add lemma Quotient_abs_induct
authorhuffman
Wed Apr 18 15:09:07 2012 +0200 (2012-04-18)
changeset 475381f0ec5b8135a
parent 47537 b06be48923a4
child 47539 436ae5ea4f80
child 47544 e455cdaac479
add lemma Quotient_abs_induct
src/HOL/Lifting.thy
     1.1 --- a/src/HOL/Lifting.thy	Wed Apr 18 14:59:04 2012 +0200
     1.2 +++ b/src/HOL/Lifting.thy	Wed Apr 18 15:09:07 2012 +0200
     1.3 @@ -296,6 +296,10 @@
     1.4  lemma Quotient_rel_eq_transfer: "(T ===> T ===> op =) R (op =)"
     1.5    using 1 unfolding Quotient_alt_def fun_rel_def by simp
     1.6  
     1.7 +lemma Quotient_abs_induct:
     1.8 +  assumes "\<And>y. R y y \<Longrightarrow> P (Abs y)" shows "P x"
     1.9 +  using 1 assms unfolding Quotient_def by metis
    1.10 +
    1.11  end
    1.12  
    1.13  text {* Generating transfer rules for total quotients. *}