wenzelm@14706: (* Title: HOL/Algebra/Exponent.thy paulson@13870: ID: $Id$ paulson@13870: Author: Florian Kammueller, with new proofs by L C Paulson paulson@13870: paulson@13870: exponent p s yields the greatest power of p that divides s. paulson@13870: *) paulson@13870: paulson@13870: header{*The Combinatorial Argument Underlying the First Sylow Theorem*} paulson@13870: haftmann@16417: theory Exponent imports Main Primes begin paulson@13870: paulson@13870: constdefs paulson@13870: exponent :: "[nat, nat] => nat" nipkow@16663: "exponent p s == if prime p then (GREATEST r. p^r dvd s) else 0" paulson@13870: paulson@13870: subsection{*Prime Theorems*} paulson@13870: nipkow@16663: lemma prime_imp_one_less: "prime p ==> Suc 0 < p" paulson@13870: by (unfold prime_def, force) paulson@13870: paulson@13870: lemma prime_iff: nipkow@16663: "(prime p) = (Suc 0 < p & (\a b. p dvd a*b --> (p dvd a) | (p dvd b)))" paulson@13870: apply (auto simp add: prime_imp_one_less) paulson@13870: apply (blast dest!: prime_dvd_mult) paulson@13870: apply (auto simp add: prime_def) paulson@13870: apply (erule dvdE) paulson@13870: apply (case_tac "k=0", simp) paulson@13870: apply (drule_tac x = m in spec) paulson@13870: apply (drule_tac x = k in spec) paulson@13870: apply (simp add: dvd_mult_cancel1 dvd_mult_cancel2, auto) paulson@13870: done paulson@13870: nipkow@16663: lemma zero_less_prime_power: "prime p ==> 0 < p^a" paulson@13870: by (force simp add: prime_iff) paulson@13870: paulson@13870: paulson@13870: lemma zero_less_card_empty: "[| finite S; S \ {} |] ==> 0 < card(S)" paulson@13870: by (rule ccontr, simp) paulson@13870: paulson@13870: paulson@13870: lemma prime_dvd_cases: nipkow@16663: "[| p*k dvd m*n; prime p |] paulson@13870: ==> (\x. k dvd x*n & m = p*x) | (\y. k dvd m*y & n = p*y)" paulson@13870: apply (simp add: prime_iff) paulson@13870: apply (frule dvd_mult_left) paulson@13870: apply (subgoal_tac "p dvd m | p dvd n") paulson@13870: prefer 2 apply blast paulson@13870: apply (erule disjE) paulson@13870: apply (rule disjI1) paulson@13870: apply (rule_tac [2] disjI2) paulson@13870: apply (erule_tac n = m in dvdE) paulson@13870: apply (erule_tac [2] n = n in dvdE, auto) paulson@13870: apply (rule_tac [2] k = p in dvd_mult_cancel) paulson@13870: apply (rule_tac k = p in dvd_mult_cancel) paulson@13870: apply (simp_all add: mult_ac) paulson@13870: done paulson@13870: paulson@13870: nipkow@16663: lemma prime_power_dvd_cases [rule_format (no_asm)]: "prime p paulson@13870: ==> \m n. p^c dvd m*n --> paulson@13870: (\a b. a+b = Suc c --> p^a dvd m | p^b dvd n)" paulson@13870: apply (induct_tac "c") paulson@13870: apply clarify paulson@13870: apply (case_tac "a") paulson@13870: apply simp paulson@13870: apply simp paulson@13870: (*inductive step*) paulson@13870: apply simp paulson@13870: apply clarify paulson@13870: apply (erule prime_dvd_cases [THEN disjE], assumption, auto) paulson@13870: (*case 1: p dvd m*) paulson@13870: apply (case_tac "a") paulson@13870: apply simp paulson@13870: apply clarify paulson@13870: apply (drule spec, drule spec, erule (1) notE impE) paulson@13870: apply (drule_tac x = nat in spec) paulson@13870: apply (drule_tac x = b in spec) paulson@13870: apply simp paulson@13870: apply (blast intro: dvd_refl mult_dvd_mono) paulson@13870: (*case 2: p dvd n*) paulson@13870: apply (case_tac "b") paulson@13870: apply simp paulson@13870: apply clarify paulson@13870: apply (drule spec, drule spec, erule (1) notE impE) paulson@13870: apply (drule_tac x = a in spec) paulson@13870: apply (drule_tac x = nat in spec, simp) paulson@13870: apply (blast intro: dvd_refl mult_dvd_mono) paulson@13870: done paulson@13870: paulson@13870: (*needed in this form in Sylow.ML*) paulson@13870: lemma div_combine: nipkow@16663: "[| prime p; ~ (p ^ (Suc r) dvd n); p^(a+r) dvd n*k |] paulson@13870: ==> p ^ a dvd k" paulson@13870: by (drule_tac a = "Suc r" and b = a in prime_power_dvd_cases, assumption, auto) paulson@13870: paulson@13870: (*Lemma for power_dvd_bound*) paulson@13870: lemma Suc_le_power: "Suc 0 < p ==> Suc n <= p^n" paulson@13870: apply (induct_tac "n") paulson@13870: apply (simp (no_asm_simp)) paulson@13870: apply simp paulson@13870: apply (subgoal_tac "2 * n + 2 <= p * p^n", simp) paulson@13870: apply (subgoal_tac "2 * p^n <= p * p^n") paulson@13870: (*?arith_tac should handle all of this!*) paulson@13870: apply (rule order_trans) paulson@13870: prefer 2 apply assumption paulson@13870: apply (drule_tac k = 2 in mult_le_mono2, simp) paulson@13870: apply (rule mult_le_mono1, simp) paulson@13870: done paulson@13870: paulson@13870: (*An upper bound for the n such that p^n dvd a: needed for GREATEST to exist*) paulson@13870: lemma power_dvd_bound: "[|p^n dvd a; Suc 0 < p; 0 < a|] ==> n < a" paulson@13870: apply (drule dvd_imp_le) paulson@13870: apply (drule_tac [2] n = n in Suc_le_power, auto) paulson@13870: done paulson@13870: paulson@13870: paulson@13870: subsection{*Exponent Theorems*} paulson@13870: paulson@13870: lemma exponent_ge [rule_format]: nipkow@16663: "[|p^k dvd n; prime p; 0 k <= exponent p n" paulson@13870: apply (simp add: exponent_def) paulson@13870: apply (erule Greatest_le) paulson@13870: apply (blast dest: prime_imp_one_less power_dvd_bound) paulson@13870: done paulson@13870: paulson@13870: lemma power_exponent_dvd: "0 (p ^ exponent p s) dvd s" paulson@13870: apply (simp add: exponent_def) paulson@13870: apply clarify paulson@13870: apply (rule_tac k = 0 in GreatestI) paulson@13870: prefer 2 apply (blast dest: prime_imp_one_less power_dvd_bound, simp) paulson@13870: done paulson@13870: paulson@13870: lemma power_Suc_exponent_Not_dvd: nipkow@16663: "[|(p * p ^ exponent p s) dvd s; prime p |] ==> s=0" paulson@13870: apply (subgoal_tac "p ^ Suc (exponent p s) dvd s") paulson@13870: prefer 2 apply simp paulson@13870: apply (rule ccontr) paulson@13870: apply (drule exponent_ge, auto) paulson@13870: done paulson@13870: nipkow@16663: lemma exponent_power_eq [simp]: "prime p ==> exponent p (p^a) = a" paulson@13870: apply (simp (no_asm_simp) add: exponent_def) paulson@13870: apply (rule Greatest_equality, simp) paulson@13870: apply (simp (no_asm_simp) add: prime_imp_one_less power_dvd_imp_le) paulson@13870: done paulson@13870: paulson@13870: lemma exponent_equalityI: paulson@13870: "!r::nat. (p^r dvd a) = (p^r dvd b) ==> exponent p a = exponent p b" paulson@13870: by (simp (no_asm_simp) add: exponent_def) paulson@13870: nipkow@16663: lemma exponent_eq_0 [simp]: "\ prime p ==> exponent p s = 0" paulson@13870: by (simp (no_asm_simp) add: exponent_def) paulson@13870: paulson@13870: paulson@13870: (* exponent_mult_add, easy inclusion. Could weaken p \ prime to Suc 0 < p *) paulson@13870: lemma exponent_mult_add1: paulson@13870: "[| 0 < a; 0 < b |] paulson@13870: ==> (exponent p a) + (exponent p b) <= exponent p (a * b)" nipkow@16663: apply (case_tac "prime p") paulson@13870: apply (rule exponent_ge) paulson@13870: apply (auto simp add: power_add) paulson@13870: apply (blast intro: prime_imp_one_less power_exponent_dvd mult_dvd_mono) paulson@13870: done paulson@13870: paulson@13870: (* exponent_mult_add, opposite inclusion *) paulson@13870: lemma exponent_mult_add2: "[| 0 < a; 0 < b |] paulson@13870: ==> exponent p (a * b) <= (exponent p a) + (exponent p b)" nipkow@16663: apply (case_tac "prime p") paulson@13870: apply (rule leI, clarify) paulson@13870: apply (cut_tac p = p and s = "a*b" in power_exponent_dvd, auto) paulson@13870: apply (subgoal_tac "p ^ (Suc (exponent p a + exponent p b)) dvd a * b") paulson@13870: apply (rule_tac [2] le_imp_power_dvd [THEN dvd_trans]) paulson@13870: prefer 3 apply assumption paulson@13870: prefer 2 apply simp paulson@13870: apply (frule_tac a = "Suc (exponent p a) " and b = "Suc (exponent p b) " in prime_power_dvd_cases) paulson@13870: apply (assumption, force, simp) paulson@13870: apply (blast dest: power_Suc_exponent_Not_dvd) paulson@13870: done paulson@13870: paulson@13870: lemma exponent_mult_add: paulson@13870: "[| 0 < a; 0 < b |] paulson@13870: ==> exponent p (a * b) = (exponent p a) + (exponent p b)" paulson@13870: by (blast intro: exponent_mult_add1 exponent_mult_add2 order_antisym) paulson@13870: paulson@13870: paulson@13870: lemma not_divides_exponent_0: "~ (p dvd n) ==> exponent p n = 0" paulson@13870: apply (case_tac "exponent p n", simp) paulson@13870: apply (case_tac "n", simp) paulson@13870: apply (cut_tac s = n and p = p in power_exponent_dvd) paulson@13870: apply (auto dest: dvd_mult_left) paulson@13870: done paulson@13870: paulson@13870: lemma exponent_1_eq_0 [simp]: "exponent p (Suc 0) = 0" nipkow@16663: apply (case_tac "prime p") paulson@13870: apply (auto simp add: prime_iff not_divides_exponent_0) paulson@13870: done paulson@13870: paulson@13870: paulson@13870: subsection{*Lemmas for the Main Combinatorial Argument*} paulson@13870: paulson@14889: lemma le_extend_mult: "[| 0 < c; a <= b |] ==> a <= b * (c::nat)" paulson@14889: apply (rule_tac P = "%x. x <= b * c" in subst) paulson@14889: apply (rule mult_1_right) paulson@14889: apply (rule mult_le_mono, auto) paulson@14889: done paulson@14889: paulson@13870: lemma p_fac_forw_lemma: paulson@13870: "[| 0 < (m::nat); 0 r <= a" paulson@13870: apply (rule notnotD) paulson@13870: apply (rule notI) paulson@13870: apply (drule contrapos_nn [OF _ leI, THEN notnotD], assumption) paulson@13870: apply (drule_tac m = a in less_imp_le) paulson@13870: apply (drule le_imp_power_dvd) paulson@13870: apply (drule_tac n = "p ^ r" in dvd_trans, assumption) paulson@13870: apply (frule_tac m = k in less_imp_le) paulson@13870: apply (drule_tac c = m in le_extend_mult, assumption) paulson@13870: apply (drule_tac k = "p ^ a" and m = " (p ^ a) * m" in dvd_diffD1) paulson@13870: prefer 2 apply assumption paulson@13870: apply (rule dvd_refl [THEN dvd_mult2]) paulson@13870: apply (drule_tac n = k in dvd_imp_le, auto) paulson@13870: done paulson@13870: paulson@13870: lemma p_fac_forw: "[| 0 < (m::nat); 0 (p^r) dvd (p^a) - k" paulson@13870: apply (frule_tac k1 = k and i = p in p_fac_forw_lemma [THEN le_imp_power_dvd], auto) paulson@13870: apply (subgoal_tac "p^r dvd p^a*m") paulson@13870: prefer 2 apply (blast intro: dvd_mult2) paulson@13870: apply (drule dvd_diffD1) paulson@13870: apply assumption paulson@13870: prefer 2 apply (blast intro: dvd_diff) paulson@13870: apply (drule less_imp_Suc_add, auto) paulson@13870: done paulson@13870: paulson@13870: paulson@13870: lemma r_le_a_forw: "[| 0 < (k::nat); k < p^a; 0 < p; (p^r) dvd (p^a) - k |] ==> r <= a" paulson@13870: by (rule_tac m = "Suc 0" in p_fac_forw_lemma, auto) paulson@13870: paulson@13870: lemma p_fac_backw: "[| 0 (p^r) dvd (p^a)*m - k" paulson@13870: apply (frule_tac k1 = k and i = p in r_le_a_forw [THEN le_imp_power_dvd], auto) paulson@13870: apply (subgoal_tac "p^r dvd p^a*m") paulson@13870: prefer 2 apply (blast intro: dvd_mult2) paulson@13870: apply (drule dvd_diffD1) paulson@13870: apply assumption paulson@13870: prefer 2 apply (blast intro: dvd_diff) paulson@13870: apply (drule less_imp_Suc_add, auto) paulson@13870: done paulson@13870: paulson@13870: lemma exponent_p_a_m_k_equation: "[| 0 exponent p (p^a * m - k) = exponent p (p^a - k)" paulson@13870: apply (blast intro: exponent_equalityI p_fac_forw p_fac_backw) paulson@13870: done paulson@13870: paulson@13870: text{*Suc rules that we have to delete from the simpset*} paulson@13870: lemmas bad_Sucs = binomial_Suc_Suc mult_Suc mult_Suc_right paulson@13870: paulson@13870: (*The bound K is needed; otherwise it's too weak to be used.*) paulson@13870: lemma p_not_div_choose_lemma [rule_format]: paulson@13870: "[| \i. Suc i < K --> exponent p (Suc i) = exponent p (Suc(j+i))|] paulson@13870: ==> k exponent p ((j+k) choose k) = 0" nipkow@16663: apply (case_tac "prime p") paulson@13870: prefer 2 apply simp paulson@13870: apply (induct_tac "k") paulson@13870: apply (simp (no_asm)) paulson@13870: (*induction step*) paulson@13870: apply (subgoal_tac "0 < (Suc (j+n) choose Suc n) ") paulson@13870: prefer 2 apply (simp add: zero_less_binomial_iff, clarify) paulson@13870: apply (subgoal_tac "exponent p ((Suc (j+n) choose Suc n) * Suc n) = paulson@13870: exponent p (Suc n)") paulson@13870: txt{*First, use the assumed equation. We simplify the LHS to paulson@13870: @{term "exponent p (Suc (j + n) choose Suc n) + exponent p (Suc n)"} paulson@13870: the common terms cancel, proving the conclusion.*} paulson@13870: apply (simp del: bad_Sucs add: exponent_mult_add) paulson@13870: txt{*Establishing the equation requires first applying paulson@13870: @{text Suc_times_binomial_eq} ...*} paulson@13870: apply (simp del: bad_Sucs add: Suc_times_binomial_eq [symmetric]) paulson@13870: txt{*...then @{text exponent_mult_add} and the quantified premise.*} paulson@13870: apply (simp del: bad_Sucs add: zero_less_binomial_iff exponent_mult_add) paulson@13870: done paulson@13870: paulson@13870: (*The lemma above, with two changes of variables*) paulson@13870: lemma p_not_div_choose: paulson@13870: "[| kj. 0 exponent p (n - k + (K - j)) = exponent p (K - j)|] paulson@13870: ==> exponent p (n choose k) = 0" paulson@13870: apply (cut_tac j = "n-k" and k = k and p = p in p_not_div_choose_lemma) paulson@13870: prefer 3 apply simp paulson@13870: prefer 2 apply assumption paulson@13870: apply (drule_tac x = "K - Suc i" in spec) paulson@13870: apply (simp add: Suc_diff_le) paulson@13870: done paulson@13870: paulson@13870: paulson@13870: lemma const_p_fac_right: paulson@13870: "0 < m ==> exponent p ((p^a * m - Suc 0) choose (p^a - Suc 0)) = 0" nipkow@16663: apply (case_tac "prime p") paulson@13870: prefer 2 apply simp paulson@13870: apply (frule_tac a = a in zero_less_prime_power) paulson@13870: apply (rule_tac K = "p^a" in p_not_div_choose) paulson@13870: apply simp paulson@13870: apply simp paulson@13870: apply (case_tac "m") paulson@13870: apply (case_tac [2] "p^a") paulson@13870: apply auto paulson@13870: (*now the hard case, simplified to paulson@13870: exponent p (Suc (p ^ a * m + i - p ^ a)) = exponent p (Suc i) *) paulson@13870: apply (subgoal_tac "0 exponent p (((p^a) * m) choose p^a) = exponent p m" nipkow@16663: apply (case_tac "prime p") paulson@13870: prefer 2 apply simp paulson@13870: apply (subgoal_tac "0 < p^a * m & p^a <= p^a * m") paulson@13870: prefer 2 apply (force simp add: prime_iff) paulson@13870: txt{*A similar trick to the one used in @{text p_not_div_choose_lemma}: paulson@13870: insert an equation; use @{text exponent_mult_add} on the LHS; on the RHS, paulson@13870: first paulson@13870: transform the binomial coefficient, then use @{text exponent_mult_add}.*} paulson@13870: apply (subgoal_tac "exponent p ((( (p^a) * m) choose p^a) * p^a) = paulson@13870: a + exponent p m") paulson@13870: apply (simp del: bad_Sucs add: zero_less_binomial_iff exponent_mult_add prime_iff) paulson@13870: txt{*one subgoal left!*} paulson@13870: apply (subst times_binomial_minus1_eq, simp, simp) paulson@13870: apply (subst exponent_mult_add, simp) paulson@13870: apply (simp (no_asm_simp) add: zero_less_binomial_iff) paulson@13870: apply arith paulson@13870: apply (simp del: bad_Sucs add: exponent_mult_add const_p_fac_right) paulson@13870: done paulson@13870: paulson@13870: paulson@13870: end