paulson@12196: (* Title : Transcendental.thy paulson@12196: Author : Jacques D. Fleuriot paulson@12196: Copyright : 1998,1999 University of Cambridge paulson@13958: 1999,2001 University of Edinburgh paulson@15077: Conversion to Isar and new proofs by Lawrence C Paulson, 2004 paulson@12196: *) paulson@12196: paulson@15077: header{*Power Series, Transcendental Functions etc.*} paulson@15077: nipkow@15131: theory Transcendental nipkow@15140: imports NthRoot Fact HSeries EvenOdd Lim nipkow@15131: begin paulson@15077: wenzelm@19765: definition wenzelm@19765: root :: "[nat,real] => real" wenzelm@19765: "root n x = (SOME u. ((0::real) < x --> 0 < u) & (u ^ n = x))" wenzelm@19765: wenzelm@19765: sqrt :: "real => real" wenzelm@19765: "sqrt x = root 2 x" wenzelm@19765: wenzelm@19765: exp :: "real => real" wenzelm@19765: "exp x = (\n. inverse(real (fact n)) * (x ^ n))" wenzelm@19765: wenzelm@19765: sin :: "real => real" wenzelm@19765: "sin x = (\n. (if even(n) then 0 else wenzelm@19765: ((- 1) ^ ((n - Suc 0) div 2))/(real (fact n))) * x ^ n)" paulson@12196: wenzelm@19765: diffs :: "(nat => real) => nat => real" wenzelm@19765: "diffs c = (%n. real (Suc n) * c(Suc n))" wenzelm@19765: wenzelm@19765: cos :: "real => real" wenzelm@19765: "cos x = (\n. (if even(n) then ((- 1) ^ (n div 2))/(real (fact n)) wenzelm@19765: else 0) * x ^ n)" paulson@12196: wenzelm@19765: ln :: "real => real" wenzelm@19765: "ln x = (SOME u. exp u = x)" wenzelm@19765: wenzelm@19765: pi :: "real" wenzelm@19765: "pi = 2 * (@x. 0 \ (x::real) & x \ 2 & cos x = 0)" wenzelm@19765: wenzelm@19765: tan :: "real => real" wenzelm@19765: "tan x = (sin x)/(cos x)" wenzelm@19765: wenzelm@19765: arcsin :: "real => real" wenzelm@19765: "arcsin y = (SOME x. -(pi/2) \ x & x \ pi/2 & sin x = y)" wenzelm@19765: wenzelm@19765: arcos :: "real => real" wenzelm@19765: "arcos y = (SOME x. 0 \ x & x \ pi & cos x = y)" paulson@12196: wenzelm@19765: arctan :: "real => real" wenzelm@19765: "arctan y = (SOME x. -(pi/2) < x & x < pi/2 & tan x = y)" paulson@15077: paulson@15077: paulson@15077: lemma real_root_zero [simp]: "root (Suc n) 0 = 0" paulson@15229: apply (simp add: root_def) paulson@15077: apply (safe intro!: some_equality power_0_Suc elim!: realpow_zero_zero) paulson@15077: done paulson@15077: paulson@15077: lemma real_root_pow_pos: paulson@15077: "0 < x ==> (root(Suc n) x) ^ (Suc n) = x" paulson@15229: apply (simp add: root_def) paulson@15077: apply (drule_tac n = n in realpow_pos_nth2) paulson@15077: apply (auto intro: someI2) paulson@15077: done paulson@15077: paulson@15077: lemma real_root_pow_pos2: "0 \ x ==> (root(Suc n) x) ^ (Suc n) = x" paulson@15077: by (auto dest!: real_le_imp_less_or_eq dest: real_root_pow_pos) paulson@15077: paulson@15077: lemma real_root_pos: paulson@15077: "0 < x ==> root(Suc n) (x ^ (Suc n)) = x" paulson@15229: apply (simp add: root_def) paulson@15077: apply (rule some_equality) paulson@15077: apply (frule_tac [2] n = n in zero_less_power) paulson@15077: apply (auto simp add: zero_less_mult_iff) paulson@15077: apply (rule_tac x = u and y = x in linorder_cases) paulson@15077: apply (drule_tac n1 = n and x = u in zero_less_Suc [THEN [3] realpow_less]) paulson@15077: apply (drule_tac [4] n1 = n and x = x in zero_less_Suc [THEN [3] realpow_less]) nipkow@15539: apply (auto) paulson@15077: done paulson@15077: paulson@15077: lemma real_root_pos2: "0 \ x ==> root(Suc n) (x ^ (Suc n)) = x" paulson@15077: by (auto dest!: real_le_imp_less_or_eq real_root_pos) paulson@15077: paulson@15077: lemma real_root_pos_pos: paulson@15077: "0 < x ==> 0 \ root(Suc n) x" paulson@15229: apply (simp add: root_def) paulson@15077: apply (drule_tac n = n in realpow_pos_nth2) paulson@15077: apply (safe, rule someI2) paulson@15229: apply (auto intro!: order_less_imp_le dest: zero_less_power paulson@15229: simp add: zero_less_mult_iff) paulson@15077: done paulson@15077: paulson@15077: lemma real_root_pos_pos_le: "0 \ x ==> 0 \ root(Suc n) x" paulson@15077: by (auto dest!: real_le_imp_less_or_eq dest: real_root_pos_pos) paulson@15077: paulson@15077: lemma real_root_one [simp]: "root (Suc n) 1 = 1" paulson@15229: apply (simp add: root_def) paulson@15077: apply (rule some_equality, auto) paulson@15077: apply (rule ccontr) paulson@15077: apply (rule_tac x = u and y = 1 in linorder_cases) paulson@15077: apply (drule_tac n = n in realpow_Suc_less_one) paulson@15077: apply (drule_tac [4] n = n in power_gt1_lemma) nipkow@15539: apply (auto) paulson@15077: done paulson@15077: paulson@15077: paulson@15077: subsection{*Square Root*} paulson@15077: paulson@15229: text{*needed because 2 is a binary numeral!*} paulson@15077: lemma root_2_eq [simp]: "root 2 = root (Suc (Suc 0))" paulson@15229: by (simp del: nat_numeral_0_eq_0 nat_numeral_1_eq_1 paulson@15229: add: nat_numeral_0_eq_0 [symmetric]) paulson@15077: paulson@15077: lemma real_sqrt_zero [simp]: "sqrt 0 = 0" paulson@15229: by (simp add: sqrt_def) paulson@15077: paulson@15077: lemma real_sqrt_one [simp]: "sqrt 1 = 1" paulson@15229: by (simp add: sqrt_def) paulson@15077: nipkow@15539: lemma real_sqrt_pow2_iff [iff]: "((sqrt x)\ = x) = (0 \ x)" paulson@15229: apply (simp add: sqrt_def) paulson@15077: apply (rule iffI) paulson@15077: apply (cut_tac r = "root 2 x" in realpow_two_le) paulson@15077: apply (simp add: numeral_2_eq_2) paulson@15077: apply (subst numeral_2_eq_2) paulson@15077: apply (erule real_root_pow_pos2) paulson@15077: done paulson@15077: paulson@15077: lemma [simp]: "(sqrt(u2\ + v2\))\ = u2\ + v2\" paulson@15077: by (rule realpow_two_le_add_order [THEN real_sqrt_pow2_iff [THEN iffD2]]) paulson@15077: paulson@15077: lemma real_sqrt_pow2 [simp]: "0 \ x ==> (sqrt x)\ = x" nipkow@15539: by (simp) paulson@15077: paulson@15077: lemma real_sqrt_abs_abs [simp]: "sqrt\x\ ^ 2 = \x\" paulson@15077: by (rule real_sqrt_pow2_iff [THEN iffD2], arith) paulson@15077: paulson@15077: lemma real_pow_sqrt_eq_sqrt_pow: paulson@15077: "0 \ x ==> (sqrt x)\ = sqrt(x\)" paulson@15229: apply (simp add: sqrt_def) paulson@15481: apply (simp only: numeral_2_eq_2 real_root_pow_pos2 real_root_pos2) paulson@15077: done paulson@15077: paulson@15077: lemma real_pow_sqrt_eq_sqrt_abs_pow2: paulson@15077: "0 \ x ==> (sqrt x)\ = sqrt(\x\ ^ 2)" paulson@15077: by (simp add: real_pow_sqrt_eq_sqrt_pow [symmetric]) paulson@15077: paulson@15077: lemma real_sqrt_pow_abs: "0 \ x ==> (sqrt x)\ = \x\" paulson@15077: apply (rule real_sqrt_abs_abs [THEN subst]) paulson@15077: apply (rule_tac x1 = x in real_pow_sqrt_eq_sqrt_abs_pow2 [THEN ssubst]) paulson@15077: apply (rule_tac [2] real_pow_sqrt_eq_sqrt_pow [symmetric]) paulson@15077: apply (assumption, arith) paulson@15077: done paulson@15077: paulson@15077: lemma not_real_square_gt_zero [simp]: "(~ (0::real) < x*x) = (x = 0)" paulson@15077: apply auto paulson@15077: apply (cut_tac x = x and y = 0 in linorder_less_linear) paulson@15077: apply (simp add: zero_less_mult_iff) paulson@15077: done paulson@15077: paulson@15077: lemma real_sqrt_gt_zero: "0 < x ==> 0 < sqrt(x)" paulson@15229: apply (simp add: sqrt_def root_def) paulson@15077: apply (drule realpow_pos_nth2 [where n=1], safe) paulson@15077: apply (rule someI2, auto) paulson@15077: done paulson@15077: paulson@15077: lemma real_sqrt_ge_zero: "0 \ x ==> 0 \ sqrt(x)" paulson@15077: by (auto intro: real_sqrt_gt_zero simp add: order_le_less) paulson@15077: paulson@15228: lemma real_sqrt_mult_self_sum_ge_zero [simp]: "0 \ sqrt(x*x + y*y)" paulson@15228: by (rule real_sqrt_ge_zero [OF real_mult_self_sum_ge_zero]) paulson@15228: paulson@15077: paulson@15077: (*we need to prove something like this: paulson@15077: lemma "[|r ^ n = a; 0 0 < r|] ==> root n a = r" paulson@15077: apply (case_tac n, simp) paulson@15229: apply (simp add: root_def) paulson@15077: apply (rule someI2 [of _ r], safe) paulson@15077: apply (auto simp del: realpow_Suc dest: power_inject_base) paulson@15077: *) paulson@15077: paulson@15077: lemma sqrt_eqI: "[|r\ = a; 0 \ r|] ==> sqrt a = r" paulson@15077: apply (unfold sqrt_def root_def) paulson@15077: apply (rule someI2 [of _ r], auto) paulson@15077: apply (auto simp add: numeral_2_eq_2 simp del: realpow_Suc paulson@15077: dest: power_inject_base) paulson@15077: done paulson@15077: paulson@15077: lemma real_sqrt_mult_distrib: paulson@15077: "[| 0 \ x; 0 \ y |] ==> sqrt(x*y) = sqrt(x) * sqrt(y)" paulson@15077: apply (rule sqrt_eqI) paulson@15077: apply (simp add: power_mult_distrib) paulson@15077: apply (simp add: zero_le_mult_iff real_sqrt_ge_zero) paulson@15077: done paulson@15077: paulson@15229: lemma real_sqrt_mult_distrib2: paulson@15229: "[|0\x; 0\y |] ==> sqrt(x*y) = sqrt(x) * sqrt(y)" paulson@15077: by (auto intro: real_sqrt_mult_distrib simp add: order_le_less) paulson@15077: paulson@15077: lemma real_sqrt_sum_squares_ge_zero [simp]: "0 \ sqrt (x\ + y\)" paulson@15077: by (auto intro!: real_sqrt_ge_zero) paulson@15077: paulson@15229: lemma real_sqrt_sum_squares_mult_ge_zero [simp]: paulson@15229: "0 \ sqrt ((x\ + y\)*(xa\ + ya\))" paulson@15077: by (auto intro!: real_sqrt_ge_zero simp add: zero_le_mult_iff) paulson@15077: paulson@15077: lemma real_sqrt_sum_squares_mult_squared_eq [simp]: paulson@15077: "sqrt ((x\ + y\) * (xa\ + ya\)) ^ 2 = (x\ + y\) * (xa\ + ya\)" nipkow@15539: by (auto simp add: zero_le_mult_iff simp del: realpow_Suc) paulson@15077: paulson@15077: lemma real_sqrt_abs [simp]: "sqrt(x\) = \x\" paulson@15077: apply (rule abs_realpow_two [THEN subst]) paulson@15077: apply (rule real_sqrt_abs_abs [THEN subst]) paulson@15077: apply (subst real_pow_sqrt_eq_sqrt_pow) nipkow@15539: apply (auto simp add: numeral_2_eq_2) paulson@15077: done paulson@15077: paulson@15077: lemma real_sqrt_abs2 [simp]: "sqrt(x*x) = \x\" paulson@15077: apply (rule realpow_two [THEN subst]) paulson@15077: apply (subst numeral_2_eq_2 [symmetric]) paulson@15077: apply (rule real_sqrt_abs) paulson@15077: done paulson@15077: paulson@15077: lemma real_sqrt_pow2_gt_zero: "0 < x ==> 0 < (sqrt x)\" paulson@15077: by simp paulson@15077: paulson@15077: lemma real_sqrt_not_eq_zero: "0 < x ==> sqrt x \ 0" paulson@15077: apply (frule real_sqrt_pow2_gt_zero) nipkow@15539: apply (auto simp add: numeral_2_eq_2) paulson@15077: done paulson@15077: paulson@15077: lemma real_inv_sqrt_pow2: "0 < x ==> inverse (sqrt(x)) ^ 2 = inverse x" paulson@15077: by (cut_tac n1 = 2 and a1 = "sqrt x" in power_inverse [symmetric], auto) paulson@15077: paulson@15077: lemma real_sqrt_eq_zero_cancel: "[| 0 \ x; sqrt(x) = 0|] ==> x = 0" paulson@15077: apply (drule real_le_imp_less_or_eq) paulson@15077: apply (auto dest: real_sqrt_not_eq_zero) paulson@15077: done paulson@15077: paulson@15229: lemma real_sqrt_eq_zero_cancel_iff [simp]: "0 \ x ==> ((sqrt x = 0) = (x=0))" paulson@15077: by (auto simp add: real_sqrt_eq_zero_cancel) paulson@15077: paulson@15077: lemma real_sqrt_sum_squares_ge1 [simp]: "x \ sqrt(x\ + y\)" paulson@15077: apply (subgoal_tac "x \ 0 | 0 \ x", safe) paulson@15077: apply (rule real_le_trans) paulson@15077: apply (auto simp del: realpow_Suc) paulson@15077: apply (rule_tac n = 1 in realpow_increasing) paulson@15077: apply (auto simp add: numeral_2_eq_2 [symmetric] simp del: realpow_Suc) paulson@15077: done paulson@15077: paulson@15077: lemma real_sqrt_sum_squares_ge2 [simp]: "y \ sqrt(z\ + y\)" paulson@15077: apply (simp (no_asm) add: real_add_commute del: realpow_Suc) paulson@15077: done paulson@15077: paulson@15077: lemma real_sqrt_ge_one: "1 \ x ==> 1 \ sqrt x" paulson@15077: apply (rule_tac n = 1 in realpow_increasing) paulson@15077: apply (auto simp add: numeral_2_eq_2 [symmetric] real_sqrt_ge_zero simp paulson@15077: del: realpow_Suc) paulson@15077: done paulson@15077: paulson@15077: paulson@15077: subsection{*Exponential Function*} paulson@15077: paulson@15077: lemma summable_exp: "summable (%n. inverse (real (fact n)) * x ^ n)" paulson@15077: apply (cut_tac 'a = real in zero_less_one [THEN dense], safe) paulson@15077: apply (cut_tac x = r in reals_Archimedean3, auto) paulson@15077: apply (drule_tac x = "\x\" in spec, safe) paulson@15077: apply (rule_tac N = n and c = r in ratio_test) paulson@16924: apply (auto simp add: abs_mult mult_assoc [symmetric] simp del: fact_Suc) paulson@15077: apply (rule mult_right_mono) paulson@15077: apply (rule_tac b1 = "\x\" in mult_commute [THEN ssubst]) paulson@15077: apply (subst fact_Suc) paulson@15077: apply (subst real_of_nat_mult) nipkow@15539: apply (auto) paulson@15229: apply (auto simp add: mult_assoc [symmetric] positive_imp_inverse_positive) paulson@15077: apply (rule order_less_imp_le) paulson@15229: apply (rule_tac z1 = "real (Suc na)" in real_mult_less_iff1 [THEN iffD1]) nipkow@15539: apply (auto simp add: real_not_refl2 [THEN not_sym] mult_assoc) paulson@15077: apply (erule order_less_trans) paulson@15077: apply (auto simp add: mult_less_cancel_left mult_ac) paulson@15077: done paulson@15077: paulson@15077: lemma summable_sin: paulson@15077: "summable (%n. paulson@15077: (if even n then 0 paulson@15077: else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * paulson@15077: x ^ n)" paulson@15229: apply (rule_tac g = "(%n. inverse (real (fact n)) * \x\ ^ n)" in summable_comparison_test) paulson@15077: apply (rule_tac [2] summable_exp) paulson@15077: apply (rule_tac x = 0 in exI) paulson@16924: apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff) paulson@15077: done paulson@15077: paulson@15077: lemma summable_cos: paulson@15077: "summable (%n. paulson@15077: (if even n then paulson@15077: (- 1) ^ (n div 2)/(real (fact n)) else 0) * x ^ n)" paulson@15229: apply (rule_tac g = "(%n. inverse (real (fact n)) * \x\ ^ n)" in summable_comparison_test) paulson@15077: apply (rule_tac [2] summable_exp) paulson@15077: apply (rule_tac x = 0 in exI) paulson@16924: apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff) paulson@15077: done paulson@15077: paulson@15229: lemma lemma_STAR_sin [simp]: paulson@15229: "(if even n then 0 paulson@15077: else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * 0 ^ n = 0" paulson@15251: by (induct "n", auto) paulson@15229: paulson@15229: lemma lemma_STAR_cos [simp]: paulson@15229: "0 < n --> paulson@15077: (- 1) ^ (n div 2)/(real (fact n)) * 0 ^ n = 0" paulson@15251: by (induct "n", auto) paulson@15229: paulson@15229: lemma lemma_STAR_cos1 [simp]: paulson@15229: "0 < n --> paulson@15077: (-1) ^ (n div 2)/(real (fact n)) * 0 ^ n = 0" paulson@15251: by (induct "n", auto) paulson@15229: paulson@15229: lemma lemma_STAR_cos2 [simp]: nipkow@15539: "(\n=1.. n --> y ^ (Suc n - p) = ((y::real) ^ (n - p)) * y" paulson@15251: apply (induct "n", auto) paulson@15077: apply (subgoal_tac "p = Suc n") paulson@15077: apply (simp (no_asm_simp), auto) paulson@15077: apply (drule sym) paulson@15077: apply (simp add: Suc_diff_le mult_commute realpow_Suc [symmetric] paulson@15077: del: realpow_Suc) paulson@15077: done paulson@15077: paulson@15077: paulson@15077: subsection{*Properties of Power Series*} paulson@15077: paulson@15077: lemma lemma_realpow_diff_sumr: nipkow@15539: "(\p=0..p=0..p=0..p=0..p=0..z\ < \x\"}.*} paulson@15077: paulson@15077: lemma powser_insidea: paulson@15077: "[| summable (%n. f(n) * (x ^ n)); \z\ < \x\ |] paulson@15081: ==> summable (%n. \f(n)\ * (z ^ n))" paulson@15077: apply (drule summable_LIMSEQ_zero) paulson@15077: apply (drule convergentI) paulson@15077: apply (simp add: Cauchy_convergent_iff [symmetric]) paulson@15077: apply (drule Cauchy_Bseq) paulson@15077: apply (simp add: Bseq_def, safe) paulson@15081: apply (rule_tac g = "%n. K * \z ^ n\ * inverse (\x ^ n\)" in summable_comparison_test) paulson@15077: apply (rule_tac x = 0 in exI, safe) paulson@15081: apply (subgoal_tac "0 < \x ^ n\ ") paulson@15081: apply (rule_tac c="\x ^ n\" in mult_right_le_imp_le) paulson@16924: apply (auto simp add: mult_assoc power_abs abs_mult) webertj@20432: prefer 2 webertj@20432: apply (drule_tac x = 0 in spec, force) nipkow@15539: apply (auto simp add: power_abs mult_ac) paulson@15077: apply (rule_tac a2 = "z ^ n" paulson@15077: in abs_ge_zero [THEN real_le_imp_less_or_eq, THEN disjE]) paulson@15077: apply (auto intro!: mult_right_mono simp add: mult_assoc [symmetric] power_abs summable_def power_0_left) paulson@15229: apply (rule_tac x = "K * inverse (1 - (\z\ * inverse (\x\)))" in exI) paulson@15077: apply (auto intro!: sums_mult simp add: mult_assoc) paulson@15081: apply (subgoal_tac "\z ^ n\ * inverse (\x\ ^ n) = (\z\ * inverse (\x\)) ^ n") paulson@15077: apply (auto simp add: power_abs [symmetric]) paulson@15077: apply (subgoal_tac "x \ 0") paulson@15077: apply (subgoal_tac [3] "x \ 0") paulson@16924: apply (auto simp del: abs_inverse paulson@16924: simp add: abs_inverse [symmetric] realpow_not_zero paulson@16924: abs_mult [symmetric] power_inverse power_mult_distrib [symmetric]) nipkow@15539: apply (auto intro!: geometric_sums simp add: power_abs inverse_eq_divide) paulson@15077: done paulson@15077: paulson@15229: lemma powser_inside: paulson@15229: "[| summable (%n. f(n) * (x ^ n)); \z\ < \x\ |] paulson@15077: ==> summable (%n. f(n) * (z ^ n))" paulson@15077: apply (drule_tac z = "\z\" in powser_insidea) paulson@16924: apply (auto intro: summable_rabs_cancel simp add: abs_mult power_abs [symmetric]) paulson@15077: done paulson@15077: paulson@15077: paulson@15077: subsection{*Differentiation of Power Series*} paulson@15077: paulson@15077: text{*Lemma about distributing negation over it*} paulson@15077: lemma diffs_minus: "diffs (%n. - c n) = (%n. - diffs c n)" paulson@15077: by (simp add: diffs_def) paulson@15077: paulson@15077: text{*Show that we can shift the terms down one*} paulson@15077: lemma lemma_diffs: nipkow@15539: "(\n=0..n=0..n=0..n=0.. paulson@15077: (%n. real n * c(n) * (x ^ (n - Suc 0))) sums nipkow@15546: (\n. (diffs c)(n) * (x ^ n))" paulson@15077: apply (subgoal_tac " (%n. real n * c (n) * (x ^ (n - Suc 0))) ----> 0") paulson@15077: apply (rule_tac [2] LIMSEQ_imp_Suc) paulson@15077: apply (drule summable_sums) paulson@15077: apply (auto simp add: sums_def) paulson@15077: apply (drule_tac X="(\n. \n = 0..p=0..p=0.. (\d. n = m + d + Suc 0)" paulson@15077: by (simp add: less_iff_Suc_add) paulson@15077: paulson@15077: lemma sumdiff: "a + b - (c + d) = a - c + b - (d::real)" paulson@15077: by arith paulson@15077: paulson@15077: paulson@15229: lemma lemma_termdiff2: nipkow@15539: "h \ 0 ==> nipkow@15539: (((z + h) ^ n) - (z ^ n)) * inverse h - real n * (z ^ (n - Suc 0)) = nipkow@15539: h * (\p=0..< n - Suc 0. (z ^ p) * nipkow@15539: (\q=0..< (n - Suc 0) - p. ((z + h) ^ q) * (z ^ (((n - 2) - p) - q))))" paulson@15077: apply (rule real_mult_left_cancel [THEN iffD1], simp (no_asm_simp)) paulson@15077: apply (simp add: right_diff_distrib mult_ac) paulson@15077: apply (simp add: mult_assoc [symmetric]) paulson@15077: apply (case_tac "n") paulson@15077: apply (auto simp add: lemma_realpow_diff_sumr2 paulson@15077: right_diff_distrib [symmetric] mult_assoc nipkow@15561: simp del: realpow_Suc setsum_op_ivl_Suc) nipkow@15561: apply (auto simp add: lemma_realpow_rev_sumr simp del: setsum_op_ivl_Suc) paulson@15077: apply (auto simp add: real_of_nat_Suc sumr_diff_mult_const left_distrib ballarin@19279: sumdiff lemma_termdiff1 setsum_right_distrib) nipkow@15539: apply (auto intro!: setsum_cong[OF refl] simp add: diff_minus real_add_assoc) nipkow@15539: apply (simp add: diff_minus [symmetric] less_iff_Suc_add) ballarin@19279: apply (auto simp add: setsum_right_distrib lemma_realpow_diff_sumr2 mult_ac simp nipkow@15561: del: setsum_op_ivl_Suc realpow_Suc) paulson@15077: done paulson@15077: paulson@15229: lemma lemma_termdiff3: paulson@15229: "[| h \ 0; \z\ \ K; \z + h\ \ K |] paulson@15077: ==> abs (((z + h) ^ n - z ^ n) * inverse h - real n * z ^ (n - Suc 0)) paulson@15077: \ real n * real (n - Suc 0) * K ^ (n - 2) * \h\" paulson@15077: apply (subst lemma_termdiff2, assumption) paulson@16924: apply (simp add: mult_commute abs_mult) paulson@15077: apply (simp add: mult_commute [of _ "K ^ (n - 2)"]) nipkow@15536: apply (rule setsum_abs [THEN real_le_trans]) paulson@16924: apply (simp add: mult_assoc [symmetric] abs_mult) paulson@15077: apply (simp add: mult_commute [of _ "real (n - Suc 0)"]) nipkow@15542: apply (auto intro!: real_setsum_nat_ivl_bounded) paulson@15077: apply (case_tac "n", auto) paulson@15077: apply (drule less_add_one) paulson@15077: (*CLAIM_SIMP " (a * b * c = a * (c * (b::real))" mult_ac]*) paulson@15077: apply clarify paulson@15077: apply (subgoal_tac "K ^ p * K ^ d * real (Suc (Suc (p + d))) = paulson@15077: K ^ p * (real (Suc (Suc (p + d))) * K ^ d)") nipkow@15561: apply (simp (no_asm_simp) add: power_add del: setsum_op_ivl_Suc) nipkow@15561: apply (auto intro!: mult_mono simp del: setsum_op_ivl_Suc) paulson@16924: apply (auto intro!: power_mono simp add: power_abs paulson@16924: simp del: setsum_op_ivl_Suc) paulson@15229: apply (rule_tac j = "real (Suc d) * (K ^ d)" in real_le_trans) paulson@15077: apply (subgoal_tac [2] "0 \ K") paulson@15077: apply (drule_tac [2] n = d in zero_le_power) nipkow@15561: apply (auto simp del: setsum_op_ivl_Suc) nipkow@15536: apply (rule setsum_abs [THEN real_le_trans]) paulson@16924: apply (rule real_setsum_nat_ivl_bounded) paulson@16924: apply (auto dest!: less_add_one intro!: mult_mono simp add: power_add abs_mult) webertj@20217: apply (auto intro!: power_mono zero_le_power simp add: power_abs) paulson@15077: done paulson@15077: paulson@15077: lemma lemma_termdiff4: paulson@15077: "[| 0 < k; paulson@15081: (\h. 0 < \h\ & \h\ < k --> \f h\ \ K * \h\) |] paulson@15077: ==> f -- 0 --> 0" paulson@15229: apply (simp add: LIM_def, auto) paulson@15077: apply (subgoal_tac "0 \ K") paulson@15229: prefer 2 paulson@15229: apply (drule_tac x = "k/2" in spec) paulson@15229: apply (simp add: ); paulson@15229: apply (subgoal_tac "0 \ K*k", simp add: zero_le_mult_iff) paulson@15229: apply (force intro: order_trans [of _ "\f (k / 2)\ * 2"]) paulson@15077: apply (drule real_le_imp_less_or_eq, auto) paulson@15229: apply (subgoal_tac "0 < (r * inverse K) / 2") paulson@15229: apply (drule_tac ?d1.0 = "(r * inverse K) / 2" and ?d2.0 = k in real_lbound_gt_zero) paulson@15229: apply (auto simp add: positive_imp_inverse_positive zero_less_mult_iff zero_less_divide_iff) paulson@15077: apply (rule_tac x = e in exI, auto) paulson@15077: apply (rule_tac y = "K * \x\" in order_le_less_trans) paulson@15229: apply (force ); paulson@15229: apply (rule_tac y = "K * e" in order_less_trans) paulson@15077: apply (simp add: mult_less_cancel_left) paulson@15229: apply (rule_tac c = "inverse K" in mult_right_less_imp_less) paulson@15077: apply (auto simp add: mult_ac) paulson@15077: done paulson@15077: paulson@15229: lemma lemma_termdiff5: paulson@15229: "[| 0 < k; paulson@15077: summable f; paulson@15077: \h. 0 < \h\ & \h\ < k --> paulson@15077: (\n. abs(g(h) (n::nat)) \ (f(n) * \h\)) |] paulson@15077: ==> (%h. suminf(g h)) -- 0 --> 0" paulson@15077: apply (drule summable_sums) paulson@15081: apply (subgoal_tac "\h. 0 < \h\ & \h\ < k --> \suminf (g h)\ \ suminf f * \h\") paulson@15077: apply (auto intro!: lemma_termdiff4 simp add: sums_summable [THEN suminf_mult, symmetric]) paulson@15077: apply (subgoal_tac "summable (%n. f n * \h\) ") paulson@15077: prefer 2 paulson@15077: apply (simp add: summable_def) paulson@15077: apply (rule_tac x = "suminf f * \h\" in exI) paulson@15077: apply (drule_tac c = "\h\" in sums_mult) paulson@15077: apply (simp add: mult_ac) paulson@15077: apply (subgoal_tac "summable (%n. abs (g (h::real) (n::nat))) ") paulson@15077: apply (rule_tac [2] g = "%n. f n * \h\" in summable_comparison_test) paulson@15077: apply (rule_tac [2] x = 0 in exI, auto) nipkow@15546: apply (rule_tac j = "\n. \g h n\" in real_le_trans) avigad@16819: apply (auto intro: summable_rabs summable_le simp add: sums_summable [THEN suminf_mult2]) paulson@15077: done paulson@15077: paulson@15077: paulson@15077: text{* FIXME: Long proofs*} paulson@15077: webertj@20432: ML {* fast_arith_split_limit := 0; *} (* FIXME: rewrite proofs *) webertj@20432: paulson@15077: lemma termdiffs_aux: paulson@15077: "[|summable (\n. diffs (diffs c) n * K ^ n); \x\ < \K\ |] nipkow@15546: ==> (\h. \n. c n * paulson@15077: (((x + h) ^ n - x ^ n) * inverse h - nipkow@15546: real n * x ^ (n - Suc 0))) paulson@15077: -- 0 --> 0" paulson@15077: apply (drule dense, safe) paulson@15077: apply (frule real_less_sum_gt_zero) paulson@15077: apply (drule_tac paulson@15081: f = "%n. \c n\ * real n * real (n - Suc 0) * (r ^ (n - 2))" paulson@15077: and g = "%h n. c (n) * ((( ((x + h) ^ n) - (x ^ n)) * inverse h) paulson@15077: - (real n * (x ^ (n - Suc 0))))" paulson@15077: in lemma_termdiff5) webertj@20432: apply (auto simp add: add_commute) webertj@20432: apply (subgoal_tac "summable (%n. \diffs (diffs c) n\ * (r ^ n))") webertj@20432: apply (rule_tac [2] x = K in powser_insidea, auto) webertj@20432: apply (subgoal_tac [2] "\r\ = r", auto) webertj@20432: apply (rule_tac [2] y1 = "\x\" in order_trans [THEN abs_of_nonneg], auto) webertj@20432: apply (simp add: diffs_def mult_assoc [symmetric]) webertj@20432: apply (subgoal_tac webertj@20432: "\n. real (Suc n) * real (Suc (Suc n)) * \c (Suc (Suc n))\ * (r ^ n) webertj@20432: = diffs (diffs (%n. \c n\)) n * (r ^ n) ") webertj@20432: apply (auto simp add: abs_mult) webertj@20432: apply (drule diffs_equiv) webertj@20432: apply (drule sums_summable) webertj@20432: apply (simp_all add: diffs_def) webertj@20432: apply (simp add: diffs_def mult_ac) webertj@20432: apply (subgoal_tac " (%n. real n * (real (Suc n) * (\c (Suc n)\ * (r ^ (n - Suc 0))))) = (%n. diffs (%m. real (m - Suc 0) * \c m\ * inverse r) n * (r ^ n))") webertj@20432: apply auto paulson@15077: prefer 2 paulson@15077: apply (rule ext) webertj@20432: apply (simp add: diffs_def) paulson@15077: apply (case_tac "n", auto) paulson@15077: txt{*23*} paulson@15077: apply (drule abs_ge_zero [THEN order_le_less_trans]) webertj@20432: apply (simp add: mult_ac) paulson@15077: apply (drule abs_ge_zero [THEN order_le_less_trans]) webertj@20432: apply (simp add: mult_ac) paulson@15077: apply (drule diffs_equiv) paulson@15077: apply (drule sums_summable) webertj@20432: apply (subgoal_tac webertj@20432: "summable webertj@20432: (\n. real n * (real (n - Suc 0) * \c n\ * inverse r) * webertj@20432: r ^ (n - Suc 0)) = webertj@20432: summable webertj@20432: (\n. real n * (\c n\ * (real (n - Suc 0) * r ^ (n - 2))))") webertj@20432: apply simp webertj@20432: apply (rule_tac f = summable in arg_cong, rule ext) paulson@15077: txt{*33*} webertj@20432: apply (case_tac "n", auto) webertj@20432: apply (case_tac "nat", auto) webertj@20432: apply (drule abs_ge_zero [THEN order_le_less_trans], auto) paulson@15077: apply (drule abs_ge_zero [THEN order_le_less_trans]) paulson@15077: apply (simp add: mult_assoc) paulson@15077: apply (rule mult_left_mono) webertj@20432: prefer 2 apply arith paulson@15229: apply (subst add_commute) paulson@15077: apply (simp (no_asm) add: mult_assoc [symmetric]) paulson@15077: apply (rule lemma_termdiff3) webertj@20432: apply (auto intro: abs_triangle_ineq [THEN order_trans], arith) paulson@15077: done paulson@15077: webertj@20256: ML {* fast_arith_split_limit := 9; *} (* FIXME *) webertj@20217: paulson@15077: lemma termdiffs: paulson@15077: "[| summable(%n. c(n) * (K ^ n)); paulson@15077: summable(%n. (diffs c)(n) * (K ^ n)); paulson@15077: summable(%n. (diffs(diffs c))(n) * (K ^ n)); paulson@15077: \x\ < \K\ |] nipkow@15546: ==> DERIV (%x. \n. c(n) * (x ^ n)) x :> nipkow@15546: (\n. (diffs c)(n) * (x ^ n))" paulson@15229: apply (simp add: deriv_def) nipkow@15546: apply (rule_tac g = "%h. \n. ((c (n) * ( (x + h) ^ n)) - (c (n) * (x ^ n))) * inverse h" in LIM_trans) paulson@15077: apply (simp add: LIM_def, safe) paulson@15077: apply (rule_tac x = "\K\ - \x\" in exI) paulson@15077: apply (auto simp add: less_diff_eq) webertj@20432: apply (drule abs_triangle_ineq [THEN order_le_less_trans]) paulson@15077: apply (rule_tac y = 0 in order_le_less_trans, auto) nipkow@15546: apply (subgoal_tac " (%n. (c n) * (x ^ n)) sums (\n. (c n) * (x ^ n)) & (%n. (c n) * ((x + xa) ^ n)) sums (\n. (c n) * ( (x + xa) ^ n))") paulson@15077: apply (auto intro!: summable_sums) paulson@15077: apply (rule_tac [2] powser_inside, rule_tac [4] powser_inside) paulson@15077: apply (auto simp add: add_commute) paulson@15077: apply (drule_tac x="(\n. c n * (xa + x) ^ n)" in sums_diff, assumption) avigad@16819: apply (drule_tac f = "(%n. c n * (xa + x) ^ n - c n * x ^ n) " and c = "inverse xa" in sums_mult) paulson@15085: apply (rule sums_unique) paulson@15079: apply (simp add: diff_def divide_inverse add_ac mult_ac) paulson@15077: apply (rule LIM_zero_cancel) nipkow@15546: apply (rule_tac g = "%h. \n. c (n) * ((( ((x + h) ^ n) - (x ^ n)) * inverse h) - (real n * (x ^ (n - Suc 0))))" in LIM_trans) webertj@20432: prefer 2 apply (blast intro: termdiffs_aux) paulson@15077: apply (simp add: LIM_def, safe) paulson@15077: apply (rule_tac x = "\K\ - \x\" in exI) paulson@15077: apply (auto simp add: less_diff_eq) webertj@20432: apply (drule abs_triangle_ineq [THEN order_le_less_trans]) paulson@15077: apply (rule_tac y = 0 in order_le_less_trans, auto) paulson@15077: apply (subgoal_tac "summable (%n. (diffs c) (n) * (x ^ n))") paulson@15077: apply (rule_tac [2] powser_inside, auto) paulson@15077: apply (drule_tac c = c and x = x in diffs_equiv) paulson@15077: apply (frule sums_unique, auto) nipkow@15546: apply (subgoal_tac " (%n. (c n) * (x ^ n)) sums (\n. (c n) * (x ^ n)) & (%n. (c n) * ((x + xa) ^ n)) sums (\n. (c n) * ( (x + xa) ^ n))") paulson@15077: apply safe paulson@15077: apply (auto intro!: summable_sums) paulson@15077: apply (rule_tac [2] powser_inside, rule_tac [4] powser_inside) paulson@15077: apply (auto simp add: add_commute) paulson@15229: apply (frule_tac x = "(%n. c n * (xa + x) ^ n) " and y = "(%n. c n * x ^ n)" in sums_diff, assumption) paulson@15077: apply (simp add: suminf_diff [OF sums_summable sums_summable] paulson@15077: right_diff_distrib [symmetric]) avigad@16819: apply (subst suminf_diff) avigad@16819: apply (rule summable_mult2) avigad@16819: apply (erule sums_summable) avigad@16819: apply (erule sums_summable) avigad@16819: apply (simp add: ring_eq_simps) paulson@15077: done paulson@15077: paulson@15077: subsection{*Formal Derivatives of Exp, Sin, and Cos Series*} paulson@15077: paulson@15077: lemma exp_fdiffs: paulson@15077: "diffs (%n. inverse(real (fact n))) = (%n. inverse(real (fact n)))" paulson@15229: by (simp add: diffs_def mult_assoc [symmetric] del: mult_Suc) paulson@15077: paulson@15077: lemma sin_fdiffs: paulson@15077: "diffs(%n. if even n then 0 paulson@15077: else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) paulson@15077: = (%n. if even n then paulson@15077: (- 1) ^ (n div 2)/(real (fact n)) paulson@15077: else 0)" paulson@15229: by (auto intro!: ext paulson@15229: simp add: diffs_def divide_inverse simp del: mult_Suc) paulson@15077: paulson@15077: lemma sin_fdiffs2: paulson@15077: "diffs(%n. if even n then 0 paulson@15077: else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) n paulson@15077: = (if even n then paulson@15077: (- 1) ^ (n div 2)/(real (fact n)) paulson@15077: else 0)" paulson@15229: by (auto intro!: ext paulson@15229: simp add: diffs_def divide_inverse simp del: mult_Suc) paulson@15077: paulson@15077: lemma cos_fdiffs: paulson@15077: "diffs(%n. if even n then paulson@15077: (- 1) ^ (n div 2)/(real (fact n)) else 0) paulson@15077: = (%n. - (if even n then 0 paulson@15077: else (- 1) ^ ((n - Suc 0)div 2)/(real (fact n))))" paulson@15229: by (auto intro!: ext paulson@15229: simp add: diffs_def divide_inverse odd_Suc_mult_two_ex paulson@15229: simp del: mult_Suc) paulson@15077: paulson@15077: paulson@15077: lemma cos_fdiffs2: paulson@15077: "diffs(%n. if even n then paulson@15077: (- 1) ^ (n div 2)/(real (fact n)) else 0) n paulson@15077: = - (if even n then 0 paulson@15077: else (- 1) ^ ((n - Suc 0)div 2)/(real (fact n)))" paulson@15229: by (auto intro!: ext paulson@15229: simp add: diffs_def divide_inverse odd_Suc_mult_two_ex paulson@15229: simp del: mult_Suc) paulson@15077: paulson@15077: text{*Now at last we can get the derivatives of exp, sin and cos*} paulson@15077: paulson@15077: lemma lemma_sin_minus: nipkow@15546: "- sin x = (\n. - ((if even n then 0 paulson@15077: else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * x ^ n))" paulson@15077: by (auto intro!: sums_unique sums_minus sin_converges) paulson@15077: nipkow@15546: lemma lemma_exp_ext: "exp = (%x. \n. inverse (real (fact n)) * x ^ n)" paulson@15077: by (auto intro!: ext simp add: exp_def) paulson@15077: paulson@15077: lemma DERIV_exp [simp]: "DERIV exp x :> exp(x)" paulson@15229: apply (simp add: exp_def) paulson@15077: apply (subst lemma_exp_ext) nipkow@15546: apply (subgoal_tac "DERIV (%u. \n. inverse (real (fact n)) * u ^ n) x :> (\n. diffs (%n. inverse (real (fact n))) n * x ^ n)") paulson@15229: apply (rule_tac [2] K = "1 + \x\" in termdiffs) webertj@20217: apply (auto intro: exp_converges [THEN sums_summable] simp add: exp_fdiffs) paulson@15077: done paulson@15077: paulson@15077: lemma lemma_sin_ext: nipkow@15546: "sin = (%x. \n. paulson@15077: (if even n then 0 paulson@15077: else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * nipkow@15546: x ^ n)" paulson@15077: by (auto intro!: ext simp add: sin_def) paulson@15077: paulson@15077: lemma lemma_cos_ext: nipkow@15546: "cos = (%x. \n. paulson@15077: (if even n then (- 1) ^ (n div 2)/(real (fact n)) else 0) * nipkow@15546: x ^ n)" paulson@15077: by (auto intro!: ext simp add: cos_def) paulson@15077: paulson@15077: lemma DERIV_sin [simp]: "DERIV sin x :> cos(x)" paulson@15229: apply (simp add: cos_def) paulson@15077: apply (subst lemma_sin_ext) paulson@15077: apply (auto simp add: sin_fdiffs2 [symmetric]) paulson@15229: apply (rule_tac K = "1 + \x\" in termdiffs) webertj@20217: apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs) paulson@15077: done paulson@15077: paulson@15077: lemma DERIV_cos [simp]: "DERIV cos x :> -sin(x)" paulson@15077: apply (subst lemma_cos_ext) paulson@15077: apply (auto simp add: lemma_sin_minus cos_fdiffs2 [symmetric] minus_mult_left) paulson@15229: apply (rule_tac K = "1 + \x\" in termdiffs) webertj@20217: apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs diffs_minus) paulson@15077: done paulson@15077: paulson@15077: paulson@15077: subsection{*Properties of the Exponential Function*} paulson@15077: paulson@15077: lemma exp_zero [simp]: "exp 0 = 1" paulson@15077: proof - paulson@15077: have "(\n = 0..<1. inverse (real (fact n)) * 0 ^ n) = nipkow@15546: (\n. inverse (real (fact n)) * 0 ^ n)" paulson@15077: by (rule series_zero [rule_format, THEN sums_unique], paulson@15077: case_tac "m", auto) paulson@15077: thus ?thesis by (simp add: exp_def) paulson@15077: qed paulson@15077: avigad@17014: lemma exp_ge_add_one_self_aux: "0 \ x ==> (1 + x) \ exp(x)" paulson@15077: apply (drule real_le_imp_less_or_eq, auto) paulson@15229: apply (simp add: exp_def) paulson@15077: apply (rule real_le_trans) paulson@15229: apply (rule_tac [2] n = 2 and f = "(%n. inverse (real (fact n)) * x ^ n)" in series_pos_le) paulson@15077: apply (auto intro: summable_exp simp add: numeral_2_eq_2 zero_le_power zero_le_mult_iff) paulson@15077: done paulson@15077: paulson@15077: lemma exp_gt_one [simp]: "0 < x ==> 1 < exp x" paulson@15077: apply (rule order_less_le_trans) avigad@17014: apply (rule_tac [2] exp_ge_add_one_self_aux, auto) paulson@15077: done paulson@15077: paulson@15077: lemma DERIV_exp_add_const: "DERIV (%x. exp (x + y)) x :> exp(x + y)" paulson@15077: proof - paulson@15077: have "DERIV (exp \ (\x. x + y)) x :> exp (x + y) * (1+0)" paulson@15077: by (fast intro: DERIV_chain DERIV_add DERIV_exp DERIV_Id DERIV_const) paulson@15077: thus ?thesis by (simp add: o_def) paulson@15077: qed paulson@15077: paulson@15077: lemma DERIV_exp_minus [simp]: "DERIV (%x. exp (-x)) x :> - exp(-x)" paulson@15077: proof - paulson@15077: have "DERIV (exp \ uminus) x :> exp (- x) * - 1" paulson@15077: by (fast intro: DERIV_chain DERIV_minus DERIV_exp DERIV_Id) paulson@15077: thus ?thesis by (simp add: o_def) paulson@15077: qed paulson@15077: paulson@15077: lemma DERIV_exp_exp_zero [simp]: "DERIV (%x. exp (x + y) * exp (- x)) x :> 0" paulson@15077: proof - paulson@15077: have "DERIV (\x. exp (x + y) * exp (- x)) x paulson@15077: :> exp (x + y) * exp (- x) + - exp (- x) * exp (x + y)" paulson@15077: by (fast intro: DERIV_exp_add_const DERIV_exp_minus DERIV_mult) paulson@15077: thus ?thesis by simp paulson@15077: qed paulson@15077: paulson@15077: lemma exp_add_mult_minus [simp]: "exp(x + y)*exp(-x) = exp(y)" paulson@15077: proof - paulson@15077: have "\x. DERIV (%x. exp (x + y) * exp (- x)) x :> 0" by simp paulson@15077: hence "exp (x + y) * exp (- x) = exp (0 + y) * exp (- 0)" paulson@15077: by (rule DERIV_isconst_all) paulson@15077: thus ?thesis by simp paulson@15077: qed paulson@15077: paulson@15077: lemma exp_mult_minus [simp]: "exp x * exp(-x) = 1" paulson@15077: proof - paulson@15077: have "exp (x + 0) * exp (- x) = exp 0" by (rule exp_add_mult_minus) paulson@15077: thus ?thesis by simp paulson@15077: qed paulson@15077: paulson@15077: lemma exp_mult_minus2 [simp]: "exp(-x)*exp(x) = 1" paulson@15077: by (simp add: mult_commute) paulson@15077: paulson@15077: paulson@15077: lemma exp_minus: "exp(-x) = inverse(exp(x))" paulson@15077: by (auto intro: inverse_unique [symmetric]) paulson@15077: paulson@15077: lemma exp_add: "exp(x + y) = exp(x) * exp(y)" paulson@15077: proof - paulson@15077: have "exp x * exp y = exp x * (exp (x + y) * exp (- x))" by simp paulson@15077: thus ?thesis by (simp (no_asm_simp) add: mult_ac) paulson@15077: qed paulson@15077: paulson@15077: text{*Proof: because every exponential can be seen as a square.*} paulson@15077: lemma exp_ge_zero [simp]: "0 \ exp x" paulson@15077: apply (rule_tac t = x in real_sum_of_halves [THEN subst]) paulson@15077: apply (subst exp_add, auto) paulson@15077: done paulson@15077: paulson@15077: lemma exp_not_eq_zero [simp]: "exp x \ 0" paulson@15077: apply (cut_tac x = x in exp_mult_minus2) paulson@15077: apply (auto simp del: exp_mult_minus2) paulson@15077: done paulson@15077: paulson@15077: lemma exp_gt_zero [simp]: "0 < exp x" paulson@15077: by (simp add: order_less_le) paulson@15077: paulson@15077: lemma inv_exp_gt_zero [simp]: "0 < inverse(exp x)" paulson@15077: by (auto intro: positive_imp_inverse_positive) paulson@15077: paulson@15081: lemma abs_exp_cancel [simp]: "\exp x\ = exp x" paulson@15229: by auto paulson@15077: paulson@15077: lemma exp_real_of_nat_mult: "exp(real n * x) = exp(x) ^ n" paulson@15251: apply (induct "n") paulson@15077: apply (auto simp add: real_of_nat_Suc right_distrib exp_add mult_commute) paulson@15077: done paulson@15077: paulson@15077: lemma exp_diff: "exp(x - y) = exp(x)/(exp y)" paulson@15229: apply (simp add: diff_minus divide_inverse) paulson@15077: apply (simp (no_asm) add: exp_add exp_minus) paulson@15077: done paulson@15077: paulson@15077: paulson@15077: lemma exp_less_mono: paulson@15077: assumes xy: "x < y" shows "exp x < exp y" paulson@15077: proof - paulson@15077: have "1 < exp (y + - x)" paulson@15077: by (rule real_less_sum_gt_zero [THEN exp_gt_one]) paulson@15077: hence "exp x * inverse (exp x) < exp y * inverse (exp x)" paulson@15077: by (auto simp add: exp_add exp_minus) paulson@15077: thus ?thesis nipkow@15539: by (simp add: divide_inverse [symmetric] pos_less_divide_eq paulson@15228: del: divide_self_if) paulson@15077: qed paulson@15077: paulson@15077: lemma exp_less_cancel: "exp x < exp y ==> x < y" paulson@15228: apply (simp add: linorder_not_le [symmetric]) paulson@15228: apply (auto simp add: order_le_less exp_less_mono) paulson@15077: done paulson@15077: paulson@15077: lemma exp_less_cancel_iff [iff]: "(exp(x) < exp(y)) = (x < y)" paulson@15077: by (auto intro: exp_less_mono exp_less_cancel) paulson@15077: paulson@15077: lemma exp_le_cancel_iff [iff]: "(exp(x) \ exp(y)) = (x \ y)" paulson@15077: by (auto simp add: linorder_not_less [symmetric]) paulson@15077: paulson@15077: lemma exp_inj_iff [iff]: "(exp x = exp y) = (x = y)" paulson@15077: by (simp add: order_eq_iff) paulson@15077: paulson@15077: lemma lemma_exp_total: "1 \ y ==> \x. 0 \ x & x \ y - 1 & exp(x) = y" paulson@15077: apply (rule IVT) paulson@15077: apply (auto intro: DERIV_exp [THEN DERIV_isCont] simp add: le_diff_eq) paulson@15077: apply (subgoal_tac "1 + (y - 1) \ exp (y - 1)") paulson@15077: apply simp avigad@17014: apply (rule exp_ge_add_one_self_aux, simp) paulson@15077: done paulson@15077: paulson@15077: lemma exp_total: "0 < y ==> \x. exp x = y" paulson@15077: apply (rule_tac x = 1 and y = y in linorder_cases) paulson@15077: apply (drule order_less_imp_le [THEN lemma_exp_total]) paulson@15077: apply (rule_tac [2] x = 0 in exI) paulson@15077: apply (frule_tac [3] real_inverse_gt_one) paulson@15077: apply (drule_tac [4] order_less_imp_le [THEN lemma_exp_total], auto) paulson@15077: apply (rule_tac x = "-x" in exI) paulson@15077: apply (simp add: exp_minus) paulson@15077: done paulson@15077: paulson@15077: paulson@15077: subsection{*Properties of the Logarithmic Function*} paulson@15077: paulson@15077: lemma ln_exp[simp]: "ln(exp x) = x" paulson@15077: by (simp add: ln_def) paulson@15077: paulson@15077: lemma exp_ln_iff[simp]: "(exp(ln x) = x) = (0 < x)" paulson@15077: apply (auto dest: exp_total) paulson@15077: apply (erule subst, simp) paulson@15077: done paulson@15077: paulson@15077: lemma ln_mult: "[| 0 < x; 0 < y |] ==> ln(x * y) = ln(x) + ln(y)" paulson@15077: apply (rule exp_inj_iff [THEN iffD1]) paulson@15077: apply (frule real_mult_order) paulson@15077: apply (auto simp add: exp_add exp_ln_iff [symmetric] simp del: exp_inj_iff exp_ln_iff) paulson@15077: done paulson@15077: paulson@15077: lemma ln_inj_iff[simp]: "[| 0 < x; 0 < y |] ==> (ln x = ln y) = (x = y)" paulson@15077: apply (simp only: exp_ln_iff [symmetric]) paulson@15077: apply (erule subst)+ paulson@15077: apply simp paulson@15077: done paulson@15077: paulson@15077: lemma ln_one[simp]: "ln 1 = 0" paulson@15077: by (rule exp_inj_iff [THEN iffD1], auto) paulson@15077: paulson@15077: lemma ln_inverse: "0 < x ==> ln(inverse x) = - ln x" paulson@15077: apply (rule_tac a1 = "ln x" in add_left_cancel [THEN iffD1]) paulson@15077: apply (auto simp add: positive_imp_inverse_positive ln_mult [symmetric]) paulson@15077: done paulson@15077: paulson@15077: lemma ln_div: paulson@15077: "[|0 < x; 0 < y|] ==> ln(x/y) = ln x - ln y" paulson@15229: apply (simp add: divide_inverse) paulson@15077: apply (auto simp add: positive_imp_inverse_positive ln_mult ln_inverse) paulson@15077: done paulson@15077: paulson@15077: lemma ln_less_cancel_iff[simp]: "[| 0 < x; 0 < y|] ==> (ln x < ln y) = (x < y)" paulson@15077: apply (simp only: exp_ln_iff [symmetric]) paulson@15077: apply (erule subst)+ paulson@15077: apply simp paulson@15077: done paulson@15077: paulson@15077: lemma ln_le_cancel_iff[simp]: "[| 0 < x; 0 < y|] ==> (ln x \ ln y) = (x \ y)" paulson@15077: by (auto simp add: linorder_not_less [symmetric]) paulson@15077: paulson@15077: lemma ln_realpow: "0 < x ==> ln(x ^ n) = real n * ln(x)" paulson@15077: by (auto dest!: exp_total simp add: exp_real_of_nat_mult [symmetric]) paulson@15077: paulson@15077: lemma ln_add_one_self_le_self [simp]: "0 \ x ==> ln(1 + x) \ x" paulson@15077: apply (rule ln_exp [THEN subst]) avigad@17014: apply (rule ln_le_cancel_iff [THEN iffD2]) avigad@17014: apply (auto simp add: exp_ge_add_one_self_aux) paulson@15077: done paulson@15077: paulson@15077: lemma ln_less_self [simp]: "0 < x ==> ln x < x" paulson@15077: apply (rule order_less_le_trans) paulson@15077: apply (rule_tac [2] ln_add_one_self_le_self) paulson@15077: apply (rule ln_less_cancel_iff [THEN iffD2], auto) paulson@15077: done paulson@15077: paulson@15234: lemma ln_ge_zero [simp]: paulson@15077: assumes x: "1 \ x" shows "0 \ ln x" paulson@15077: proof - paulson@15077: have "0 < x" using x by arith paulson@15077: hence "exp 0 \ exp (ln x)" paulson@15077: by (simp add: x exp_ln_iff [symmetric] del: exp_ln_iff) paulson@15077: thus ?thesis by (simp only: exp_le_cancel_iff) paulson@15077: qed paulson@15077: paulson@15077: lemma ln_ge_zero_imp_ge_one: paulson@15077: assumes ln: "0 \ ln x" paulson@15077: and x: "0 < x" paulson@15077: shows "1 \ x" paulson@15077: proof - paulson@15077: from ln have "ln 1 \ ln x" by simp paulson@15077: thus ?thesis by (simp add: x del: ln_one) paulson@15077: qed paulson@15077: paulson@15077: lemma ln_ge_zero_iff [simp]: "0 < x ==> (0 \ ln x) = (1 \ x)" paulson@15077: by (blast intro: ln_ge_zero ln_ge_zero_imp_ge_one) paulson@15077: paulson@15234: lemma ln_less_zero_iff [simp]: "0 < x ==> (ln x < 0) = (x < 1)" paulson@15234: by (insert ln_ge_zero_iff [of x], arith) paulson@15234: paulson@15077: lemma ln_gt_zero: paulson@15077: assumes x: "1 < x" shows "0 < ln x" paulson@15077: proof - paulson@15077: have "0 < x" using x by arith paulson@15077: hence "exp 0 < exp (ln x)" paulson@15077: by (simp add: x exp_ln_iff [symmetric] del: exp_ln_iff) paulson@15077: thus ?thesis by (simp only: exp_less_cancel_iff) paulson@15077: qed paulson@15077: paulson@15077: lemma ln_gt_zero_imp_gt_one: paulson@15077: assumes ln: "0 < ln x" paulson@15077: and x: "0 < x" paulson@15077: shows "1 < x" paulson@15077: proof - paulson@15077: from ln have "ln 1 < ln x" by simp paulson@15077: thus ?thesis by (simp add: x del: ln_one) paulson@15077: qed paulson@15077: paulson@15077: lemma ln_gt_zero_iff [simp]: "0 < x ==> (0 < ln x) = (1 < x)" paulson@15077: by (blast intro: ln_gt_zero ln_gt_zero_imp_gt_one) paulson@15077: paulson@15234: lemma ln_eq_zero_iff [simp]: "0 < x ==> (ln x = 0) = (x = 1)" paulson@15234: by (insert ln_less_zero_iff [of x] ln_gt_zero_iff [of x], arith) paulson@15077: paulson@15077: lemma ln_less_zero: "[| 0 < x; x < 1 |] ==> ln x < 0" paulson@15234: by simp paulson@15077: paulson@15077: lemma exp_ln_eq: "exp u = x ==> ln x = u" paulson@15077: by auto paulson@15077: paulson@15077: paulson@15077: subsection{*Basic Properties of the Trigonometric Functions*} paulson@15077: paulson@15077: lemma sin_zero [simp]: "sin 0 = 0" paulson@15077: by (auto intro!: sums_unique [symmetric] LIMSEQ_const paulson@15077: simp add: sin_def sums_def simp del: power_0_left) paulson@15077: nipkow@15539: lemma lemma_series_zero2: nipkow@15539: "(\m. n \ m --> f m = 0) --> f sums setsum f {0.. cos(x) * sin(x) + cos(x) * sin(x)" paulson@15077: by (rule DERIV_mult, auto) paulson@15077: paulson@15077: lemma DERIV_sin_sin_mult2 [simp]: paulson@15077: "DERIV (%x. sin(x)*sin(x)) x :> 2 * cos(x) * sin(x)" paulson@15077: apply (cut_tac x = x in DERIV_sin_sin_mult) paulson@15077: apply (auto simp add: mult_assoc) paulson@15077: done paulson@15077: paulson@15077: lemma DERIV_sin_realpow2 [simp]: paulson@15077: "DERIV (%x. (sin x)\) x :> cos(x) * sin(x) + cos(x) * sin(x)" paulson@15077: by (auto simp add: numeral_2_eq_2 real_mult_assoc [symmetric]) paulson@15077: paulson@15077: lemma DERIV_sin_realpow2a [simp]: paulson@15077: "DERIV (%x. (sin x)\) x :> 2 * cos(x) * sin(x)" paulson@15077: by (auto simp add: numeral_2_eq_2) paulson@15077: paulson@15077: lemma DERIV_cos_cos_mult [simp]: paulson@15077: "DERIV (%x. cos(x)*cos(x)) x :> -sin(x) * cos(x) + -sin(x) * cos(x)" paulson@15077: by (rule DERIV_mult, auto) paulson@15077: paulson@15077: lemma DERIV_cos_cos_mult2 [simp]: paulson@15077: "DERIV (%x. cos(x)*cos(x)) x :> -2 * cos(x) * sin(x)" paulson@15077: apply (cut_tac x = x in DERIV_cos_cos_mult) paulson@15077: apply (auto simp add: mult_ac) paulson@15077: done paulson@15077: paulson@15077: lemma DERIV_cos_realpow2 [simp]: paulson@15077: "DERIV (%x. (cos x)\) x :> -sin(x) * cos(x) + -sin(x) * cos(x)" paulson@15077: by (auto simp add: numeral_2_eq_2 real_mult_assoc [symmetric]) paulson@15077: paulson@15077: lemma DERIV_cos_realpow2a [simp]: paulson@15077: "DERIV (%x. (cos x)\) x :> -2 * cos(x) * sin(x)" paulson@15077: by (auto simp add: numeral_2_eq_2) paulson@15077: paulson@15077: lemma lemma_DERIV_subst: "[| DERIV f x :> D; D = E |] ==> DERIV f x :> E" paulson@15077: by auto paulson@15077: paulson@15077: lemma DERIV_cos_realpow2b: "DERIV (%x. (cos x)\) x :> -(2 * cos(x) * sin(x))" paulson@15077: apply (rule lemma_DERIV_subst) paulson@15077: apply (rule DERIV_cos_realpow2a, auto) paulson@15077: done paulson@15077: paulson@15077: (* most useful *) paulson@15229: lemma DERIV_cos_cos_mult3 [simp]: paulson@15229: "DERIV (%x. cos(x)*cos(x)) x :> -(2 * cos(x) * sin(x))" paulson@15077: apply (rule lemma_DERIV_subst) paulson@15077: apply (rule DERIV_cos_cos_mult2, auto) paulson@15077: done paulson@15077: paulson@15077: lemma DERIV_sin_circle_all: paulson@15077: "\x. DERIV (%x. (sin x)\ + (cos x)\) x :> paulson@15077: (2*cos(x)*sin(x) - 2*cos(x)*sin(x))" paulson@15229: apply (simp only: diff_minus, safe) paulson@15229: apply (rule DERIV_add) paulson@15077: apply (auto simp add: numeral_2_eq_2) paulson@15077: done paulson@15077: paulson@15229: lemma DERIV_sin_circle_all_zero [simp]: paulson@15229: "\x. DERIV (%x. (sin x)\ + (cos x)\) x :> 0" paulson@15077: by (cut_tac DERIV_sin_circle_all, auto) paulson@15077: paulson@15077: lemma sin_cos_squared_add [simp]: "((sin x)\) + ((cos x)\) = 1" paulson@15077: apply (cut_tac x = x and y = 0 in DERIV_sin_circle_all_zero [THEN DERIV_isconst_all]) paulson@15077: apply (auto simp add: numeral_2_eq_2) paulson@15077: done paulson@15077: paulson@15077: lemma sin_cos_squared_add2 [simp]: "((cos x)\) + ((sin x)\) = 1" paulson@15077: apply (subst real_add_commute) paulson@15077: apply (simp (no_asm) del: realpow_Suc) paulson@15077: done paulson@15077: paulson@15077: lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1" paulson@15077: apply (cut_tac x = x in sin_cos_squared_add2) paulson@15077: apply (auto simp add: numeral_2_eq_2) paulson@15077: done paulson@15077: paulson@15077: lemma sin_squared_eq: "(sin x)\ = 1 - (cos x)\" paulson@15229: apply (rule_tac a1 = "(cos x)\" in add_right_cancel [THEN iffD1]) paulson@15077: apply (simp del: realpow_Suc) paulson@15077: done paulson@15077: paulson@15077: lemma cos_squared_eq: "(cos x)\ = 1 - (sin x)\" paulson@15077: apply (rule_tac a1 = "(sin x)\" in add_right_cancel [THEN iffD1]) paulson@15077: apply (simp del: realpow_Suc) paulson@15077: done paulson@15077: paulson@15077: lemma real_gt_one_ge_zero_add_less: "[| 1 < x; 0 \ y |] ==> 1 < x + (y::real)" paulson@15077: by arith paulson@15077: paulson@15081: lemma abs_sin_le_one [simp]: "\sin x\ \ 1" paulson@15077: apply (auto simp add: linorder_not_less [symmetric]) paulson@15077: apply (drule_tac n = "Suc 0" in power_gt1) paulson@15077: apply (auto simp del: realpow_Suc) paulson@15077: apply (drule_tac r1 = "cos x" in realpow_two_le [THEN [2] real_gt_one_ge_zero_add_less]) paulson@15077: apply (simp add: numeral_2_eq_2 [symmetric] del: realpow_Suc) paulson@15077: done paulson@15077: paulson@15077: lemma sin_ge_minus_one [simp]: "-1 \ sin x" paulson@15077: apply (insert abs_sin_le_one [of x]) paulson@15077: apply (simp add: abs_le_interval_iff del: abs_sin_le_one) paulson@15077: done paulson@15077: paulson@15077: lemma sin_le_one [simp]: "sin x \ 1" paulson@15077: apply (insert abs_sin_le_one [of x]) paulson@15077: apply (simp add: abs_le_interval_iff del: abs_sin_le_one) paulson@15077: done paulson@15077: paulson@15081: lemma abs_cos_le_one [simp]: "\cos x\ \ 1" paulson@15077: apply (auto simp add: linorder_not_less [symmetric]) paulson@15077: apply (drule_tac n = "Suc 0" in power_gt1) paulson@15077: apply (auto simp del: realpow_Suc) paulson@15077: apply (drule_tac r1 = "sin x" in realpow_two_le [THEN [2] real_gt_one_ge_zero_add_less]) paulson@15077: apply (simp add: numeral_2_eq_2 [symmetric] del: realpow_Suc) paulson@15077: done paulson@15077: paulson@15077: lemma cos_ge_minus_one [simp]: "-1 \ cos x" paulson@15077: apply (insert abs_cos_le_one [of x]) paulson@15077: apply (simp add: abs_le_interval_iff del: abs_cos_le_one) paulson@15077: done paulson@15077: paulson@15077: lemma cos_le_one [simp]: "cos x \ 1" paulson@15077: apply (insert abs_cos_le_one [of x]) paulson@15077: apply (simp add: abs_le_interval_iff del: abs_cos_le_one) paulson@15077: done paulson@15077: paulson@15077: lemma DERIV_fun_pow: "DERIV g x :> m ==> paulson@15077: DERIV (%x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m" paulson@15077: apply (rule lemma_DERIV_subst) paulson@15229: apply (rule_tac f = "(%x. x ^ n)" in DERIV_chain2) paulson@15077: apply (rule DERIV_pow, auto) paulson@15077: done paulson@15077: paulson@15229: lemma DERIV_fun_exp: paulson@15229: "DERIV g x :> m ==> DERIV (%x. exp(g x)) x :> exp(g x) * m" paulson@15077: apply (rule lemma_DERIV_subst) paulson@15077: apply (rule_tac f = exp in DERIV_chain2) paulson@15077: apply (rule DERIV_exp, auto) paulson@15077: done paulson@15077: paulson@15229: lemma DERIV_fun_sin: paulson@15229: "DERIV g x :> m ==> DERIV (%x. sin(g x)) x :> cos(g x) * m" paulson@15077: apply (rule lemma_DERIV_subst) paulson@15077: apply (rule_tac f = sin in DERIV_chain2) paulson@15077: apply (rule DERIV_sin, auto) paulson@15077: done paulson@15077: paulson@15229: lemma DERIV_fun_cos: paulson@15229: "DERIV g x :> m ==> DERIV (%x. cos(g x)) x :> -sin(g x) * m" paulson@15077: apply (rule lemma_DERIV_subst) paulson@15077: apply (rule_tac f = cos in DERIV_chain2) paulson@15077: apply (rule DERIV_cos, auto) paulson@15077: done paulson@15077: paulson@15077: lemmas DERIV_intros = DERIV_Id DERIV_const DERIV_cos DERIV_cmult paulson@15077: DERIV_sin DERIV_exp DERIV_inverse DERIV_pow paulson@15077: DERIV_add DERIV_diff DERIV_mult DERIV_minus paulson@15077: DERIV_inverse_fun DERIV_quotient DERIV_fun_pow paulson@15077: DERIV_fun_exp DERIV_fun_sin DERIV_fun_cos paulson@15077: paulson@15077: (* lemma *) paulson@15229: lemma lemma_DERIV_sin_cos_add: paulson@15229: "\x. paulson@15077: DERIV (%x. (sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 + paulson@15077: (cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2) x :> 0" paulson@15077: apply (safe, rule lemma_DERIV_subst) paulson@15077: apply (best intro!: DERIV_intros intro: DERIV_chain2) paulson@15077: --{*replaces the old @{text DERIV_tac}*} paulson@15229: apply (auto simp add: diff_minus left_distrib right_distrib mult_ac add_ac) paulson@15077: done paulson@15077: paulson@15077: lemma sin_cos_add [simp]: paulson@15077: "(sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 + paulson@15077: (cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2 = 0" paulson@15077: apply (cut_tac y = 0 and x = x and y7 = y paulson@15077: in lemma_DERIV_sin_cos_add [THEN DERIV_isconst_all]) paulson@15077: apply (auto simp add: numeral_2_eq_2) paulson@15077: done paulson@15077: paulson@15077: lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y" paulson@15077: apply (cut_tac x = x and y = y in sin_cos_add) paulson@15077: apply (auto dest!: real_sum_squares_cancel_a paulson@15085: simp add: numeral_2_eq_2 real_add_eq_0_iff simp del: sin_cos_add) paulson@15077: done paulson@15077: paulson@15077: lemma cos_add: "cos (x + y) = cos x * cos y - sin x * sin y" paulson@15077: apply (cut_tac x = x and y = y in sin_cos_add) paulson@15077: apply (auto dest!: real_sum_squares_cancel_a paulson@15085: simp add: numeral_2_eq_2 real_add_eq_0_iff simp del: sin_cos_add) paulson@15077: done paulson@15077: paulson@15085: lemma lemma_DERIV_sin_cos_minus: paulson@15085: "\x. DERIV (%x. (sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2) x :> 0" paulson@15077: apply (safe, rule lemma_DERIV_subst) paulson@15077: apply (best intro!: DERIV_intros intro: DERIV_chain2) paulson@15229: apply (auto simp add: diff_minus left_distrib right_distrib mult_ac add_ac) paulson@15077: done paulson@15077: paulson@15085: lemma sin_cos_minus [simp]: paulson@15085: "(sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2 = 0" paulson@15085: apply (cut_tac y = 0 and x = x paulson@15085: in lemma_DERIV_sin_cos_minus [THEN DERIV_isconst_all]) paulson@15077: apply (auto simp add: numeral_2_eq_2) paulson@15077: done paulson@15077: paulson@15077: lemma sin_minus [simp]: "sin (-x) = -sin(x)" paulson@15077: apply (cut_tac x = x in sin_cos_minus) paulson@15085: apply (auto dest!: real_sum_squares_cancel_a paulson@15085: simp add: numeral_2_eq_2 real_add_eq_0_iff simp del: sin_cos_minus) paulson@15077: done paulson@15077: paulson@15077: lemma cos_minus [simp]: "cos (-x) = cos(x)" paulson@15077: apply (cut_tac x = x in sin_cos_minus) paulson@15085: apply (auto dest!: real_sum_squares_cancel_a paulson@15085: simp add: numeral_2_eq_2 simp del: sin_cos_minus) paulson@15077: done paulson@15077: paulson@15077: lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y" paulson@15229: apply (simp add: diff_minus) paulson@15077: apply (simp (no_asm) add: sin_add) paulson@15077: done paulson@15077: paulson@15077: lemma sin_diff2: "sin (x - y) = cos y * sin x - sin y * cos x" paulson@15077: by (simp add: sin_diff mult_commute) paulson@15077: paulson@15077: lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y" paulson@15229: apply (simp add: diff_minus) paulson@15077: apply (simp (no_asm) add: cos_add) paulson@15077: done paulson@15077: paulson@15077: lemma cos_diff2: "cos (x - y) = cos y * cos x + sin y * sin x" paulson@15077: by (simp add: cos_diff mult_commute) paulson@15077: paulson@15077: lemma sin_double [simp]: "sin(2 * x) = 2* sin x * cos x" paulson@15077: by (cut_tac x = x and y = x in sin_add, auto) paulson@15077: paulson@15077: paulson@15077: lemma cos_double: "cos(2* x) = ((cos x)\) - ((sin x)\)" paulson@15077: apply (cut_tac x = x and y = x in cos_add) paulson@15077: apply (auto simp add: numeral_2_eq_2) paulson@15077: done paulson@15077: paulson@15077: paulson@15077: subsection{*The Constant Pi*} paulson@15077: paulson@15077: text{*Show that there's a least positive @{term x} with @{term "cos(x) = 0"}; paulson@15077: hence define pi.*} paulson@15077: paulson@15077: lemma sin_paired: paulson@15077: "(%n. (- 1) ^ n /(real (fact (2 * n + 1))) * x ^ (2 * n + 1)) paulson@15077: sums sin x" paulson@15077: proof - paulson@15077: have "(\n. \k = n * 2..n. (if even n then 0 paulson@15077: else (- 1) ^ ((n - Suc 0) div 2) / real (fact n)) * paulson@15077: x ^ n)" paulson@15077: by (rule sin_converges [THEN sums_summable, THEN sums_group], simp) paulson@15077: thus ?thesis by (simp add: mult_ac sin_def) paulson@15077: qed paulson@15077: paulson@15077: lemma sin_gt_zero: "[|0 < x; x < 2 |] ==> 0 < sin x" paulson@15077: apply (subgoal_tac paulson@15077: "(\n. \k = n * 2..n. (- 1) ^ n / real (fact (2 * n + 1)) * x ^ (2 * n + 1))") paulson@15077: prefer 2 paulson@15077: apply (rule sin_paired [THEN sums_summable, THEN sums_group], simp) paulson@15077: apply (rotate_tac 2) paulson@15077: apply (drule sin_paired [THEN sums_unique, THEN ssubst]) paulson@15077: apply (auto simp del: fact_Suc realpow_Suc) paulson@15077: apply (frule sums_unique) paulson@15077: apply (auto simp del: fact_Suc realpow_Suc) paulson@15077: apply (rule_tac n1 = 0 in series_pos_less [THEN [2] order_le_less_trans]) paulson@15077: apply (auto simp del: fact_Suc realpow_Suc) paulson@15077: apply (erule sums_summable) paulson@15077: apply (case_tac "m=0") paulson@15077: apply (simp (no_asm_simp)) paulson@15234: apply (subgoal_tac "6 * (x * (x * x) / real (Suc (Suc (Suc (Suc (Suc (Suc 0))))))) < 6 * x") nipkow@15539: apply (simp only: mult_less_cancel_left, simp) nipkow@15539: apply (simp (no_asm_simp) add: numeral_2_eq_2 [symmetric] mult_assoc [symmetric]) paulson@15077: apply (subgoal_tac "x*x < 2*3", simp) paulson@15077: apply (rule mult_strict_mono) paulson@15085: apply (auto simp add: real_0_less_add_iff real_of_nat_Suc simp del: fact_Suc) paulson@15077: apply (subst fact_Suc) paulson@15077: apply (subst fact_Suc) paulson@15077: apply (subst fact_Suc) paulson@15077: apply (subst fact_Suc) paulson@15077: apply (subst real_of_nat_mult) paulson@15077: apply (subst real_of_nat_mult) paulson@15077: apply (subst real_of_nat_mult) paulson@15077: apply (subst real_of_nat_mult) nipkow@15539: apply (simp (no_asm) add: divide_inverse del: fact_Suc) paulson@15077: apply (auto simp add: mult_assoc [symmetric] simp del: fact_Suc) paulson@15077: apply (rule_tac c="real (Suc (Suc (4*m)))" in mult_less_imp_less_right) paulson@15077: apply (auto simp add: mult_assoc simp del: fact_Suc) paulson@15077: apply (rule_tac c="real (Suc (Suc (Suc (4*m))))" in mult_less_imp_less_right) paulson@15077: apply (auto simp add: mult_assoc mult_less_cancel_left simp del: fact_Suc) paulson@15077: apply (subgoal_tac "x * (x * x ^ (4*m)) = (x ^ (4*m)) * (x * x)") paulson@15077: apply (erule ssubst)+ paulson@15077: apply (auto simp del: fact_Suc) paulson@15077: apply (subgoal_tac "0 < x ^ (4 * m) ") paulson@15077: prefer 2 apply (simp only: zero_less_power) paulson@15077: apply (simp (no_asm_simp) add: mult_less_cancel_left) paulson@15077: apply (rule mult_strict_mono) paulson@15077: apply (simp_all (no_asm_simp)) paulson@15077: done paulson@15077: paulson@15077: lemma sin_gt_zero1: "[|0 < x; x < 2 |] ==> 0 < sin x" paulson@15077: by (auto intro: sin_gt_zero) paulson@15077: paulson@15077: lemma cos_double_less_one: "[| 0 < x; x < 2 |] ==> cos (2 * x) < 1" paulson@15077: apply (cut_tac x = x in sin_gt_zero1) paulson@15077: apply (auto simp add: cos_squared_eq cos_double) paulson@15077: done paulson@15077: paulson@15077: lemma cos_paired: paulson@15077: "(%n. (- 1) ^ n /(real (fact (2 * n))) * x ^ (2 * n)) sums cos x" paulson@15077: proof - paulson@15077: have "(\n. \k = n * 2..n. (if even n then (- 1) ^ (n div 2) / real (fact n) else 0) * paulson@15077: x ^ n)" paulson@15077: by (rule cos_converges [THEN sums_summable, THEN sums_group], simp) paulson@15077: thus ?thesis by (simp add: mult_ac cos_def) paulson@15077: qed paulson@15077: paulson@15077: declare zero_less_power [simp] paulson@15077: paulson@15077: lemma fact_lemma: "real (n::nat) * 4 = real (4 * n)" paulson@15077: by simp paulson@15077: paulson@15077: lemma cos_two_less_zero: "cos (2) < 0" paulson@15077: apply (cut_tac x = 2 in cos_paired) paulson@15077: apply (drule sums_minus) paulson@15077: apply (rule neg_less_iff_less [THEN iffD1]) nipkow@15539: apply (frule sums_unique, auto) nipkow@15539: apply (rule_tac y = nipkow@15539: "\n=0..< Suc(Suc(Suc 0)). - ((- 1) ^ n / (real(fact (2*n))) * 2 ^ (2*n))" paulson@15481: in order_less_trans) paulson@15077: apply (simp (no_asm) add: fact_num_eq_if realpow_num_eq_if del: fact_Suc realpow_Suc) nipkow@15561: apply (simp (no_asm) add: mult_assoc del: setsum_op_ivl_Suc) paulson@15077: apply (rule sumr_pos_lt_pair) paulson@15077: apply (erule sums_summable, safe) paulson@15085: apply (simp (no_asm) add: divide_inverse real_0_less_add_iff mult_assoc [symmetric] paulson@15085: del: fact_Suc) paulson@15077: apply (rule real_mult_inverse_cancel2) paulson@15077: apply (rule real_of_nat_fact_gt_zero)+ paulson@15077: apply (simp (no_asm) add: mult_assoc [symmetric] del: fact_Suc) paulson@15077: apply (subst fact_lemma) paulson@15481: apply (subst fact_Suc [of "Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))"]) paulson@15481: apply (simp only: real_of_nat_mult) paulson@15077: apply (rule real_mult_less_mono, force) paulson@15481: apply (rule_tac [3] real_of_nat_fact_gt_zero) paulson@15481: prefer 2 apply force paulson@15077: apply (rule real_of_nat_less_iff [THEN iffD2]) paulson@15077: apply (rule fact_less_mono, auto) paulson@15077: done paulson@15077: declare cos_two_less_zero [simp] paulson@15077: declare cos_two_less_zero [THEN real_not_refl2, simp] paulson@15077: declare cos_two_less_zero [THEN order_less_imp_le, simp] paulson@15077: paulson@15077: lemma cos_is_zero: "EX! x. 0 \ x & x \ 2 & cos x = 0" paulson@15077: apply (subgoal_tac "\x. 0 \ x & x \ 2 & cos x = 0") paulson@15077: apply (rule_tac [2] IVT2) paulson@15077: apply (auto intro: DERIV_isCont DERIV_cos) paulson@15077: apply (cut_tac x = xa and y = y in linorder_less_linear) paulson@15077: apply (rule ccontr) paulson@15077: apply (subgoal_tac " (\x. cos differentiable x) & (\x. isCont cos x) ") paulson@15077: apply (auto intro: DERIV_cos DERIV_isCont simp add: differentiable_def) paulson@15077: apply (drule_tac f = cos in Rolle) paulson@15077: apply (drule_tac [5] f = cos in Rolle) paulson@15077: apply (auto dest!: DERIV_cos [THEN DERIV_unique] simp add: differentiable_def) paulson@15077: apply (drule_tac y1 = xa in order_le_less_trans [THEN sin_gt_zero]) paulson@15077: apply (assumption, rule_tac y=y in order_less_le_trans, simp_all) paulson@15077: apply (drule_tac y1 = y in order_le_less_trans [THEN sin_gt_zero], assumption, simp_all) paulson@15077: done paulson@15077: paulson@15077: lemma pi_half: "pi/2 = (@x. 0 \ x & x \ 2 & cos x = 0)" paulson@15077: by (simp add: pi_def) paulson@15077: paulson@15077: lemma cos_pi_half [simp]: "cos (pi / 2) = 0" paulson@15077: apply (rule cos_is_zero [THEN ex1E]) paulson@15077: apply (auto intro!: someI2 simp add: pi_half) paulson@15077: done paulson@15077: paulson@15077: lemma pi_half_gt_zero: "0 < pi / 2" paulson@15077: apply (rule cos_is_zero [THEN ex1E]) paulson@15077: apply (auto simp add: pi_half) paulson@15077: apply (rule someI2, blast, safe) paulson@15077: apply (drule_tac y = xa in real_le_imp_less_or_eq) paulson@15077: apply (safe, simp) paulson@15077: done paulson@15077: declare pi_half_gt_zero [simp] paulson@15077: declare pi_half_gt_zero [THEN real_not_refl2, THEN not_sym, simp] paulson@15077: declare pi_half_gt_zero [THEN order_less_imp_le, simp] paulson@15077: paulson@15077: lemma pi_half_less_two: "pi / 2 < 2" paulson@15077: apply (rule cos_is_zero [THEN ex1E]) paulson@15077: apply (auto simp add: pi_half) paulson@15077: apply (rule someI2, blast, safe) paulson@15077: apply (drule_tac x = xa in order_le_imp_less_or_eq) paulson@15077: apply (safe, simp) paulson@15077: done paulson@15077: declare pi_half_less_two [simp] paulson@15077: declare pi_half_less_two [THEN real_not_refl2, simp] paulson@15077: declare pi_half_less_two [THEN order_less_imp_le, simp] paulson@15077: paulson@15077: lemma pi_gt_zero [simp]: "0 < pi" paulson@15229: apply (insert pi_half_gt_zero) paulson@15229: apply (simp add: ); paulson@15077: done paulson@15077: paulson@15077: lemma pi_neq_zero [simp]: "pi \ 0" paulson@15077: by (rule pi_gt_zero [THEN real_not_refl2, THEN not_sym]) paulson@15077: paulson@15077: lemma pi_not_less_zero [simp]: "~ (pi < 0)" paulson@15077: apply (insert pi_gt_zero) paulson@15077: apply (blast elim: order_less_asym) paulson@15077: done paulson@15077: paulson@15077: lemma pi_ge_zero [simp]: "0 \ pi" paulson@15077: by (auto intro: order_less_imp_le) paulson@15077: paulson@15077: lemma minus_pi_half_less_zero [simp]: "-(pi/2) < 0" paulson@15077: by auto paulson@15077: paulson@15077: lemma sin_pi_half [simp]: "sin(pi/2) = 1" paulson@15077: apply (cut_tac x = "pi/2" in sin_cos_squared_add2) paulson@15077: apply (cut_tac sin_gt_zero [OF pi_half_gt_zero pi_half_less_two]) paulson@15077: apply (auto simp add: numeral_2_eq_2) paulson@15077: done paulson@15077: paulson@15077: lemma cos_pi [simp]: "cos pi = -1" nipkow@15539: by (cut_tac x = "pi/2" and y = "pi/2" in cos_add, simp) paulson@15077: paulson@15077: lemma sin_pi [simp]: "sin pi = 0" nipkow@15539: by (cut_tac x = "pi/2" and y = "pi/2" in sin_add, simp) paulson@15077: paulson@15077: lemma sin_cos_eq: "sin x = cos (pi/2 - x)" paulson@15229: by (simp add: diff_minus cos_add) paulson@15077: paulson@15077: lemma minus_sin_cos_eq: "-sin x = cos (x + pi/2)" paulson@15229: by (simp add: cos_add) paulson@15077: declare minus_sin_cos_eq [symmetric, simp] paulson@15077: paulson@15077: lemma cos_sin_eq: "cos x = sin (pi/2 - x)" paulson@15229: by (simp add: diff_minus sin_add) paulson@15077: declare sin_cos_eq [symmetric, simp] cos_sin_eq [symmetric, simp] paulson@15077: paulson@15077: lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x" paulson@15229: by (simp add: sin_add) paulson@15077: paulson@15077: lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x" paulson@15229: by (simp add: sin_add) paulson@15077: paulson@15077: lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x" paulson@15229: by (simp add: cos_add) paulson@15077: paulson@15077: lemma sin_periodic [simp]: "sin (x + 2*pi) = sin x" paulson@15077: by (simp add: sin_add cos_double) paulson@15077: paulson@15077: lemma cos_periodic [simp]: "cos (x + 2*pi) = cos x" paulson@15077: by (simp add: cos_add cos_double) paulson@15077: paulson@15077: lemma cos_npi [simp]: "cos (real n * pi) = -1 ^ n" paulson@15251: apply (induct "n") paulson@15077: apply (auto simp add: real_of_nat_Suc left_distrib) paulson@15077: done paulson@15077: paulson@15383: lemma cos_npi2 [simp]: "cos (pi * real n) = -1 ^ n" paulson@15383: proof - paulson@15383: have "cos (pi * real n) = cos (real n * pi)" by (simp only: mult_commute) paulson@15383: also have "... = -1 ^ n" by (rule cos_npi) paulson@15383: finally show ?thesis . paulson@15383: qed paulson@15383: paulson@15077: lemma sin_npi [simp]: "sin (real (n::nat) * pi) = 0" paulson@15251: apply (induct "n") paulson@15077: apply (auto simp add: real_of_nat_Suc left_distrib) paulson@15077: done paulson@15077: paulson@15077: lemma sin_npi2 [simp]: "sin (pi * real (n::nat)) = 0" paulson@15383: by (simp add: mult_commute [of pi]) paulson@15077: paulson@15077: lemma cos_two_pi [simp]: "cos (2 * pi) = 1" paulson@15077: by (simp add: cos_double) paulson@15077: paulson@15077: lemma sin_two_pi [simp]: "sin (2 * pi) = 0" paulson@15229: by simp paulson@15077: paulson@15077: lemma sin_gt_zero2: "[| 0 < x; x < pi/2 |] ==> 0 < sin x" paulson@15077: apply (rule sin_gt_zero, assumption) paulson@15077: apply (rule order_less_trans, assumption) paulson@15077: apply (rule pi_half_less_two) paulson@15077: done paulson@15077: paulson@15077: lemma sin_less_zero: paulson@15077: assumes lb: "- pi/2 < x" and "x < 0" shows "sin x < 0" paulson@15077: proof - paulson@15077: have "0 < sin (- x)" using prems by (simp only: sin_gt_zero2) paulson@15077: thus ?thesis by simp paulson@15077: qed paulson@15077: paulson@15077: lemma pi_less_4: "pi < 4" paulson@15077: by (cut_tac pi_half_less_two, auto) paulson@15077: paulson@15077: lemma cos_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < cos x" paulson@15077: apply (cut_tac pi_less_4) paulson@15077: apply (cut_tac f = cos and a = 0 and b = x and y = 0 in IVT2_objl, safe, simp_all) paulson@15077: apply (force intro: DERIV_isCont DERIV_cos) paulson@15077: apply (cut_tac cos_is_zero, safe) paulson@15077: apply (rename_tac y z) paulson@15077: apply (drule_tac x = y in spec) paulson@15077: apply (drule_tac x = "pi/2" in spec, simp) paulson@15077: done paulson@15077: paulson@15077: lemma cos_gt_zero_pi: "[| -(pi/2) < x; x < pi/2 |] ==> 0 < cos x" paulson@15077: apply (rule_tac x = x and y = 0 in linorder_cases) paulson@15077: apply (rule cos_minus [THEN subst]) paulson@15077: apply (rule cos_gt_zero) paulson@15077: apply (auto intro: cos_gt_zero) paulson@15077: done paulson@15077: paulson@15077: lemma cos_ge_zero: "[| -(pi/2) \ x; x \ pi/2 |] ==> 0 \ cos x" paulson@15077: apply (auto simp add: order_le_less cos_gt_zero_pi) paulson@15077: apply (subgoal_tac "x = pi/2", auto) paulson@15077: done paulson@15077: paulson@15077: lemma sin_gt_zero_pi: "[| 0 < x; x < pi |] ==> 0 < sin x" paulson@15077: apply (subst sin_cos_eq) paulson@15077: apply (rotate_tac 1) paulson@15077: apply (drule real_sum_of_halves [THEN ssubst]) paulson@15077: apply (auto intro!: cos_gt_zero_pi simp del: sin_cos_eq [symmetric]) paulson@15077: done paulson@15077: paulson@15077: lemma sin_ge_zero: "[| 0 \ x; x \ pi |] ==> 0 \ sin x" paulson@15077: by (auto simp add: order_le_less sin_gt_zero_pi) paulson@15077: paulson@15077: lemma cos_total: "[| -1 \ y; y \ 1 |] ==> EX! x. 0 \ x & x \ pi & (cos x = y)" paulson@15077: apply (subgoal_tac "\x. 0 \ x & x \ pi & cos x = y") paulson@15077: apply (rule_tac [2] IVT2) paulson@15077: apply (auto intro: order_less_imp_le DERIV_isCont DERIV_cos) paulson@15077: apply (cut_tac x = xa and y = y in linorder_less_linear) paulson@15077: apply (rule ccontr, auto) paulson@15077: apply (drule_tac f = cos in Rolle) paulson@15077: apply (drule_tac [5] f = cos in Rolle) paulson@15077: apply (auto intro: order_less_imp_le DERIV_isCont DERIV_cos paulson@15077: dest!: DERIV_cos [THEN DERIV_unique] paulson@15077: simp add: differentiable_def) paulson@15077: apply (auto dest: sin_gt_zero_pi [OF order_le_less_trans order_less_le_trans]) paulson@15077: done paulson@15077: paulson@15077: lemma sin_total: paulson@15077: "[| -1 \ y; y \ 1 |] ==> EX! x. -(pi/2) \ x & x \ pi/2 & (sin x = y)" paulson@15077: apply (rule ccontr) paulson@15077: apply (subgoal_tac "\x. (- (pi/2) \ x & x \ pi/2 & (sin x = y)) = (0 \ (x + pi/2) & (x + pi/2) \ pi & (cos (x + pi/2) = -y))") wenzelm@18585: apply (erule contrapos_np) paulson@15077: apply (simp del: minus_sin_cos_eq [symmetric]) paulson@15077: apply (cut_tac y="-y" in cos_total, simp) apply simp paulson@15077: apply (erule ex1E) paulson@15229: apply (rule_tac a = "x - (pi/2)" in ex1I) paulson@15077: apply (simp (no_asm) add: real_add_assoc) paulson@15077: apply (rotate_tac 3) paulson@15077: apply (drule_tac x = "xa + pi/2" in spec, safe, simp_all) paulson@15077: done paulson@15077: paulson@15077: lemma reals_Archimedean4: paulson@15077: "[| 0 < y; 0 \ x |] ==> \n. real n * y \ x & x < real (Suc n) * y" paulson@15077: apply (auto dest!: reals_Archimedean3) paulson@15077: apply (drule_tac x = x in spec, clarify) paulson@15077: apply (subgoal_tac "x < real(LEAST m::nat. x < real m * y) * y") paulson@15077: prefer 2 apply (erule LeastI) paulson@15077: apply (case_tac "LEAST m::nat. x < real m * y", simp) paulson@15077: apply (subgoal_tac "~ x < real nat * y") paulson@15077: prefer 2 apply (rule not_less_Least, simp, force) paulson@15077: done paulson@15077: paulson@15077: (* Pre Isabelle99-2 proof was simpler- numerals arithmetic paulson@15077: now causes some unwanted re-arrangements of literals! *) paulson@15229: lemma cos_zero_lemma: paulson@15229: "[| 0 \ x; cos x = 0 |] ==> paulson@15077: \n::nat. ~even n & x = real n * (pi/2)" paulson@15077: apply (drule pi_gt_zero [THEN reals_Archimedean4], safe) paulson@15086: apply (subgoal_tac "0 \ x - real n * pi & paulson@15086: (x - real n * pi) \ pi & (cos (x - real n * pi) = 0) ") paulson@15086: apply (auto simp add: compare_rls) paulson@15077: prefer 3 apply (simp add: cos_diff) paulson@15077: prefer 2 apply (simp add: real_of_nat_Suc left_distrib) paulson@15077: apply (simp add: cos_diff) paulson@15077: apply (subgoal_tac "EX! x. 0 \ x & x \ pi & cos x = 0") paulson@15077: apply (rule_tac [2] cos_total, safe) paulson@15077: apply (drule_tac x = "x - real n * pi" in spec) paulson@15077: apply (drule_tac x = "pi/2" in spec) paulson@15077: apply (simp add: cos_diff) paulson@15229: apply (rule_tac x = "Suc (2 * n)" in exI) paulson@15077: apply (simp add: real_of_nat_Suc left_distrib, auto) paulson@15077: done paulson@15077: paulson@15229: lemma sin_zero_lemma: paulson@15229: "[| 0 \ x; sin x = 0 |] ==> paulson@15077: \n::nat. even n & x = real n * (pi/2)" paulson@15077: apply (subgoal_tac "\n::nat. ~ even n & x + pi/2 = real n * (pi/2) ") paulson@15077: apply (clarify, rule_tac x = "n - 1" in exI) paulson@15077: apply (force simp add: odd_Suc_mult_two_ex real_of_nat_Suc left_distrib) paulson@15085: apply (rule cos_zero_lemma) paulson@15085: apply (simp_all add: add_increasing) paulson@15077: done paulson@15077: paulson@15077: paulson@15229: lemma cos_zero_iff: paulson@15229: "(cos x = 0) = paulson@15077: ((\n::nat. ~even n & (x = real n * (pi/2))) | paulson@15077: (\n::nat. ~even n & (x = -(real n * (pi/2)))))" paulson@15077: apply (rule iffI) paulson@15077: apply (cut_tac linorder_linear [of 0 x], safe) paulson@15077: apply (drule cos_zero_lemma, assumption+) paulson@15077: apply (cut_tac x="-x" in cos_zero_lemma, simp, simp) paulson@15077: apply (force simp add: minus_equation_iff [of x]) paulson@15077: apply (auto simp only: odd_Suc_mult_two_ex real_of_nat_Suc left_distrib) nipkow@15539: apply (auto simp add: cos_add) paulson@15077: done paulson@15077: paulson@15077: (* ditto: but to a lesser extent *) paulson@15229: lemma sin_zero_iff: paulson@15229: "(sin x = 0) = paulson@15077: ((\n::nat. even n & (x = real n * (pi/2))) | paulson@15077: (\n::nat. even n & (x = -(real n * (pi/2)))))" paulson@15077: apply (rule iffI) paulson@15077: apply (cut_tac linorder_linear [of 0 x], safe) paulson@15077: apply (drule sin_zero_lemma, assumption+) paulson@15077: apply (cut_tac x="-x" in sin_zero_lemma, simp, simp, safe) paulson@15077: apply (force simp add: minus_equation_iff [of x]) nipkow@15539: apply (auto simp add: even_mult_two_ex) paulson@15077: done paulson@15077: paulson@15077: paulson@15077: subsection{*Tangent*} paulson@15077: paulson@15077: lemma tan_zero [simp]: "tan 0 = 0" paulson@15077: by (simp add: tan_def) paulson@15077: paulson@15077: lemma tan_pi [simp]: "tan pi = 0" paulson@15077: by (simp add: tan_def) paulson@15077: paulson@15077: lemma tan_npi [simp]: "tan (real (n::nat) * pi) = 0" paulson@15077: by (simp add: tan_def) paulson@15077: paulson@15077: lemma tan_minus [simp]: "tan (-x) = - tan x" paulson@15077: by (simp add: tan_def minus_mult_left) paulson@15077: paulson@15077: lemma tan_periodic [simp]: "tan (x + 2*pi) = tan x" paulson@15077: by (simp add: tan_def) paulson@15077: paulson@15077: lemma lemma_tan_add1: paulson@15077: "[| cos x \ 0; cos y \ 0 |] paulson@15077: ==> 1 - tan(x)*tan(y) = cos (x + y)/(cos x * cos y)" paulson@15229: apply (simp add: tan_def divide_inverse) paulson@15229: apply (auto simp del: inverse_mult_distrib paulson@15229: simp add: inverse_mult_distrib [symmetric] mult_ac) paulson@15077: apply (rule_tac c1 = "cos x * cos y" in real_mult_right_cancel [THEN subst]) paulson@15229: apply (auto simp del: inverse_mult_distrib paulson@15229: simp add: mult_assoc left_diff_distrib cos_add) paulson@15234: done paulson@15077: paulson@15077: lemma add_tan_eq: paulson@15077: "[| cos x \ 0; cos y \ 0 |] paulson@15077: ==> tan x + tan y = sin(x + y)/(cos x * cos y)" paulson@15229: apply (simp add: tan_def) paulson@15077: apply (rule_tac c1 = "cos x * cos y" in real_mult_right_cancel [THEN subst]) paulson@15077: apply (auto simp add: mult_assoc left_distrib) nipkow@15539: apply (simp add: sin_add) paulson@15077: done paulson@15077: paulson@15229: lemma tan_add: paulson@15229: "[| cos x \ 0; cos y \ 0; cos (x + y) \ 0 |] paulson@15077: ==> tan(x + y) = (tan(x) + tan(y))/(1 - tan(x) * tan(y))" paulson@15077: apply (simp (no_asm_simp) add: add_tan_eq lemma_tan_add1) paulson@15077: apply (simp add: tan_def) paulson@15077: done paulson@15077: paulson@15229: lemma tan_double: paulson@15229: "[| cos x \ 0; cos (2 * x) \ 0 |] paulson@15077: ==> tan (2 * x) = (2 * tan x)/(1 - (tan(x) ^ 2))" paulson@15077: apply (insert tan_add [of x x]) paulson@15077: apply (simp add: mult_2 [symmetric]) paulson@15077: apply (auto simp add: numeral_2_eq_2) paulson@15077: done paulson@15077: paulson@15077: lemma tan_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < tan x" paulson@15229: by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi) paulson@15077: paulson@15077: lemma tan_less_zero: paulson@15077: assumes lb: "- pi/2 < x" and "x < 0" shows "tan x < 0" paulson@15077: proof - paulson@15077: have "0 < tan (- x)" using prems by (simp only: tan_gt_zero) paulson@15077: thus ?thesis by simp paulson@15077: qed paulson@15077: paulson@15077: lemma lemma_DERIV_tan: paulson@15077: "cos x \ 0 ==> DERIV (%x. sin(x)/cos(x)) x :> inverse((cos x)\)" paulson@15077: apply (rule lemma_DERIV_subst) paulson@15077: apply (best intro!: DERIV_intros intro: DERIV_chain2) paulson@15079: apply (auto simp add: divide_inverse numeral_2_eq_2) paulson@15077: done paulson@15077: paulson@15077: lemma DERIV_tan [simp]: "cos x \ 0 ==> DERIV tan x :> inverse((cos x)\)" paulson@15077: by (auto dest: lemma_DERIV_tan simp add: tan_def [symmetric]) paulson@15077: paulson@15077: lemma LIM_cos_div_sin [simp]: "(%x. cos(x)/sin(x)) -- pi/2 --> 0" paulson@15077: apply (subgoal_tac "(\x. cos x * inverse (sin x)) -- pi * inverse 2 --> 0*1") paulson@15229: apply (simp add: divide_inverse [symmetric]) paulson@15077: apply (rule LIM_mult2) paulson@15077: apply (rule_tac [2] inverse_1 [THEN subst]) paulson@15077: apply (rule_tac [2] LIM_inverse) paulson@15077: apply (simp_all add: divide_inverse [symmetric]) paulson@15077: apply (simp_all only: isCont_def [symmetric] cos_pi_half [symmetric] sin_pi_half [symmetric]) paulson@15077: apply (blast intro!: DERIV_isCont DERIV_sin DERIV_cos)+ paulson@15077: done paulson@15077: paulson@15077: lemma lemma_tan_total: "0 < y ==> \x. 0 < x & x < pi/2 & y < tan x" paulson@15077: apply (cut_tac LIM_cos_div_sin) paulson@15077: apply (simp only: LIM_def) paulson@15077: apply (drule_tac x = "inverse y" in spec, safe, force) paulson@15077: apply (drule_tac ?d1.0 = s in pi_half_gt_zero [THEN [2] real_lbound_gt_zero], safe) paulson@15229: apply (rule_tac x = "(pi/2) - e" in exI) paulson@15077: apply (simp (no_asm_simp)) paulson@15229: apply (drule_tac x = "(pi/2) - e" in spec) paulson@15229: apply (auto simp add: tan_def) paulson@15077: apply (rule inverse_less_iff_less [THEN iffD1]) paulson@15079: apply (auto simp add: divide_inverse) paulson@15229: apply (rule real_mult_order) paulson@15229: apply (subgoal_tac [3] "0 < sin e & 0 < cos e") paulson@15229: apply (auto intro: cos_gt_zero sin_gt_zero2 simp add: mult_commute) paulson@15077: done paulson@15077: paulson@15077: lemma tan_total_pos: "0 \ y ==> \x. 0 \ x & x < pi/2 & tan x = y" paulson@15077: apply (frule real_le_imp_less_or_eq, safe) paulson@15077: prefer 2 apply force paulson@15077: apply (drule lemma_tan_total, safe) paulson@15077: apply (cut_tac f = tan and a = 0 and b = x and y = y in IVT_objl) paulson@15077: apply (auto intro!: DERIV_tan [THEN DERIV_isCont]) paulson@15077: apply (drule_tac y = xa in order_le_imp_less_or_eq) paulson@15077: apply (auto dest: cos_gt_zero) paulson@15077: done paulson@15077: paulson@15077: lemma lemma_tan_total1: "\x. -(pi/2) < x & x < (pi/2) & tan x = y" paulson@15077: apply (cut_tac linorder_linear [of 0 y], safe) paulson@15077: apply (drule tan_total_pos) paulson@15077: apply (cut_tac [2] y="-y" in tan_total_pos, safe) paulson@15077: apply (rule_tac [3] x = "-x" in exI) paulson@15077: apply (auto intro!: exI) paulson@15077: done paulson@15077: paulson@15077: lemma tan_total: "EX! x. -(pi/2) < x & x < (pi/2) & tan x = y" paulson@15077: apply (cut_tac y = y in lemma_tan_total1, auto) paulson@15077: apply (cut_tac x = xa and y = y in linorder_less_linear, auto) paulson@15077: apply (subgoal_tac [2] "\z. y < z & z < xa & DERIV tan z :> 0") paulson@15077: apply (subgoal_tac "\z. xa < z & z < y & DERIV tan z :> 0") paulson@15077: apply (rule_tac [4] Rolle) paulson@15077: apply (rule_tac [2] Rolle) paulson@15077: apply (auto intro!: DERIV_tan DERIV_isCont exI paulson@15077: simp add: differentiable_def) paulson@15077: txt{*Now, simulate TRYALL*} paulson@15077: apply (rule_tac [!] DERIV_tan asm_rl) paulson@15077: apply (auto dest!: DERIV_unique [OF _ DERIV_tan] paulson@15077: simp add: cos_gt_zero_pi [THEN real_not_refl2, THEN not_sym]) paulson@15077: done paulson@15077: paulson@15229: lemma arcsin_pi: paulson@15229: "[| -1 \ y; y \ 1 |] paulson@15077: ==> -(pi/2) \ arcsin y & arcsin y \ pi & sin(arcsin y) = y" paulson@15077: apply (drule sin_total, assumption) paulson@15077: apply (erule ex1E) paulson@15229: apply (simp add: arcsin_def) paulson@15077: apply (rule someI2, blast) paulson@15077: apply (force intro: order_trans) paulson@15077: done paulson@15077: paulson@15229: lemma arcsin: paulson@15229: "[| -1 \ y; y \ 1 |] paulson@15077: ==> -(pi/2) \ arcsin y & paulson@15077: arcsin y \ pi/2 & sin(arcsin y) = y" paulson@15077: apply (unfold arcsin_def) paulson@15077: apply (drule sin_total, assumption) paulson@15077: apply (fast intro: someI2) paulson@15077: done paulson@15077: paulson@15077: lemma sin_arcsin [simp]: "[| -1 \ y; y \ 1 |] ==> sin(arcsin y) = y" paulson@15077: by (blast dest: arcsin) paulson@15077: paulson@15077: lemma arcsin_bounded: paulson@15077: "[| -1 \ y; y \ 1 |] ==> -(pi/2) \ arcsin y & arcsin y \ pi/2" paulson@15077: by (blast dest: arcsin) paulson@15077: paulson@15077: lemma arcsin_lbound: "[| -1 \ y; y \ 1 |] ==> -(pi/2) \ arcsin y" paulson@15077: by (blast dest: arcsin) paulson@15077: paulson@15077: lemma arcsin_ubound: "[| -1 \ y; y \ 1 |] ==> arcsin y \ pi/2" paulson@15077: by (blast dest: arcsin) paulson@15077: paulson@15077: lemma arcsin_lt_bounded: paulson@15077: "[| -1 < y; y < 1 |] ==> -(pi/2) < arcsin y & arcsin y < pi/2" paulson@15077: apply (frule order_less_imp_le) paulson@15077: apply (frule_tac y = y in order_less_imp_le) paulson@15077: apply (frule arcsin_bounded) paulson@15077: apply (safe, simp) paulson@15077: apply (drule_tac y = "arcsin y" in order_le_imp_less_or_eq) paulson@15077: apply (drule_tac [2] y = "pi/2" in order_le_imp_less_or_eq, safe) paulson@15077: apply (drule_tac [!] f = sin in arg_cong, auto) paulson@15077: done paulson@15077: paulson@15077: lemma arcsin_sin: "[|-(pi/2) \ x; x \ pi/2 |] ==> arcsin(sin x) = x" paulson@15077: apply (unfold arcsin_def) paulson@15077: apply (rule some1_equality) paulson@15077: apply (rule sin_total, auto) paulson@15077: done paulson@15077: paulson@15229: lemma arcos: paulson@15229: "[| -1 \ y; y \ 1 |] paulson@15077: ==> 0 \ arcos y & arcos y \ pi & cos(arcos y) = y" paulson@15229: apply (simp add: arcos_def) paulson@15077: apply (drule cos_total, assumption) paulson@15077: apply (fast intro: someI2) paulson@15077: done paulson@15077: paulson@15077: lemma cos_arcos [simp]: "[| -1 \ y; y \ 1 |] ==> cos(arcos y) = y" paulson@15077: by (blast dest: arcos) paulson@15077: paulson@15077: lemma arcos_bounded: "[| -1 \ y; y \ 1 |] ==> 0 \ arcos y & arcos y \ pi" paulson@15077: by (blast dest: arcos) paulson@15077: paulson@15077: lemma arcos_lbound: "[| -1 \ y; y \ 1 |] ==> 0 \ arcos y" paulson@15077: by (blast dest: arcos) paulson@15077: paulson@15077: lemma arcos_ubound: "[| -1 \ y; y \ 1 |] ==> arcos y \ pi" paulson@15077: by (blast dest: arcos) paulson@15077: paulson@15229: lemma arcos_lt_bounded: paulson@15229: "[| -1 < y; y < 1 |] paulson@15077: ==> 0 < arcos y & arcos y < pi" paulson@15077: apply (frule order_less_imp_le) paulson@15077: apply (frule_tac y = y in order_less_imp_le) paulson@15077: apply (frule arcos_bounded, auto) paulson@15077: apply (drule_tac y = "arcos y" in order_le_imp_less_or_eq) paulson@15077: apply (drule_tac [2] y = pi in order_le_imp_less_or_eq, auto) paulson@15077: apply (drule_tac [!] f = cos in arg_cong, auto) paulson@15077: done paulson@15077: paulson@15077: lemma arcos_cos: "[|0 \ x; x \ pi |] ==> arcos(cos x) = x" paulson@15229: apply (simp add: arcos_def) paulson@15077: apply (auto intro!: some1_equality cos_total) paulson@15077: done paulson@15077: paulson@15077: lemma arcos_cos2: "[|x \ 0; -pi \ x |] ==> arcos(cos x) = -x" paulson@15229: apply (simp add: arcos_def) paulson@15077: apply (auto intro!: some1_equality cos_total) paulson@15077: done paulson@15077: paulson@15077: lemma arctan [simp]: paulson@15077: "- (pi/2) < arctan y & arctan y < pi/2 & tan (arctan y) = y" paulson@15077: apply (cut_tac y = y in tan_total) paulson@15229: apply (simp add: arctan_def) paulson@15077: apply (fast intro: someI2) paulson@15077: done paulson@15077: paulson@15077: lemma tan_arctan: "tan(arctan y) = y" paulson@15077: by auto paulson@15077: paulson@15077: lemma arctan_bounded: "- (pi/2) < arctan y & arctan y < pi/2" paulson@15077: by (auto simp only: arctan) paulson@15077: paulson@15077: lemma arctan_lbound: "- (pi/2) < arctan y" paulson@15077: by auto paulson@15077: paulson@15077: lemma arctan_ubound: "arctan y < pi/2" paulson@15077: by (auto simp only: arctan) paulson@15077: paulson@15077: lemma arctan_tan: paulson@15077: "[|-(pi/2) < x; x < pi/2 |] ==> arctan(tan x) = x" paulson@15077: apply (unfold arctan_def) paulson@15077: apply (rule some1_equality) paulson@15077: apply (rule tan_total, auto) paulson@15077: done paulson@15077: paulson@15077: lemma arctan_zero_zero [simp]: "arctan 0 = 0" paulson@15077: by (insert arctan_tan [of 0], simp) paulson@15077: paulson@15077: lemma cos_arctan_not_zero [simp]: "cos(arctan x) \ 0" paulson@15077: apply (auto simp add: cos_zero_iff) paulson@15077: apply (case_tac "n") paulson@15077: apply (case_tac [3] "n") paulson@15077: apply (cut_tac [2] y = x in arctan_ubound) paulson@15077: apply (cut_tac [4] y = x in arctan_lbound) paulson@15077: apply (auto simp add: real_of_nat_Suc left_distrib mult_less_0_iff) paulson@15077: done paulson@15077: paulson@15077: lemma tan_sec: "cos x \ 0 ==> 1 + tan(x) ^ 2 = inverse(cos x) ^ 2" paulson@15077: apply (rule power_inverse [THEN subst]) paulson@15077: apply (rule_tac c1 = "(cos x)\" in real_mult_right_cancel [THEN iffD1]) paulson@15077: apply (auto dest: realpow_not_zero paulson@15077: simp add: power_mult_distrib left_distrib realpow_divide tan_def paulson@15077: mult_assoc power_inverse [symmetric] paulson@15077: simp del: realpow_Suc) paulson@15077: done paulson@15077: paulson@15085: text{*NEEDED??*} paulson@15229: lemma [simp]: paulson@15229: "sin (x + 1 / 2 * real (Suc m) * pi) = paulson@15229: cos (x + 1 / 2 * real (m) * pi)" paulson@15229: by (simp only: cos_add sin_add real_of_nat_Suc left_distrib right_distrib, auto) paulson@15077: paulson@15085: text{*NEEDED??*} paulson@15229: lemma [simp]: paulson@15229: "sin (x + real (Suc m) * pi / 2) = paulson@15229: cos (x + real (m) * pi / 2)" paulson@15229: by (simp only: cos_add sin_add real_of_nat_Suc add_divide_distrib left_distrib, auto) paulson@15077: paulson@15077: lemma DERIV_sin_add [simp]: "DERIV (%x. sin (x + k)) xa :> cos (xa + k)" paulson@15077: apply (rule lemma_DERIV_subst) paulson@15077: apply (rule_tac f = sin and g = "%x. x + k" in DERIV_chain2) paulson@15077: apply (best intro!: DERIV_intros intro: DERIV_chain2)+ paulson@15077: apply (simp (no_asm)) paulson@15077: done paulson@15077: paulson@15383: lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi / 2) = (-1) ^ n" paulson@15383: proof - paulson@15383: have "sin ((real n + 1/2) * pi) = cos (real n * pi)" paulson@15383: by (auto simp add: right_distrib sin_add left_distrib mult_ac) paulson@15383: thus ?thesis paulson@15383: by (simp add: real_of_nat_Suc left_distrib add_divide_distrib paulson@15383: mult_commute [of pi]) paulson@15383: qed paulson@15077: paulson@15077: lemma cos_2npi [simp]: "cos (2 * real (n::nat) * pi) = 1" paulson@15077: by (simp add: cos_double mult_assoc power_add [symmetric] numeral_2_eq_2) paulson@15077: paulson@15077: lemma cos_3over2_pi [simp]: "cos (3 / 2 * pi) = 0" paulson@15077: apply (subgoal_tac "3/2 = (1+1 / 2::real)") paulson@15077: apply (simp only: left_distrib) paulson@15077: apply (auto simp add: cos_add mult_ac) paulson@15077: done paulson@15077: paulson@15077: lemma sin_2npi [simp]: "sin (2 * real (n::nat) * pi) = 0" paulson@15077: by (auto simp add: mult_assoc) paulson@15077: paulson@15077: lemma sin_3over2_pi [simp]: "sin (3 / 2 * pi) = - 1" paulson@15077: apply (subgoal_tac "3/2 = (1+1 / 2::real)") paulson@15077: apply (simp only: left_distrib) paulson@15077: apply (auto simp add: sin_add mult_ac) paulson@15077: done paulson@15077: paulson@15077: (*NEEDED??*) paulson@15229: lemma [simp]: paulson@15229: "cos(x + 1 / 2 * real(Suc m) * pi) = -sin (x + 1 / 2 * real m * pi)" paulson@15077: apply (simp only: cos_add sin_add real_of_nat_Suc right_distrib left_distrib minus_mult_right, auto) paulson@15077: done paulson@15077: paulson@15077: (*NEEDED??*) paulson@15077: lemma [simp]: "cos (x + real(Suc m) * pi / 2) = -sin (x + real m * pi / 2)" paulson@15229: by (simp only: cos_add sin_add real_of_nat_Suc left_distrib add_divide_distrib, auto) paulson@15077: paulson@15077: lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0" paulson@15229: by (simp only: cos_add sin_add real_of_nat_Suc left_distrib right_distrib add_divide_distrib, auto) paulson@15077: paulson@15077: lemma DERIV_cos_add [simp]: "DERIV (%x. cos (x + k)) xa :> - sin (xa + k)" paulson@15077: apply (rule lemma_DERIV_subst) paulson@15077: apply (rule_tac f = cos and g = "%x. x + k" in DERIV_chain2) paulson@15077: apply (best intro!: DERIV_intros intro: DERIV_chain2)+ paulson@15077: apply (simp (no_asm)) paulson@15077: done paulson@15077: paulson@15077: lemma isCont_cos [simp]: "isCont cos x" paulson@15077: by (rule DERIV_cos [THEN DERIV_isCont]) paulson@15077: paulson@15077: lemma isCont_sin [simp]: "isCont sin x" paulson@15077: by (rule DERIV_sin [THEN DERIV_isCont]) paulson@15077: paulson@15077: lemma isCont_exp [simp]: "isCont exp x" paulson@15077: by (rule DERIV_exp [THEN DERIV_isCont]) paulson@15077: paulson@15081: lemma sin_zero_abs_cos_one: "sin x = 0 ==> \cos x\ = 1" nipkow@15539: by (auto simp add: sin_zero_iff even_mult_two_ex) paulson@15077: paulson@15077: lemma exp_eq_one_iff [simp]: "(exp x = 1) = (x = 0)" paulson@15077: apply auto paulson@15077: apply (drule_tac f = ln in arg_cong, auto) paulson@15077: done paulson@15077: paulson@15077: lemma cos_one_sin_zero: "cos x = 1 ==> sin x = 0" paulson@15077: by (cut_tac x = x in sin_cos_squared_add3, auto) paulson@15077: paulson@15077: paulson@15229: lemma real_root_less_mono: paulson@15229: "[| 0 \ x; x < y |] ==> root(Suc n) x < root(Suc n) y" paulson@15077: apply (frule order_le_less_trans, assumption) paulson@15077: apply (frule_tac n1 = n in real_root_pow_pos2 [THEN ssubst]) paulson@15077: apply (rotate_tac 1, assumption) paulson@15077: apply (frule_tac n1 = n in real_root_pow_pos [THEN ssubst]) paulson@15077: apply (rotate_tac 3, assumption) paulson@15077: apply (drule_tac y = "root (Suc n) y ^ Suc n" in order_less_imp_le) paulson@15077: apply (frule_tac n = n in real_root_pos_pos_le) paulson@15077: apply (frule_tac n = n in real_root_pos_pos) paulson@15077: apply (drule_tac x = "root (Suc n) x" and y = "root (Suc n) y" in realpow_increasing) paulson@15077: apply (assumption, assumption) paulson@15077: apply (drule_tac x = "root (Suc n) x" in order_le_imp_less_or_eq) paulson@15077: apply auto paulson@15229: apply (drule_tac f = "%x. x ^ (Suc n)" in arg_cong) paulson@15077: apply (auto simp add: real_root_pow_pos2 simp del: realpow_Suc) paulson@15077: done paulson@15077: paulson@15229: lemma real_root_le_mono: paulson@15229: "[| 0 \ x; x \ y |] ==> root(Suc n) x \ root(Suc n) y" paulson@15077: apply (drule_tac y = y in order_le_imp_less_or_eq) paulson@15077: apply (auto dest: real_root_less_mono intro: order_less_imp_le) paulson@15077: done paulson@15077: paulson@15229: lemma real_root_less_iff [simp]: paulson@15229: "[| 0 \ x; 0 \ y |] ==> (root(Suc n) x < root(Suc n) y) = (x < y)" paulson@15077: apply (auto intro: real_root_less_mono) paulson@15077: apply (rule ccontr, drule linorder_not_less [THEN iffD1]) paulson@15077: apply (drule_tac x = y and n = n in real_root_le_mono, auto) paulson@15077: done paulson@15077: paulson@15229: lemma real_root_le_iff [simp]: paulson@15229: "[| 0 \ x; 0 \ y |] ==> (root(Suc n) x \ root(Suc n) y) = (x \ y)" paulson@15077: apply (auto intro: real_root_le_mono) paulson@15077: apply (simp (no_asm) add: linorder_not_less [symmetric]) paulson@15077: apply auto paulson@15077: apply (drule_tac x = y and n = n in real_root_less_mono, auto) paulson@15077: done paulson@15077: paulson@15229: lemma real_root_eq_iff [simp]: paulson@15229: "[| 0 \ x; 0 \ y |] ==> (root(Suc n) x = root(Suc n) y) = (x = y)" paulson@15077: apply (auto intro!: order_antisym) paulson@15077: apply (rule_tac n1 = n in real_root_le_iff [THEN iffD1]) paulson@15077: apply (rule_tac [4] n1 = n in real_root_le_iff [THEN iffD1], auto) paulson@15077: done paulson@15077: paulson@15229: lemma real_root_pos_unique: paulson@15229: "[| 0 \ x; 0 \ y; y ^ (Suc n) = x |] ==> root (Suc n) x = y" paulson@15077: by (auto dest: real_root_pos2 simp del: realpow_Suc) paulson@15077: paulson@15229: lemma real_root_mult: paulson@15229: "[| 0 \ x; 0 \ y |] paulson@15077: ==> root(Suc n) (x * y) = root(Suc n) x * root(Suc n) y" paulson@15077: apply (rule real_root_pos_unique) paulson@15234: apply (auto intro!: real_root_pos_pos_le paulson@15234: simp add: power_mult_distrib zero_le_mult_iff real_root_pow_pos2 paulson@15234: simp del: realpow_Suc) paulson@15077: done paulson@15077: paulson@15229: lemma real_root_inverse: paulson@15229: "0 \ x ==> (root(Suc n) (inverse x) = inverse(root(Suc n) x))" paulson@15077: apply (rule real_root_pos_unique) paulson@15234: apply (auto intro: real_root_pos_pos_le paulson@15234: simp add: power_inverse [symmetric] real_root_pow_pos2 paulson@15234: simp del: realpow_Suc) paulson@15077: done paulson@15077: paulson@15077: lemma real_root_divide: paulson@15077: "[| 0 \ x; 0 \ y |] paulson@15077: ==> (root(Suc n) (x / y) = root(Suc n) x / root(Suc n) y)" paulson@15229: apply (simp add: divide_inverse) paulson@15077: apply (auto simp add: real_root_mult real_root_inverse) paulson@15077: done paulson@15077: paulson@15077: lemma real_sqrt_less_mono: "[| 0 \ x; x < y |] ==> sqrt(x) < sqrt(y)" paulson@15229: by (simp add: sqrt_def) paulson@15077: paulson@15077: lemma real_sqrt_le_mono: "[| 0 \ x; x \ y |] ==> sqrt(x) \ sqrt(y)" paulson@15229: by (simp add: sqrt_def) paulson@15229: paulson@15229: lemma real_sqrt_less_iff [simp]: paulson@15229: "[| 0 \ x; 0 \ y |] ==> (sqrt(x) < sqrt(y)) = (x < y)" paulson@15229: by (simp add: sqrt_def) paulson@15229: paulson@15229: lemma real_sqrt_le_iff [simp]: paulson@15229: "[| 0 \ x; 0 \ y |] ==> (sqrt(x) \ sqrt(y)) = (x \ y)" paulson@15229: by (simp add: sqrt_def) paulson@15229: paulson@15229: lemma real_sqrt_eq_iff [simp]: paulson@15229: "[| 0 \ x; 0 \ y |] ==> (sqrt(x) = sqrt(y)) = (x = y)" paulson@15229: by (simp add: sqrt_def) paulson@15077: paulson@15077: lemma real_sqrt_sos_less_one_iff [simp]: "(sqrt(x\ + y\) < 1) = (x\ + y\ < 1)" paulson@15077: apply (rule real_sqrt_one [THEN subst], safe) paulson@15077: apply (rule_tac [2] real_sqrt_less_mono) paulson@15077: apply (drule real_sqrt_less_iff [THEN [2] rev_iffD1], auto) paulson@15077: done paulson@15077: paulson@15077: lemma real_sqrt_sos_eq_one_iff [simp]: "(sqrt(x\ + y\) = 1) = (x\ + y\ = 1)" paulson@15077: apply (rule real_sqrt_one [THEN subst], safe) paulson@15077: apply (drule real_sqrt_eq_iff [THEN [2] rev_iffD1], auto) paulson@15077: done paulson@15077: paulson@15077: lemma real_divide_square_eq [simp]: "(((r::real) * a) / (r * r)) = a / r" paulson@15229: apply (simp add: divide_inverse) paulson@15077: apply (case_tac "r=0") nipkow@15539: apply (auto simp add: mult_ac) paulson@15077: done paulson@15077: paulson@15077: paulson@15077: subsection{*Theorems About Sqrt, Transcendental Functions for Complex*} paulson@15077: paulson@15228: lemma le_real_sqrt_sumsq [simp]: "x \ sqrt (x * x + y * y)" paulson@15228: proof (rule order_trans) paulson@15228: show "x \ sqrt(x*x)" by (simp add: abs_if) paulson@15228: show "sqrt (x * x) \ sqrt (x * x + y * y)" paulson@15228: by (rule real_sqrt_le_mono, auto) paulson@15228: qed paulson@15228: paulson@15228: lemma minus_le_real_sqrt_sumsq [simp]: "-x \ sqrt (x * x + y * y)" paulson@15228: proof (rule order_trans) paulson@15228: show "-x \ sqrt(x*x)" by (simp add: abs_if) paulson@15228: show "sqrt (x * x) \ sqrt (x * x + y * y)" paulson@15228: by (rule real_sqrt_le_mono, auto) paulson@15228: qed paulson@15077: paulson@15077: lemma lemma_real_divide_sqrt_ge_minus_one: paulson@15228: "0 < x ==> -1 \ x/(sqrt (x * x + y * y))" paulson@15228: by (simp add: divide_const_simps linorder_not_le [symmetric]) paulson@15077: paulson@15077: lemma real_sqrt_sum_squares_gt_zero1: "x < 0 ==> 0 < sqrt (x * x + y * y)" paulson@15077: apply (rule real_sqrt_gt_zero) paulson@15077: apply (subgoal_tac "0 < x*x & 0 \ y*y", arith) paulson@15077: apply (auto simp add: zero_less_mult_iff) paulson@15077: done paulson@15077: paulson@15077: lemma real_sqrt_sum_squares_gt_zero2: "0 < x ==> 0 < sqrt (x * x + y * y)" paulson@15077: apply (rule real_sqrt_gt_zero) paulson@15077: apply (subgoal_tac "0 < x*x & 0 \ y*y", arith) paulson@15077: apply (auto simp add: zero_less_mult_iff) paulson@15077: done paulson@15077: paulson@15077: lemma real_sqrt_sum_squares_gt_zero3: "x \ 0 ==> 0 < sqrt(x\ + y\)" paulson@15077: apply (cut_tac x = x and y = 0 in linorder_less_linear) paulson@15077: apply (auto intro: real_sqrt_sum_squares_gt_zero2 real_sqrt_sum_squares_gt_zero1 simp add: numeral_2_eq_2) paulson@15077: done paulson@15077: paulson@15077: lemma real_sqrt_sum_squares_gt_zero3a: "y \ 0 ==> 0 < sqrt(x\ + y\)" paulson@15077: apply (drule_tac y = x in real_sqrt_sum_squares_gt_zero3) paulson@15077: apply (auto simp add: real_add_commute) paulson@15077: done paulson@15077: paulson@15544: lemma real_sqrt_sum_squares_eq_cancel: "sqrt(x\ + y\) = x ==> y = 0" paulson@15077: by (drule_tac f = "%x. x\" in arg_cong, auto) paulson@15077: paulson@15544: lemma real_sqrt_sum_squares_eq_cancel2: "sqrt(x\ + y\) = y ==> x = 0" paulson@15077: apply (rule_tac x = y in real_sqrt_sum_squares_eq_cancel) paulson@15077: apply (simp add: real_add_commute) paulson@15077: done paulson@15077: paulson@15077: lemma lemma_real_divide_sqrt_le_one: "x < 0 ==> x/(sqrt (x * x + y * y)) \ 1" paulson@15077: by (insert lemma_real_divide_sqrt_ge_minus_one [of "-x" y], simp) paulson@15077: paulson@15077: lemma lemma_real_divide_sqrt_ge_minus_one2: paulson@15077: "x < 0 ==> -1 \ x/(sqrt (x * x + y * y))" paulson@15229: apply (simp add: divide_const_simps) paulson@15229: apply (insert minus_le_real_sqrt_sumsq [of x y], arith) paulson@15077: done paulson@15077: paulson@15077: lemma lemma_real_divide_sqrt_le_one2: "0 < x ==> x/(sqrt (x * x + y * y)) \ 1" paulson@15077: by (cut_tac x = "-x" and y = y in lemma_real_divide_sqrt_ge_minus_one2, auto) paulson@15077: paulson@15228: lemma minus_sqrt_le: "- sqrt (x * x + y * y) \ x" paulson@15228: by (insert minus_le_real_sqrt_sumsq [of x y], arith) paulson@15228: paulson@15228: lemma minus_sqrt_le2: "- sqrt (x * x + y * y) \ y" paulson@15228: by (subst add_commute, simp add: minus_sqrt_le) paulson@15228: paulson@15228: lemma not_neg_sqrt_sumsq: "~ sqrt (x * x + y * y) < 0" paulson@15228: by (simp add: linorder_not_less) paulson@15077: paulson@15077: lemma cos_x_y_ge_minus_one: "-1 \ x / sqrt (x * x + y * y)" paulson@15229: by (simp add: minus_sqrt_le not_neg_sqrt_sumsq divide_const_simps) paulson@15077: paulson@15077: lemma cos_x_y_ge_minus_one1a [simp]: "-1 \ y / sqrt (x * x + y * y)" paulson@15229: by (subst add_commute, simp add: cos_x_y_ge_minus_one) paulson@15077: paulson@15228: lemma cos_x_y_le_one [simp]: "x / sqrt (x * x + y * y) \ 1" paulson@15077: apply (cut_tac x = x and y = 0 in linorder_less_linear, safe) paulson@15077: apply (rule lemma_real_divide_sqrt_le_one) paulson@15077: apply (rule_tac [3] lemma_real_divide_sqrt_le_one2, auto) paulson@15077: done paulson@15077: paulson@15077: lemma cos_x_y_le_one2 [simp]: "y / sqrt (x * x + y * y) \ 1" paulson@15077: apply (cut_tac x = y and y = x in cos_x_y_le_one) paulson@15077: apply (simp add: real_add_commute) paulson@15077: done paulson@15077: paulson@15077: declare cos_arcos [OF cos_x_y_ge_minus_one cos_x_y_le_one, simp] paulson@15077: declare arcos_bounded [OF cos_x_y_ge_minus_one cos_x_y_le_one, simp] paulson@15077: paulson@15077: declare cos_arcos [OF cos_x_y_ge_minus_one1a cos_x_y_le_one2, simp] paulson@15077: declare arcos_bounded [OF cos_x_y_ge_minus_one1a cos_x_y_le_one2, simp] paulson@15077: paulson@15077: lemma cos_abs_x_y_ge_minus_one [simp]: paulson@15077: "-1 \ \x\ / sqrt (x * x + y * y)" paulson@15228: by (auto simp add: divide_const_simps abs_if linorder_not_le [symmetric]) paulson@15077: paulson@15077: lemma cos_abs_x_y_le_one [simp]: "\x\ / sqrt (x * x + y * y) \ 1" paulson@15228: apply (insert minus_le_real_sqrt_sumsq [of x y] le_real_sqrt_sumsq [of x y]) paulson@15228: apply (auto simp add: divide_const_simps abs_if linorder_neq_iff) paulson@15077: done paulson@15077: paulson@15077: declare cos_arcos [OF cos_abs_x_y_ge_minus_one cos_abs_x_y_le_one, simp] paulson@15077: declare arcos_bounded [OF cos_abs_x_y_ge_minus_one cos_abs_x_y_le_one, simp] paulson@15077: paulson@15077: lemma minus_pi_less_zero: "-pi < 0" paulson@15228: by simp paulson@15228: paulson@15077: declare minus_pi_less_zero [simp] paulson@15077: declare minus_pi_less_zero [THEN order_less_imp_le, simp] paulson@15077: paulson@15077: lemma arcos_ge_minus_pi: "[| -1 \ y; y \ 1 |] ==> -pi \ arcos y" paulson@15077: apply (rule real_le_trans) paulson@15077: apply (rule_tac [2] arcos_lbound, auto) paulson@15077: done paulson@15077: paulson@15077: declare arcos_ge_minus_pi [OF cos_x_y_ge_minus_one cos_x_y_le_one, simp] paulson@15077: paulson@15077: (* How tedious! *) paulson@15077: lemma lemma_divide_rearrange: paulson@15077: "[| x + (y::real) \ 0; 1 - z = x/(x + y) |] ==> z = y/(x + y)" paulson@15077: apply (rule_tac c1 = "x + y" in real_mult_right_cancel [THEN iffD1]) paulson@15077: apply (frule_tac [2] c1 = "x + y" in real_mult_right_cancel [THEN iffD2]) paulson@15077: prefer 2 apply assumption paulson@15077: apply (rotate_tac [2] 2) paulson@15077: apply (drule_tac [2] mult_assoc [THEN subst]) paulson@15077: apply (rotate_tac [2] 2) paulson@15077: apply (frule_tac [2] left_inverse [THEN subst]) paulson@15077: prefer 2 apply assumption paulson@15229: apply (erule_tac [2] V = "(1 - z) * (x + y) = x / (x + y) * (x + y)" in thin_rl) paulson@15229: apply (erule_tac [2] V = "1 - z = x / (x + y)" in thin_rl) paulson@15077: apply (auto simp add: mult_assoc) paulson@15077: apply (auto simp add: right_distrib left_diff_distrib) paulson@15077: done paulson@15077: paulson@15077: lemma lemma_cos_sin_eq: paulson@15077: "[| 0 < x * x + y * y; paulson@15077: 1 - (sin xa)\ = (x / sqrt (x * x + y * y)) ^ 2 |] paulson@15077: ==> (sin xa)\ = (y / sqrt (x * x + y * y)) ^ 2" paulson@15077: by (auto intro: lemma_divide_rearrange paulson@15077: simp add: realpow_divide power2_eq_square [symmetric]) paulson@15077: paulson@15077: paulson@15077: lemma lemma_sin_cos_eq: paulson@15077: "[| 0 < x * x + y * y; paulson@15077: 1 - (cos xa)\ = (y / sqrt (x * x + y * y)) ^ 2 |] paulson@15077: ==> (cos xa)\ = (x / sqrt (x * x + y * y)) ^ 2" paulson@15077: apply (auto simp add: realpow_divide power2_eq_square [symmetric]) paulson@15085: apply (subst add_commute) paulson@15085: apply (rule lemma_divide_rearrange, simp add: real_add_eq_0_iff) paulson@15077: apply (simp add: add_commute) paulson@15077: done paulson@15077: paulson@15077: lemma sin_x_y_disj: paulson@15077: "[| x \ 0; paulson@15077: cos xa = x / sqrt (x * x + y * y) paulson@15077: |] ==> sin xa = y / sqrt (x * x + y * y) | paulson@15077: sin xa = - y / sqrt (x * x + y * y)" paulson@15077: apply (drule_tac f = "%x. x\" in arg_cong) paulson@15077: apply (frule_tac y = y in real_sum_square_gt_zero) paulson@15077: apply (simp add: cos_squared_eq) paulson@15077: apply (subgoal_tac "(sin xa)\ = (y / sqrt (x * x + y * y)) ^ 2") paulson@15077: apply (rule_tac [2] lemma_cos_sin_eq) paulson@15077: apply (auto simp add: realpow_two_disj numeral_2_eq_2 simp del: realpow_Suc) paulson@15077: done paulson@15077: paulson@15077: lemma lemma_cos_not_eq_zero: "x \ 0 ==> x / sqrt (x * x + y * y) \ 0" paulson@15229: apply (simp add: divide_inverse) paulson@15077: apply (frule_tac y3 = y in real_sqrt_sum_squares_gt_zero3 [THEN real_not_refl2, THEN not_sym, THEN nonzero_imp_inverse_nonzero]) paulson@15077: apply (auto simp add: power2_eq_square) paulson@15077: done paulson@15077: paulson@15229: lemma cos_x_y_disj: paulson@15229: "[| x \ 0; paulson@15077: sin xa = y / sqrt (x * x + y * y) paulson@15077: |] ==> cos xa = x / sqrt (x * x + y * y) | paulson@15077: cos xa = - x / sqrt (x * x + y * y)" paulson@15077: apply (drule_tac f = "%x. x\" in arg_cong) paulson@15077: apply (frule_tac y = y in real_sum_square_gt_zero) paulson@15077: apply (simp add: sin_squared_eq del: realpow_Suc) paulson@15077: apply (subgoal_tac "(cos xa)\ = (x / sqrt (x * x + y * y)) ^ 2") paulson@15077: apply (rule_tac [2] lemma_sin_cos_eq) paulson@15077: apply (auto simp add: realpow_two_disj numeral_2_eq_2 simp del: realpow_Suc) paulson@15077: done paulson@15077: paulson@15077: lemma real_sqrt_divide_less_zero: "0 < y ==> - y / sqrt (x * x + y * y) < 0" paulson@15229: apply (case_tac "x = 0", auto) paulson@15077: apply (drule_tac y = y in real_sqrt_sum_squares_gt_zero3) paulson@15079: apply (auto simp add: zero_less_mult_iff divide_inverse power2_eq_square) paulson@15077: done paulson@15077: paulson@15229: lemma polar_ex1: paulson@15229: "[| x \ 0; 0 < y |] ==> \r a. x = r * cos a & y = r * sin a" paulson@15229: apply (rule_tac x = "sqrt (x\ + y\)" in exI) paulson@15077: apply (rule_tac x = "arcos (x / sqrt (x * x + y * y))" in exI) paulson@15077: apply auto paulson@15077: apply (drule_tac y2 = y in real_sqrt_sum_squares_gt_zero3 [THEN real_not_refl2, THEN not_sym]) paulson@15077: apply (auto simp add: power2_eq_square) paulson@15229: apply (simp add: arcos_def) paulson@15077: apply (cut_tac x1 = x and y1 = y paulson@15077: in cos_total [OF cos_x_y_ge_minus_one cos_x_y_le_one]) paulson@15077: apply (rule someI2_ex, blast) paulson@15229: apply (erule_tac V = "EX! xa. 0 \ xa & xa \ pi & cos xa = x / sqrt (x * x + y * y)" in thin_rl) paulson@15077: apply (frule sin_x_y_disj, blast) paulson@15077: apply (drule_tac y2 = y in real_sqrt_sum_squares_gt_zero3 [THEN real_not_refl2, THEN not_sym]) paulson@15077: apply (auto simp add: power2_eq_square) paulson@15077: apply (drule sin_ge_zero, assumption) paulson@15077: apply (drule_tac x = x in real_sqrt_divide_less_zero, auto) paulson@15077: done paulson@15077: paulson@15077: lemma real_sum_squares_cancel2a: "x * x = -(y * y) ==> y = (0::real)" paulson@15085: by (auto intro: real_sum_squares_cancel iff: real_add_eq_0_iff) paulson@15077: paulson@15229: lemma polar_ex2: paulson@15229: "[| x \ 0; y < 0 |] ==> \r a. x = r * cos a & y = r * sin a" paulson@15077: apply (cut_tac x = 0 and y = x in linorder_less_linear, auto) paulson@15228: apply (rule_tac x = "sqrt (x\ + y\)" in exI) paulson@15228: apply (rule_tac x = "arcsin (y / sqrt (x * x + y * y))" in exI) paulson@15085: apply (auto dest: real_sum_squares_cancel2a paulson@15085: simp add: power2_eq_square real_0_le_add_iff real_add_eq_0_iff) paulson@15077: apply (unfold arcsin_def) paulson@15077: apply (cut_tac x1 = x and y1 = y paulson@15077: in sin_total [OF cos_x_y_ge_minus_one1a cos_x_y_le_one2]) paulson@15077: apply (rule someI2_ex, blast) paulson@15228: apply (erule_tac V = "EX! v. ?P v" in thin_rl) paulson@15085: apply (cut_tac x=x and y=y in cos_x_y_disj, simp, blast) paulson@15085: apply (auto simp add: real_0_le_add_iff real_add_eq_0_iff) paulson@15077: apply (drule cos_ge_zero, force) paulson@15077: apply (drule_tac x = y in real_sqrt_divide_less_zero) paulson@15085: apply (auto simp add: add_commute) paulson@15077: apply (insert polar_ex1 [of x "-y"], simp, clarify) paulson@15077: apply (rule_tac x = r in exI) paulson@15077: apply (rule_tac x = "-a" in exI, simp) paulson@15077: done paulson@15077: paulson@15077: lemma polar_Ex: "\r a. x = r * cos a & y = r * sin a" paulson@15077: apply (case_tac "x = 0", auto) paulson@15077: apply (rule_tac x = y in exI) paulson@15077: apply (rule_tac x = "pi/2" in exI, auto) paulson@15077: apply (cut_tac x = 0 and y = y in linorder_less_linear, auto) paulson@15077: apply (rule_tac [2] x = x in exI) paulson@15077: apply (rule_tac [2] x = 0 in exI, auto) paulson@15077: apply (blast intro: polar_ex1 polar_ex2)+ paulson@15077: done paulson@15077: paulson@15077: lemma real_sqrt_ge_abs1 [simp]: "\x\ \ sqrt (x\ + y\)" paulson@15077: apply (rule_tac n = 1 in realpow_increasing) avigad@16775: apply (auto simp add: numeral_2_eq_2 [symmetric] power2_abs) paulson@15077: done paulson@15077: paulson@15077: lemma real_sqrt_ge_abs2 [simp]: "\y\ \ sqrt (x\ + y\)" paulson@15077: apply (rule real_add_commute [THEN subst]) paulson@15077: apply (rule real_sqrt_ge_abs1) paulson@15077: done paulson@15077: declare real_sqrt_ge_abs1 [simp] real_sqrt_ge_abs2 [simp] paulson@15077: paulson@15077: lemma real_sqrt_two_gt_zero [simp]: "0 < sqrt 2" paulson@15077: by (auto intro: real_sqrt_gt_zero) paulson@15077: paulson@15077: lemma real_sqrt_two_ge_zero [simp]: "0 \ sqrt 2" paulson@15077: by (auto intro: real_sqrt_ge_zero) paulson@15077: paulson@15077: lemma real_sqrt_two_gt_one [simp]: "1 < sqrt 2" paulson@15077: apply (rule order_less_le_trans [of _ "7/5"], simp) paulson@15077: apply (rule_tac n = 1 in realpow_increasing) paulson@15077: prefer 3 apply (simp add: numeral_2_eq_2 [symmetric] del: realpow_Suc) nipkow@15539: apply (simp_all add: numeral_2_eq_2) paulson@15077: done paulson@15077: paulson@15077: lemma lemma_real_divide_sqrt_less: "0 < u ==> u / sqrt 2 < u" paulson@15234: by (simp add: divide_less_eq mult_compare_simps) paulson@15077: paulson@15077: lemma four_x_squared: paulson@15077: fixes x::real paulson@15077: shows "4 * x\ = (2 * x)\" paulson@15077: by (simp add: power2_eq_square) paulson@15077: paulson@15077: paulson@15077: text{*Needed for the infinitely close relation over the nonstandard paulson@15077: complex numbers*} paulson@15077: lemma lemma_sqrt_hcomplex_capprox: paulson@15077: "[| 0 < u; x < u/2; y < u/2; 0 \ x; 0 \ y |] ==> sqrt (x\ + y\) < u" paulson@15077: apply (rule_tac y = "u/sqrt 2" in order_le_less_trans) paulson@15077: apply (erule_tac [2] lemma_real_divide_sqrt_less) paulson@15077: apply (rule_tac n = 1 in realpow_increasing) paulson@15077: apply (auto simp add: real_0_le_divide_iff realpow_divide numeral_2_eq_2 [symmetric] paulson@15077: simp del: realpow_Suc) paulson@15077: apply (rule_tac t = "u\" in real_sum_of_halves [THEN subst]) paulson@15077: apply (rule add_mono) paulson@15077: apply (auto simp add: four_x_squared simp del: realpow_Suc intro: power_mono) paulson@15077: done paulson@15077: avigad@16775: declare real_sqrt_sum_squares_ge_zero [THEN abs_of_nonneg, simp] paulson@15077: paulson@15077: paulson@15077: subsection{*A Few Theorems Involving Ln, Derivatives, etc.*} paulson@15077: paulson@15077: lemma lemma_DERIV_ln: paulson@15077: "DERIV ln z :> l ==> DERIV (%x. exp (ln x)) z :> exp (ln z) * l" paulson@15077: by (erule DERIV_fun_exp) paulson@15077: paulson@15077: lemma STAR_exp_ln: "0 < z ==> ( *f* (%x. exp (ln x))) z = z" huffman@17318: apply (cases z) huffman@17318: apply (auto simp add: starfun star_n_zero_num star_n_less star_n_eq_iff) paulson@15077: done paulson@15077: paulson@15229: lemma hypreal_add_Infinitesimal_gt_zero: paulson@15229: "[|e : Infinitesimal; 0 < x |] ==> 0 < hypreal_of_real x + e" paulson@15077: apply (rule_tac c1 = "-e" in add_less_cancel_right [THEN iffD1]) paulson@15077: apply (auto intro: Infinitesimal_less_SReal) paulson@15077: done paulson@15077: paulson@15077: lemma NSDERIV_exp_ln_one: "0 < z ==> NSDERIV (%x. exp (ln x)) z :> 1" paulson@15229: apply (simp add: nsderiv_def NSLIM_def, auto) paulson@15077: apply (rule ccontr) paulson@15077: apply (subgoal_tac "0 < hypreal_of_real z + h") paulson@15077: apply (drule STAR_exp_ln) paulson@15077: apply (rule_tac [2] hypreal_add_Infinitesimal_gt_zero) paulson@15077: apply (subgoal_tac "h/h = 1") paulson@15077: apply (auto simp add: exp_ln_iff [symmetric] simp del: exp_ln_iff) paulson@15077: done paulson@15077: paulson@15077: lemma DERIV_exp_ln_one: "0 < z ==> DERIV (%x. exp (ln x)) z :> 1" paulson@15077: by (auto intro: NSDERIV_exp_ln_one simp add: NSDERIV_DERIV_iff [symmetric]) paulson@15077: paulson@15229: lemma lemma_DERIV_ln2: paulson@15229: "[| 0 < z; DERIV ln z :> l |] ==> exp (ln z) * l = 1" paulson@15077: apply (rule DERIV_unique) paulson@15077: apply (rule lemma_DERIV_ln) paulson@15077: apply (rule_tac [2] DERIV_exp_ln_one, auto) paulson@15077: done paulson@15077: paulson@15229: lemma lemma_DERIV_ln3: paulson@15229: "[| 0 < z; DERIV ln z :> l |] ==> l = 1/(exp (ln z))" paulson@15229: apply (rule_tac c1 = "exp (ln z)" in real_mult_left_cancel [THEN iffD1]) paulson@15077: apply (auto intro: lemma_DERIV_ln2) paulson@15077: done paulson@15077: paulson@15077: lemma lemma_DERIV_ln4: "[| 0 < z; DERIV ln z :> l |] ==> l = 1/z" paulson@15077: apply (rule_tac t = z in exp_ln_iff [THEN iffD2, THEN subst]) paulson@15077: apply (auto intro: lemma_DERIV_ln3) paulson@15077: done paulson@15077: paulson@15077: (* need to rename second isCont_inverse *) paulson@15077: paulson@15229: lemma isCont_inv_fun: paulson@15229: "[| 0 < d; \z. \z - x\ \ d --> g(f(z)) = z; paulson@15077: \z. \z - x\ \ d --> isCont f z |] paulson@15077: ==> isCont g (f x)" paulson@15077: apply (simp (no_asm) add: isCont_iff LIM_def) paulson@15077: apply safe paulson@15077: apply (drule_tac ?d1.0 = r in real_lbound_gt_zero) paulson@15077: apply (assumption, safe) paulson@15077: apply (subgoal_tac "\z. \z - x\ \ e --> (g (f z) = z) ") paulson@15077: prefer 2 apply force paulson@15077: apply (subgoal_tac "\z. \z - x\ \ e --> isCont f z") paulson@15077: prefer 2 apply force paulson@15077: apply (drule_tac d = e in isCont_inj_range) paulson@15077: prefer 2 apply (assumption, assumption, safe) paulson@15077: apply (rule_tac x = ea in exI, auto) paulson@15085: apply (drule_tac x = "f (x) + xa" and P = "%y. \y - f x\ \ ea \ (\z. \z - x\ \ e \ f z = y)" in spec) paulson@15077: apply auto webertj@20217: apply (drule sym, auto) paulson@15077: done paulson@15077: paulson@15077: lemma isCont_inv_fun_inv: paulson@15077: "[| 0 < d; paulson@15077: \z. \z - x\ \ d --> g(f(z)) = z; paulson@15077: \z. \z - x\ \ d --> isCont f z |] paulson@15077: ==> \e. 0 < e & paulson@15081: (\y. 0 < \y - f(x)\ & \y - f(x)\ < e --> f(g(y)) = y)" paulson@15077: apply (drule isCont_inj_range) paulson@15077: prefer 2 apply (assumption, assumption, auto) paulson@15077: apply (rule_tac x = e in exI, auto) paulson@15077: apply (rotate_tac 2) paulson@15077: apply (drule_tac x = y in spec, auto) paulson@15077: done paulson@15077: paulson@15077: paulson@15077: text{*Bartle/Sherbert: Introduction to Real Analysis, Theorem 4.2.9, p. 110*} paulson@15229: lemma LIM_fun_gt_zero: paulson@15229: "[| f -- c --> l; 0 < l |] paulson@15077: ==> \r. 0 < r & (\x. x \ c & \c - x\ < r --> 0 < f x)" paulson@15077: apply (auto simp add: LIM_def) paulson@15077: apply (drule_tac x = "l/2" in spec, safe, force) paulson@15077: apply (rule_tac x = s in exI) paulson@15077: apply (auto simp only: abs_interval_iff) paulson@15077: done paulson@15077: paulson@15229: lemma LIM_fun_less_zero: paulson@15229: "[| f -- c --> l; l < 0 |] paulson@15229: ==> \r. 0 < r & (\x. x \ c & \c - x\ < r --> f x < 0)" paulson@15077: apply (auto simp add: LIM_def) paulson@15077: apply (drule_tac x = "-l/2" in spec, safe, force) paulson@15077: apply (rule_tac x = s in exI) paulson@15077: apply (auto simp only: abs_interval_iff) paulson@15077: done paulson@15077: paulson@15077: paulson@15077: lemma LIM_fun_not_zero: paulson@15077: "[| f -- c --> l; l \ 0 |] paulson@15077: ==> \r. 0 < r & (\x. x \ c & \c - x\ < r --> f x \ 0)" paulson@15077: apply (cut_tac x = l and y = 0 in linorder_less_linear, auto) paulson@15077: apply (drule LIM_fun_less_zero) paulson@15241: apply (drule_tac [3] LIM_fun_gt_zero) paulson@15241: apply force+ paulson@15077: done webertj@20432: paulson@12196: end