diff -r d96550db3d77 -r d4d33a4d7548 src/HOL/Old_Number_Theory/Quadratic_Reciprocity.thy --- a/src/HOL/Old_Number_Theory/Quadratic_Reciprocity.thy Tue Sep 06 16:30:39 2011 -0700 +++ b/src/HOL/Old_Number_Theory/Quadratic_Reciprocity.thy Tue Sep 06 19:03:41 2011 -0700 @@ -22,7 +22,7 @@ from finite_A have "a * setsum id A = setsum (%x. a * x) A" by (auto simp add: setsum_const_mult id_def) also have "setsum (%x. a * x) = setsum (%x. x * a)" - by (auto simp add: zmult_commute) + by (auto simp add: mult_commute) also have "setsum (%x. x * a) A = setsum id B" by (simp add: B_def setsum_reindex_id[OF inj_on_xa_A]) also have "... = setsum (%x. p * (x div p) + StandardRes p x) B" @@ -71,7 +71,7 @@ p * (setsum (%x. ((x * a) div p)) A - int(card E)) + 2 * setsum id E" proof - have "(a - 1) * setsum id A = a * setsum id A - setsum id A" - by (auto simp add: zdiff_zmult_distrib) + by (auto simp add: left_diff_distrib) also note QRLemma1 also from QRLemma2 have "p * (\x \ A. x * a div p) + setsum id D + setsum id E - setsum id A = @@ -82,7 +82,7 @@ p * int (card E) + 2 * setsum id E" by arith finally show ?thesis - by (auto simp only: zdiff_zmult_distrib2) + by (auto simp only: right_diff_distrib) qed lemma QRLemma4: "a \ zOdd ==> @@ -284,7 +284,7 @@ proof - fix a and b assume "~ q * a < p * b" and b1: "0 < b" and b2: "b \ (q - 1) div 2" - with zless_linear have "(p * b < q * a) | (p * b = q * a)" by auto + with less_linear have "(p * b < q * a) | (p * b = q * a)" by auto moreover from pb_neq_qa b1 b2 have "(p * b \ q * a)" by auto ultimately show "p * b < q * a" by auto qed @@ -388,7 +388,7 @@ by (auto simp add: int_distrib) then have "((p - 1) * q) div 2 < (((q - 1) * p) + (2 * p)) div 2" apply (rule_tac x = "((p - 1) * q)" in even_div_2_l) - by (auto simp add: even3, auto simp add: zmult_ac) + by (auto simp add: even3, auto simp add: mult_ac) also have "((p - 1) * q) div 2 = q * ((p - 1) div 2)" by (auto simp add: even1 even_prod_div_2) also have "(((q - 1) * p) + (2 * p)) div 2 = (((q - 1) div 2) * p) + p" @@ -557,11 +557,11 @@ lemma S1_carda: "int (card(S1)) = setsum (%j. (j * q) div p) P_set" - by (auto simp add: S1_card zmult_ac) + by (auto simp add: S1_card mult_ac) lemma S2_carda: "int (card(S2)) = setsum (%j. (j * p) div q) Q_set" - by (auto simp add: S2_card zmult_ac) + by (auto simp add: S2_card mult_ac) lemma pq_sum_prop: "(setsum (%j. (j * p) div q) Q_set) + (setsum (%j. (j * q) div p) P_set) = ((p - 1) div 2) * ((q - 1) div 2)" @@ -610,7 +610,7 @@ by auto also have "... = (-1::int) ^ (nat(setsum (%x. ((x * p) div q)) Q_set) + nat(setsum (%x. ((x * q) div p)) P_set))" - by (auto simp add: zpower_zadd_distrib) + by (auto simp add: power_add) also have "nat(setsum (%x. ((x * p) div q)) Q_set) + nat(setsum (%x. ((x * q) div p)) P_set) = nat((setsum (%x. ((x * p) div q)) Q_set) +