src/ZF/Nat.thy
 author nipkow Wed, 02 Dec 2020 10:30:59 +0100 changeset 72803 83c6d29a2412 parent 71085 950e1cfe0fe4 permissions -rw-r--r--
merged
```
(*  Title:      ZF/Nat.thy
Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
*)

section\<open>The Natural numbers As a Least Fixed Point\<close>

theory Nat imports OrdQuant Bool begin

definition
nat :: i  where
"nat == lfp(Inf, %X. {0} \<union> {succ(i). i \<in> X})"

definition
quasinat :: "i => o"  where
"quasinat(n) == n=0 | (\<exists>m. n = succ(m))"

definition
(*Has an unconditional succ case, which is used in "recursor" below.*)
nat_case :: "[i, i=>i, i]=>i"  where
"nat_case(a,b,k) == THE y. k=0 & y=a | (\<exists>x. k=succ(x) & y=b(x))"

definition
nat_rec :: "[i, i, [i,i]=>i]=>i"  where
"nat_rec(k,a,b) ==
wfrec(Memrel(nat), k, %n f. nat_case(a, %m. b(m, f`m), n))"

(*Internalized relations on the naturals*)

definition
Le :: i  where
"Le == {<x,y>:nat*nat. x \<le> y}"

definition
Lt :: i  where
"Lt == {<x, y>:nat*nat. x < y}"

definition
Ge :: i  where
"Ge == {<x,y>:nat*nat. y \<le> x}"

definition
Gt :: i  where
"Gt == {<x,y>:nat*nat. y < x}"

definition
greater_than :: "i=>i"  where
"greater_than(n) == {i \<in> nat. n < i}"

text\<open>No need for a less-than operator: a natural number is its list of
predecessors!\<close>

lemma nat_bnd_mono: "bnd_mono(Inf, %X. {0} \<union> {succ(i). i \<in> X})"
apply (rule bnd_monoI)
apply (cut_tac infinity, blast, blast)
done

(* @{term"nat = {0} \<union> {succ(x). x \<in> nat}"} *)
lemmas nat_unfold = nat_bnd_mono [THEN nat_def [THEN def_lfp_unfold]]

(** Type checking of 0 and successor **)

lemma nat_0I [iff,TC]: "0 \<in> nat"
apply (subst nat_unfold)
apply (rule singletonI [THEN UnI1])
done

lemma nat_succI [intro!,TC]: "n \<in> nat ==> succ(n) \<in> nat"
apply (subst nat_unfold)
apply (erule RepFunI [THEN UnI2])
done

lemma nat_1I [iff,TC]: "1 \<in> nat"
by (rule nat_0I [THEN nat_succI])

lemma nat_2I [iff,TC]: "2 \<in> nat"
by (rule nat_1I [THEN nat_succI])

lemma bool_subset_nat: "bool \<subseteq> nat"
by (blast elim!: boolE)

lemmas bool_into_nat = bool_subset_nat [THEN subsetD]

subsection\<open>Injectivity Properties and Induction\<close>

(*Mathematical induction*)
lemma nat_induct [case_names 0 succ, induct set: nat]:
"[| n \<in> nat;  P(0);  !!x. [| x \<in> nat;  P(x) |] ==> P(succ(x)) |] ==> P(n)"
by (erule def_induct [OF nat_def nat_bnd_mono], blast)

lemma natE:
assumes "n \<in> nat"
obtains ("0") "n=0" | (succ) x where "x \<in> nat" "n=succ(x)"
using assms
by (rule nat_unfold [THEN equalityD1, THEN subsetD, THEN UnE]) auto

lemma nat_into_Ord [simp]: "n \<in> nat ==> Ord(n)"
by (erule nat_induct, auto)

(* @{term"i \<in> nat ==> 0 \<le> i"}; same thing as @{term"0<succ(i)"}  *)
lemmas nat_0_le = nat_into_Ord [THEN Ord_0_le]

(* @{term"i \<in> nat ==> i \<le> i"}; same thing as @{term"i<succ(i)"}  *)
lemmas nat_le_refl = nat_into_Ord [THEN le_refl]

lemma Ord_nat [iff]: "Ord(nat)"
apply (rule OrdI)
apply (erule_tac [2] nat_into_Ord [THEN Ord_is_Transset])
apply (unfold Transset_def)
apply (rule ballI)
apply (erule nat_induct, auto)
done

lemma Limit_nat [iff]: "Limit(nat)"
apply (unfold Limit_def)
apply (safe intro!: ltI Ord_nat)
apply (erule ltD)
done

lemma naturals_not_limit: "a \<in> nat ==> ~ Limit(a)"
by (induct a rule: nat_induct, auto)

lemma succ_natD: "succ(i): nat ==> i \<in> nat"
by (rule Ord_trans [OF succI1], auto)

lemma nat_succ_iff [iff]: "succ(n): nat \<longleftrightarrow> n \<in> nat"
by (blast dest!: succ_natD)

lemma nat_le_Limit: "Limit(i) ==> nat \<le> i"
apply (rule subset_imp_le)
apply (rule subsetI)
apply (erule nat_induct)
apply (erule Limit_has_0 [THEN ltD])
apply (blast intro: Limit_has_succ [THEN ltD] ltI Limit_is_Ord)
done

(* [| succ(i): k;  k \<in> nat |] ==> i \<in> k *)
lemmas succ_in_naturalD = Ord_trans [OF succI1 _ nat_into_Ord]

lemma lt_nat_in_nat: "[| m<n;  n \<in> nat |] ==> m \<in> nat"
apply (erule ltE)
apply (erule Ord_trans, assumption, simp)
done

lemma le_in_nat: "[| m \<le> n; n \<in> nat |] ==> m \<in> nat"
by (blast dest!: lt_nat_in_nat)

subsection\<open>Variations on Mathematical Induction\<close>

(*complete induction*)

lemmas complete_induct = Ord_induct [OF _ Ord_nat, case_names less, consumes 1]

lemma complete_induct_rule [case_names less, consumes 1]:
"i \<in> nat \<Longrightarrow> (\<And>x. x \<in> nat \<Longrightarrow> (\<And>y. y \<in> x \<Longrightarrow> P(y)) \<Longrightarrow> P(x)) \<Longrightarrow> P(i)"
using complete_induct [of i P] by simp

(*Induction starting from m rather than 0*)
lemma nat_induct_from:
assumes "m \<le> n" "m \<in> nat" "n \<in> nat"
and "P(m)"
and "!!x. [| x \<in> nat;  m \<le> x;  P(x) |] ==> P(succ(x))"
shows "P(n)"
proof -
from assms(3) have "m \<le> n \<longrightarrow> P(m) \<longrightarrow> P(n)"
by (rule nat_induct) (use assms(5) in \<open>simp_all add: distrib_simps le_succ_iff\<close>)
with assms(1,2,4) show ?thesis by blast
qed

(*Induction suitable for subtraction and less-than*)
lemma diff_induct [case_names 0 0_succ succ_succ, consumes 2]:
"[| m \<in> nat;  n \<in> nat;
!!x. x \<in> nat ==> P(x,0);
!!y. y \<in> nat ==> P(0,succ(y));
!!x y. [| x \<in> nat;  y \<in> nat;  P(x,y) |] ==> P(succ(x),succ(y)) |]
==> P(m,n)"
apply (erule_tac x = m in rev_bspec)
apply (erule nat_induct, simp)
apply (rule ballI)
apply (rename_tac i j)
apply (erule_tac n=j in nat_induct, auto)
done

(** Induction principle analogous to trancl_induct **)

lemma succ_lt_induct_lemma [rule_format]:
"m \<in> nat ==> P(m,succ(m)) \<longrightarrow> (\<forall>x\<in>nat. P(m,x) \<longrightarrow> P(m,succ(x))) \<longrightarrow>
(\<forall>n\<in>nat. m<n \<longrightarrow> P(m,n))"
apply (erule nat_induct)
apply (intro impI, rule nat_induct [THEN ballI])
prefer 4 apply (intro impI, rule nat_induct [THEN ballI])
done

lemma succ_lt_induct:
"[| m<n;  n \<in> nat;
P(m,succ(m));
!!x. [| x \<in> nat;  P(m,x) |] ==> P(m,succ(x)) |]
==> P(m,n)"
by (blast intro: succ_lt_induct_lemma lt_nat_in_nat)

subsection\<open>quasinat: to allow a case-split rule for \<^term>\<open>nat_case\<close>\<close>

text\<open>True if the argument is zero or any successor\<close>
lemma [iff]: "quasinat(0)"

lemma [iff]: "quasinat(succ(x))"

lemma nat_imp_quasinat: "n \<in> nat ==> quasinat(n)"
by (erule natE, simp_all)

lemma non_nat_case: "~ quasinat(x) ==> nat_case(a,b,x) = 0"

lemma nat_cases_disj: "k=0 | (\<exists>y. k = succ(y)) | ~ quasinat(k)"
apply (case_tac "k=0", simp)
apply (case_tac "\<exists>m. k = succ(m)")
done

lemma nat_cases:
"[|k=0 ==> P;  !!y. k = succ(y) ==> P; ~ quasinat(k) ==> P|] ==> P"
by (insert nat_cases_disj [of k], blast)

(** nat_case **)

lemma nat_case_0 [simp]: "nat_case(a,b,0) = a"

lemma nat_case_succ [simp]: "nat_case(a,b,succ(n)) = b(n)"

lemma nat_case_type [TC]:
"[| n \<in> nat;  a \<in> C(0);  !!m. m \<in> nat ==> b(m): C(succ(m)) |]
==> nat_case(a,b,n) \<in> C(n)"
by (erule nat_induct, auto)

lemma split_nat_case:
"P(nat_case(a,b,k)) \<longleftrightarrow>
((k=0 \<longrightarrow> P(a)) & (\<forall>x. k=succ(x) \<longrightarrow> P(b(x))) & (~ quasinat(k) \<longrightarrow> P(0)))"
apply (rule nat_cases [of k])
done

subsection\<open>Recursion on the Natural Numbers\<close>

(** nat_rec is used to define eclose and transrec, then becomes obsolete.
The operator rec, from arith.thy, has fewer typing conditions **)

lemma nat_rec_0: "nat_rec(0,a,b) = a"
apply (rule nat_rec_def [THEN def_wfrec, THEN trans])
apply (rule wf_Memrel)
apply (rule nat_case_0)
done

lemma nat_rec_succ: "m \<in> nat ==> nat_rec(succ(m),a,b) = b(m, nat_rec(m,a,b))"
apply (rule nat_rec_def [THEN def_wfrec, THEN trans])
apply (rule wf_Memrel)
done

(** The union of two natural numbers is a natural number -- their maximum **)

lemma Un_nat_type [TC]: "[| i \<in> nat; j \<in> nat |] ==> i \<union> j \<in> nat"
apply (rule Un_least_lt [THEN ltD])
done

lemma Int_nat_type [TC]: "[| i \<in> nat; j \<in> nat |] ==> i \<inter> j \<in> nat"
apply (rule Int_greatest_lt [THEN ltD])
done

(*needed to simplify unions over nat*)
lemma nat_nonempty [simp]: "nat \<noteq> 0"
by blast

text\<open>A natural number is the set of its predecessors\<close>
lemma nat_eq_Collect_lt: "i \<in> nat ==> {j\<in>nat. j<i} = i"
apply (rule equalityI)
apply (blast dest: ltD)