src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy
2013-09-24 huffman 2013-09-24 generalize lemma
2013-09-24 huffman 2013-09-24 removed unused lemma
2013-09-24 huffman 2013-09-24 factor out new lemma
2013-09-24 huffman 2013-09-24 replace lemma with more general simp rule
2013-09-23 huffman 2013-09-23 tuned proofs
2013-09-14 wenzelm 2013-09-14 tuned proofs;
2013-09-12 huffman 2013-09-12 remove duplicate lemmas
2013-09-03 wenzelm 2013-09-03 tuned proofs -- clarified flow of facts wrt. calculation;
2013-08-29 wenzelm 2013-08-29 tuned proofs;
2013-08-29 wenzelm 2013-08-29 tuned proofs;
2013-08-29 wenzelm 2013-08-29 tuned proofs;
2013-08-13 wenzelm 2013-08-13 standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
2013-07-12 wenzelm 2013-07-12 tuned;
2013-07-12 wenzelm 2013-07-12 tuned proofs;
2013-05-25 haftmann 2013-05-25 weaker precendence of syntax for big intersection and union on sets
2013-04-24 hoelzl 2013-04-24 spell conditional_ly_-complete lattices correct
2013-04-09 hoelzl 2013-04-09 remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
2013-03-26 hoelzl 2013-03-26 rename eventually_at / _within, to distinguish them from the lemmas in the HOL image
2013-03-26 hoelzl 2013-03-26 separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
2013-03-22 hoelzl 2013-03-22 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
2013-03-22 hoelzl 2013-03-22 move connected to HOL image; used to show intermediate value theorem
2013-03-22 hoelzl 2013-03-22 move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
2013-03-22 hoelzl 2013-03-22 move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
2013-03-22 hoelzl 2013-03-22 introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
2013-03-22 hoelzl 2013-03-22 move first_countable_topology to the HOL image
2013-03-22 hoelzl 2013-03-22 move metric_space to its own theory
2013-03-22 hoelzl 2013-03-22 move topological_space to its own theory
2013-03-06 hoelzl 2013-03-06 netlimit is abbreviation for Lim
2013-03-06 hoelzl 2013-03-06 tuned proofs
2013-03-06 hoelzl 2013-03-06 changed continuous_on_intros into a named theorems collection
2013-03-06 hoelzl 2013-03-06 changed continuous_intros into a named theorems collection
2013-03-05 hoelzl 2013-03-05 generalized lemmas in Extended_Real_Limits
2013-03-05 hoelzl 2013-03-05 eventually nhds represented using sequentially
2013-03-05 hoelzl 2013-03-05 generalized compact_Times to topological_space
2013-03-05 hoelzl 2013-03-05 move lemma Inf to usage point
2013-03-05 hoelzl 2013-03-05 tuned proof of Edelstein fixed point theorem (use continuity of dist and attains_sup)
2013-03-05 hoelzl 2013-03-05 tuned proofs (used continuity of infdist, dist and continuous_attains_sup)
2013-03-05 hoelzl 2013-03-05 generalized continuous/compact_attains_inf/sup from real to linorder_topology
2013-03-05 hoelzl 2013-03-05 continuity of pair operations
2013-03-05 hoelzl 2013-03-05 use generate_topology for second countable topologies, does not require intersection stable basis
2013-03-05 hoelzl 2013-03-05 generalized isGlb_unique
2013-02-13 immler 2013-02-13 eliminated union_closed_basis; cleanup Fin_Map
2013-02-13 immler 2013-02-13 fine grained instantiations
2013-02-13 immler 2013-02-13 generalized
2013-02-13 immler 2013-02-13 generalized
2013-01-31 hoelzl 2013-01-31 simplify heine_borel type class
2013-01-18 hoelzl 2013-01-18 generalized diameter from real_normed_vector to metric_space
2013-01-18 hoelzl 2013-01-18 tuned proof
2013-01-18 hoelzl 2013-01-18 tune prove compact_eq_totally_bounded
2013-01-17 huffman 2013-01-17 generalized theorem edelstein_fix to class metric_space
2013-01-17 huffman 2013-01-17 simplify proof of compact_imp_bounded
2013-01-15 huffman 2013-01-15 generalize more topology lemmas
2013-01-15 huffman 2013-01-15 generalize topology lemmas; simplify proofs
2013-01-17 hoelzl 2013-01-17 simplified prove of compact_imp_bounded
2013-01-17 hoelzl 2013-01-17 use accumulation point characterization (avoids t1_space restriction for equivalence of countable and sequential compactness); remove heine_borel_lemma
2013-01-17 hoelzl 2013-01-17 move auxiliary lemma to top
2013-01-17 hoelzl 2013-01-17 add countable compacteness; replace finite_range_imp_infinite_repeats by pigeonhole_infinite
2013-01-17 hoelzl 2013-01-17 group compactness-eq-seq-compactness lemmas together
2013-01-17 hoelzl 2013-01-17 replace convergent_imp_cauchy by LIMSEQ_imp_Cauchy
2013-01-17 hoelzl 2013-01-17 tuned