diff -r f06e5a5a4b46 -r a9599d3d7610 src/HOL/Library/Liminf_Limsup.thy --- a/src/HOL/Library/Liminf_Limsup.thy Thu Nov 05 10:35:37 2015 +0100 +++ b/src/HOL/Library/Liminf_Limsup.thy Thu Nov 05 10:39:49 2015 +0100 @@ -30,7 +30,7 @@ shows "(INF i : A. INF j : B. f i j) = (INF p : A \ B. f (fst p) (snd p))" by (rule antisym) (auto intro!: INF_greatest INF_lower2) -subsubsection \@{text Liminf} and @{text Limsup}\ +subsubsection \\Liminf\ and \Limsup\\ definition Liminf :: "'a filter \ ('a \ 'b) \ 'b :: complete_lattice" where "Liminf F f = (SUP P:{P. eventually P F}. INF x:{x. P x}. f x)"