (cons (Syntax.const mark $ Syntax.free name $ t)) (gen_field_upds_tr' mark sfx u)
   678      | NONE => ([], tm))
   679   end
   680   | gen_field_upds_tr' _ _ tm = ([], tm);
   681 
   682 fun record_update_tr' tm =
   683   let val (ts, u) = gen_field_upds_tr' "_update" updateN tm in
   684     if null ts then raise Match
   685     else Syntax.const "_record_update" $ u $
   686           foldr1 (fn (v, w) => Syntax.const "_updates" $ v $ w) (rev ts)
   687   end;
   688 
   689 fun gen_field_tr' sfx tr' name =
   690   let val name_sfx = suffix sfx name
   691   in (name_sfx, fn [t, u] => tr' (Syntax.const name_sfx $ t $ u) | _ => raise Match) end;
   692 
   693 fun record_tr' sep mark record record_scheme unit ctxt t =
   694   let
   695     val thy = ProofContext.theory_of ctxt;
   696     fun field_lst t =
   697       (case strip_comb t of
   698         (Const (ext,_),args as (_::_))
   699          => (case try (unsuffix extN) (Sign.intern_const thy ext) of
   700                SOME ext'
   701                => (case get_extfields thy ext' of
   702                      SOME flds
   703                      => (let
   704                           val (f::fs) = but_last (map fst flds);
   705                           val flds' = Sign.extern_const thy f :: map Long_Name.base_name fs;
   706                           val (args',more) = split_last args;
   707                          in (flds'~~args')@field_lst more end
   708                          handle Library.UnequalLengths => [("",t)])
   709                    | NONE => [("",t)])
   710              | NONE => [("",t)])
   711        | _ => [("",t)])
   712 
   713     val (flds,(_,more)) = split_last (field_lst t);
   714     val _ = if null flds then raise Match else ();
   715     val flds' = map (fn (n,t)=>Syntax.const mark$Syntax.const n$t) flds;
   716     val flds'' = foldr1 (fn (x,y) => Syntax.const sep$x$y) flds';
   717 
   718   in if unit more
   719      then Syntax.const record$flds''
   720      else Syntax.const record_scheme$flds''$more
   721   end
   722 
   723 fun gen_record_tr' name =
   724   let val name_sfx = suffix extN name;
   725       val unit = (fn Const (@{const_syntax "Product_Type.Unity"},_) => true | _ => false);
   726       fun tr' ctxt ts = record_tr' "_fields" "_field" "_record" "_record_scheme" unit ctxt
   727                        (list_comb (Syntax.const name_sfx,ts))
   728   in (name_sfx,tr')
   729   end
   730 
   731 fun print_translation names =
   732   map (gen_field_tr' updateN record_update_tr') names;
   733 
   734 
   735 (* record_type_abbr_tr' tries to reconstruct the record name type abbreviation from *)
   736 (* the (nested) extension types.                                                    *)
   737 fun record_type_abbr_tr' default_tr' abbr alphas zeta lastExt schemeT ctxt tm =
   738   let
   739       val thy = ProofContext.theory_of ctxt;
   740       (* tm is term representation of a (nested) field type. We first reconstruct the      *)
   741       (* type from tm so that we can continue on the type level rather then the term level.*)
   742 
   743       (* WORKAROUND:
   744        * If a record type occurs in an error message of type inference there
   745        * may be some internal frees donoted by ??:
   746        * (Const "_tfree",_)$Free ("??'a",_).
   747 
   748        * This will unfortunately be translated to Type ("??'a",[]) instead of
   749        * TFree ("??'a",_) by typ_of_term, which will confuse unify below.
   750        * fixT works around.
   751        *)
   752       fun fixT (T as Type (x,[])) =
   753             if String.isPrefix "??'" x then TFree (x,Sign.defaultS thy) else T
   754         | fixT (Type (x,xs)) = Type (x,map fixT xs)
   755         | fixT T = T;
   756 
   757       val T = fixT (decode_type thy tm);
   758       val midx = maxidx_of_typ T;
   759       val varifyT = varifyT midx;
   760 
   761       fun mk_type_abbr subst name alphas =
   762           let val abbrT = Type (name, map (fn a => varifyT (TFree (a, Sign.defaultS thy))) alphas);
   763           in Syntax.term_of_typ (! Syntax.show_sorts)
   764                (Sign.extern_typ thy (Envir.norm_type subst abbrT)) end;
   765 
   766       fun match rT T = (Sign.typ_match thy (varifyT rT,T)
   767                                                 Vartab.empty);
   768 
   769    in if !print_record_type_abbr
   770       then (case last_extT T of
   771              SOME (name,_)
   772               => if name = lastExt
   773                  then
   774                   (let
   775                      val subst = match schemeT T
   776                    in
   777                     if HOLogic.is_unitT (Envir.norm_type subst (varifyT (TFree(zeta,Sign.defaultS thy))))
   778                     then mk_type_abbr subst abbr alphas
   779                     else mk_type_abbr subst (suffix schemeN abbr) (alphas@[zeta])
   780                    end handle TYPE_MATCH => default_tr' ctxt tm)
   781                  else raise Match (* give print translation of specialised record a chance *)
   782             | _ => raise Match)
   783        else default_tr' ctxt tm
   784   end
   785 
   786 fun record_type_tr' sep mark record record_scheme ctxt t =
   787   let
   788     val thy = ProofContext.theory_of ctxt;
   789 
   790     val T = decode_type thy t;
   791     val varifyT = varifyT (Term.maxidx_of_typ T);
   792 
   793     fun term_of_type T = Syntax.term_of_typ (!Syntax.show_sorts) (Sign.extern_typ thy T);
   794 
   795     fun field_lst T =
   796       (case T of
   797         Type (ext, args)
   798          => (case try (unsuffix ext_typeN) ext of
   799                SOME ext'
   800                => (case get_extfields thy ext' of
   801                      SOME flds
   802                      => (case get_fieldext thy (fst (hd flds)) of
   803                            SOME (_, alphas)
   804                            => (let
   805                                 val (f :: fs) = but_last flds;
   806                                 val flds' = apfst (Sign.extern_const thy) f
   807                                   :: map (apfst Long_Name.base_name) fs;
   808                                 val (args', more) = split_last args;
   809                                 val alphavars = map varifyT (but_last alphas);
   810                                 val subst = fold2 (curry (Sign.typ_match thy))
   811                                   alphavars args' Vartab.empty;
   812                                 val flds'' = (map o apsnd)
   813                                   (Envir.norm_type subst o varifyT) flds';
   814                               in flds'' @ field_lst more end
   815                               handle TYPE_MATCH => [("", T)]
   816                                   | Library.UnequalLengths => [("", T)])
   817                          | NONE => [("", T)])
   818                    | NONE => [("", T)])
   819              | NONE => [("", T)])
   820         | _ => [("", T)])
   821 
   822     val (flds, (_, moreT)) = split_last (field_lst T);
   823     val flds' = map (fn (n, T) => Syntax.const mark $ Syntax.const n $ term_of_type T) flds;
   824     val flds'' = foldr1 (fn (x, y) => Syntax.const sep $ x $ y) flds' handle Empty => raise Match;
   825 
   826   in if not (!print_record_type_as_fields) orelse null flds then raise Match
   827      else if moreT = HOLogic.unitT
   828           then Syntax.const record$flds''
   829           else Syntax.const record_scheme$flds''$term_of_type moreT
   830   end
   831 
   832 
   833 fun gen_record_type_tr' name =
   834   let val name_sfx = suffix ext_typeN name;
   835       fun tr' ctxt ts = record_type_tr' "_field_types" "_field_type"
   836                        "_record_type" "_record_type_scheme" ctxt
   837                        (list_comb (Syntax.const name_sfx,ts))
   838   in (name_sfx,tr')
   839   end
   840 
   841 
   842 fun gen_record_type_abbr_tr' abbr alphas zeta lastExt schemeT name =
   843   let val name_sfx = suffix ext_typeN name;
   844       val default_tr' = record_type_tr' "_field_types" "_field_type"
   845                                "_record_type" "_record_type_scheme"
   846       fun tr' ctxt ts =
   847           record_type_abbr_tr' default_tr' abbr alphas zeta lastExt schemeT ctxt
   848                                (list_comb (Syntax.const name_sfx,ts))
   849   in (name_sfx, tr') end;
   850 
   851 (** record simprocs **)
   852 
   853 val record_quick_and_dirty_sensitive = ref false;
   854 
   855 
   856 fun quick_and_dirty_prove stndrd thy asms prop tac =
   857   if !record_quick_and_dirty_sensitive andalso !quick_and_dirty
   858   then Goal.prove (ProofContext.init thy) [] []
   859         (Logic.list_implies (map Logic.varify asms,Logic.varify prop))
   860         (K (SkipProof.cheat_tac @{theory HOL}))
   861         (* standard can take quite a while for large records, thats why
   862          * we varify the proposition manually here.*)
   863   else let val prf = Goal.prove (ProofContext.init thy) [] asms prop tac;
   864        in if stndrd then standard prf else prf end;
   865 
   866 fun quick_and_dirty_prf noopt opt () =
   867       if !record_quick_and_dirty_sensitive andalso !quick_and_dirty
   868       then noopt ()
   869       else opt ();
   870 
   871 local
   872 fun abstract_over_fun_app (Abs (f,fT,t)) =
   873   let
   874      val (f',t') = Term.dest_abs (f,fT,t);
   875      val T = domain_type fT;
   876      val (x,T') = hd (Term.variant_frees t' [("x",T)]);
   877      val f_x = Free (f',fT)$(Free (x,T'));
   878      fun is_constr (Const (c,_)$_) = can (unsuffix extN) c
   879        | is_constr _ = false;
   880      fun subst (t as u$w) = if Free (f',fT)=u
   881                             then if is_constr w then f_x
   882                                  else raise TERM ("abstract_over_fun_app",[t])
   883                             else subst u$subst w
   884        | subst (Abs (x,T,t)) = (Abs (x,T,subst t))
   885        | subst t = t
   886      val t'' = abstract_over (f_x,subst t');
   887      val vars = strip_qnt_vars "all" t'';
   888      val bdy = strip_qnt_body "all" t'';
   889 
   890   in list_abs ((x,T')::vars,bdy) end
   891   | abstract_over_fun_app t = raise TERM ("abstract_over_fun_app",[t]);
   892 (* Generates a theorem of the kind:
   893  * !!f x*. PROP P (f ( r x* ) x* == !!r x*. PROP P r x*
   894  *)
   895 fun mk_fun_apply_eq (Abs (f, fT, t)) thy =
   896   let
   897     val rT = domain_type fT;
   898     val vars = Term.strip_qnt_vars "all" t;
   899     val Ts = map snd vars;
   900     val n = length vars;
   901     fun app_bounds 0 t = t$Bound 0
   902       | app_bounds n t = if n > 0 then app_bounds (n-1) (t$Bound n) else t
   903 
   904 
   905     val [P,r] = Term.variant_frees t [("P",rT::Ts--->Term.propT),("r",Ts--->rT)];
   906     val prop = Logic.mk_equals
   907                 (list_all ((f,fT)::vars,
   908                            app_bounds (n - 1) ((Free P)$(Bound n$app_bounds (n-1) (Free r)))),
   909                  list_all ((fst r,rT)::vars,
   910                            app_bounds (n - 1) ((Free P)$Bound n)));
   911     val prove_standard = quick_and_dirty_prove true thy;
   912     val thm = prove_standard [] prop (fn _ =>
   913 	 EVERY [rtac equal_intr_rule 1,
   914                 Goal.norm_hhf_tac 1,REPEAT (etac meta_allE 1), atac 1,
   915                 Goal.norm_hhf_tac 1,REPEAT (etac meta_allE 1), atac 1]);
   916   in thm end
   917   | mk_fun_apply_eq t thy = raise TERM ("mk_fun_apply_eq",[t]);
   918 
   919 in
   920 (* During proof of theorems produced by record_simproc you can end up in
   921  * situations like "!!f ... . ... f r ..." where f is an extension update function.
   922  * In order to split "f r" we transform this to "!!r ... . ... r ..." so that the
   923  * usual split rules for extensions can apply.
   924  *)
   925 val record_split_f_more_simproc =
   926   Simplifier.simproc @{theory HOL} "record_split_f_more_simp" ["x"]
   927     (fn thy => fn _ => fn t =>
   928       (case t of (Const ("all", Type (_, [Type (_, [Type("fun",[T,T']), _]), _])))$
   929                   (trm as Abs _) =>
   930          (case rec_id (~1) T of
   931             "" => NONE
   932           | n => if T=T'
   933                  then (let
   934                         val P=cterm_of thy (abstract_over_fun_app trm);
   935                         val thm = mk_fun_apply_eq trm thy;
   936                         val PV = cterm_of thy (hd (OldTerm.term_vars (prop_of thm)));
   937                         val thm' = cterm_instantiate [(PV,P)] thm;
   938                        in SOME  thm' end handle TERM _ => NONE)
   939                 else NONE)
   940        | _ => NONE))
   941 end
   942 
   943 fun prove_split_simp thy ss T prop =
   944   let
   945     val {sel_upd={simpset,...},extsplit,...} = RecordsData.get thy;
   946     val extsplits =
   947             Library.foldl (fn (thms,(n,_)) => the_list (Symtab.lookup extsplit n) @ thms)
   948                     ([],dest_recTs T);
   949     val thms = (case get_splits thy (rec_id (~1) T) of
   950                    SOME (all_thm,_,_,_) =>
   951                      all_thm::(case extsplits of [thm] => [] | _ => extsplits)
   952                               (* [thm] is the same as all_thm *)
   953                  | NONE => extsplits)
   954     val thms'=K_comp_convs@thms;
   955     val ss' = (Simplifier.inherit_context ss simpset
   956                 addsimps thms'
   957                 addsimprocs [record_split_f_more_simproc]);
   958   in
   959     quick_and_dirty_prove true thy [] prop (fn _ => simp_tac ss' 1)
   960   end;
   961 
   962 
   963 local
   964 fun eq (s1:string) (s2:string) = (s1 = s2);
   965 fun has_field extfields f T =
   966      exists (fn (eN,_) => exists (eq f o fst) (Symtab.lookup_list extfields eN))
   967        (dest_recTs T);
   968 
   969 fun K_skeleton n (T as Type (_,[_,kT])) (b as Bound i) (Abs (x,xT,t)) =
   970      if null (loose_bnos t) then ((n,kT),(Abs (x,xT,Bound (i+1)))) else ((n,T),b)
   971   | K_skeleton n T b _ = ((n,T),b);
   972 
   973 (*
   974 fun K_skeleton n _ b ((K_rec as Const ("Record.K_record",Type (_,[kT,_])))$_) = 
   975       ((n,kT),K_rec$b)
   976   | K_skeleton n _ (Bound i) 
   977       (Abs (x,T,(K_rec as Const ("Record.K_record",Type (_,[kT,_])))$_$Bound 0)) =
   978         ((n,kT),Abs (x,T,(K_rec$Bound (i+1)$Bound 0)))
   979   | K_skeleton n T b  _ = ((n,T),b);
   980  *)
   981 
   982 fun normalize_rhs thm =
   983   let
   984      val ss = HOL_basic_ss addsimps K_comp_convs; 
   985      val rhs = thm |> Thm.cprop_of |> Thm.dest_comb |> snd;
   986      val rhs' = (Simplifier.rewrite ss rhs);
   987   in Thm.transitive thm rhs' end;
   988 in
   989 (* record_simproc *)
   990 (* Simplifies selections of an record update:
   991  *  (1)  S (S_update k r) = k (S r)
   992  *  (2)  S (X_update k r) = S r
   993  * The simproc skips multiple updates at once, eg:
   994  *  S (X_update x (Y_update y (S_update k r))) = k (S r)
   995  * But be careful in (2) because of the extendibility of records.
   996  * - If S is a more-selector we have to make sure that the update on component
   997  *   X does not affect the selected subrecord.
   998  * - If X is a more-selector we have to make sure that S is not in the updated
   999  *   subrecord.
  1000  *)
  1001 val record_simproc =
  1002   Simplifier.simproc @{theory HOL} "record_simp" ["x"]
  1003     (fn thy => fn ss => fn t =>
  1004       (case t of (sel as Const (s, Type (_,[domS,rangeS])))$
  1005                    ((upd as Const (u,Type(_,[_,Type (_,[rT,_])]))) $ k $ r)=>
  1006         if is_selector thy s then
  1007           (case get_updates thy u of SOME u_name =>
  1008             let
  1009               val {sel_upd={updates,...},extfields,...} = RecordsData.get thy;
  1010 
  1011               fun mk_eq_terms ((upd as Const (u,Type(_,[kT,_]))) $ k $ r) =
  1012                   (case Symtab.lookup updates u of
  1013                      NONE => NONE
  1014                    | SOME u_name
  1015                      => if u_name = s
  1016                         then (case mk_eq_terms r of
  1017                                NONE =>
  1018                                  let
  1019                                    val rv = ("r",rT)
  1020                                    val rb = Bound 0
  1021                                    val (kv,kb) = K_skeleton "k" kT (Bound 1) k;
  1022                                   in SOME (upd$kb$rb,kb$(sel$rb),[kv,rv]) end
  1023                               | SOME (trm,trm',vars) =>
  1024                                  let
  1025                                    val (kv,kb) = K_skeleton "k" kT (Bound (length vars)) k;
  1026                                  in SOME (upd$kb$trm,kb$trm',kv::vars) end)
  1027                         else if has_field extfields u_name rangeS
  1028                              orelse has_field extfields s (domain_type kT)
  1029                              then NONE
  1030                              else (case mk_eq_terms r of
  1031                                      SOME (trm,trm',vars)
  1032                                      => let
  1033                                           val (kv,kb) = 
  1034                                                  K_skeleton "k" kT (Bound (length vars)) k;
  1035                                         in SOME (upd$kb$trm,trm',kv::vars) end
  1036                                    | NONE
  1037                                      => let
  1038                                           val rv = ("r",rT)
  1039                                           val rb = Bound 0
  1040                                           val (kv,kb) = K_skeleton "k" kT (Bound 1) k;
  1041                                         in SOME (upd$kb$rb,sel$rb,[kv,rv]) end))
  1042                 | mk_eq_terms r = NONE
  1043             in
  1044               (case mk_eq_terms (upd$k$r) of
  1045                  SOME (trm,trm',vars)
  1046                  => SOME (prove_split_simp thy ss domS
  1047                                  (list_all(vars, Logic.mk_equals (sel $ trm, trm'))))
  1048                | NONE => NONE)
  1049             end
  1050           | NONE => NONE)
  1051         else NONE
  1052       | _ => NONE));
  1053 
  1054 (* record_upd_simproc *)
  1055 (* simplify multiple updates:
  1056  *  (1)  "N_update y (M_update g (N_update x (M_update f r))) =
  1057           (N_update (y o x) (M_update (g o f) r))"
  1058  *  (2)  "r(|M:= M r|) = r"
  1059  * For (2) special care of "more" updates has to be taken:
  1060  *    r(|more := m; A := A r|)
  1061  * If A is contained in the fields of m we cannot remove the update A := A r!
  1062  * (But r(|more := r; A := A (r(|more := r|))|) = r(|more := r|)
  1063 *)
  1064 val record_upd_simproc =
  1065   Simplifier.simproc @{theory HOL} "record_upd_simp" ["x"]
  1066     (fn thy => fn ss => fn t =>
  1067       (case t of ((upd as Const (u, Type(_,[_,Type(_,[rT,_])]))) $ k $ r) =>
  1068          let datatype ('a,'b) calc = Init of 'b | Inter of 'a
  1069              val {sel_upd={selectors,updates,...},extfields,...} = RecordsData.get thy;
  1070 
  1071              (*fun mk_abs_var x t = (x, fastype_of t);*)
  1072              fun sel_name u = Long_Name.base_name (unsuffix updateN u);
  1073 
  1074              fun seed s (upd as Const (more,Type(_,[mT,_]))$ k $ r) =
  1075                   if has_field extfields s (domain_type' mT) then upd else seed s r
  1076                | seed _ r = r;
  1077 
  1078              fun grow u uT k kT vars (sprout,skeleton) =
  1079                    if sel_name u = moreN
  1080                    then let val (kv,kb) = K_skeleton "k" kT (Bound (length vars)) k;
  1081                         in ((Const (u,uT)$k$sprout,Const (u,uT)$kb$skeleton),kv::vars) end
  1082                    else ((sprout,skeleton),vars);
  1083 
  1084 
  1085              fun dest_k (Abs (x,T,((sel as Const (s,_))$r))) =
  1086                   if null (loose_bnos r) then SOME (x,T,sel,s,r) else NONE
  1087                | dest_k (Abs (_,_,(Abs (x,T,((sel as Const (s,_))$r)))$Bound 0)) =
  1088                   (* eta expanded variant *)
  1089                   if null (loose_bnos r) then SOME (x,T,sel,s,r) else NONE
  1090                | dest_k _ = NONE;
  1091 
  1092              fun is_upd_same (sprout,skeleton) u k =
  1093                (case dest_k k of SOME (x,T,sel,s,r) =>
  1094                    if (unsuffix updateN u) = s andalso (seed s sprout) = r
  1095                    then SOME (fn t => Abs (x,T,incr_boundvars 1 t),sel,seed s skeleton)
  1096                    else NONE
  1097                 | NONE => NONE);
  1098 
  1099              fun init_seed r = ((r,Bound 0), [("r", rT)]);
  1100 
  1101              fun add (n:string) f fmaps =
  1102                (case AList.lookup (op =) fmaps n of
  1103                   NONE => AList.update (op =) (n,[f]) fmaps
  1104                 | SOME fs => AList.update (op =) (n,f::fs) fmaps)
  1105 
  1106              fun comps (n:string) T fmaps =
  1107                (case AList.lookup (op =) fmaps n of
  1108                  SOME fs =>
  1109                    foldr1 (fn (f,g) => Const ("Fun.comp",(T-->T)-->(T-->T)-->(T-->T))$f$g) fs
  1110                 | NONE => error ("record_upd_simproc.comps"))
  1111 
  1112              (* mk_updterm returns either
  1113               *  - Init (orig-term, orig-term-skeleton, vars) if no optimisation can be made,
  1114               *     where vars are the bound variables in the skeleton
  1115               *  - Inter (orig-term-skeleton,simplified-term-skeleton,
  1116               *           vars, (term-sprout, skeleton-sprout))
  1117               *     where "All vars. orig-term-skeleton = simplified-term-skeleton" is
  1118               *     the desired simplification rule,
  1119               *     the sprouts accumulate the "more-updates" on the way from the seed
  1120               *     to the outermost update. It is only relevant to calculate the
  1121               *     possible simplification for (2)
  1122               * The algorithm first walks down the updates to the seed-record while
  1123               * memorising the updates in the already-table. While walking up the
  1124               * updates again, the optimised term is constructed.
  1125               *)
  1126              fun mk_updterm upds already
  1127                  (t as ((upd as Const (u,uT as (Type (_,[kT,_])))) $ k $ r)) =
  1128                  if Symtab.defined upds u
  1129                  then let
  1130                          fun rest already = mk_updterm upds already
  1131                       in if u mem_string already
  1132                          then (case (rest already r) of
  1133                                  Init ((sprout,skel),vars) =>
  1134                                  let
  1135                                    val n = sel_name u;
  1136                                    val (kv,kb) = K_skeleton n kT (Bound (length vars)) k;
  1137                                    val (sprout',vars')= grow u uT k kT (kv::vars) (sprout,skel);
  1138                                  in Inter (upd$kb$skel,skel,vars',add n kb [],sprout') end
  1139                                | Inter (trm,trm',vars,fmaps,sprout) =>
  1140                                  let
  1141                                    val n = sel_name u;
  1142                                    val (kv,kb) = K_skeleton n kT (Bound (length vars)) k;
  1143                                    val (sprout',vars') = grow u uT k kT (kv::vars) sprout;
  1144                                  in Inter(upd$kb$trm,trm',kv::vars',add n kb fmaps,sprout')
  1145                                  end)
  1146                          else
  1147                           (case rest (u::already) r of
  1148                              Init ((sprout,skel),vars) =>
  1149                               (case is_upd_same (sprout,skel) u k of
  1150                                  SOME (K_rec,sel,skel') =>
  1151                                  let
  1152                                    val (sprout',vars') = grow u uT k kT vars (sprout,skel);
  1153                                   in Inter(upd$(K_rec (sel$skel'))$skel,skel,vars',[],sprout')
  1154                                   end
  1155                                | NONE =>
  1156                                  let
  1157                                    val n = sel_name u;
  1158                                    val (kv,kb) = K_skeleton n kT (Bound (length vars)) k;
  1159                                  in Init ((upd$k$sprout,upd$kb$skel),kv::vars) end)
  1160                            | Inter (trm,trm',vars,fmaps,sprout) =>
  1161                                (case is_upd_same sprout u k of
  1162                                   SOME (K_rec,sel,skel) =>
  1163                                   let
  1164                                     val (sprout',vars') = grow u uT k kT vars sprout
  1165                                   in Inter(upd$(K_rec (sel$skel))$trm,trm',vars',fmaps,sprout')
  1166                                   end
  1167                                 | NONE =>
  1168                                   let
  1169                                     val n = sel_name u
  1170                                     val T = domain_type kT
  1171                                     val (kv,kb) = K_skeleton n kT (Bound (length vars)) k;
  1172                                     val (sprout',vars') = grow u uT k kT (kv::vars) sprout
  1173                                     val fmaps' = add n kb fmaps
  1174                                   in Inter (upd$kb$trm,upd$comps n T fmaps'$trm'
  1175                                            ,vars',fmaps',sprout') end))
  1176                      end
  1177                  else Init (init_seed t)
  1178                | mk_updterm _ _ t = Init (init_seed t);
  1179 
  1180          in (case mk_updterm updates [] t of
  1181                Inter (trm,trm',vars,_,_)
  1182                 => SOME (normalize_rhs 
  1183                           (prove_split_simp thy ss rT
  1184                             (list_all(vars, Logic.mk_equals (trm, trm')))))
  1185              | _ => NONE)
  1186          end
  1187        | _ => NONE))
  1188 end
  1189 
  1190 (* record_eq_simproc *)
  1191 (* looks up the most specific record-equality.
  1192  * Note on efficiency:
  1193  * Testing equality of records boils down to the test of equality of all components.
  1194  * Therefore the complexity is: #components * complexity for single component.
  1195  * Especially if a record has a lot of components it may be better to split up
  1196  * the record first and do simplification on that (record_split_simp_tac).
  1197  * e.g. r(|lots of updates|) = x
  1198  *
  1199  *               record_eq_simproc       record_split_simp_tac
  1200  * Complexity: #components * #updates     #updates
  1201  *
  1202  *)
  1203 val record_eq_simproc =
  1204   Simplifier.simproc @{theory HOL} "record_eq_simp" ["r = s"]
  1205     (fn thy => fn _ => fn t =>
  1206       (case t of Const ("op =", Type (_, [T, _])) $ _ $ _ =>
  1207         (case rec_id (~1) T of
  1208            "" => NONE
  1209          | name => (case get_equalities thy name of
  1210                                 NONE => NONE
  1211                               | SOME thm => SOME (thm RS Eq_TrueI)))
  1212        | _ => NONE));
  1213 
  1214 (* record_split_simproc *)
  1215 (* splits quantified occurrences of records, for which P holds. P can peek on the
  1216  * subterm starting at the quantified occurrence of the record (including the quantifier)
  1217  * P t = 0: do not split
  1218  * P t = ~1: completely split
  1219  * P t > 0: split up to given bound of record extensions
  1220  *)
  1221 fun record_split_simproc P =
  1222   Simplifier.simproc @{theory HOL} "record_split_simp" ["x"]
  1223     (fn thy => fn _ => fn t =>
  1224       (case t of (Const (quantifier, Type (_, [Type (_, [T, _]), _])))$trm =>
  1225          if quantifier = "All" orelse quantifier = "all" orelse quantifier = "Ex"
  1226          then (case rec_id (~1) T of
  1227                  "" => NONE
  1228                | name
  1229                   => let val split = P t
  1230                      in if split <> 0 then
  1231                         (case get_splits thy (rec_id split T) of
  1232                               NONE => NONE
  1233                             | SOME (all_thm, All_thm, Ex_thm,_)
  1234                                => SOME (case quantifier of
  1235                                           "all" => all_thm
  1236                                         | "All" => All_thm RS eq_reflection
  1237                                         | "Ex"  => Ex_thm RS eq_reflection
  1238                                         | _     => error "record_split_simproc"))
  1239                         else NONE
  1240                       end)
  1241          else NONE
  1242        | _ => NONE))
  1243 
  1244 val record_ex_sel_eq_simproc =
  1245   Simplifier.simproc @{theory HOL} "record_ex_sel_eq_simproc" ["Ex t"]
  1246     (fn thy => fn ss => fn t =>
  1247        let
  1248          fun prove prop =
  1249            quick_and_dirty_prove true thy [] prop
  1250              (fn _ => simp_tac (Simplifier.inherit_context ss (get_simpset thy)
  1251                addsimps simp_thms addsimprocs [record_split_simproc (K ~1)]) 1);
  1252 
  1253          fun mkeq (lr,Teq,(sel,Tsel),x) i =
  1254               if is_selector thy sel then
  1255                  let val x' = if not (loose_bvar1 (x,0))
  1256                               then Free ("x" ^ string_of_int i, range_type Tsel)
  1257                               else raise TERM ("",[x]);
  1258                      val sel' = Const (sel,Tsel)$Bound 0;
  1259                      val (l,r) = if lr then (sel',x') else (x',sel');
  1260                   in Const ("op =",Teq)$l$r end
  1261               else raise TERM ("",[Const (sel,Tsel)]);
  1262 
  1263          fun dest_sel_eq (Const ("op =",Teq)$(Const (sel,Tsel)$Bound 0)$X) =
  1264                            (true,Teq,(sel,Tsel),X)
  1265            | dest_sel_eq (Const ("op =",Teq)$X$(Const (sel,Tsel)$Bound 0)) =
  1266                            (false,Teq,(sel,Tsel),X)
  1267            | dest_sel_eq _ = raise TERM ("",[]);
  1268 
  1269        in
  1270          (case t of
  1271            (Const ("Ex",Tex)$Abs(s,T,t)) =>
  1272              (let val eq = mkeq (dest_sel_eq t) 0;
  1273                  val prop = list_all ([("r",T)],
  1274                               Logic.mk_equals (Const ("Ex",Tex)$Abs(s,T,eq),
  1275                                                HOLogic.true_const));
  1276              in SOME (prove prop) end
  1277              handle TERM _ => NONE)
  1278           | _ => NONE)
  1279          end)
  1280 
  1281 
  1282 
  1283 
  1284 local
  1285 val inductive_atomize = thms "induct_atomize";
  1286 val inductive_rulify = thms "induct_rulify";
  1287 in
  1288 (* record_split_simp_tac *)
  1289 (* splits (and simplifies) all records in the goal for which P holds.
  1290  * For quantified occurrences of a record
  1291  * P can peek on the whole subterm (including the quantifier); for free variables P
  1292  * can only peek on the variable itself.
  1293  * P t = 0: do not split
  1294  * P t = ~1: completely split
  1295  * P t > 0: split up to given bound of record extensions
  1296  *)
  1297 fun record_split_simp_tac thms P i st =
  1298   let
  1299     val thy = Thm.theory_of_thm st;
  1300 
  1301     val has_rec = exists_Const
  1302       (fn (s, Type (_, [Type (_, [T, _]), _])) =>
  1303           (s = "all" orelse s = "All" orelse s = "Ex") andalso is_recT T
  1304         | _ => false);
  1305 
  1306     val goal = nth (Thm.prems_of st) (i - 1);
  1307     val frees = List.filter (is_recT o type_of) (OldTerm.term_frees goal);
  1308 
  1309     fun mk_split_free_tac free induct_thm i =
  1310         let val cfree = cterm_of thy free;
  1311             val (_$(_$r)) = concl_of induct_thm;
  1312             val crec = cterm_of thy r;
  1313             val thm  = cterm_instantiate [(crec,cfree)] induct_thm;
  1314         in EVERY [simp_tac (HOL_basic_ss addsimps inductive_atomize) i,
  1315                   rtac thm i,
  1316                   simp_tac (HOL_basic_ss addsimps inductive_rulify) i]
  1317         end;
  1318 
  1319     fun split_free_tac P i (free as Free (n,T)) =
  1320         (case rec_id (~1) T of
  1321            "" => NONE
  1322          | name => let val split = P free
  1323                    in if split <> 0 then
  1324                       (case get_splits thy (rec_id split T) of
  1325                              NONE => NONE
  1326                            | SOME (_,_,_,induct_thm)
  1327                                => SOME (mk_split_free_tac free induct_thm i))
  1328                       else NONE
  1329                    end)
  1330      | split_free_tac _ _ _ = NONE;
  1331 
  1332     val split_frees_tacs = List.mapPartial (split_free_tac P i) frees;
  1333 
  1334     val simprocs = if has_rec goal then [record_split_simproc P] else [];
  1335     val thms' = K_comp_convs@thms
  1336   in st |> ((EVERY split_frees_tacs)
  1337            THEN (Simplifier.full_simp_tac (get_simpset thy addsimps thms' addsimprocs simprocs) i))
  1338   end handle Empty => Seq.empty;
  1339 end;
  1340 
  1341 
  1342 (* record_split_tac *)
  1343 (* splits all records in the goal, which are quantified by ! or !!. *)
  1344 fun record_split_tac i st =
  1345   let
  1346     val thy = Thm.theory_of_thm st;
  1347 
  1348     val has_rec = exists_Const
  1349       (fn (s, Type (_, [Type (_, [T, _]), _])) =>
  1350           (s = "all" orelse s = "All") andalso is_recT T
  1351         | _ => false);
  1352 
  1353     val goal = nth (Thm.prems_of st) (i - 1);
  1354 
  1355     fun is_all t =
  1356       (case t of (Const (quantifier, _)$_) =>
  1357          if quantifier = "All" orelse quantifier = "all" then ~1 else 0
  1358        | _ => 0);
  1359 
  1360   in if has_rec goal
  1361      then Simplifier.full_simp_tac
  1362            (HOL_basic_ss addsimprocs [record_split_simproc is_all]) i st
  1363      else Seq.empty
  1364   end handle Subscript => Seq.empty;
  1365 
  1366 (* wrapper *)
  1367 
  1368 val record_split_name = "record_split_tac";
  1369 val record_split_wrapper = (record_split_name, fn tac => record_split_tac ORELSE' tac);
  1370 
  1371 
  1372 
  1373 (** theory extender interface **)
  1374 
  1375 (* prepare arguments *)
  1376 
  1377 fun read_raw_parent ctxt raw_T =
  1378   (case ProofContext.read_typ_abbrev ctxt raw_T of
  1379     Type (name, Ts) => (Ts, name)
  1380   | T => error ("Bad parent record specification: " ^ Syntax.string_of_typ ctxt T));
  1381 
  1382 fun read_typ ctxt raw_T env =
  1383   let
  1384     val ctxt' = fold (Variable.declare_typ o TFree) env ctxt;
  1385     val T = Syntax.read_typ ctxt' raw_T;
  1386     val env' = OldTerm.add_typ_tfrees (T, env);
  1387   in (T, env') end;
  1388 
  1389 fun cert_typ ctxt raw_T env =
  1390   let
  1391     val thy = ProofContext.theory_of ctxt;
  1392     val T = Type.no_tvars (Sign.certify_typ thy raw_T) handle TYPE (msg, _, _) => error msg;
  1393     val env' = OldTerm.add_typ_tfrees (T, env);
  1394   in (T, env') end;
  1395 
  1396 
  1397 (* attributes *)
  1398 
  1399 fun case_names_fields x = RuleCases.case_names ["fields"] x;
  1400 fun induct_type_global name = [case_names_fields, Induct.induct_type name];
  1401 fun cases_type_global name = [case_names_fields, Induct.cases_type name];
  1402 
  1403 (* tactics *)
  1404 
  1405 fun simp_all_tac ss simps = ALLGOALS (Simplifier.asm_full_simp_tac (ss addsimps simps));
  1406 
  1407 (* do case analysis / induction according to rule on last parameter of ith subgoal
  1408  * (or on s if there are no parameters);
  1409  * Instatiation of record variable (and predicate) in rule is calculated to
  1410  * avoid problems with higher order unification.
  1411  *)
  1412 
  1413 fun try_param_tac s rule i st =
  1414   let
  1415     val cert = cterm_of (Thm.theory_of_thm st);
  1416     val g = nth (prems_of st) (i - 1);
  1417     val params = Logic.strip_params g;
  1418     val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl g);
  1419     val rule' = Thm.lift_rule (Thm.cprem_of st i) rule;
  1420     val (P, ys) = strip_comb (HOLogic.dest_Trueprop
  1421       (Logic.strip_assums_concl (prop_of rule')));
  1422     (* ca indicates if rule is a case analysis or induction rule *)
  1423     val (x, ca) = (case rev (Library.drop (length params, ys)) of
  1424         [] => (head_of (fst (HOLogic.dest_eq (HOLogic.dest_Trueprop
  1425           (hd (rev (Logic.strip_assums_hyp (hd (prems_of rule')))))))), true)
  1426       | [x] => (head_of x, false));
  1427     val rule'' = cterm_instantiate (map (pairself cert) (case (rev params) of
  1428         [] => (case AList.lookup (op =) (map dest_Free (OldTerm.term_frees (prop_of st))) s of
  1429           NONE => sys_error "try_param_tac: no such variable"
  1430         | SOME T => [(P, if ca then concl else lambda (Free (s, T)) concl),
  1431             (x, Free (s, T))])
  1432       | (_, T) :: _ => [(P, list_abs (params, if ca then concl
  1433           else incr_boundvars 1 (Abs (s, T, concl)))),
  1434         (x, list_abs (params, Bound 0))])) rule'
  1435   in compose_tac (false, rule'', nprems_of rule) i st end;
  1436 
  1437 
  1438 (* !!x1 ... xn. ... ==> EX x1 ... xn. P x1 ... xn;
  1439    instantiates x1 ... xn with parameters x1 ... xn *)
  1440 fun ex_inst_tac i st =
  1441   let
  1442     val thy = Thm.theory_of_thm st;
  1443     val g = nth (prems_of st) (i - 1);
  1444     val params = Logic.strip_params g;
  1445     val exI' = Thm.lift_rule (Thm.cprem_of st i) exI;
  1446     val (_$(_$x)) = Logic.strip_assums_concl (hd (prems_of exI'));
  1447     val cx = cterm_of thy (fst (strip_comb x));
  1448 
  1449   in Seq.single (Library.foldl (fn (st,v) =>
  1450         Seq.hd
  1451         (compose_tac (false, cterm_instantiate
  1452                                 [(cx,cterm_of thy (list_abs (params,Bound v)))] exI',1)
  1453                 i st)) (st,((length params) - 1) downto 0))
  1454   end;
  1455 
  1456 fun extension_typedef name repT alphas thy =
  1457   let
  1458     fun get_thms thy name =
  1459       let
  1460         val SOME { Abs_induct = abs_induct,
  1461           Abs_inject=abs_inject, Abs_inverse = abs_inverse, ...} = Typedef.get_info thy name;
  1462         val rewrite_rule = MetaSimplifier.rewrite_rule [rec_UNIV_I, rec_True_simp];
  1463       in map rewrite_rule [abs_inject, abs_inverse, abs_induct] end;
  1464     val tname = Binding.name (Long_Name.base_name name);
  1465   in
  1466     thy
  1467     |> Typecopy.typecopy (Binding.suffix_name ext_typeN tname, alphas) repT NONE
  1468     |-> (fn (name, _) => `(fn thy => get_thms thy name))
  1469   end;
  1470 
  1471 fun mixit convs refls =
  1472   let fun f ((res,lhs,rhs),refl) = ((refl,List.revAppend (lhs,refl::tl rhs))::res,hd rhs::lhs,tl rhs);
  1473   in #1 (Library.foldl f (([],[],convs),refls)) end;
  1474 
  1475 
  1476 fun extension_definition full name fields names alphas zeta moreT more vars thy =
  1477   let
  1478     val base = Long_Name.base_name;
  1479     val fieldTs = (map snd fields);
  1480     val alphas_zeta = alphas@[zeta];
  1481     val alphas_zetaTs = map (fn n => TFree (n, HOLogic.typeS)) alphas_zeta;
  1482     val vT = TFree (Name.variant alphas_zeta "'v", HOLogic.typeS);
  1483     val extT_name = suffix ext_typeN name
  1484     val extT = Type (extT_name, alphas_zetaTs);
  1485     val repT = foldr1 HOLogic.mk_prodT (fieldTs@[moreT]);
  1486     val fields_more = fields@[(full moreN,moreT)];
  1487     val fields_moreTs = fieldTs@[moreT];
  1488     val bfields_more = map (apfst base) fields_more;
  1489     val r = Free (rN,extT)
  1490     val len = length fields;
  1491     val idxms = 0 upto len;
  1492 
  1493     (* prepare declarations and definitions *)
  1494 
  1495     (*fields constructor*)
  1496     val ext_decl = (mk_extC (name,extT) fields_moreTs);
  1497     (*
  1498     val ext_spec = Const ext_decl :==
  1499          (foldr (uncurry lambda)
  1500             (mk_Abs name repT extT $ (foldr1 HOLogic.mk_prod (vars@[more]))) (vars@[more]))
  1501     *)
  1502     val ext_spec = list_comb (Const ext_decl,vars@[more]) :==
  1503          (mk_Abs name repT extT $ (foldr1 HOLogic.mk_prod (vars@[more])));
  1504 
  1505     fun mk_ext args = list_comb (Const ext_decl, args);
  1506 
  1507     (*destructors*)
  1508     val _ = timing_msg "record extension preparing definitions";
  1509     val dest_decls = map (mk_selC extT o (apfst (suffix ext_dest))) bfields_more;
  1510 
  1511     fun mk_dest_spec (i, (c,T)) =
  1512       let val snds = (funpow i HOLogic.mk_snd (mk_Rep name repT extT $ r))
  1513       in Const (mk_selC extT (suffix ext_dest c,T))
  1514          :== (lambda r (if i=len then snds else HOLogic.mk_fst snds))
  1515       end;
  1516     val dest_specs =
  1517       ListPair.map mk_dest_spec (idxms, fields_more);
  1518 
  1519     (*updates*)
  1520     val upd_decls = map (mk_updC updN extT) bfields_more;
  1521     fun mk_upd_spec (c,T) =
  1522       let
  1523         val args = map (fn (n,nT) => if n=c then Free (base c,T --> T)$
  1524                                                   (mk_sel r (suffix ext_dest n,nT))
  1525                                      else (mk_sel r (suffix ext_dest n,nT)))
  1526                        fields_more;
  1527       in Const (mk_updC updN extT (c,T))$(Free (base c,T --> T))$r
  1528           :== mk_ext args
  1529       end;
  1530     val upd_specs = map mk_upd_spec fields_more;
  1531 
  1532     (* 1st stage: defs_thy *)
  1533     fun mk_defs () =
  1534       thy
  1535       |> extension_typedef name repT (alphas @ [zeta])
  1536       ||> Sign.add_consts_i
  1537             (map (Syntax.no_syn o apfst Binding.name) (apfst base ext_decl :: dest_decls @ upd_decls))
  1538       ||>> PureThy.add_defs false
  1539             (map (Thm.no_attributes o apfst Binding.name) (ext_spec :: dest_specs))
  1540       ||>> PureThy.add_defs false
  1541             (map (Thm.no_attributes o apfst Binding.name) upd_specs)
  1542       |-> (fn args as ((_, dest_defs), upd_defs) =>
  1543           fold Code.add_default_eqn dest_defs
  1544           #> fold Code.add_default_eqn upd_defs
  1545           #> pair args);
  1546     val ((([abs_inject, abs_inverse, abs_induct], ext_def :: dest_defs), upd_defs), defs_thy) =
  1547       timeit_msg "record extension type/selector/update defs:" mk_defs;
  1548 
  1549     (* prepare propositions *)
  1550     val _ = timing_msg "record extension preparing propositions";
  1551     val vars_more = vars@[more];
  1552     val named_vars_more = (names@[full moreN])~~vars_more;
  1553     val variants = map (fn (Free (x,_))=>x) vars_more;
  1554     val ext = mk_ext vars_more;
  1555     val s     = Free (rN, extT);
  1556     val w     = Free (wN, extT);
  1557     val P = Free (Name.variant variants "P", extT-->HOLogic.boolT);
  1558     val C = Free (Name.variant variants "C", HOLogic.boolT);
  1559 
  1560     val inject_prop =
  1561       let val vars_more' = map (fn (Free (x,T)) => Free (x ^ "'",T)) vars_more;
  1562       in All (map dest_Free (vars_more@vars_more'))
  1563           ((HOLogic.eq_const extT $
  1564             mk_ext vars_more$mk_ext vars_more')
  1565            ===
  1566            foldr1 HOLogic.mk_conj (map HOLogic.mk_eq (vars_more ~~ vars_more')))
  1567       end;
  1568 
  1569     val induct_prop =
  1570       (All (map dest_Free vars_more) (Trueprop (P $ ext)), Trueprop (P $ s));
  1571 
  1572     val cases_prop =
  1573       (All (map dest_Free vars_more)
  1574         (Trueprop (HOLogic.mk_eq (s,ext)) ==> Trueprop C))
  1575       ==> Trueprop C;
  1576 
  1577     (*destructors*)
  1578     val dest_conv_props =
  1579        map (fn (c, x as Free (_,T)) => mk_sel ext (suffix ext_dest c,T) === x) named_vars_more;
  1580 
  1581     (*updates*)
  1582     fun mk_upd_prop (i,(c,T)) =
  1583       let val x' = Free (Name.variant variants (base c ^ "'"),T --> T)
  1584           val args' = nth_map i  (K (x'$nth vars_more i)) vars_more
  1585       in mk_upd updN c x' ext === mk_ext args'  end;
  1586     val upd_conv_props = ListPair.map mk_upd_prop (idxms, fields_more);
  1587 
  1588     val surjective_prop =
  1589       let val args =
  1590            map (fn (c, Free (_,T)) => mk_sel s (suffix ext_dest c,T)) named_vars_more;
  1591       in s === mk_ext args end;
  1592 
  1593     val split_meta_prop =
  1594       let val P = Free (Name.variant variants "P", extT-->Term.propT) in
  1595         Logic.mk_equals
  1596          (All [dest_Free s] (P $ s), All (map dest_Free vars_more) (P $ ext))
  1597       end;
  1598 
  1599     fun prove stndrd = quick_and_dirty_prove stndrd defs_thy;
  1600     val prove_standard = quick_and_dirty_prove true defs_thy;
  1601     fun prove_simp stndrd simps =
  1602       let val tac = simp_all_tac HOL_ss simps
  1603       in fn prop => prove stndrd [] prop (K tac) end;
  1604 
  1605     fun inject_prf () = (prove_simp true [ext_def,abs_inject,Pair_eq] inject_prop);
  1606     val inject = timeit_msg "record extension inject proof:" inject_prf;
  1607 
  1608     fun induct_prf () =
  1609       let val (assm, concl) = induct_prop
  1610       in prove_standard [assm] concl (fn {prems, ...} =>
  1611            EVERY [try_param_tac rN abs_induct 1,
  1612                   simp_tac (HOL_ss addsimps [split_paired_all]) 1,
  1613                   resolve_tac (map (rewrite_rule [ext_def]) prems) 1])
  1614       end;
  1615     val induct = timeit_msg "record extension induct proof:" induct_prf;
  1616 
  1617     fun cases_prf_opt () =
  1618       let
  1619         val (_$(Pvar$_)) = concl_of induct;
  1620         val ind = cterm_instantiate
  1621                     [(cterm_of defs_thy Pvar, cterm_of defs_thy
  1622                             (lambda w (HOLogic.imp$HOLogic.mk_eq(r,w)$C)))]
  1623                     induct;
  1624         in standard (ObjectLogic.rulify (mp OF [ind, refl])) end;
  1625 
  1626     fun cases_prf_noopt () =
  1627         prove_standard [] cases_prop (fn _ =>
  1628          EVERY [asm_full_simp_tac (HOL_basic_ss addsimps [atomize_all, atomize_imp]) 1,
  1629                 try_param_tac rN induct 1,
  1630                 rtac impI 1,
  1631                 REPEAT (etac allE 1),
  1632                 etac mp 1,
  1633                 rtac refl 1])
  1634 
  1635     val cases_prf = quick_and_dirty_prf cases_prf_noopt cases_prf_opt;
  1636     val cases = timeit_msg "record extension cases proof:" cases_prf;
  1637 
  1638     fun dest_convs_prf () = map (prove_simp false
  1639                       ([ext_def,abs_inverse]@Pair_sel_convs@dest_defs)) dest_conv_props;
  1640     val dest_convs = timeit_msg "record extension dest_convs proof:" dest_convs_prf;
  1641     fun dest_convs_standard_prf () = map standard dest_convs;
  1642 
  1643     val dest_convs_standard =
  1644         timeit_msg "record extension dest_convs_standard proof:" dest_convs_standard_prf;
  1645 
  1646     fun upd_convs_prf_noopt () = map (prove_simp true (dest_convs_standard@upd_defs))
  1647                                        upd_conv_props;
  1648     fun upd_convs_prf_opt () =
  1649       let
  1650 
  1651         fun mkrefl (c,T) = Thm.reflexive
  1652                     (cterm_of defs_thy (Free (Name.variant variants (base c ^ "'"),T-->T)));
  1653         val refls = map mkrefl fields_more;
  1654         val dest_convs' = map mk_meta_eq dest_convs;
  1655         val map_eqs = map (uncurry Thm.combination) (refls ~~ dest_convs');
  1656 
  1657         val constr_refl = Thm.reflexive (cterm_of defs_thy (head_of ext));
  1658 
  1659         fun mkthm (udef,(fld_refl,thms)) =
  1660           let val bdyeq = Library.foldl (uncurry Thm.combination) (constr_refl,thms);
  1661                (* (|N=N (|N=N,M=M,K=K,more=more|)
  1662                     M=M (|N=N,M=M,K=K,more=more|)
  1663                     K=K'
  1664                     more = more (|N=N,M=M,K=K,more=more|) =
  1665                   (|N=N,M=M,K=K',more=more|)
  1666                 *)
  1667               val (_$(_$v$r)$_) = prop_of udef;
  1668               val (_$(v'$_)$_) = prop_of fld_refl;
  1669               val udef' = cterm_instantiate
  1670                             [(cterm_of defs_thy v,cterm_of defs_thy v'),
  1671                              (cterm_of defs_thy r,cterm_of defs_thy ext)] udef;
  1672           in  standard (Thm.transitive udef' bdyeq) end;
  1673       in map mkthm (rev upd_defs  ~~ (mixit dest_convs' map_eqs)) end;
  1674 
  1675     val upd_convs_prf = quick_and_dirty_prf upd_convs_prf_noopt upd_convs_prf_opt;
  1676 
  1677     val upd_convs =
  1678          timeit_msg "record extension upd_convs proof:" upd_convs_prf;
  1679 
  1680     fun surjective_prf () =
  1681       prove_standard [] surjective_prop (fn _ =>
  1682           (EVERY [try_param_tac rN induct 1,
  1683                   simp_tac (HOL_basic_ss addsimps dest_convs_standard) 1]));
  1684     val surjective = timeit_msg "record extension surjective proof:" surjective_prf;
  1685 
  1686     fun split_meta_prf () =
  1687         prove_standard [] split_meta_prop (fn _ =>
  1688          EVERY [rtac equal_intr_rule 1, Goal.norm_hhf_tac 1,
  1689                 etac meta_allE 1, atac 1,
  1690                 rtac (prop_subst OF [surjective]) 1,
  1691                 REPEAT (etac meta_allE 1), atac 1]);
  1692     val split_meta = timeit_msg "record extension split_meta proof:" split_meta_prf;
  1693 
  1694 
  1695     val (([inject',induct',cases',surjective',split_meta'],
  1696           [dest_convs',upd_convs']),
  1697       thm_thy) =
  1698       defs_thy
  1699       |> (PureThy.add_thms o map (Thm.no_attributes o apfst Binding.name))
  1700            [("ext_inject", inject),
  1701             ("ext_induct", induct),
  1702             ("ext_cases", cases),
  1703             ("ext_surjective", surjective),
  1704             ("ext_split", split_meta)]
  1705       ||>> (PureThy.add_thmss o map (Thm.no_attributes o apfst Binding.name))
  1706             [("dest_convs", dest_convs_standard), ("upd_convs", upd_convs)]
  1707 
  1708   in (thm_thy,extT,induct',inject',dest_convs',split_meta',upd_convs')
  1709   end;
  1710 
  1711 fun chunks []      []   = []
  1712   | chunks []      xs   = [xs]
  1713   | chunks (l::ls) xs  = Library.take (l,xs)::chunks ls (Library.drop (l,xs));
  1714 
  1715 fun chop_last [] = error "last: list should not be empty"
  1716   | chop_last [x] = ([],x)
  1717   | chop_last (x::xs) = let val (tl,l) = chop_last xs in (x::tl,l) end;
  1718 
  1719 fun subst_last s []      = error "subst_last: list should not be empty"
  1720   | subst_last s ([x])   = [s]
  1721   | subst_last s (x::xs) = (x::subst_last s xs);
  1722 
  1723 (* mk_recordT builds up the record type from the current extension tpye extT and a list
  1724  * of parent extensions, starting with the root of the record hierarchy
  1725 *)
  1726 fun mk_recordT extT =
  1727     fold_rev (fn (parent, Ts) => fn T => Type (parent, subst_last T Ts)) extT;
  1728 
  1729 
  1730 
  1731 fun obj_to_meta_all thm =
  1732   let
  1733     fun E thm = case (SOME (spec OF [thm]) handle THM _ => NONE) of
  1734                   SOME thm' => E thm'
  1735                 | NONE => thm;
  1736     val th1 = E thm;
  1737     val th2 = Drule.forall_intr_vars th1;
  1738   in th2 end;
  1739 
  1740 fun meta_to_obj_all thm =
  1741   let
  1742     val thy = Thm.theory_of_thm thm;
  1743     val prop = Thm.prop_of thm;
  1744     val params = Logic.strip_params prop;
  1745     val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl prop);
  1746     val ct = cterm_of thy
  1747       (HOLogic.mk_Trueprop (HOLogic.list_all (params, concl)));
  1748     val thm' = Seq.hd (REPEAT (rtac allI 1) (Thm.trivial ct));
  1749   in
  1750     Thm.implies_elim thm' thm
  1751   end;
  1752 
  1753 
  1754 
  1755 (* record_definition *)
  1756 
  1757 fun record_definition (args, bname) parent (parents: parent_info list) raw_fields thy =
  1758   let
  1759     val external_names = NameSpace.external_names (Sign.naming_of thy);
  1760 
  1761     val alphas = map fst args;
  1762     val name = Sign.full_bname thy bname;
  1763     val full = Sign.full_bname_path thy bname;
  1764     val base = Long_Name.base_name;
  1765 
  1766     val (bfields, field_syntax) = split_list (map (fn (x, T, mx) => ((x, T), mx)) raw_fields);
  1767 
  1768     val parent_fields = List.concat (map #fields parents);
  1769     val parent_chunks = map (length o #fields) parents;
  1770     val parent_names = map fst parent_fields;
  1771     val parent_types = map snd parent_fields;
  1772     val parent_fields_len = length parent_fields;
  1773     val parent_variants = Name.variant_list [moreN, rN, rN ^ "'", wN] (map base parent_names);
  1774     val parent_vars = ListPair.map Free (parent_variants, parent_types);
  1775     val parent_len = length parents;
  1776     val parents_idx = (map #name parents) ~~ (0 upto (parent_len - 1));
  1777 
  1778     val fields = map (apfst full) bfields;
  1779     val names = map fst fields;
  1780     val extN = full bname;
  1781     val types = map snd fields;
  1782     val alphas_fields = List.foldr OldTerm.add_typ_tfree_names [] types;
  1783     val alphas_ext = alphas inter alphas_fields;
  1784     val len = length fields;
  1785     val variants =
  1786       Name.variant_list (moreN :: rN :: (rN ^ "'") :: wN :: parent_variants) (map fst bfields);
  1787     val vars = ListPair.map Free (variants, types);
  1788     val named_vars = names ~~ vars;
  1789     val idxs = 0 upto (len - 1);
  1790     val idxms = 0 upto len;
  1791 
  1792     val all_fields = parent_fields @ fields;
  1793     val all_names = parent_names @ names;
  1794     val all_types = parent_types @ types;
  1795     val all_len = parent_fields_len + len;
  1796     val all_variants = parent_variants @ variants;
  1797     val all_vars = parent_vars @ vars;
  1798     val all_named_vars = (parent_names ~~ parent_vars) @ named_vars;
  1799 
  1800 
  1801     val zeta = Name.variant alphas "'z";
  1802     val moreT = TFree (zeta, HOLogic.typeS);
  1803     val more = Free (moreN, moreT);
  1804     val full_moreN = full moreN;
  1805     val bfields_more = bfields @ [(moreN,moreT)];
  1806     val fields_more = fields @ [(full_moreN,moreT)];
  1807     val vars_more = vars @ [more];
  1808     val named_vars_more = named_vars @[(full_moreN,more)];
  1809     val all_vars_more = all_vars @ [more];
  1810     val all_named_vars_more = all_named_vars @ [(full_moreN,more)];
  1811 
  1812     (* 1st stage: extension_thy *)
  1813     val (extension_thy,extT,ext_induct,ext_inject,ext_dest_convs,ext_split,u_convs) =
  1814       thy
  1815       |> Sign.add_path bname
  1816       |> extension_definition full extN fields names alphas_ext zeta moreT more vars;
  1817 
  1818     val _ = timing_msg "record preparing definitions";
  1819     val Type extension_scheme = extT;
  1820     val extension_name = unsuffix ext_typeN (fst extension_scheme);
  1821     val extension = let val (n,Ts) = extension_scheme in (n,subst_last HOLogic.unitT Ts) end;
  1822     val extension_names =
  1823          (map ((unsuffix ext_typeN) o fst o #extension) parents) @ [extN];
  1824     val extension_id = Library.foldl (op ^) ("",extension_names);
  1825 
  1826 
  1827     fun rec_schemeT n = mk_recordT (map #extension (prune n parents)) extT;
  1828     val rec_schemeT0 = rec_schemeT 0;
  1829 
  1830     fun recT n =
  1831       let val (c,Ts) = extension
  1832       in mk_recordT (map #extension (prune n parents)) (Type (c,subst_last HOLogic.unitT Ts))
  1833       end;
  1834     val recT0 = recT 0;
  1835 
  1836     fun mk_rec args n =
  1837       let val (args',more) = chop_last args;
  1838           fun mk_ext' (((name,T),args),more) = mk_ext (name,T) (args@[more]);
  1839           fun build Ts =
  1840            List.foldr mk_ext' more (prune n (extension_names ~~ Ts ~~ (chunks parent_chunks args')))
  1841       in
  1842         if more = HOLogic.unit
  1843         then build (map recT (0 upto parent_len))
  1844         else build (map rec_schemeT (0 upto parent_len))
  1845       end;
  1846 
  1847     val r_rec0 = mk_rec all_vars_more 0;
  1848     val r_rec_unit0 = mk_rec (all_vars@[HOLogic.unit]) 0;
  1849 
  1850     fun r n = Free (rN, rec_schemeT n)
  1851     val r0 = r 0;
  1852     fun r_unit n = Free (rN, recT n)
  1853     val r_unit0 = r_unit 0;
  1854     val w = Free (wN, rec_schemeT 0)
  1855 
  1856     (* prepare print translation functions *)
  1857     val field_tr's =
  1858       print_translation (distinct (op =) (maps external_names (full_moreN :: names)));
  1859 
  1860     val adv_ext_tr's =
  1861     let
  1862       val trnames = external_names extN;
  1863     in map (gen_record_tr') trnames end;
  1864 
  1865     val adv_record_type_abbr_tr's =
  1866       let val trnames = external_names (hd extension_names);
  1867           val lastExt = unsuffix ext_typeN (fst extension);
  1868       in map (gen_record_type_abbr_tr' name alphas zeta lastExt rec_schemeT0) trnames
  1869       end;
  1870 
  1871     val adv_record_type_tr's =
  1872       let val trnames = if parent_len > 0 then external_names extN else [];
  1873                         (* avoid conflict with adv_record_type_abbr_tr's *)
  1874       in map (gen_record_type_tr') trnames
  1875       end;
  1876 
  1877 
  1878     (* prepare declarations *)
  1879 
  1880     val sel_decls = map (mk_selC rec_schemeT0) bfields_more;
  1881     val upd_decls = map (mk_updC updateN rec_schemeT0) bfields_more;
  1882     val make_decl = (makeN, all_types ---> recT0);
  1883     val fields_decl = (fields_selN, types ---> Type extension);
  1884     val extend_decl = (extendN, recT0 --> moreT --> rec_schemeT0);
  1885     val truncate_decl = (truncateN, rec_schemeT0 --> recT0);
  1886 
  1887     (* prepare definitions *)
  1888 
  1889     fun parent_more s =
  1890          if null parents then s
  1891          else mk_sel s (Long_Name.qualify (#name (List.last parents)) moreN, extT);
  1892 
  1893     fun parent_more_upd v s =
  1894       if null parents then v$s
  1895       else let val mp = Long_Name.qualify (#name (List.last parents)) moreN;
  1896            in mk_upd updateN mp v s end;
  1897 
  1898     (*record (scheme) type abbreviation*)
  1899     val recordT_specs =
  1900       [(Binding.name (suffix schemeN bname), alphas @ [zeta], rec_schemeT0, Syntax.NoSyn),
  1901         (Binding.name bname, alphas, recT0, Syntax.NoSyn)];
  1902 
  1903     (*selectors*)
  1904     fun mk_sel_spec (c,T) =
  1905          Const (mk_selC rec_schemeT0 (c,T))
  1906           :== (lambda r0 (Const (mk_selC extT (suffix ext_dest c,T))$parent_more r0));
  1907     val sel_specs = map mk_sel_spec fields_more;
  1908 
  1909     (*updates*)
  1910 
  1911     fun mk_upd_spec (c,T) =
  1912       let
  1913         val new = mk_upd' updN c (Free (base c,T-->T)) extT(*(parent_more r0)*);
  1914       in Const (mk_updC updateN rec_schemeT0 (c,T))$(Free (base c,T-->T))$r0
  1915           :== (parent_more_upd new r0)
  1916       end;
  1917     val upd_specs = map mk_upd_spec fields_more;
  1918 
  1919     (*derived operations*)
  1920     val make_spec = Const (full makeN, all_types ---> recT0) $$ all_vars :==
  1921       mk_rec (all_vars @ [HOLogic.unit]) 0;
  1922     val fields_spec = Const (full fields_selN, types ---> Type extension) $$ vars :==
  1923       mk_rec (all_vars @ [HOLogic.unit]) parent_len;
  1924     val extend_spec =
  1925       Const (full extendN, recT0-->moreT-->rec_schemeT0) $ r_unit0 $ more :==
  1926       mk_rec ((map (mk_sel r_unit0) all_fields) @ [more]) 0;
  1927     val truncate_spec = Const (full truncateN, rec_schemeT0 --> recT0) $ r0 :==
  1928       mk_rec ((map (mk_sel r0) all_fields) @ [HOLogic.unit]) 0;
  1929 
  1930     (* 2st stage: defs_thy *)
  1931 
  1932     fun mk_defs () =
  1933       extension_thy
  1934       |> Sign.add_trfuns
  1935           ([],[],field_tr's, [])
  1936       |> Sign.add_advanced_trfuns
  1937           ([],[],adv_ext_tr's @ adv_record_type_tr's @ adv_record_type_abbr_tr's,[])
  1938       |> Sign.parent_path
  1939       |> Sign.add_tyabbrs_i recordT_specs
  1940       |> Sign.add_path bname
  1941       |> Sign.add_consts_i
  1942           (map2 (fn (x, T) => fn mx => (Binding.name x, T, mx))
  1943             sel_decls (field_syntax @ [Syntax.NoSyn]))
  1944       |> (Sign.add_consts_i o map (fn (x, T) => (Binding.name x, T, Syntax.NoSyn)))
  1945           (upd_decls @ [make_decl, fields_decl, extend_decl, truncate_decl])
  1946       |> ((PureThy.add_defs false o map (Thm.no_attributes o apfst Binding.name)) sel_specs)
  1947       ||>> ((PureThy.add_defs false o map (Thm.no_attributes o apfst Binding.name)) upd_specs)
  1948       ||>> ((PureThy.add_defs false o map (Thm.no_attributes o apfst Binding.name))
  1949              [make_spec, fields_spec, extend_spec, truncate_spec])
  1950       |-> (fn defs as ((sel_defs, upd_defs), derived_defs) =>
  1951           fold Code.add_default_eqn sel_defs
  1952           #> fold Code.add_default_eqn upd_defs
  1953           #> fold Code.add_default_eqn derived_defs
  1954           #> pair defs)
  1955     val (((sel_defs, upd_defs), derived_defs), defs_thy) =
  1956       timeit_msg "record trfuns/tyabbrs/selectors/updates/make/fields/extend/truncate defs:"
  1957         mk_defs;
  1958 
  1959 
  1960     (* prepare propositions *)
  1961     val _ = timing_msg "record preparing propositions";
  1962     val P = Free (Name.variant all_variants "P", rec_schemeT0-->HOLogic.boolT);
  1963     val C = Free (Name.variant all_variants "C", HOLogic.boolT);
  1964     val P_unit = Free (Name.variant all_variants "P", recT0-->HOLogic.boolT);
  1965 
  1966     (*selectors*)
  1967     val sel_conv_props =
  1968        map (fn (c, x as Free (_,T)) => mk_sel r_rec0 (c,T) === x) named_vars_more;
  1969 
  1970     (*updates*)
  1971     fun mk_upd_prop (i,(c,T)) =
  1972       let val x' = Free (Name.variant all_variants (base c ^ "'"),T-->T);
  1973           val n = parent_fields_len + i;
  1974           val args' = nth_map n (K (x'$nth all_vars_more n)) all_vars_more
  1975       in mk_upd updateN c x' r_rec0 === mk_rec args' 0  end;
  1976     val upd_conv_props = ListPair.map mk_upd_prop (idxms, fields_more);
  1977 
  1978     (*induct*)
  1979     val induct_scheme_prop =
  1980       All (map dest_Free all_vars_more) (Trueprop (P $ r_rec0)) ==> Trueprop (P $ r0);
  1981     val induct_prop =
  1982       (All (map dest_Free all_vars) (Trueprop (P_unit $ r_rec_unit0)),
  1983        Trueprop (P_unit $ r_unit0));
  1984 
  1985     (*surjective*)
  1986     val surjective_prop =
  1987       let val args = map (fn (c,Free (_,T)) => mk_sel r0 (c,T)) all_named_vars_more
  1988       in r0 === mk_rec args 0 end;
  1989 
  1990     (*cases*)
  1991     val cases_scheme_prop =
  1992       (All (map dest_Free all_vars_more)
  1993         (Trueprop (HOLogic.mk_eq (r0,r_rec0)) ==> Trueprop C))
  1994       ==> Trueprop C;
  1995 
  1996     val cases_prop =
  1997       (All (map dest_Free all_vars)
  1998         (Trueprop (HOLogic.mk_eq (r_unit0,r_rec_unit0)) ==> Trueprop C))
  1999        ==> Trueprop C;
  2000 
  2001     (*split*)
  2002     val split_meta_prop =
  2003       let val P = Free (Name.variant all_variants "P", rec_schemeT0-->Term.propT) in
  2004         Logic.mk_equals
  2005          (All [dest_Free r0] (P $ r0), All (map dest_Free all_vars_more) (P $ r_rec0))
  2006       end;
  2007 
  2008     val split_object_prop =
  2009       let fun ALL vs t = List.foldr (fn ((v,T),t) => HOLogic.mk_all (v,T,t)) t vs
  2010       in (ALL [dest_Free r0] (P $ r0)) === (ALL (map dest_Free all_vars_more) (P $ r_rec0))
  2011       end;
  2012 
  2013 
  2014     val split_ex_prop =
  2015       let fun EX vs t = List.foldr (fn ((v,T),t) => HOLogic.mk_exists (v,T,t)) t vs
  2016       in (EX [dest_Free r0] (P $ r0)) === (EX (map dest_Free all_vars_more) (P $ r_rec0))
  2017       end;
  2018 
  2019     (*equality*)
  2020     val equality_prop =
  2021       let
  2022         val s' = Free (rN ^ "'", rec_schemeT0)
  2023         fun mk_sel_eq (c,Free (_,T)) =  mk_sel r0 (c,T) === mk_sel s' (c,T)
  2024         val seleqs = map mk_sel_eq all_named_vars_more
  2025       in All (map dest_Free [r0,s']) (Logic.list_implies (seleqs,r0 === s')) end;
  2026 
  2027     (* 3rd stage: thms_thy *)
  2028 
  2029     fun prove stndrd = quick_and_dirty_prove stndrd defs_thy;
  2030     val prove_standard = quick_and_dirty_prove true defs_thy;
  2031 
  2032     fun prove_simp stndrd ss simps =
  2033       let val tac = simp_all_tac ss simps
  2034       in fn prop => prove stndrd [] prop (K tac) end;
  2035 
  2036     val ss = get_simpset defs_thy;
  2037 
  2038     fun sel_convs_prf () = map (prove_simp false ss
  2039                            (sel_defs@ext_dest_convs)) sel_conv_props;
  2040     val sel_convs = timeit_msg "record sel_convs proof:" sel_convs_prf;
  2041     fun sel_convs_standard_prf () = map standard sel_convs
  2042     val sel_convs_standard =
  2043           timeit_msg "record sel_convs_standard proof:" sel_convs_standard_prf;
  2044 
  2045     fun upd_convs_prf () =
  2046           map (prove_simp true ss (upd_defs@u_convs)) upd_conv_props;
  2047 
  2048     val upd_convs = timeit_msg "record upd_convs proof:" upd_convs_prf;
  2049 
  2050     val parent_induct = if null parents then [] else [#induct (hd (rev parents))];
  2051 
  2052     fun induct_scheme_prf () = prove_standard [] induct_scheme_prop (fn _ =>
  2053           (EVERY [if null parent_induct
  2054                   then all_tac else try_param_tac rN (hd parent_induct) 1,
  2055                   try_param_tac rN ext_induct 1,
  2056                   asm_simp_tac HOL_basic_ss 1]));
  2057     val induct_scheme = timeit_msg "record induct_scheme proof:" induct_scheme_prf;
  2058 
  2059     fun induct_prf () =
  2060       let val (assm, concl) = induct_prop;
  2061       in
  2062         prove_standard [assm] concl (fn {prems, ...} =>
  2063           try_param_tac rN induct_scheme 1
  2064           THEN try_param_tac "more" @{thm unit.induct} 1
  2065           THEN resolve_tac prems 1)
  2066       end;
  2067     val induct = timeit_msg "record induct proof:" induct_prf;
  2068 
  2069     fun surjective_prf () =
  2070       prove_standard [] surjective_prop (fn prems =>
  2071           (EVERY [try_param_tac rN induct_scheme 1,
  2072                   simp_tac (ss addsimps sel_convs_standard) 1]))
  2073     val surjective = timeit_msg "record surjective proof:" surjective_prf;
  2074 
  2075     fun cases_scheme_prf_opt () =
  2076       let
  2077         val (_$(Pvar$_)) = concl_of induct_scheme;
  2078         val ind = cterm_instantiate
  2079                     [(cterm_of defs_thy Pvar, cterm_of defs_thy
  2080                             (lambda w (HOLogic.imp$HOLogic.mk_eq(r0,w)$C)))]
  2081                     induct_scheme;
  2082         in standard (ObjectLogic.rulify (mp OF [ind, refl])) end;
  2083 
  2084     fun cases_scheme_prf_noopt () =
  2085         prove_standard [] cases_scheme_prop (fn _ =>
  2086          EVERY [asm_full_simp_tac (HOL_basic_ss addsimps [atomize_all, atomize_imp]) 1,
  2087                try_param_tac rN induct_scheme 1,
  2088                rtac impI 1,
  2089                REPEAT (etac allE 1),
  2090                etac mp 1,
  2091                rtac refl 1])
  2092     val cases_scheme_prf = quick_and_dirty_prf cases_scheme_prf_noopt cases_scheme_prf_opt;
  2093     val cases_scheme = timeit_msg "record cases_scheme proof:" cases_scheme_prf;
  2094 
  2095     fun cases_prf () =
  2096       prove_standard [] cases_prop  (fn _ =>
  2097         try_param_tac rN cases_scheme 1
  2098         THEN simp_all_tac HOL_basic_ss [unit_all_eq1]);
  2099     val cases = timeit_msg "record cases proof:" cases_prf;
  2100 
  2101     fun split_meta_prf () =
  2102         prove false [] split_meta_prop (fn _ =>
  2103          EVERY [rtac equal_intr_rule 1, Goal.norm_hhf_tac 1,
  2104                 etac meta_allE 1, atac 1,
  2105                 rtac (prop_subst OF [surjective]) 1,
  2106                 REPEAT (etac meta_allE 1), atac 1]);
  2107     val split_meta = timeit_msg "record split_meta proof:" split_meta_prf;
  2108     val split_meta_standard = standard split_meta;
  2109 
  2110     fun split_object_prf_opt () =
  2111       let
  2112         val cPI= cterm_of defs_thy (lambda r0 (Trueprop (P$r0)));
  2113         val (_$Abs(_,_,P$_)) = fst (Logic.dest_equals (concl_of split_meta_standard));
  2114         val cP = cterm_of defs_thy P;
  2115         val split_meta' = cterm_instantiate [(cP,cPI)] split_meta_standard;
  2116         val (l,r) = HOLogic.dest_eq (HOLogic.dest_Trueprop split_object_prop);
  2117         val cl = cterm_of defs_thy (HOLogic.mk_Trueprop l);
  2118         val cr = cterm_of defs_thy (HOLogic.mk_Trueprop r);
  2119         val thl = assume cl                 (*All r. P r*) (* 1 *)
  2120                 |> obj_to_meta_all          (*!!r. P r*)
  2121                 |> equal_elim split_meta'   (*!!n m more. P (ext n m more)*)
  2122                 |> meta_to_obj_all          (*All n m more. P (ext n m more)*) (* 2*)
  2123                 |> implies_intr cl          (* 1 ==> 2 *)
  2124         val thr = assume cr                           (*All n m more. P (ext n m more)*)
  2125                 |> obj_to_meta_all                    (*!!n m more. P (ext n m more)*)
  2126                 |> equal_elim (symmetric split_meta') (*!!r. P r*)
  2127                 |> meta_to_obj_all                    (*All r. P r*)
  2128                 |> implies_intr cr                    (* 2 ==> 1 *)
  2129      in standard (thr COMP (thl COMP iffI)) end;
  2130 
  2131     fun split_object_prf_noopt () =
  2132         prove_standard [] split_object_prop (fn _ =>
  2133          EVERY [rtac iffI 1,
  2134                 REPEAT (rtac allI 1), etac allE 1, atac 1,
  2135                 rtac allI 1, rtac induct_scheme 1,REPEAT (etac allE 1),atac 1]);
  2136 
  2137     val split_object_prf = quick_and_dirty_prf split_object_prf_noopt split_object_prf_opt;
  2138     val split_object = timeit_msg "record split_object proof:" split_object_prf;
  2139 
  2140 
  2141     fun split_ex_prf () =
  2142         prove_standard [] split_ex_prop (fn _ =>
  2143           EVERY [rtac iffI 1,
  2144                    etac exE 1,
  2145                    simp_tac (HOL_basic_ss addsimps [split_meta_standard]) 1,
  2146                    ex_inst_tac 1,
  2147                    (*REPEAT (rtac exI 1),*)
  2148                    atac 1,
  2149                  REPEAT (etac exE 1),
  2150                  rtac exI 1,
  2151                  atac 1]);
  2152     val split_ex = timeit_msg "record split_ex proof:" split_ex_prf;
  2153 
  2154     fun equality_tac thms =
  2155       let val (s'::s::eqs) = rev thms;
  2156           val ss' = ss addsimps (s'::s::sel_convs_standard);
  2157           val eqs' = map (simplify ss') eqs;
  2158       in simp_tac (HOL_basic_ss addsimps (s'::s::eqs')) 1 end;
  2159 
  2160    fun equality_prf () = prove_standard [] equality_prop (fn {context, ...} =>
  2161       fn st => let val [s, s'] = map #1 (rev (Tactic.innermost_params 1 st)) in
  2162         st |> (res_inst_tac context [((rN, 0), s)] cases_scheme 1
  2163         THEN res_inst_tac context [((rN, 0), s')] cases_scheme 1
  2164         THEN (METAHYPS equality_tac 1))
  2165              (* simp_all_tac ss (sel_convs) would also work but is less efficient *)
  2166       end);
  2167      val equality = timeit_msg "record equality proof:" equality_prf;
  2168 
  2169     val ((([sel_convs',upd_convs',sel_defs',upd_defs',[split_meta',split_object',split_ex'],derived_defs'],
  2170             [surjective',equality']),[induct_scheme',induct',cases_scheme',cases']), thms_thy) =
  2171       defs_thy
  2172       |> (PureThy.add_thmss o map (Thm.no_attributes o apfst Binding.name))
  2173          [("select_convs", sel_convs_standard),
  2174           ("update_convs", upd_convs),
  2175           ("select_defs", sel_defs),
  2176           ("update_defs", upd_defs),
  2177           ("splits", [split_meta_standard,split_object,split_ex]),
  2178           ("defs", derived_defs)]
  2179       ||>> (PureThy.add_thms o map (Thm.no_attributes o apfst Binding.name))
  2180           [("surjective", surjective),
  2181            ("equality", equality)]
  2182       ||>> (PureThy.add_thms o (map o apfst o apfst) Binding.name)
  2183         [(("induct_scheme", induct_scheme), induct_type_global (suffix schemeN name)),
  2184          (("induct", induct), induct_type_global name),
  2185          (("cases_scheme", cases_scheme), cases_type_global (suffix schemeN name)),
  2186          (("cases", cases), cases_type_global name)];
  2187 
  2188 
  2189     val sel_upd_simps = sel_convs' @ upd_convs';
  2190     val iffs = [ext_inject]
  2191     val final_thy =
  2192       thms_thy
  2193       |> (snd oo PureThy.add_thmss)
  2194           [((Binding.name "simps", sel_upd_simps),
  2195             [Simplifier.simp_add, Nitpick_Const_Simp_Thms.add]),
  2196            ((Binding.name "iffs", iffs), [iff_add])]
  2197       |> put_record name (make_record_info args parent fields extension induct_scheme')
  2198       |> put_sel_upd (names @ [full_moreN]) sel_upd_simps
  2199       |> add_record_equalities extension_id equality'
  2200       |> add_extinjects ext_inject
  2201       |> add_extsplit extension_name ext_split
  2202       |> add_record_splits extension_id (split_meta',split_object',split_ex',induct_scheme')
  2203       |> add_extfields extension_name (fields @ [(full_moreN,moreT)])
  2204       |> add_fieldext (extension_name,snd extension) (names @ [full_moreN])
  2205       |> Sign.parent_path;
  2206 
  2207   in final_thy
  2208   end;
  2209 
  2210 
  2211 (* add_record *)
  2212 
  2213 (*we do all preparations and error checks here, deferring the real
  2214   work to record_definition*)
  2215 fun gen_add_record prep_typ prep_raw_parent quiet_mode (params, bname) raw_parent raw_fields thy =
  2216   let
  2217     val _ = Theory.requires thy "Record" "record definitions";
  2218     val _ = if quiet_mode then () else writeln ("Defining record " ^ quote bname ^ " ...");
  2219 
  2220     val ctxt = ProofContext.init thy;
  2221 
  2222 
  2223     (* parents *)
  2224 
  2225     fun prep_inst T = fst (cert_typ ctxt T []);
  2226 
  2227     val parent = Option.map (apfst (map prep_inst) o prep_raw_parent ctxt) raw_parent
  2228       handle ERROR msg => cat_error msg ("The error(s) above in parent record specification");
  2229     val parents = add_parents thy parent [];
  2230 
  2231     val init_env =
  2232       (case parent of
  2233         NONE => []
  2234       | SOME (types, _) => List.foldr OldTerm.add_typ_tfrees [] types);
  2235 
  2236 
  2237     (* fields *)
  2238 
  2239     fun prep_field (c, raw_T, mx) env =
  2240       let val (T, env') = prep_typ ctxt raw_T env handle ERROR msg =>
  2241         cat_error msg ("The error(s) above occured in record field " ^ quote c)
  2242       in ((c, T, mx), env') end;
  2243 
  2244     val (bfields, envir) = fold_map prep_field raw_fields init_env;
  2245     val envir_names = map fst envir;
  2246 
  2247 
  2248     (* args *)
  2249 
  2250     val defaultS = Sign.defaultS thy;
  2251     val args = map (fn x => (x, AList.lookup (op =) envir x |> the_default defaultS)) params;
  2252 
  2253 
  2254     (* errors *)
  2255 
  2256     val name = Sign.full_bname thy bname;
  2257     val err_dup_record =
  2258       if is_none (get_record thy name) then []
  2259       else ["Duplicate definition of record " ^ quote name];
  2260 
  2261     val err_dup_parms =
  2262       (case duplicates (op =) params of
  2263         [] => []
  2264       | dups => ["Duplicate parameter(s) " ^ commas dups]);
  2265 
  2266     val err_extra_frees =
  2267       (case subtract (op =) params envir_names of
  2268         [] => []
  2269       | extras => ["Extra free type variable(s) " ^ commas extras]);
  2270 
  2271     val err_no_fields = if null bfields then ["No fields present"] else [];
  2272 
  2273     val err_dup_fields =
  2274       (case duplicates (op =) (map #1 bfields) of
  2275         [] => []
  2276       | dups => ["Duplicate field(s) " ^ commas_quote dups]);
  2277 
  2278     val err_bad_fields =
  2279       if forall (not_equal moreN o #1) bfields then []
  2280       else ["Illegal field name " ^ quote moreN];
  2281 
  2282     val err_dup_sorts =
  2283       (case duplicates (op =) envir_names of
  2284         [] => []
  2285       | dups => ["Inconsistent sort constraints for " ^ commas dups]);
  2286 
  2287     val errs =
  2288       err_dup_record @ err_dup_parms @ err_extra_frees @ err_no_fields @
  2289       err_dup_fields @ err_bad_fields @ err_dup_sorts;
  2290   in
  2291     if null errs then () else error (cat_lines errs)  ;
  2292     thy |> record_definition (args, bname) parent parents bfields
  2293   end
  2294   handle ERROR msg => cat_error msg ("Failed to define record " ^ quote bname);
  2295 
  2296 val add_record = gen_add_record read_typ read_raw_parent;
  2297 val add_record_i = gen_add_record cert_typ (K I);
  2298 
  2299 (* setup theory *)
  2300 
  2301 val setup =
  2302   Sign.add_trfuns ([], parse_translation, [], []) #>
  2303   Sign.add_advanced_trfuns ([], adv_parse_translation, [], []) #>
  2304   Simplifier.map_simpset (fn ss =>
  2305     ss addsimprocs [record_simproc, record_upd_simproc, record_eq_simproc]);
  2306 
  2307 (* outer syntax *)
  2308 
  2309 local structure P = OuterParse and K = OuterKeyword in
  2310 
  2311 val record_decl =
  2312   P.type_args -- P.name --
  2313     (P.$$$ "=" |-- Scan.option (P.typ --| P.$$$ "+") -- Scan.repeat1 P.const);
  2314 
  2315 val _ =
  2316   OuterSyntax.command "record" "define extensible record" K.thy_decl
  2317     (record_decl >> (fn (x, (y, z)) => Toplevel.theory (add_record false x y z)));
  2318 
  2319 end;
  2320 
  2321 end;
  2322 
  2323 
  2324 structure BasicRecord: BASIC_RECORD = Record;
  2325 open BasicRecord;