(* Author: Florian Haftmann, TU Muenchen *)
header {* A HOL random engine *}
theory Random
imports Code_Numeral List
begin
notation fcomp (infixl "\>" 60)
notation scomp (infixl "\\" 60)
subsection {* Auxiliary functions *}
fun log :: "code_numeral \ code_numeral \ code_numeral" where
"log b i = (if b \ 1 \ i < b then 1 else 1 + log b (i div b))"
definition inc_shift :: "code_numeral \ code_numeral \ code_numeral" where
"inc_shift v k = (if v = k then 1 else k + 1)"
definition minus_shift :: "code_numeral \ code_numeral \ code_numeral \ code_numeral" where
"minus_shift r k l = (if k < l then r + k - l else k - l)"
subsection {* Random seeds *}
type_synonym seed = "code_numeral \ code_numeral"
primrec "next" :: "seed \ code_numeral \ seed" where
"next (v, w) = (let
k = v div 53668;
v' = minus_shift 2147483563 ((v mod 53668) * 40014) (k * 12211);
l = w div 52774;
w' = minus_shift 2147483399 ((w mod 52774) * 40692) (l * 3791);
z = minus_shift 2147483562 v' (w' + 1) + 1
in (z, (v', w')))"
definition split_seed :: "seed \ seed \ seed" where
"split_seed s = (let
(v, w) = s;
(v', w') = snd (next s);
v'' = inc_shift 2147483562 v;
w'' = inc_shift 2147483398 w
in ((v'', w'), (v', w'')))"
subsection {* Base selectors *}
fun iterate :: "code_numeral \ ('b \ 'a \ 'b \ 'a) \ 'b \ 'a \ 'b \ 'a" where
"iterate k f x = (if k = 0 then Pair x else f x \\ iterate (k - 1) f)"
definition range :: "code_numeral \ seed \ code_numeral \ seed" where
"range k = iterate (log 2147483561 k)
(\l. next \\ (\v. Pair (v + l * 2147483561))) 1
\\ (\v. Pair (v mod k))"
lemma range:
"k > 0 \ fst (range k s) < k"
by (simp add: range_def split_def del: log.simps iterate.simps)
definition select :: "'a list \ seed \ 'a \ seed" where
"select xs = range (Code_Numeral.of_nat (length xs))
\\ (\k. Pair (nth xs (Code_Numeral.nat_of k)))"
lemma select:
assumes "xs \ []"
shows "fst (select xs s) \ set xs"
proof -
from assms have "Code_Numeral.of_nat (length xs) > 0" by simp
with range have
"fst (range (Code_Numeral.of_nat (length xs)) s) < Code_Numeral.of_nat (length xs)" by best
then have
"Code_Numeral.nat_of (fst (range (Code_Numeral.of_nat (length xs)) s)) < length xs" by simp
then show ?thesis
by (simp add: split_beta select_def)
qed
primrec pick :: "(code_numeral \ 'a) list \ code_numeral \ 'a" where
"pick (x # xs) i = (if i < fst x then snd x else pick xs (i - fst x))"
lemma pick_member:
"i < listsum (map fst xs) \ pick xs i \ set (map snd xs)"
by (induct xs arbitrary: i) simp_all
lemma pick_drop_zero:
"pick (filter (\(k, _). k > 0) xs) = pick xs"
by (induct xs) (auto simp add: fun_eq_iff)
lemma pick_same:
"l < length xs \ Random.pick (map (Pair 1) xs) (Code_Numeral.of_nat l) = nth xs l"
proof (induct xs arbitrary: l)
case Nil then show ?case by simp
next
case (Cons x xs) then show ?case by (cases l) simp_all
qed
definition select_weight :: "(code_numeral \ 'a) list \ seed \ 'a \ seed" where
"select_weight xs = range (listsum (map fst xs))
\\ (\k. Pair (pick xs k))"
lemma select_weight_member:
assumes "0 < listsum (map fst xs)"
shows "fst (select_weight xs s) \ set (map snd xs)"
proof -
from range assms
have "fst (range (listsum (map fst xs)) s) < listsum (map fst xs)" .
with pick_member
have "pick xs (fst (range (listsum (map fst xs)) s)) \ set (map snd xs)" .
then show ?thesis by (simp add: select_weight_def scomp_def split_def)
qed
lemma select_weight_cons_zero:
"select_weight ((0, x) # xs) = select_weight xs"
by (simp add: select_weight_def)
lemma select_weight_drop_zero:
"select_weight (filter (\(k, _). k > 0) xs) = select_weight xs"
proof -
have "listsum (map fst [(k, _)\xs . 0 < k]) = listsum (map fst xs)"
by (induct xs) auto
then show ?thesis by (simp only: select_weight_def pick_drop_zero)
qed
lemma select_weight_select:
assumes "xs \ []"
shows "select_weight (map (Pair 1) xs) = select xs"
proof -
have less: "\s. fst (range (Code_Numeral.of_nat (length xs)) s) < Code_Numeral.of_nat (length xs)"
using assms by (intro range) simp
moreover have "listsum (map fst (map (Pair 1) xs)) = Code_Numeral.of_nat (length xs)"
by (induct xs) simp_all
ultimately show ?thesis
by (auto simp add: select_weight_def select_def scomp_def split_def
fun_eq_iff pick_same [symmetric])
qed
subsection {* @{text ML} interface *}
code_reflect Random_Engine
functions range select select_weight
ML {*
structure Random_Engine =
struct
open Random_Engine;
type seed = int * int;
local
val seed = Unsynchronized.ref
(let
val now = Time.toMilliseconds (Time.now ());
val (q, s1) = IntInf.divMod (now, 2147483562);
val s2 = q mod 2147483398;
in (s1 + 1, s2 + 1) end);
in
fun next_seed () =
let
val (seed1, seed') = @{code split_seed} (! seed)
val _ = seed := seed'
in
seed1
end
fun run f =
let
val (x, seed') = f (! seed);
val _ = seed := seed'
in x end;
end;
end;
*}
hide_type (open) seed
hide_const (open) inc_shift minus_shift log "next" split_seed
iterate range select pick select_weight
hide_fact (open) range_def
no_notation fcomp (infixl "\>" 60)
no_notation scomp (infixl "\\" 60)
end