src/HOL/ex/SOS.thy
author wenzelm
Wed Jun 22 10:09:20 2016 +0200 (2016-06-22)
changeset 63343 fb5d8a50c641
parent 61156 931b732617a2
child 66453 cc19f7ca2ed6
permissions -rw-r--r--
bundle lifting_syntax;
     1 (*  Title:      HOL/ex/SOS.thy
     2     Author:     Amine Chaieb, University of Cambridge
     3     Author:     Philipp Meyer, TU Muenchen
     4 
     5 Examples for Sum_of_Squares.
     6 *)
     7 
     8 theory SOS
     9 imports "~~/src/HOL/Library/Sum_of_Squares"
    10 begin
    11 
    12 lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x \<Longrightarrow> a < 0"
    13   by sos
    14 
    15 lemma "a1 \<ge> 0 \<and> a2 \<ge> 0 \<and> (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) \<and> (a1 * b1 + a2 * b2 = 0) \<longrightarrow>
    16     a1 * a2 - b1 * b2 \<ge> (0::real)"
    17   by sos
    18 
    19 lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x \<longrightarrow> a < 0"
    20   by sos
    21 
    22 lemma "(0::real) \<le> x \<and> x \<le> 1 \<and> 0 \<le> y \<and> y \<le> 1 \<longrightarrow>
    23     x\<^sup>2 + y\<^sup>2 < 1 \<or> (x - 1)\<^sup>2 + y\<^sup>2 < 1 \<or> x\<^sup>2 + (y - 1)\<^sup>2 < 1 \<or> (x - 1)\<^sup>2 + (y - 1)\<^sup>2 < 1"
    24   by sos
    25 
    26 lemma "(0::real) \<le> x \<and> 0 \<le> y \<and> 0 \<le> z \<and> x + y + z \<le> 3 \<longrightarrow> x * y + x * z + y * z \<ge> 3 * x * y * z"
    27   by sos
    28 
    29 lemma "(x::real)\<^sup>2 + y\<^sup>2 + z\<^sup>2 = 1 \<longrightarrow> (x + y + z)\<^sup>2 \<le> 3"
    30   by sos
    31 
    32 lemma "w\<^sup>2 + x\<^sup>2 + y\<^sup>2 + z\<^sup>2 = 1 \<longrightarrow> (w + x + y + z)\<^sup>2 \<le> (4::real)"
    33   by sos
    34 
    35 lemma "(x::real) \<ge> 1 \<and> y \<ge> 1 \<longrightarrow> x * y \<ge> x + y - 1"
    36   by sos
    37 
    38 lemma "(x::real) > 1 \<and> y > 1 \<longrightarrow> x * y > x + y - 1"
    39   by sos
    40 
    41 lemma "\<bar>x\<bar> \<le> 1 \<longrightarrow> \<bar>64 * x^7 - 112 * x^5 + 56 * x^3 - 7 * x\<bar> \<le> (1::real)"
    42   by sos
    43 
    44 
    45 text \<open>One component of denominator in dodecahedral example.\<close>
    46 
    47 lemma "2 \<le> x \<and> x \<le> 125841 / 50000 \<and> 2 \<le> y \<and> y \<le> 125841 / 50000 \<and> 2 \<le> z \<and> z \<le> 125841 / 50000 \<longrightarrow>
    48     2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) \<ge> (0::real)"
    49   by sos
    50 
    51 
    52 text \<open>Over a larger but simpler interval.\<close>
    53 
    54 lemma "(2::real) \<le> x \<and> x \<le> 4 \<and> 2 \<le> y \<and> y \<le> 4 \<and> 2 \<le> z \<and> z \<le> 4 \<longrightarrow>
    55     0 \<le> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)"
    56   by sos
    57 
    58 
    59 text \<open>We can do 12. I think 12 is a sharp bound; see PP's certificate.\<close>
    60 
    61 lemma "2 \<le> (x::real) \<and> x \<le> 4 \<and> 2 \<le> y \<and> y \<le> 4 \<and> 2 \<le> z \<and> z \<le> 4 \<longrightarrow>
    62     12 \<le> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)"
    63   by sos
    64 
    65 
    66 text \<open>Inequality from sci.math (see "Leon-Sotelo, por favor").\<close>
    67 
    68 lemma "0 \<le> (x::real) \<and> 0 \<le> y \<and> x * y = 1 \<longrightarrow> x + y \<le> x\<^sup>2 + y\<^sup>2"
    69   by sos
    70 
    71 lemma "0 \<le> (x::real) \<and> 0 \<le> y \<and> x * y = 1 \<longrightarrow> x * y * (x + y) \<le> x\<^sup>2 + y\<^sup>2"
    72   by sos
    73 
    74 lemma "0 \<le> (x::real) \<and> 0 \<le> y \<longrightarrow> x * y * (x + y)\<^sup>2 \<le> (x\<^sup>2 + y\<^sup>2)\<^sup>2"
    75   by sos
    76 
    77 lemma "(0::real) \<le> a \<and> 0 \<le> b \<and> 0 \<le> c \<and> c * (2 * a + b)^3 / 27 \<le> x \<longrightarrow> c * a\<^sup>2 * b \<le> x"
    78   by sos
    79 
    80 lemma "(0::real) < x \<longrightarrow> 0 < 1 + x + x\<^sup>2"
    81   by sos
    82 
    83 lemma "(0::real) \<le> x \<longrightarrow> 0 < 1 + x + x\<^sup>2"
    84   by sos
    85 
    86 lemma "(0::real) < 1 + x\<^sup>2"
    87   by sos
    88 
    89 lemma "(0::real) \<le> 1 + 2 * x + x\<^sup>2"
    90   by sos
    91 
    92 lemma "(0::real) < 1 + \<bar>x\<bar>"
    93   by sos
    94 
    95 lemma "(0::real) < 1 + (1 + x)\<^sup>2 * \<bar>x\<bar>"
    96   by sos
    97 
    98 
    99 lemma "\<bar>(1::real) + x\<^sup>2\<bar> = (1::real) + x\<^sup>2"
   100   by sos
   101 
   102 lemma "(3::real) * x + 7 * a < 4 \<and> 3 < 2 * x \<longrightarrow> a < 0"
   103   by sos
   104 
   105 lemma "(0::real) < x \<longrightarrow> 1 < y \<longrightarrow> y * x \<le> z \<longrightarrow> x < z"
   106   by sos
   107 
   108 lemma "(1::real) < x \<longrightarrow> x\<^sup>2 < y \<longrightarrow> 1 < y"
   109   by sos
   110 
   111 lemma "(b::real)\<^sup>2 < 4 * a * c \<longrightarrow> a * x\<^sup>2 + b * x + c \<noteq> 0"
   112   by sos
   113 
   114 lemma "(b::real)\<^sup>2 < 4 * a * c \<longrightarrow> a * x\<^sup>2 + b * x + c \<noteq> 0"
   115   by sos
   116 
   117 lemma "(a::real) * x\<^sup>2 + b * x + c = 0 \<longrightarrow> b\<^sup>2 \<ge> 4 * a * c"
   118   by sos
   119 
   120 lemma "(0::real) \<le> b \<and> 0 \<le> c \<and> 0 \<le> x \<and> 0 \<le> y \<and> x\<^sup>2 = c \<and> y\<^sup>2 = a\<^sup>2 * c + b \<longrightarrow> a * c \<le> y * x"
   121   by sos
   122 
   123 lemma "\<bar>x - z\<bar> \<le> e \<and> \<bar>y - z\<bar> \<le> e \<and> 0 \<le> u \<and> 0 \<le> v \<and> u + v = 1 --> \<bar>(u * x + v * y) - z\<bar> \<le> (e::real)"
   124   by sos
   125 
   126 lemma "(x::real) - y - 2 * x^4 = 0 \<and> 0 \<le> x \<and> x \<le> 2 \<and> 0 \<le> y \<and> y \<le> 3 \<longrightarrow> y\<^sup>2 - 7 * y - 12 * x + 17 \<ge> 0"
   127   oops (*Too hard?*)
   128 
   129 lemma "(0::real) \<le> x \<longrightarrow> (1 + x + x\<^sup>2) / (1 + x\<^sup>2) \<le> 1 + x"
   130   by sos
   131 
   132 lemma "(0::real) \<le> x \<longrightarrow> 1 - x \<le> 1 / (1 + x + x\<^sup>2)"
   133   by sos
   134 
   135 lemma "(x::real) \<le> 1 / 2 \<longrightarrow> - x - 2 * x\<^sup>2 \<le> - x / (1 - x)"
   136   by sos
   137 
   138 lemma "4 * r\<^sup>2 = p\<^sup>2 - 4 * q \<and> r \<ge> (0::real) \<and> x\<^sup>2 + p * x + q = 0 \<longrightarrow>
   139     2 * (x::real) = - p + 2 * r \<or> 2 * x = - p - 2 * r"
   140   by sos
   141 
   142 end