wenzelm@9435: (* Title : HOL/Real/RealPow.thy paulson@7219: ID : $Id$ paulson@7077: Author : Jacques D. Fleuriot paulson@7077: Copyright : 1998 University of Cambridge paulson@7077: Description : Natural powers theory paulson@7077: paulson@7077: *) paulson@7077: paulson@14269: theory RealPow = RealArith: wenzelm@9435: wenzelm@10309: instance real :: power .. paulson@7077: wenzelm@8856: primrec (realpow) paulson@12018: realpow_0: "r ^ 0 = 1" wenzelm@9435: realpow_Suc: "r ^ (Suc n) = (r::real) * (r ^ n)" paulson@7077: paulson@14265: paulson@14268: lemma realpow_zero [simp]: "(0::real) ^ (Suc n) = 0" paulson@14268: by auto paulson@14265: paulson@14268: lemma realpow_not_zero [rule_format]: "r \ (0::real) --> r ^ n \ 0" paulson@14268: by (induct_tac "n", auto) paulson@14265: paulson@14265: lemma realpow_zero_zero: "r ^ n = (0::real) ==> r = 0" paulson@14265: apply (rule ccontr) paulson@14265: apply (auto dest: realpow_not_zero) paulson@14265: done paulson@14265: paulson@14265: lemma realpow_inverse: "inverse ((r::real) ^ n) = (inverse r) ^ n" paulson@14265: apply (induct_tac "n") paulson@14265: apply (auto simp add: real_inverse_distrib) paulson@14265: done paulson@14265: paulson@14265: lemma realpow_abs: "abs(r ^ n) = abs(r::real) ^ n" paulson@14265: apply (induct_tac "n") paulson@14265: apply (auto simp add: abs_mult) paulson@14265: done paulson@14265: paulson@14265: lemma realpow_add: "(r::real) ^ (n + m) = (r ^ n) * (r ^ m)" paulson@14265: apply (induct_tac "n") paulson@14265: apply (auto simp add: real_mult_ac) paulson@14265: done paulson@14265: paulson@14268: lemma realpow_one [simp]: "(r::real) ^ 1 = r" paulson@14268: by simp paulson@14265: paulson@14265: lemma realpow_two: "(r::real)^ (Suc (Suc 0)) = r * r" paulson@14268: by simp paulson@14265: paulson@14268: lemma realpow_gt_zero [rule_format]: "(0::real) < r --> 0 < r ^ n" paulson@14265: apply (induct_tac "n") paulson@14265: apply (auto intro: real_mult_order simp add: real_zero_less_one) paulson@14265: done paulson@14265: paulson@14268: lemma realpow_ge_zero [rule_format]: "(0::real) \ r --> 0 \ r ^ n" paulson@14265: apply (induct_tac "n") paulson@14265: apply (auto simp add: real_0_le_mult_iff) paulson@14265: done paulson@14265: paulson@14268: lemma realpow_le [rule_format]: "(0::real) \ x & x \ y --> x ^ n \ y ^ n" paulson@14265: apply (induct_tac "n") paulson@14265: apply (auto intro!: real_mult_le_mono) paulson@14265: apply (simp (no_asm_simp) add: realpow_ge_zero) paulson@14265: done paulson@14265: paulson@14265: lemma realpow_0_left [rule_format, simp]: paulson@14265: "0 < n --> 0 ^ n = (0::real)" paulson@14268: apply (induct_tac "n", auto) paulson@14265: done paulson@14265: paulson@14265: lemma realpow_less' [rule_format]: paulson@14265: "[|(0::real) \ x; x < y |] ==> 0 < n --> x ^ n < y ^ n" paulson@14265: apply (induct n) paulson@14268: apply (auto simp add: real_mult_less_mono' realpow_ge_zero) paulson@14265: done paulson@14265: paulson@14265: text{*Legacy: weaker version of the theorem above*} paulson@14268: lemma realpow_less: paulson@14265: "[|(0::real) < x; x < y; 0 < n|] ==> x ^ n < y ^ n" paulson@14268: apply (rule realpow_less', auto) paulson@14265: done paulson@14265: paulson@14268: lemma realpow_eq_one [simp]: "1 ^ n = (1::real)" paulson@14268: by (induct_tac "n", auto) paulson@14265: paulson@14268: lemma abs_realpow_minus_one [simp]: "abs((-1) ^ n) = (1::real)" paulson@14265: apply (induct_tac "n") paulson@14265: apply (auto simp add: abs_mult) paulson@14265: done paulson@14265: paulson@14265: lemma realpow_mult: "((r::real) * s) ^ n = (r ^ n) * (s ^ n)" paulson@14265: apply (induct_tac "n") paulson@14265: apply (auto simp add: real_mult_ac) paulson@14265: done paulson@14265: paulson@14268: lemma realpow_two_le [simp]: "(0::real) \ r^ Suc (Suc 0)" paulson@14268: by (simp add: real_le_square) paulson@14265: paulson@14268: lemma abs_realpow_two [simp]: "abs((x::real)^Suc (Suc 0)) = x^Suc (Suc 0)" paulson@14268: by (simp add: abs_eqI1 real_le_square) paulson@14265: paulson@14268: lemma realpow_two_abs [simp]: "abs(x::real)^Suc (Suc 0) = x^Suc (Suc 0)" paulson@14268: by (simp add: realpow_abs [symmetric] abs_eqI1 del: realpow_Suc) paulson@14265: paulson@14265: lemma realpow_two_gt_one: "(1::real) < r ==> 1 < r^ (Suc (Suc 0))" paulson@14265: apply auto paulson@14265: apply (cut_tac real_zero_less_one) paulson@14268: apply (frule_tac x = 0 in order_less_trans, assumption) paulson@14268: apply (drule_tac z = r and x = 1 in real_mult_less_mono1) paulson@14265: apply (auto intro: order_less_trans) paulson@14265: done paulson@14265: paulson@14268: lemma realpow_ge_one [rule_format]: "(1::real) < r --> 1 \ r ^ n" paulson@14268: apply (induct_tac "n", auto) paulson@14265: apply (subgoal_tac "1*1 \ r * r^n") paulson@14268: apply (rule_tac [2] real_mult_le_mono, auto) paulson@14265: done paulson@14265: paulson@14265: lemma realpow_ge_one2: "(1::real) \ r ==> 1 \ r ^ n" paulson@14265: apply (drule order_le_imp_less_or_eq) paulson@14265: apply (auto dest: realpow_ge_one) paulson@14265: done paulson@14265: paulson@14268: lemma two_realpow_ge_one [simp]: "(1::real) \ 2 ^ n" paulson@14265: apply (rule_tac y = "1 ^ n" in order_trans) paulson@14265: apply (rule_tac [2] realpow_le) paulson@14265: apply (auto intro: order_less_imp_le) paulson@14265: done paulson@14265: paulson@14268: lemma two_realpow_gt [simp]: "real (n::nat) < 2 ^ n" paulson@14265: apply (induct_tac "n") paulson@14265: apply (auto simp add: real_of_nat_Suc) paulson@14265: apply (subst real_mult_2) paulson@14265: apply (rule real_add_less_le_mono) paulson@14265: apply (auto simp add: two_realpow_ge_one) paulson@14265: done paulson@14265: paulson@14268: lemma realpow_minus_one [simp]: "(-1) ^ (2*n) = (1::real)" paulson@14268: by (induct_tac "n", auto) paulson@14268: paulson@14268: lemma realpow_minus_one_odd [simp]: "(-1) ^ Suc (2*n) = -(1::real)" paulson@14268: by auto paulson@14265: paulson@14268: lemma realpow_minus_one_even [simp]: "(-1) ^ Suc (Suc (2*n)) = (1::real)" paulson@14268: by auto paulson@14265: paulson@14268: lemma realpow_Suc_less [rule_format]: paulson@14268: "(0::real) < r & r < (1::real) --> r ^ Suc n < r ^ n" paulson@14288: by (induct_tac "n", auto simp add: mult_less_cancel_left) paulson@14265: paulson@14288: lemma realpow_Suc_le [rule_format]: paulson@14288: "0 \ r & r < (1::real) --> r ^ Suc n \ r ^ n" paulson@14265: apply (induct_tac "n") paulson@14265: apply (auto intro: order_less_imp_le dest!: order_le_imp_less_or_eq) paulson@14265: done paulson@14265: paulson@14268: lemma realpow_zero_le [simp]: "(0::real) \ 0 ^ n" paulson@14268: by (case_tac "n", auto) paulson@14265: paulson@14268: lemma realpow_Suc_le2 [rule_format]: "0 < r & r < (1::real) --> r ^ Suc n \ r ^ n" paulson@14268: by (blast intro!: order_less_imp_le realpow_Suc_less) paulson@14265: paulson@14265: lemma realpow_Suc_le3: "[| 0 \ r; r < (1::real) |] ==> r ^ Suc n \ r ^ n" paulson@14265: apply (erule order_le_imp_less_or_eq [THEN disjE]) paulson@14268: apply (rule realpow_Suc_le2, auto) paulson@14265: done paulson@14265: paulson@14268: lemma realpow_less_le [rule_format]: "0 \ r & r < (1::real) & n < N --> r ^ N \ r ^ n" paulson@14265: apply (induct_tac "N") paulson@14265: apply (simp_all (no_asm_simp)) paulson@14265: apply clarify paulson@14268: apply (subgoal_tac "r * r ^ na \ 1 * r ^ n", simp) paulson@14265: apply (rule real_mult_le_mono) paulson@14265: apply (auto simp add: realpow_ge_zero less_Suc_eq) paulson@14265: done paulson@14265: paulson@14265: lemma realpow_le_le: "[| 0 \ r; r < (1::real); n \ N |] ==> r ^ N \ r ^ n" paulson@14268: apply (drule_tac n = N in le_imp_less_or_eq) paulson@14265: apply (auto intro: realpow_less_le) paulson@14265: done paulson@14265: paulson@14265: lemma realpow_Suc_le_self: "[| 0 < r; r < (1::real) |] ==> r ^ Suc n \ r" paulson@14268: by (drule_tac n = 1 and N = "Suc n" in order_less_imp_le [THEN realpow_le_le], auto) paulson@14265: paulson@14265: lemma realpow_Suc_less_one: "[| 0 < r; r < (1::real) |] ==> r ^ Suc n < 1" paulson@14268: by (blast intro: realpow_Suc_le_self order_le_less_trans) paulson@14268: paulson@14268: lemma realpow_le_Suc [rule_format]: "(1::real) \ r --> r ^ n \ r ^ Suc n" paulson@14268: by (induct_tac "n", auto) paulson@14268: paulson@14268: lemma realpow_less_Suc [rule_format]: "(1::real) < r --> r ^ n < r ^ Suc n" paulson@14288: by (induct_tac "n", auto simp add: mult_less_cancel_left) paulson@14265: paulson@14268: lemma realpow_le_Suc2 [rule_format]: "(1::real) < r --> r ^ n \ r ^ Suc n" paulson@14268: by (blast intro!: order_less_imp_le realpow_less_Suc) paulson@14268: paulson@14268: (*One use in RealPow.thy*) paulson@14268: lemma real_mult_self_le2: "[| (1::real) \ r; (1::real) \ x |] ==> x \ r * x" paulson@14268: apply (subgoal_tac "1 * x \ r * x", simp) paulson@14268: apply (rule mult_right_mono, auto) paulson@14265: done paulson@14265: paulson@14268: lemma realpow_gt_ge2 [rule_format]: "(1::real) \ r & n < N --> r ^ n \ r ^ N" paulson@14268: apply (induct_tac "N", auto) paulson@14268: apply (frule_tac [!] n = na in realpow_ge_one2) paulson@14268: apply (drule_tac [!] real_mult_self_le2, assumption) paulson@14268: prefer 2 apply assumption paulson@14265: apply (auto intro: order_trans simp add: less_Suc_eq) paulson@14265: done paulson@14265: paulson@14265: lemma realpow_ge_ge2: "[| (1::real) \ r; n \ N |] ==> r ^ n \ r ^ N" paulson@14268: apply (drule_tac n = N in le_imp_less_or_eq) paulson@14265: apply (auto intro: realpow_gt_ge2) paulson@14265: done paulson@14265: paulson@14268: lemma realpow_Suc_ge_self2: "(1::real) \ r ==> r \ r ^ Suc n" paulson@14268: by (drule_tac n = 1 and N = "Suc n" in realpow_ge_ge2, auto) paulson@14265: paulson@14268: (*Used ONCE in Hyperreal/NthRoot.ML*) paulson@14265: lemma realpow_ge_self2: "[| (1::real) \ r; 0 < n |] ==> r \ r ^ n" paulson@14265: apply (drule less_not_refl2 [THEN not0_implies_Suc]) paulson@14265: apply (auto intro!: realpow_Suc_ge_self2) paulson@14265: done paulson@14265: paulson@14268: lemma realpow_minus_mult [rule_format, simp]: paulson@14268: "0 < n --> (x::real) ^ (n - 1) * x = x ^ n" paulson@14265: apply (induct_tac "n") paulson@14265: apply (auto simp add: real_mult_commute) paulson@14265: done paulson@14265: paulson@14268: lemma realpow_two_mult_inverse [simp]: "r \ 0 ==> r * inverse r ^Suc (Suc 0) = inverse (r::real)" paulson@14268: by (simp add: realpow_two real_mult_assoc [symmetric]) paulson@14265: paulson@14265: (* 05/00 *) paulson@14268: lemma realpow_two_minus [simp]: "(-x)^Suc (Suc 0) = (x::real)^Suc (Suc 0)" paulson@14268: by simp paulson@14265: paulson@14265: lemma realpow_two_diff: "(x::real)^Suc (Suc 0) - y^Suc (Suc 0) = (x - y) * (x + y)" paulson@14265: apply (unfold real_diff_def) paulson@14265: apply (simp add: real_add_mult_distrib2 real_add_mult_distrib real_mult_ac) paulson@14265: done paulson@14265: paulson@14265: lemma realpow_two_disj: "((x::real)^Suc (Suc 0) = y^Suc (Suc 0)) = (x = y | x = -y)" paulson@14268: apply (cut_tac x = x and y = y in realpow_two_diff) paulson@14265: apply (auto simp del: realpow_Suc) paulson@14265: done paulson@14265: paulson@14265: (* used in Transc *) paulson@14265: lemma realpow_diff: "[|(x::real) \ 0; m \ n |] ==> x ^ (n - m) = x ^ n * inverse (x ^ m)" paulson@14268: by (auto simp add: le_eq_less_or_eq less_iff_Suc_add realpow_add realpow_not_zero real_mult_ac) paulson@14265: paulson@14265: lemma realpow_real_of_nat: "real (m::nat) ^ n = real (m ^ n)" paulson@14265: apply (induct_tac "n") paulson@14265: apply (auto simp add: real_of_nat_one real_of_nat_mult) paulson@14265: done paulson@14265: paulson@14268: lemma realpow_real_of_nat_two_pos [simp] : "0 < real (Suc (Suc 0) ^ n)" paulson@14265: apply (induct_tac "n") paulson@14265: apply (auto simp add: real_of_nat_mult real_0_less_mult_iff) paulson@14265: done paulson@14265: paulson@14265: lemma realpow_increasing: paulson@14265: assumes xnonneg: "(0::real) \ x" paulson@14265: and ynonneg: "0 \ y" paulson@14265: and le: "x ^ Suc n \ y ^ Suc n" paulson@14265: shows "x \ y" paulson@14265: proof (rule ccontr) paulson@14265: assume "~ x \ y" paulson@14265: then have "y x; 0 \ y; x ^ Suc n = y ^ Suc n |] ==> x = y" paulson@14268: by (blast intro: realpow_increasing order_antisym order_eq_refl sym) paulson@14265: paulson@14265: paulson@14265: (*** Logical equivalences for inequalities ***) paulson@14265: paulson@14268: lemma realpow_eq_0_iff [simp]: "(x^n = 0) = (x = (0::real) & 0 (0::real) | n=0)" paulson@14265: apply (induct_tac "n") paulson@14265: apply (auto simp add: real_0_less_mult_iff) paulson@14265: done paulson@14265: paulson@14268: lemma zero_le_realpow_abs [simp]: "(0::real) \ (abs x)^n" paulson@14265: apply (induct_tac "n") paulson@14265: apply (auto simp add: real_0_le_mult_iff) paulson@14265: done paulson@14265: paulson@14265: paulson@14265: (*** Literal arithmetic involving powers, type real ***) paulson@14265: paulson@14265: lemma real_of_int_power: "real (x::int) ^ n = real (x ^ n)" paulson@14265: apply (induct_tac "n") paulson@14265: apply (simp_all (no_asm_simp) add: nat_mult_distrib) paulson@14265: done paulson@14265: declare real_of_int_power [symmetric, simp] paulson@14265: paulson@14265: lemma power_real_number_of: "(number_of v :: real) ^ n = real ((number_of v :: int) ^ n)" paulson@14268: by (simp only: real_number_of_def real_of_int_power) paulson@14265: paulson@14265: declare power_real_number_of [of _ "number_of w", standard, simp] paulson@14265: paulson@14265: paulson@14265: lemma real_power_two: "(r::real)\ = r * r" paulson@14265: by (simp add: numeral_2_eq_2) paulson@14265: paulson@14265: lemma real_sqr_ge_zero [iff]: "0 \ (r::real)\" paulson@14265: by (simp add: real_power_two) paulson@14265: paulson@14265: lemma real_sqr_gt_zero: "(r::real) \ 0 ==> 0 < r\" paulson@14265: proof - paulson@14265: assume "r \ 0" paulson@14265: hence "0 \ r\" by simp paulson@14265: also have "0 \ r\" by (simp add: real_sqr_ge_zero) paulson@14265: finally show ?thesis . paulson@14265: qed paulson@14265: paulson@14265: lemma real_sqr_not_zero: "r \ 0 ==> (r::real)\ \ 0" paulson@14265: by simp paulson@14265: paulson@14265: paulson@14268: subsection{*Various Other Theorems*} paulson@14268: paulson@14268: text{*Used several times in Hyperreal/Transcendental.ML*} paulson@14268: lemma real_sum_squares_cancel_a: "x * x = -(y * y) ==> x = (0::real) & y=0" paulson@14268: by (auto intro: real_sum_squares_cancel) paulson@14268: paulson@14268: lemma real_squared_diff_one_factored: "x*x - (1::real) = (x + 1)*(x - 1)" paulson@14268: apply (auto simp add: real_add_mult_distrib real_add_mult_distrib2 real_diff_def) paulson@14268: done paulson@14268: paulson@14268: lemma real_mult_is_one: "(x*x = (1::real)) = (x = 1 | x = - 1)" paulson@14268: apply auto paulson@14268: apply (drule right_minus_eq [THEN iffD2]) paulson@14268: apply (auto simp add: real_squared_diff_one_factored) paulson@14268: done paulson@14268: declare real_mult_is_one [iff] paulson@14268: paulson@14304: lemma real_le_add_half_cancel: "(x + y/2 \ (y::real)) = (x \ y /2)" paulson@14268: apply auto paulson@14268: done paulson@14268: declare real_le_add_half_cancel [simp] paulson@14268: paulson@14268: lemma real_minus_half_eq: "(x::real) - x/2 = x/2" paulson@14268: apply auto paulson@14268: done paulson@14268: declare real_minus_half_eq [simp] paulson@14268: paulson@14268: lemma real_mult_inverse_cancel: paulson@14268: "[|(0::real) < x; 0 < x1; x1 * y < x * u |] paulson@14268: ==> inverse x * y < inverse x1 * u" paulson@14268: apply (rule_tac c=x in mult_less_imp_less_left) paulson@14268: apply (auto simp add: real_mult_assoc [symmetric]) paulson@14268: apply (simp (no_asm) add: real_mult_ac) paulson@14268: apply (rule_tac c=x1 in mult_less_imp_less_right) paulson@14268: apply (auto simp add: real_mult_ac) paulson@14268: done paulson@14268: paulson@14268: text{*Used once: in Hyperreal/Transcendental.ML*} paulson@14268: lemma real_mult_inverse_cancel2: "[|(0::real) < x;0 < x1; x1 * y < x * u |] ==> y * inverse x < u * inverse x1" paulson@14268: apply (auto dest: real_mult_inverse_cancel simp add: real_mult_ac) paulson@14268: done paulson@14268: paulson@14268: lemma inverse_real_of_nat_gt_zero: "0 < inverse (real (Suc n))" paulson@14268: apply auto paulson@14268: done paulson@14268: declare inverse_real_of_nat_gt_zero [simp] paulson@14268: paulson@14304: lemma inverse_real_of_nat_ge_zero: "0 \ inverse (real (Suc n))" paulson@14268: apply auto paulson@14268: done paulson@14268: declare inverse_real_of_nat_ge_zero [simp] paulson@14268: paulson@14268: lemma real_sum_squares_not_zero: "x ~= 0 ==> x * x + y * y ~= (0::real)" paulson@14268: apply (blast dest!: real_sum_squares_cancel) paulson@14268: done paulson@14268: paulson@14268: lemma real_sum_squares_not_zero2: "y ~= 0 ==> x * x + y * y ~= (0::real)" paulson@14268: apply (blast dest!: real_sum_squares_cancel2) paulson@14268: done paulson@14268: paulson@14268: (* nice theorem *) paulson@14268: lemma abs_mult_abs: "abs x * abs x = x * (x::real)" paulson@14268: apply (insert linorder_less_linear [of x 0]) paulson@14268: apply (auto simp add: abs_eqI2 abs_minus_eqI2) paulson@14268: done paulson@14268: declare abs_mult_abs [simp] paulson@14268: paulson@14268: paulson@14268: subsection {*Various Other Theorems*} paulson@14268: paulson@14268: lemma realpow_divide: paulson@14268: "(x/y) ^ n = ((x::real) ^ n/ y ^ n)" paulson@14268: apply (unfold real_divide_def) paulson@14268: apply (auto simp add: realpow_mult realpow_inverse) paulson@14268: done paulson@14268: paulson@14304: lemma realpow_ge_zero2 [rule_format (no_asm)]: "(0::real) \ r --> 0 \ r ^ n" paulson@14268: apply (induct_tac "n") paulson@14268: apply (auto simp add: real_0_le_mult_iff) paulson@14268: done paulson@14268: paulson@14304: lemma realpow_le2 [rule_format (no_asm)]: "(0::real) \ x & x \ y --> x ^ n \ y ^ n" paulson@14268: apply (induct_tac "n") paulson@14268: apply (auto intro!: real_mult_le_mono simp add: realpow_ge_zero2) paulson@14268: done paulson@14268: paulson@14268: lemma realpow_Suc_gt_one: "(1::real) < r ==> 1 < r ^ (Suc n)" paulson@14268: apply (frule_tac n = "n" in realpow_ge_one) paulson@14268: apply (drule real_le_imp_less_or_eq, safe) paulson@14268: apply (frule real_zero_less_one [THEN real_less_trans]) paulson@14268: apply (drule_tac y = "r ^ n" in real_mult_less_mono2) paulson@14268: apply assumption paulson@14268: apply (auto dest: real_less_trans) paulson@14268: done paulson@14268: paulson@14268: lemma realpow_two_sum_zero_iff: "(x ^ 2 + y ^ 2 = (0::real)) = (x = 0 & y = 0)" paulson@14268: apply (auto intro: real_sum_squares_cancel real_sum_squares_cancel2 simp add: numeral_2_eq_2) paulson@14268: done paulson@14268: declare realpow_two_sum_zero_iff [simp] paulson@14268: paulson@14304: lemma realpow_two_le_add_order: "(0::real) \ u ^ 2 + v ^ 2" paulson@14268: apply (rule real_le_add_order) paulson@14268: apply (auto simp add: numeral_2_eq_2) paulson@14268: done paulson@14268: declare realpow_two_le_add_order [simp] paulson@14268: paulson@14304: lemma realpow_two_le_add_order2: "(0::real) \ u ^ 2 + v ^ 2 + w ^ 2" paulson@14268: apply (rule real_le_add_order)+ paulson@14268: apply (auto simp add: numeral_2_eq_2) paulson@14268: done paulson@14268: declare realpow_two_le_add_order2 [simp] paulson@14268: paulson@14268: lemma real_sum_square_gt_zero: "x ~= 0 ==> (0::real) < x * x + y * y" paulson@14268: apply (cut_tac x = "x" and y = "y" in real_mult_self_sum_ge_zero) paulson@14268: apply (drule real_le_imp_less_or_eq) paulson@14268: apply (drule_tac y = "y" in real_sum_squares_not_zero) paulson@14268: apply auto paulson@14268: done paulson@14268: paulson@14268: lemma real_sum_square_gt_zero2: "y ~= 0 ==> (0::real) < x * x + y * y" paulson@14268: apply (rule real_add_commute [THEN subst]) paulson@14268: apply (erule real_sum_square_gt_zero) paulson@14268: done paulson@14268: paulson@14304: lemma real_minus_mult_self_le: "-(u * u) \ (x * (x::real))" paulson@14268: apply (rule_tac j = "0" in real_le_trans) paulson@14268: apply auto paulson@14268: done paulson@14268: declare real_minus_mult_self_le [simp] paulson@14268: paulson@14304: lemma realpow_square_minus_le: "-(u ^ 2) \ (x::real) ^ 2" paulson@14268: apply (auto simp add: numeral_2_eq_2) paulson@14268: done paulson@14268: declare realpow_square_minus_le [simp] paulson@14268: paulson@14268: lemma realpow_num_eq_if: "(m::real) ^ n = (if n=0 then 1 else m * m ^ (n - 1))" paulson@14268: apply (case_tac "n") paulson@14268: apply auto paulson@14268: done paulson@14268: paulson@14268: lemma real_num_zero_less_two_pow: "0 < (2::real) ^ (4*d)" paulson@14268: apply (induct_tac "d") paulson@14268: apply (auto simp add: realpow_num_eq_if) paulson@14268: done paulson@14268: declare real_num_zero_less_two_pow [simp] paulson@14268: paulson@14268: lemma lemma_realpow_num_two_mono: "x * (4::real) < y ==> x * (2 ^ 8) < y * (2 ^ 6)" paulson@14268: apply (subgoal_tac " (2::real) ^ 8 = 4 * (2 ^ 6) ") paulson@14268: apply (simp (no_asm_simp) add: real_mult_assoc [symmetric]) paulson@14268: apply (auto simp add: realpow_num_eq_if) paulson@14268: done paulson@14268: paulson@14268: lemma lemma_realpow_4: "2 ^ 2 = (4::real)" paulson@14268: apply (simp (no_asm) add: realpow_num_eq_if) paulson@14268: done paulson@14268: declare lemma_realpow_4 [simp] paulson@14268: paulson@14268: lemma lemma_realpow_16: "2 ^ 4 = (16::real)" paulson@14268: apply (simp (no_asm) add: realpow_num_eq_if) paulson@14268: done paulson@14268: declare lemma_realpow_16 [simp] paulson@14268: paulson@14304: lemma zero_le_x_squared: "(0::real) \ x^2" paulson@14268: apply (simp add: numeral_2_eq_2) paulson@14268: done paulson@14268: declare zero_le_x_squared [simp] paulson@14268: paulson@14268: paulson@14268: paulson@14265: ML paulson@14265: {* paulson@14265: val realpow_0 = thm "realpow_0"; paulson@14265: val realpow_Suc = thm "realpow_Suc"; paulson@14265: paulson@14265: val realpow_zero = thm "realpow_zero"; paulson@14265: val realpow_not_zero = thm "realpow_not_zero"; paulson@14265: val realpow_zero_zero = thm "realpow_zero_zero"; paulson@14265: val realpow_inverse = thm "realpow_inverse"; paulson@14265: val realpow_abs = thm "realpow_abs"; paulson@14265: val realpow_add = thm "realpow_add"; paulson@14265: val realpow_one = thm "realpow_one"; paulson@14265: val realpow_two = thm "realpow_two"; paulson@14265: val realpow_gt_zero = thm "realpow_gt_zero"; paulson@14265: val realpow_ge_zero = thm "realpow_ge_zero"; paulson@14265: val realpow_le = thm "realpow_le"; paulson@14265: val realpow_0_left = thm "realpow_0_left"; paulson@14265: val realpow_less = thm "realpow_less"; paulson@14265: val realpow_eq_one = thm "realpow_eq_one"; paulson@14265: val abs_realpow_minus_one = thm "abs_realpow_minus_one"; paulson@14265: val realpow_mult = thm "realpow_mult"; paulson@14265: val realpow_two_le = thm "realpow_two_le"; paulson@14265: val abs_realpow_two = thm "abs_realpow_two"; paulson@14265: val realpow_two_abs = thm "realpow_two_abs"; paulson@14265: val realpow_two_gt_one = thm "realpow_two_gt_one"; paulson@14265: val realpow_ge_one = thm "realpow_ge_one"; paulson@14265: val realpow_ge_one2 = thm "realpow_ge_one2"; paulson@14265: val two_realpow_ge_one = thm "two_realpow_ge_one"; paulson@14265: val two_realpow_gt = thm "two_realpow_gt"; paulson@14265: val realpow_minus_one = thm "realpow_minus_one"; paulson@14265: val realpow_minus_one_odd = thm "realpow_minus_one_odd"; paulson@14265: val realpow_minus_one_even = thm "realpow_minus_one_even"; paulson@14265: val realpow_Suc_less = thm "realpow_Suc_less"; paulson@14265: val realpow_Suc_le = thm "realpow_Suc_le"; paulson@14265: val realpow_zero_le = thm "realpow_zero_le"; paulson@14265: val realpow_Suc_le2 = thm "realpow_Suc_le2"; paulson@14265: val realpow_Suc_le3 = thm "realpow_Suc_le3"; paulson@14265: val realpow_less_le = thm "realpow_less_le"; paulson@14265: val realpow_le_le = thm "realpow_le_le"; paulson@14265: val realpow_Suc_le_self = thm "realpow_Suc_le_self"; paulson@14265: val realpow_Suc_less_one = thm "realpow_Suc_less_one"; paulson@14265: val realpow_le_Suc = thm "realpow_le_Suc"; paulson@14265: val realpow_less_Suc = thm "realpow_less_Suc"; paulson@14265: val realpow_le_Suc2 = thm "realpow_le_Suc2"; paulson@14265: val realpow_gt_ge2 = thm "realpow_gt_ge2"; paulson@14265: val realpow_ge_ge2 = thm "realpow_ge_ge2"; paulson@14265: val realpow_Suc_ge_self2 = thm "realpow_Suc_ge_self2"; paulson@14265: val realpow_ge_self2 = thm "realpow_ge_self2"; paulson@14265: val realpow_minus_mult = thm "realpow_minus_mult"; paulson@14265: val realpow_two_mult_inverse = thm "realpow_two_mult_inverse"; paulson@14265: val realpow_two_minus = thm "realpow_two_minus"; paulson@14265: val realpow_two_disj = thm "realpow_two_disj"; paulson@14265: val realpow_diff = thm "realpow_diff"; paulson@14265: val realpow_real_of_nat = thm "realpow_real_of_nat"; paulson@14265: val realpow_real_of_nat_two_pos = thm "realpow_real_of_nat_two_pos"; paulson@14265: val realpow_increasing = thm "realpow_increasing"; paulson@14265: val realpow_Suc_cancel_eq = thm "realpow_Suc_cancel_eq"; paulson@14265: val realpow_eq_0_iff = thm "realpow_eq_0_iff"; paulson@14265: val zero_less_realpow_abs_iff = thm "zero_less_realpow_abs_iff"; paulson@14265: val zero_le_realpow_abs = thm "zero_le_realpow_abs"; paulson@14265: val real_of_int_power = thm "real_of_int_power"; paulson@14265: val power_real_number_of = thm "power_real_number_of"; paulson@14265: val real_power_two = thm "real_power_two"; paulson@14265: val real_sqr_ge_zero = thm "real_sqr_ge_zero"; paulson@14265: val real_sqr_gt_zero = thm "real_sqr_gt_zero"; paulson@14265: val real_sqr_not_zero = thm "real_sqr_not_zero"; paulson@14268: val real_sum_squares_cancel_a = thm "real_sum_squares_cancel_a"; paulson@14268: val real_mult_inverse_cancel2 = thm "real_mult_inverse_cancel2"; paulson@14268: val real_squared_diff_one_factored = thm "real_squared_diff_one_factored"; paulson@14268: val real_mult_is_one = thm "real_mult_is_one"; paulson@14268: val real_le_add_half_cancel = thm "real_le_add_half_cancel"; paulson@14268: val real_minus_half_eq = thm "real_minus_half_eq"; paulson@14268: val real_mult_inverse_cancel = thm "real_mult_inverse_cancel"; paulson@14268: val real_mult_inverse_cancel2 = thm "real_mult_inverse_cancel2"; paulson@14268: val inverse_real_of_nat_gt_zero = thm "inverse_real_of_nat_gt_zero"; paulson@14268: val inverse_real_of_nat_ge_zero = thm "inverse_real_of_nat_ge_zero"; paulson@14268: val real_sum_squares_not_zero = thm "real_sum_squares_not_zero"; paulson@14268: val real_sum_squares_not_zero2 = thm "real_sum_squares_not_zero2"; paulson@14268: val abs_mult_abs = thm "abs_mult_abs"; paulson@14268: paulson@14268: val realpow_divide = thm "realpow_divide"; paulson@14268: val realpow_ge_zero2 = thm "realpow_ge_zero2"; paulson@14268: val realpow_le2 = thm "realpow_le2"; paulson@14268: val realpow_Suc_gt_one = thm "realpow_Suc_gt_one"; paulson@14268: val realpow_two_sum_zero_iff = thm "realpow_two_sum_zero_iff"; paulson@14268: val realpow_two_le_add_order = thm "realpow_two_le_add_order"; paulson@14268: val realpow_two_le_add_order2 = thm "realpow_two_le_add_order2"; paulson@14268: val real_sum_square_gt_zero = thm "real_sum_square_gt_zero"; paulson@14268: val real_sum_square_gt_zero2 = thm "real_sum_square_gt_zero2"; paulson@14268: val real_minus_mult_self_le = thm "real_minus_mult_self_le"; paulson@14268: val realpow_square_minus_le = thm "realpow_square_minus_le"; paulson@14268: val realpow_num_eq_if = thm "realpow_num_eq_if"; paulson@14268: val real_num_zero_less_two_pow = thm "real_num_zero_less_two_pow"; paulson@14268: val lemma_realpow_num_two_mono = thm "lemma_realpow_num_two_mono"; paulson@14268: val lemma_realpow_4 = thm "lemma_realpow_4"; paulson@14268: val lemma_realpow_16 = thm "lemma_realpow_16"; paulson@14268: val zero_le_x_squared = thm "zero_le_x_squared"; paulson@14265: *} paulson@14265: paulson@14265: paulson@7077: end