(* Author: Florian Haftmann, TU Muenchen *)
header {* Relating (finite) sets and lists *}
theory List_Set
imports Main
begin
subsection {* Various additional list functions *}
definition insert :: "'a \ 'a list \ 'a list" where
"insert x xs = (if x \ set xs then xs else x # xs)"
definition remove_all :: "'a \ 'a list \ 'a list" where
"remove_all x xs = filter (Not o op = x) xs"
subsection {* Various additional set functions *}
definition is_empty :: "'a set \ bool" where
"is_empty A \ A = {}"
definition remove :: "'a \ 'a set \ 'a set" where
"remove x A = A - {x}"
lemma fun_left_comm_idem_remove:
"fun_left_comm_idem remove"
proof -
have rem: "remove = (\x A. A - {x})" by (simp add: expand_fun_eq remove_def)
show ?thesis by (simp only: fun_left_comm_idem_remove rem)
qed
lemma minus_fold_remove:
assumes "finite A"
shows "B - A = fold remove B A"
proof -
have rem: "remove = (\x A. A - {x})" by (simp add: expand_fun_eq remove_def)
show ?thesis by (simp only: rem assms minus_fold_remove)
qed
definition project :: "('a \ bool) \ 'a set \ 'a set" where
"project P A = {a\A. P a}"
subsection {* Basic set operations *}
lemma is_empty_set:
"is_empty (set xs) \ null xs"
by (simp add: is_empty_def null_empty)
lemma ball_set:
"(\x\set xs. P x) \ list_all P xs"
by (rule list_ball_code)
lemma bex_set:
"(\x\set xs. P x) \ list_ex P xs"
by (rule list_bex_code)
lemma empty_set:
"{} = set []"
by simp
lemma insert_set:
"Set.insert x (set xs) = set (insert x xs)"
by (auto simp add: insert_def)
lemma insert_set_compl:
"Set.insert x (- set xs) = - set (List_Set.remove_all x xs)"
by (auto simp del: mem_def simp add: remove_all_def)
lemma remove_set:
"remove x (set xs) = set (remove_all x xs)"
by (auto simp add: remove_def remove_all_def)
lemma remove_set_compl:
"List_Set.remove x (- set xs) = - set (List_Set.insert x xs)"
by (auto simp del: mem_def simp add: remove_def List_Set.insert_def)
lemma image_set:
"image f (set xs) = set (map f xs)"
by simp
lemma project_set:
"project P (set xs) = set (filter P xs)"
by (auto simp add: project_def)
subsection {* Functorial set operations *}
lemma union_set:
"set xs \ A = foldl (\A x. Set.insert x A) A xs"
proof -
interpret fun_left_comm_idem Set.insert
by (fact fun_left_comm_idem_insert)
show ?thesis by (simp add: union_fold_insert fold_set)
qed
lemma minus_set:
"A - set xs = foldl (\A x. remove x A) A xs"
proof -
interpret fun_left_comm_idem remove
by (fact fun_left_comm_idem_remove)
show ?thesis
by (simp add: minus_fold_remove [of _ A] fold_set)
qed
lemma Inter_set:
"Inter (set As) = foldl (op \) UNIV As"
proof -
have "fold (op \) UNIV (set As) = foldl (\y x. x \ y) UNIV As"
by (rule fun_left_comm_idem.fold_set, unfold_locales, auto)
then show ?thesis
by (simp only: Inter_fold_inter finite_set Int_commute)
qed
lemma Union_set:
"Union (set As) = foldl (op \) {} As"
proof -
have "fold (op \) {} (set As) = foldl (\y x. x \ y) {} As"
by (rule fun_left_comm_idem.fold_set, unfold_locales, auto)
then show ?thesis
by (simp only: Union_fold_union finite_set Un_commute)
qed
lemma INTER_set:
"INTER (set As) f = foldl (\B A. f A \ B) UNIV As"
proof -
have "fold (\A. op \ (f A)) UNIV (set As) = foldl (\B A. f A \ B) UNIV As"
by (rule fun_left_comm_idem.fold_set, unfold_locales, auto)
then show ?thesis
by (simp only: INTER_fold_inter finite_set)
qed
lemma UNION_set:
"UNION (set As) f = foldl (\B A. f A \ B) {} As"
proof -
have "fold (\A. op \ (f A)) {} (set As) = foldl (\B A. f A \ B) {} As"
by (rule fun_left_comm_idem.fold_set, unfold_locales, auto)
then show ?thesis
by (simp only: UNION_fold_union finite_set)
qed
subsection {* Derived set operations *}
lemma member:
"a \ A \ (\x\A. a = x)"
by simp
lemma subset_eq:
"A \ B \ (\x\A. x \ B)"
by (fact subset_eq)
lemma subset:
"A \ B \ A \ B \ \ B \ A"
by (fact less_le_not_le)
lemma set_eq:
"A = B \ A \ B \ B \ A"
by (fact eq_iff)
lemma inter:
"A \ B = project (\x. x \ A) B"
by (auto simp add: project_def)
hide (open) const insert
end