author wenzelm Mon, 29 Jul 2002 18:07:53 +0200 changeset 13429 2232810416fc parent 13428 99e52e78eb65 child 13430 ab814c7685a9
tuned;
 src/ZF/Constructible/L_axioms.thy file | annotate | diff | comparison | revisions src/ZF/Constructible/Rec_Separation.thy file | annotate | diff | comparison | revisions src/ZF/Constructible/Separation.thy file | annotate | diff | comparison | revisions
```--- a/src/ZF/Constructible/L_axioms.thy	Mon Jul 29 00:57:16 2002 +0200
+++ b/src/ZF/Constructible/L_axioms.thy	Mon Jul 29 18:07:53 2002 +0200
@@ -1,37 +1,38 @@
-header {*The ZF Axioms (Except Separation) in L*}
+
+header {* The ZF Axioms (Except Separation) in L *}

theory L_axioms = Formula + Relative + Reflection + MetaExists:

text {* The class L satisfies the premises of locale @{text M_triv_axioms} *}

lemma transL: "[| y\<in>x; L(x) |] ==> L(y)"
-apply (insert Transset_Lset)
-apply (simp add: Transset_def L_def, blast)
+apply (insert Transset_Lset)
+apply (simp add: Transset_def L_def, blast)
done

lemma nonempty: "L(0)"
-apply (blast intro: zero_in_Lset)
+apply (blast intro: zero_in_Lset)
done

lemma upair_ax: "upair_ax(L)"
apply (simp add: upair_ax_def upair_def, clarify)
-apply (rule_tac x="{x,y}" in rexI)
+apply (rule_tac x="{x,y}" in rexI)
done

lemma Union_ax: "Union_ax(L)"
apply (simp add: Union_ax_def big_union_def, clarify)
-apply (rule_tac x="Union(x)" in rexI)
-apply (blast intro: transL)
+apply (rule_tac x="Union(x)" in rexI)
+apply (blast intro: transL)
done

lemma power_ax: "power_ax(L)"
apply (simp add: power_ax_def powerset_def Relative.subset_def, clarify)
-apply (rule_tac x="{y \<in> Pow(x). L(y)}" in rexI)
+apply (rule_tac x="{y \<in> Pow(x). L(y)}" in rexI)
-apply (blast intro: transL)
+apply (blast intro: transL)
done

subsubsection{*For L to satisfy Replacement *}
@@ -40,40 +41,40 @@
there too!*)

lemma LReplace_in_Lset:
-     "[|X \<in> Lset(i); univalent(L,X,Q); Ord(i)|]
+     "[|X \<in> Lset(i); univalent(L,X,Q); Ord(i)|]
==> \<exists>j. Ord(j) & Replace(X, %x y. Q(x,y) & L(y)) \<subseteq> Lset(j)"
-apply (rule_tac x="\<Union>y \<in> Replace(X, %x y. Q(x,y) & L(y)). succ(lrank(y))"
+apply (rule_tac x="\<Union>y \<in> Replace(X, %x y. Q(x,y) & L(y)). succ(lrank(y))"
in exI)
apply simp
-apply clarify
-apply (rule_tac a=x in UN_I)
- apply (simp_all add: Replace_iff univalent_def)
-apply (blast dest: transL L_I)
+apply clarify
+apply (rule_tac a=x in UN_I)
+ apply (simp_all add: Replace_iff univalent_def)
+apply (blast dest: transL L_I)
done

-lemma LReplace_in_L:
-     "[|L(X); univalent(L,X,Q)|]
+lemma LReplace_in_L:
+     "[|L(X); univalent(L,X,Q)|]
==> \<exists>Y. L(Y) & Replace(X, %x y. Q(x,y) & L(y)) \<subseteq> Y"
-apply (drule L_D, clarify)
+apply (drule L_D, clarify)
apply (drule LReplace_in_Lset, assumption+)
apply (blast intro: L_I Lset_in_Lset_succ)
done

lemma replacement: "replacement(L,P)"
-apply (frule LReplace_in_L, assumption+, clarify)
-apply (rule_tac x=Y in rexI)
-apply (simp_all add: Replace_iff univalent_def, blast)
+apply (frule LReplace_in_L, assumption+, clarify)
+apply (rule_tac x=Y in rexI)
+apply (simp_all add: Replace_iff univalent_def, blast)
done

subsection{*Instantiating the locale @{text M_triv_axioms}*}
text{*No instances of Separation yet.*}

lemma Lset_mono_le: "mono_le_subset(Lset)"
-by (simp add: mono_le_subset_def le_imp_subset Lset_mono)
+by (simp add: mono_le_subset_def le_imp_subset Lset_mono)

lemma Lset_cont: "cont_Ord(Lset)"
-by (simp add: cont_Ord_def Limit_Lset_eq OUnion_def Limit_is_Ord)
+by (simp add: cont_Ord_def Limit_Lset_eq OUnion_def Limit_is_Ord)

lemmas Pair_in_Lset = Formula.Pair_in_LLimit

@@ -90,50 +91,88 @@
apply (rule L_nat)
done

-lemmas rall_abs [simp] = M_triv_axioms.rall_abs [OF M_triv_axioms_L]
-  and rex_abs [simp] = M_triv_axioms.rex_abs [OF M_triv_axioms_L]
+lemmas rall_abs = M_triv_axioms.rall_abs [OF M_triv_axioms_L]
+  and rex_abs = M_triv_axioms.rex_abs [OF M_triv_axioms_L]
and ball_iff_equiv = M_triv_axioms.ball_iff_equiv [OF M_triv_axioms_L]
and M_equalityI = M_triv_axioms.M_equalityI [OF M_triv_axioms_L]
-  and empty_abs [simp] = M_triv_axioms.empty_abs [OF M_triv_axioms_L]
-  and subset_abs [simp] = M_triv_axioms.subset_abs [OF M_triv_axioms_L]
-  and upair_abs [simp] = M_triv_axioms.upair_abs [OF M_triv_axioms_L]
-  and upair_in_M_iff [iff] = M_triv_axioms.upair_in_M_iff [OF M_triv_axioms_L]
-  and singleton_in_M_iff [iff] = M_triv_axioms.singleton_in_M_iff [OF M_triv_axioms_L]
-  and pair_abs [simp] = M_triv_axioms.pair_abs [OF M_triv_axioms_L]
-  and pair_in_M_iff [iff] = M_triv_axioms.pair_in_M_iff [OF M_triv_axioms_L]
+  and empty_abs = M_triv_axioms.empty_abs [OF M_triv_axioms_L]
+  and subset_abs = M_triv_axioms.subset_abs [OF M_triv_axioms_L]
+  and upair_abs = M_triv_axioms.upair_abs [OF M_triv_axioms_L]
+  and upair_in_M_iff = M_triv_axioms.upair_in_M_iff [OF M_triv_axioms_L]
+  and singleton_in_M_iff = M_triv_axioms.singleton_in_M_iff [OF M_triv_axioms_L]
+  and pair_abs = M_triv_axioms.pair_abs [OF M_triv_axioms_L]
+  and pair_in_M_iff = M_triv_axioms.pair_in_M_iff [OF M_triv_axioms_L]
and pair_components_in_M = M_triv_axioms.pair_components_in_M [OF M_triv_axioms_L]
-  and cartprod_abs [simp] = M_triv_axioms.cartprod_abs [OF M_triv_axioms_L]
-  and union_abs [simp] = M_triv_axioms.union_abs [OF M_triv_axioms_L]
-  and inter_abs [simp] = M_triv_axioms.inter_abs [OF M_triv_axioms_L]
-  and setdiff_abs [simp] = M_triv_axioms.setdiff_abs [OF M_triv_axioms_L]
-  and Union_abs [simp] = M_triv_axioms.Union_abs [OF M_triv_axioms_L]
-  and Union_closed [intro, simp] = M_triv_axioms.Union_closed [OF M_triv_axioms_L]
-  and Un_closed [intro, simp] = M_triv_axioms.Un_closed [OF M_triv_axioms_L]
-  and cons_closed [intro, simp] = M_triv_axioms.cons_closed [OF M_triv_axioms_L]
-  and successor_abs [simp] = M_triv_axioms.successor_abs [OF M_triv_axioms_L]
-  and succ_in_M_iff [iff] = M_triv_axioms.succ_in_M_iff [OF M_triv_axioms_L]
-  and separation_closed [intro, simp] = M_triv_axioms.separation_closed [OF M_triv_axioms_L]
+  and cartprod_abs = M_triv_axioms.cartprod_abs [OF M_triv_axioms_L]
+  and union_abs = M_triv_axioms.union_abs [OF M_triv_axioms_L]
+  and inter_abs = M_triv_axioms.inter_abs [OF M_triv_axioms_L]
+  and setdiff_abs = M_triv_axioms.setdiff_abs [OF M_triv_axioms_L]
+  and Union_abs = M_triv_axioms.Union_abs [OF M_triv_axioms_L]
+  and Union_closed = M_triv_axioms.Union_closed [OF M_triv_axioms_L]
+  and Un_closed = M_triv_axioms.Un_closed [OF M_triv_axioms_L]
+  and cons_closed = M_triv_axioms.cons_closed [OF M_triv_axioms_L]
+  and successor_abs = M_triv_axioms.successor_abs [OF M_triv_axioms_L]
+  and succ_in_M_iff = M_triv_axioms.succ_in_M_iff [OF M_triv_axioms_L]
+  and separation_closed = M_triv_axioms.separation_closed [OF M_triv_axioms_L]
and strong_replacementI = M_triv_axioms.strong_replacementI [OF M_triv_axioms_L]
-  and strong_replacement_closed [intro, simp] = M_triv_axioms.strong_replacement_closed [OF M_triv_axioms_L]
-  and RepFun_closed [intro, simp] = M_triv_axioms.RepFun_closed [OF M_triv_axioms_L]
-  and lam_closed [intro, simp] = M_triv_axioms.lam_closed [OF M_triv_axioms_L]
-  and image_abs [simp] = M_triv_axioms.image_abs [OF M_triv_axioms_L]
+  and strong_replacement_closed = M_triv_axioms.strong_replacement_closed [OF M_triv_axioms_L]
+  and RepFun_closed = M_triv_axioms.RepFun_closed [OF M_triv_axioms_L]
+  and lam_closed = M_triv_axioms.lam_closed [OF M_triv_axioms_L]
+  and image_abs = M_triv_axioms.image_abs [OF M_triv_axioms_L]
and powerset_Pow = M_triv_axioms.powerset_Pow [OF M_triv_axioms_L]
and powerset_imp_subset_Pow = M_triv_axioms.powerset_imp_subset_Pow [OF M_triv_axioms_L]
-  and nat_into_M [intro] = M_triv_axioms.nat_into_M [OF M_triv_axioms_L]
+  and nat_into_M = M_triv_axioms.nat_into_M [OF M_triv_axioms_L]
and nat_case_closed = M_triv_axioms.nat_case_closed [OF M_triv_axioms_L]
-  and Inl_in_M_iff [iff] = M_triv_axioms.Inl_in_M_iff [OF M_triv_axioms_L]
-  and Inr_in_M_iff [iff] = M_triv_axioms.Inr_in_M_iff [OF M_triv_axioms_L]
+  and Inl_in_M_iff = M_triv_axioms.Inl_in_M_iff [OF M_triv_axioms_L]
+  and Inr_in_M_iff = M_triv_axioms.Inr_in_M_iff [OF M_triv_axioms_L]
and lt_closed = M_triv_axioms.lt_closed [OF M_triv_axioms_L]
-  and transitive_set_abs [simp] = M_triv_axioms.transitive_set_abs [OF M_triv_axioms_L]
-  and ordinal_abs [simp] = M_triv_axioms.ordinal_abs [OF M_triv_axioms_L]
-  and limit_ordinal_abs [simp] = M_triv_axioms.limit_ordinal_abs [OF M_triv_axioms_L]
-  and successor_ordinal_abs [simp] = M_triv_axioms.successor_ordinal_abs [OF M_triv_axioms_L]
+  and transitive_set_abs = M_triv_axioms.transitive_set_abs [OF M_triv_axioms_L]
+  and ordinal_abs = M_triv_axioms.ordinal_abs [OF M_triv_axioms_L]
+  and limit_ordinal_abs = M_triv_axioms.limit_ordinal_abs [OF M_triv_axioms_L]
+  and successor_ordinal_abs = M_triv_axioms.successor_ordinal_abs [OF M_triv_axioms_L]
and finite_ordinal_abs = M_triv_axioms.finite_ordinal_abs [OF M_triv_axioms_L]
-  and omega_abs [simp] = M_triv_axioms.omega_abs [OF M_triv_axioms_L]
-  and number1_abs [simp] = M_triv_axioms.number1_abs [OF M_triv_axioms_L]
-  and number2_abs [simp] = M_triv_axioms.number2_abs [OF M_triv_axioms_L]
-  and number3_abs [simp] = M_triv_axioms.number3_abs [OF M_triv_axioms_L]
+  and omega_abs = M_triv_axioms.omega_abs [OF M_triv_axioms_L]
+  and number1_abs = M_triv_axioms.number1_abs [OF M_triv_axioms_L]
+  and number2_abs = M_triv_axioms.number2_abs [OF M_triv_axioms_L]
+  and number3_abs = M_triv_axioms.number3_abs [OF M_triv_axioms_L]
+
+declare rall_abs [simp]
+declare rex_abs [simp]
+declare empty_abs [simp]
+declare subset_abs [simp]
+declare upair_abs [simp]
+declare upair_in_M_iff [iff]
+declare singleton_in_M_iff [iff]
+declare pair_abs [simp]
+declare pair_in_M_iff [iff]
+declare cartprod_abs [simp]
+declare union_abs [simp]
+declare inter_abs [simp]
+declare setdiff_abs [simp]
+declare Union_abs [simp]
+declare Union_closed [intro, simp]
+declare Un_closed [intro, simp]
+declare cons_closed [intro, simp]
+declare successor_abs [simp]
+declare succ_in_M_iff [iff]
+declare separation_closed [intro, simp]
+declare strong_replacementI
+declare strong_replacement_closed [intro, simp]
+declare RepFun_closed [intro, simp]
+declare lam_closed [intro, simp]
+declare image_abs [simp]
+declare nat_into_M [intro]
+declare Inl_in_M_iff [iff]
+declare Inr_in_M_iff [iff]
+declare transitive_set_abs [simp]
+declare ordinal_abs [simp]
+declare limit_ordinal_abs [simp]
+declare successor_ordinal_abs [simp]
+declare finite_ordinal_abs [simp]
+declare omega_abs [simp]
+declare number1_abs [simp]
+declare number2_abs [simp]
+declare number3_abs [simp]

subsection{*Instantiation of the locale @{text reflection}*}
@@ -151,7 +190,7 @@

text{*We must use the meta-existential quantifier; otherwise the reflection
-      terms become enormous!*}
+      terms become enormous!*}
constdefs
L_Reflects :: "[i=>o,[i,i]=>o] => prop"      ("(3REFLECTS/ [_,/ _])")
"REFLECTS[P,Q] == (??Cl. Closed_Unbounded(Cl) &
@@ -160,60 +199,60 @@

theorem Triv_reflection:
"REFLECTS[P, \<lambda>a x. P(x)]"
-apply (rule meta_exI)
-apply (rule Closed_Unbounded_Ord)
+apply (rule meta_exI)
+apply (rule Closed_Unbounded_Ord)
done

theorem Not_reflection:
"REFLECTS[P,Q] ==> REFLECTS[\<lambda>x. ~P(x), \<lambda>a x. ~Q(a,x)]"
-apply (unfold L_Reflects_def)
-apply (erule meta_exE)
-apply (rule_tac x=Cl in meta_exI, simp)
+apply (unfold L_Reflects_def)
+apply (erule meta_exE)
+apply (rule_tac x=Cl in meta_exI, simp)
done

theorem And_reflection:
-     "[| REFLECTS[P,Q]; REFLECTS[P',Q'] |]
+     "[| REFLECTS[P,Q]; REFLECTS[P',Q'] |]
==> REFLECTS[\<lambda>x. P(x) \<and> P'(x), \<lambda>a x. Q(a,x) \<and> Q'(a,x)]"
-apply (unfold L_Reflects_def)
-apply (elim meta_exE)
-apply (rule_tac x="\<lambda>a. Cl(a) \<and> Cla(a)" in meta_exI)
+apply (unfold L_Reflects_def)
+apply (elim meta_exE)
+apply (rule_tac x="\<lambda>a. Cl(a) \<and> Cla(a)" in meta_exI)
done

theorem Or_reflection:
-     "[| REFLECTS[P,Q]; REFLECTS[P',Q'] |]
+     "[| REFLECTS[P,Q]; REFLECTS[P',Q'] |]
==> REFLECTS[\<lambda>x. P(x) \<or> P'(x), \<lambda>a x. Q(a,x) \<or> Q'(a,x)]"
-apply (unfold L_Reflects_def)
-apply (elim meta_exE)
-apply (rule_tac x="\<lambda>a. Cl(a) \<and> Cla(a)" in meta_exI)
+apply (unfold L_Reflects_def)
+apply (elim meta_exE)
+apply (rule_tac x="\<lambda>a. Cl(a) \<and> Cla(a)" in meta_exI)
done

theorem Imp_reflection:
-     "[| REFLECTS[P,Q]; REFLECTS[P',Q'] |]
+     "[| REFLECTS[P,Q]; REFLECTS[P',Q'] |]
==> REFLECTS[\<lambda>x. P(x) --> P'(x), \<lambda>a x. Q(a,x) --> Q'(a,x)]"
-apply (unfold L_Reflects_def)
-apply (elim meta_exE)
-apply (rule_tac x="\<lambda>a. Cl(a) \<and> Cla(a)" in meta_exI)
+apply (unfold L_Reflects_def)
+apply (elim meta_exE)
+apply (rule_tac x="\<lambda>a. Cl(a) \<and> Cla(a)" in meta_exI)
done

theorem Iff_reflection:
-     "[| REFLECTS[P,Q]; REFLECTS[P',Q'] |]
+     "[| REFLECTS[P,Q]; REFLECTS[P',Q'] |]
==> REFLECTS[\<lambda>x. P(x) <-> P'(x), \<lambda>a x. Q(a,x) <-> Q'(a,x)]"
-apply (unfold L_Reflects_def)
-apply (elim meta_exE)
-apply (rule_tac x="\<lambda>a. Cl(a) \<and> Cla(a)" in meta_exI)
+apply (unfold L_Reflects_def)
+apply (elim meta_exE)
+apply (rule_tac x="\<lambda>a. Cl(a) \<and> Cla(a)" in meta_exI)
done

theorem Ex_reflection:
"REFLECTS[\<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x))]
==> REFLECTS[\<lambda>x. \<exists>z. L(z) \<and> P(x,z), \<lambda>a x. \<exists>z\<in>Lset(a). Q(a,x,z)]"
-apply (unfold L_Reflects_def L_ClEx_def L_FF_def L_F0_def L_def)
-apply (elim meta_exE)
+apply (unfold L_Reflects_def L_ClEx_def L_FF_def L_F0_def L_def)
+apply (elim meta_exE)
apply (rule meta_exI)
apply (rule reflection.Ex_reflection
[OF reflection.intro, OF Lset_mono_le Lset_cont Pair_in_Lset],
@@ -222,9 +261,9 @@

theorem All_reflection:
"REFLECTS[\<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x))]
-      ==> REFLECTS[\<lambda>x. \<forall>z. L(z) --> P(x,z), \<lambda>a x. \<forall>z\<in>Lset(a). Q(a,x,z)]"
-apply (unfold L_Reflects_def L_ClEx_def L_FF_def L_F0_def L_def)
-apply (elim meta_exE)
+      ==> REFLECTS[\<lambda>x. \<forall>z. L(z) --> P(x,z), \<lambda>a x. \<forall>z\<in>Lset(a). Q(a,x,z)]"
+apply (unfold L_Reflects_def L_ClEx_def L_FF_def L_F0_def L_def)
+apply (elim meta_exE)
apply (rule meta_exI)
apply (rule reflection.All_reflection
[OF reflection.intro, OF Lset_mono_le Lset_cont Pair_in_Lset],
@@ -234,35 +273,35 @@
theorem Rex_reflection:
"REFLECTS[ \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x))]
==> REFLECTS[\<lambda>x. \<exists>z[L]. P(x,z), \<lambda>a x. \<exists>z\<in>Lset(a). Q(a,x,z)]"
-apply (unfold rex_def)
+apply (unfold rex_def)
apply (intro And_reflection Ex_reflection, assumption)
done

theorem Rall_reflection:
"REFLECTS[\<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x))]
-      ==> REFLECTS[\<lambda>x. \<forall>z[L]. P(x,z), \<lambda>a x. \<forall>z\<in>Lset(a). Q(a,x,z)]"
-apply (unfold rall_def)
+      ==> REFLECTS[\<lambda>x. \<forall>z[L]. P(x,z), \<lambda>a x. \<forall>z\<in>Lset(a). Q(a,x,z)]"
+apply (unfold rall_def)
apply (intro Imp_reflection All_reflection, assumption)
done

-lemmas FOL_reflections =
+lemmas FOL_reflections =
Triv_reflection Not_reflection And_reflection Or_reflection
Imp_reflection Iff_reflection Ex_reflection All_reflection
Rex_reflection Rall_reflection

lemma ReflectsD:
-     "[|REFLECTS[P,Q]; Ord(i)|]
+     "[|REFLECTS[P,Q]; Ord(i)|]
==> \<exists>j. i<j & (\<forall>x \<in> Lset(j). P(x) <-> Q(j,x))"
-apply (unfold L_Reflects_def Closed_Unbounded_def)
-apply (elim meta_exE, clarify)
-apply (blast dest!: UnboundedD)
+apply (unfold L_Reflects_def Closed_Unbounded_def)
+apply (elim meta_exE, clarify)
+apply (blast dest!: UnboundedD)
done

lemma ReflectsE:
"[| REFLECTS[P,Q]; Ord(i);
!!j. [|i<j;  \<forall>x \<in> Lset(j). P(x) <-> Q(j,x)|] ==> R |]
==> R"
-apply (drule ReflectsD, assumption, blast)
+apply (drule ReflectsD, assumption, blast)
done

lemma Collect_mem_eq: "{x\<in>A. x\<in>B} = A \<inter> B"
@@ -301,11 +340,11 @@

lemma empty_type [TC]:
"x \<in> nat ==> empty_fm(x) \<in> formula"

lemma arity_empty_fm [simp]:
"x \<in> nat ==> arity(empty_fm(x)) = succ(x)"
-by (simp add: empty_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: empty_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_empty_fm [simp]:
"[| x \<in> nat; env \<in> list(A)|]
@@ -313,16 +352,16 @@

lemma empty_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y;
+      "[| nth(i,env) = x; nth(j,env) = y;
i \<in> nat; env \<in> list(A)|]
==> empty(**A, x) <-> sats(A, empty_fm(i), env)"
by simp

theorem empty_reflection:
-     "REFLECTS[\<lambda>x. empty(L,f(x)),
+     "REFLECTS[\<lambda>x. empty(L,f(x)),
\<lambda>i x. empty(**Lset(i),f(x))]"
apply (simp only: empty_def setclass_simps)
-apply (intro FOL_reflections)
+apply (intro FOL_reflections)
done

text{*Not used.  But maybe useful?*}
@@ -330,38 +369,38 @@
"[| n \<in> nat; env \<in> list(A); Transset(A)|]
==> sats(A, empty_fm(n), env) <-> nth(n,env) = 0"
apply (simp add: empty_fm_def empty_def Transset_def, auto)
-apply (case_tac "n < length(env)")
-apply (frule nth_type, assumption+, blast)
+apply (case_tac "n < length(env)")
+apply (frule nth_type, assumption+, blast)
done

subsubsection{*Unordered Pairs, Internalized*}

constdefs upair_fm :: "[i,i,i]=>i"
-    "upair_fm(x,y,z) ==
-       And(Member(x,z),
+    "upair_fm(x,y,z) ==
+       And(Member(x,z),
And(Member(y,z),
-               Forall(Implies(Member(0,succ(z)),
+               Forall(Implies(Member(0,succ(z)),
Or(Equal(0,succ(x)), Equal(0,succ(y)))))))"

lemma upair_type [TC]:
"[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> upair_fm(x,y,z) \<in> formula"

lemma arity_upair_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
==> arity(upair_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: upair_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: upair_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_upair_fm [simp]:
"[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, upair_fm(x,y,z), env) <->
+    ==> sats(A, upair_fm(x,y,z), env) <->
upair(**A, nth(x,env), nth(y,env), nth(z,env))"

lemma upair_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
+      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
==> upair(**A, x, y, z) <-> sats(A, upair_fm(i,j,k), env)"
@@ -369,127 +408,127 @@
text{*Useful? At least it refers to "real" unordered pairs*}
lemma sats_upair_fm2 [simp]:
"[| x \<in> nat; y \<in> nat; z < length(env); env \<in> list(A); Transset(A)|]
-    ==> sats(A, upair_fm(x,y,z), env) <->
+    ==> sats(A, upair_fm(x,y,z), env) <->
nth(z,env) = {nth(x,env), nth(y,env)}"
-apply (frule lt_length_in_nat, assumption)
-apply (simp add: upair_fm_def Transset_def, auto)
-apply (blast intro: nth_type)
+apply (frule lt_length_in_nat, assumption)
+apply (simp add: upair_fm_def Transset_def, auto)
+apply (blast intro: nth_type)
done

theorem upair_reflection:
-     "REFLECTS[\<lambda>x. upair(L,f(x),g(x),h(x)),
-               \<lambda>i x. upair(**Lset(i),f(x),g(x),h(x))]"
+     "REFLECTS[\<lambda>x. upair(L,f(x),g(x),h(x)),
+               \<lambda>i x. upair(**Lset(i),f(x),g(x),h(x))]"
-apply (intro FOL_reflections)
+apply (intro FOL_reflections)
done

subsubsection{*Ordered pairs, Internalized*}

constdefs pair_fm :: "[i,i,i]=>i"
-    "pair_fm(x,y,z) ==
+    "pair_fm(x,y,z) ==
Exists(And(upair_fm(succ(x),succ(x),0),
Exists(And(upair_fm(succ(succ(x)),succ(succ(y)),0),
upair_fm(1,0,succ(succ(z)))))))"

lemma pair_type [TC]:
"[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> pair_fm(x,y,z) \<in> formula"

lemma arity_pair_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
==> arity(pair_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: pair_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: pair_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_pair_fm [simp]:
"[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, pair_fm(x,y,z), env) <->
+    ==> sats(A, pair_fm(x,y,z), env) <->
pair(**A, nth(x,env), nth(y,env), nth(z,env))"

lemma pair_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
+      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
==> pair(**A, x, y, z) <-> sats(A, pair_fm(i,j,k), env)"

theorem pair_reflection:
-     "REFLECTS[\<lambda>x. pair(L,f(x),g(x),h(x)),
+     "REFLECTS[\<lambda>x. pair(L,f(x),g(x),h(x)),
\<lambda>i x. pair(**Lset(i),f(x),g(x),h(x))]"
apply (simp only: pair_def setclass_simps)
-apply (intro FOL_reflections upair_reflection)
+apply (intro FOL_reflections upair_reflection)
done

subsubsection{*Binary Unions, Internalized*}

constdefs union_fm :: "[i,i,i]=>i"
-    "union_fm(x,y,z) ==
+    "union_fm(x,y,z) ==
Forall(Iff(Member(0,succ(z)),
Or(Member(0,succ(x)),Member(0,succ(y)))))"

lemma union_type [TC]:
"[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> union_fm(x,y,z) \<in> formula"

lemma arity_union_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
==> arity(union_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: union_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: union_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_union_fm [simp]:
"[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, union_fm(x,y,z), env) <->
+    ==> sats(A, union_fm(x,y,z), env) <->
union(**A, nth(x,env), nth(y,env), nth(z,env))"

lemma union_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
+      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
==> union(**A, x, y, z) <-> sats(A, union_fm(i,j,k), env)"

theorem union_reflection:
-     "REFLECTS[\<lambda>x. union(L,f(x),g(x),h(x)),
+     "REFLECTS[\<lambda>x. union(L,f(x),g(x),h(x)),
\<lambda>i x. union(**Lset(i),f(x),g(x),h(x))]"
apply (simp only: union_def setclass_simps)
-apply (intro FOL_reflections)
+apply (intro FOL_reflections)
done

subsubsection{*Set ``Cons,'' Internalized*}

constdefs cons_fm :: "[i,i,i]=>i"
-    "cons_fm(x,y,z) ==
+    "cons_fm(x,y,z) ==
Exists(And(upair_fm(succ(x),succ(x),0),
union_fm(0,succ(y),succ(z))))"

lemma cons_type [TC]:
"[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> cons_fm(x,y,z) \<in> formula"

lemma arity_cons_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
==> arity(cons_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: cons_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: cons_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_cons_fm [simp]:
"[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, cons_fm(x,y,z), env) <->
+    ==> sats(A, cons_fm(x,y,z), env) <->
is_cons(**A, nth(x,env), nth(y,env), nth(z,env))"

lemma cons_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
+      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
==> is_cons(**A, x, y, z) <-> sats(A, cons_fm(i,j,k), env)"
by simp

theorem cons_reflection:
-     "REFLECTS[\<lambda>x. is_cons(L,f(x),g(x),h(x)),
+     "REFLECTS[\<lambda>x. is_cons(L,f(x),g(x),h(x)),
\<lambda>i x. is_cons(**Lset(i),f(x),g(x),h(x))]"
apply (simp only: is_cons_def setclass_simps)
-apply (intro FOL_reflections upair_reflection union_reflection)
+apply (intro FOL_reflections upair_reflection union_reflection)
done

@@ -500,30 +539,30 @@

lemma succ_type [TC]:
"[| x \<in> nat; y \<in> nat |] ==> succ_fm(x,y) \<in> formula"

lemma arity_succ_fm [simp]:
-     "[| x \<in> nat; y \<in> nat |]
+     "[| x \<in> nat; y \<in> nat |]
==> arity(succ_fm(x,y)) = succ(x) \<union> succ(y)"

lemma sats_succ_fm [simp]:
"[| x \<in> nat; y \<in> nat; env \<in> list(A)|]
-    ==> sats(A, succ_fm(x,y), env) <->
+    ==> sats(A, succ_fm(x,y), env) <->
successor(**A, nth(x,env), nth(y,env))"

lemma successor_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y;
+      "[| nth(i,env) = x; nth(j,env) = y;
i \<in> nat; j \<in> nat; env \<in> list(A)|]
==> successor(**A, x, y) <-> sats(A, succ_fm(i,j), env)"
by simp

theorem successor_reflection:
-     "REFLECTS[\<lambda>x. successor(L,f(x),g(x)),
+     "REFLECTS[\<lambda>x. successor(L,f(x),g(x)),
\<lambda>i x. successor(**Lset(i),f(x),g(x))]"
apply (simp only: successor_def setclass_simps)
-apply (intro cons_reflection)
+apply (intro cons_reflection)
done

@@ -535,11 +574,11 @@

lemma number1_type [TC]:
"x \<in> nat ==> number1_fm(x) \<in> formula"

lemma arity_number1_fm [simp]:
"x \<in> nat ==> arity(number1_fm(x)) = succ(x)"
-by (simp add: number1_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: number1_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_number1_fm [simp]:
"[| x \<in> nat; env \<in> list(A)|]
@@ -547,13 +586,13 @@

lemma number1_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y;
+      "[| nth(i,env) = x; nth(j,env) = y;
i \<in> nat; env \<in> list(A)|]
==> number1(**A, x) <-> sats(A, number1_fm(i), env)"
by simp

theorem number1_reflection:
-     "REFLECTS[\<lambda>x. number1(L,f(x)),
+     "REFLECTS[\<lambda>x. number1(L,f(x)),
\<lambda>i x. number1(**Lset(i),f(x))]"
apply (simp only: number1_def setclass_simps)
apply (intro FOL_reflections empty_reflection successor_reflection)
@@ -564,36 +603,36 @@

(*  "big_union(M,A,z) == \<forall>x[M]. x \<in> z <-> (\<exists>y[M]. y\<in>A & x \<in> y)" *)
constdefs big_union_fm :: "[i,i]=>i"
-    "big_union_fm(A,z) ==
+    "big_union_fm(A,z) ==
Forall(Iff(Member(0,succ(z)),
Exists(And(Member(0,succ(succ(A))), Member(1,0)))))"

lemma big_union_type [TC]:
"[| x \<in> nat; y \<in> nat |] ==> big_union_fm(x,y) \<in> formula"

lemma arity_big_union_fm [simp]:
-     "[| x \<in> nat; y \<in> nat |]
+     "[| x \<in> nat; y \<in> nat |]
==> arity(big_union_fm(x,y)) = succ(x) \<union> succ(y)"
by (simp add: big_union_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_big_union_fm [simp]:
"[| x \<in> nat; y \<in> nat; env \<in> list(A)|]
-    ==> sats(A, big_union_fm(x,y), env) <->
+    ==> sats(A, big_union_fm(x,y), env) <->
big_union(**A, nth(x,env), nth(y,env))"

lemma big_union_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y;
+      "[| nth(i,env) = x; nth(j,env) = y;
i \<in> nat; j \<in> nat; env \<in> list(A)|]
==> big_union(**A, x, y) <-> sats(A, big_union_fm(i,j), env)"
by simp

theorem big_union_reflection:
-     "REFLECTS[\<lambda>x. big_union(L,f(x),g(x)),
+     "REFLECTS[\<lambda>x. big_union(L,f(x),g(x)),
\<lambda>i x. big_union(**Lset(i),f(x),g(x))]"
apply (simp only: big_union_def setclass_simps)
-apply (intro FOL_reflections)
+apply (intro FOL_reflections)
done

@@ -604,26 +643,26 @@

lemma sats_subset_fm':
"[|x \<in> nat; y \<in> nat; env \<in> list(A)|]
-    ==> sats(A, subset_fm(x,y), env) <-> subset(**A, nth(x,env), nth(y,env))"
+    ==> sats(A, subset_fm(x,y), env) <-> subset(**A, nth(x,env), nth(y,env))"

theorem subset_reflection:
-     "REFLECTS[\<lambda>x. subset(L,f(x),g(x)),
-               \<lambda>i x. subset(**Lset(i),f(x),g(x))]"
+     "REFLECTS[\<lambda>x. subset(L,f(x),g(x)),
+               \<lambda>i x. subset(**Lset(i),f(x),g(x))]"
apply (simp only: Relative.subset_def setclass_simps)
-apply (intro FOL_reflections)
+apply (intro FOL_reflections)
done

lemma sats_transset_fm':
"[|x \<in> nat; env \<in> list(A)|]
==> sats(A, transset_fm(x), env) <-> transitive_set(**A, nth(x,env))"
-by (simp add: sats_subset_fm' transset_fm_def transitive_set_def)
+by (simp add: sats_subset_fm' transset_fm_def transitive_set_def)

theorem transitive_set_reflection:
"REFLECTS[\<lambda>x. transitive_set(L,f(x)),
\<lambda>i x. transitive_set(**Lset(i),f(x))]"
apply (simp only: transitive_set_def setclass_simps)
-apply (intro FOL_reflections subset_reflection)
+apply (intro FOL_reflections subset_reflection)
done

lemma sats_ordinal_fm':
@@ -639,14 +678,14 @@
theorem ordinal_reflection:
"REFLECTS[\<lambda>x. ordinal(L,f(x)), \<lambda>i x. ordinal(**Lset(i),f(x))]"
apply (simp only: ordinal_def setclass_simps)
-apply (intro FOL_reflections transitive_set_reflection)
+apply (intro FOL_reflections transitive_set_reflection)
done

subsubsection{*Membership Relation, Internalized*}

constdefs Memrel_fm :: "[i,i]=>i"
-    "Memrel_fm(A,r) ==
+    "Memrel_fm(A,r) ==
Forall(Iff(Member(0,succ(r)),
Exists(And(Member(0,succ(succ(A))),
Exists(And(Member(0,succ(succ(succ(A)))),
@@ -655,36 +694,36 @@

lemma Memrel_type [TC]:
"[| x \<in> nat; y \<in> nat |] ==> Memrel_fm(x,y) \<in> formula"

lemma arity_Memrel_fm [simp]:
-     "[| x \<in> nat; y \<in> nat |]
+     "[| x \<in> nat; y \<in> nat |]
==> arity(Memrel_fm(x,y)) = succ(x) \<union> succ(y)"
-by (simp add: Memrel_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: Memrel_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_Memrel_fm [simp]:
"[| x \<in> nat; y \<in> nat; env \<in> list(A)|]
-    ==> sats(A, Memrel_fm(x,y), env) <->
+    ==> sats(A, Memrel_fm(x,y), env) <->
membership(**A, nth(x,env), nth(y,env))"

lemma Memrel_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y;
+      "[| nth(i,env) = x; nth(j,env) = y;
i \<in> nat; j \<in> nat; env \<in> list(A)|]
==> membership(**A, x, y) <-> sats(A, Memrel_fm(i,j), env)"
by simp

theorem membership_reflection:
-     "REFLECTS[\<lambda>x. membership(L,f(x),g(x)),
+     "REFLECTS[\<lambda>x. membership(L,f(x),g(x)),
\<lambda>i x. membership(**Lset(i),f(x),g(x))]"
apply (simp only: membership_def setclass_simps)
-apply (intro FOL_reflections pair_reflection)
+apply (intro FOL_reflections pair_reflection)
done

subsubsection{*Predecessor Set, Internalized*}

constdefs pred_set_fm :: "[i,i,i,i]=>i"
-    "pred_set_fm(A,x,r,B) ==
+    "pred_set_fm(A,x,r,B) ==
Forall(Iff(Member(0,succ(B)),
Exists(And(Member(0,succ(succ(r))),
And(Member(1,succ(succ(A))),
@@ -692,148 +731,148 @@

lemma pred_set_type [TC]:
-     "[| A \<in> nat; x \<in> nat; r \<in> nat; B \<in> nat |]
+     "[| A \<in> nat; x \<in> nat; r \<in> nat; B \<in> nat |]
==> pred_set_fm(A,x,r,B) \<in> formula"

lemma arity_pred_set_fm [simp]:
-   "[| A \<in> nat; x \<in> nat; r \<in> nat; B \<in> nat |]
+   "[| A \<in> nat; x \<in> nat; r \<in> nat; B \<in> nat |]
==> arity(pred_set_fm(A,x,r,B)) = succ(A) \<union> succ(x) \<union> succ(r) \<union> succ(B)"
-by (simp add: pred_set_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: pred_set_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_pred_set_fm [simp]:
"[| U \<in> nat; x \<in> nat; r \<in> nat; B \<in> nat; env \<in> list(A)|]
-    ==> sats(A, pred_set_fm(U,x,r,B), env) <->
+    ==> sats(A, pred_set_fm(U,x,r,B), env) <->
pred_set(**A, nth(U,env), nth(x,env), nth(r,env), nth(B,env))"

lemma pred_set_iff_sats:
-      "[| nth(i,env) = U; nth(j,env) = x; nth(k,env) = r; nth(l,env) = B;
+      "[| nth(i,env) = U; nth(j,env) = x; nth(k,env) = r; nth(l,env) = B;
i \<in> nat; j \<in> nat; k \<in> nat; l \<in> nat; env \<in> list(A)|]
==> pred_set(**A,U,x,r,B) <-> sats(A, pred_set_fm(i,j,k,l), env)"

theorem pred_set_reflection:
-     "REFLECTS[\<lambda>x. pred_set(L,f(x),g(x),h(x),b(x)),
-               \<lambda>i x. pred_set(**Lset(i),f(x),g(x),h(x),b(x))]"
+     "REFLECTS[\<lambda>x. pred_set(L,f(x),g(x),h(x),b(x)),
+               \<lambda>i x. pred_set(**Lset(i),f(x),g(x),h(x),b(x))]"
apply (simp only: pred_set_def setclass_simps)
-apply (intro FOL_reflections pair_reflection)
+apply (intro FOL_reflections pair_reflection)
done

subsubsection{*Domain of a Relation, Internalized*}

-(* "is_domain(M,r,z) ==
-	\<forall>x[M]. (x \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>y[M]. pair(M,x,y,w))))" *)
+(* "is_domain(M,r,z) ==
+        \<forall>x[M]. (x \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>y[M]. pair(M,x,y,w))))" *)
constdefs domain_fm :: "[i,i]=>i"
-    "domain_fm(r,z) ==
+    "domain_fm(r,z) ==
Forall(Iff(Member(0,succ(z)),
Exists(And(Member(0,succ(succ(r))),
Exists(pair_fm(2,0,1))))))"

lemma domain_type [TC]:
"[| x \<in> nat; y \<in> nat |] ==> domain_fm(x,y) \<in> formula"

lemma arity_domain_fm [simp]:
-     "[| x \<in> nat; y \<in> nat |]
+     "[| x \<in> nat; y \<in> nat |]
==> arity(domain_fm(x,y)) = succ(x) \<union> succ(y)"
-by (simp add: domain_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: domain_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_domain_fm [simp]:
"[| x \<in> nat; y \<in> nat; env \<in> list(A)|]
-    ==> sats(A, domain_fm(x,y), env) <->
+    ==> sats(A, domain_fm(x,y), env) <->
is_domain(**A, nth(x,env), nth(y,env))"

lemma domain_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y;
+      "[| nth(i,env) = x; nth(j,env) = y;
i \<in> nat; j \<in> nat; env \<in> list(A)|]
==> is_domain(**A, x, y) <-> sats(A, domain_fm(i,j), env)"
by simp

theorem domain_reflection:
-     "REFLECTS[\<lambda>x. is_domain(L,f(x),g(x)),
+     "REFLECTS[\<lambda>x. is_domain(L,f(x),g(x)),
\<lambda>i x. is_domain(**Lset(i),f(x),g(x))]"
apply (simp only: is_domain_def setclass_simps)
-apply (intro FOL_reflections pair_reflection)
+apply (intro FOL_reflections pair_reflection)
done

subsubsection{*Range of a Relation, Internalized*}

-(* "is_range(M,r,z) ==
-	\<forall>y[M]. (y \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>x[M]. pair(M,x,y,w))))" *)
+(* "is_range(M,r,z) ==
+        \<forall>y[M]. (y \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>x[M]. pair(M,x,y,w))))" *)
constdefs range_fm :: "[i,i]=>i"
-    "range_fm(r,z) ==
+    "range_fm(r,z) ==
Forall(Iff(Member(0,succ(z)),
Exists(And(Member(0,succ(succ(r))),
Exists(pair_fm(0,2,1))))))"

lemma range_type [TC]:
"[| x \<in> nat; y \<in> nat |] ==> range_fm(x,y) \<in> formula"

lemma arity_range_fm [simp]:
-     "[| x \<in> nat; y \<in> nat |]
+     "[| x \<in> nat; y \<in> nat |]
==> arity(range_fm(x,y)) = succ(x) \<union> succ(y)"
-by (simp add: range_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: range_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_range_fm [simp]:
"[| x \<in> nat; y \<in> nat; env \<in> list(A)|]
-    ==> sats(A, range_fm(x,y), env) <->
+    ==> sats(A, range_fm(x,y), env) <->
is_range(**A, nth(x,env), nth(y,env))"

lemma range_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y;
+      "[| nth(i,env) = x; nth(j,env) = y;
i \<in> nat; j \<in> nat; env \<in> list(A)|]
==> is_range(**A, x, y) <-> sats(A, range_fm(i,j), env)"
by simp

theorem range_reflection:
-     "REFLECTS[\<lambda>x. is_range(L,f(x),g(x)),
+     "REFLECTS[\<lambda>x. is_range(L,f(x),g(x)),
\<lambda>i x. is_range(**Lset(i),f(x),g(x))]"
apply (simp only: is_range_def setclass_simps)
-apply (intro FOL_reflections pair_reflection)
+apply (intro FOL_reflections pair_reflection)
done

-
+
subsubsection{*Field of a Relation, Internalized*}

-(* "is_field(M,r,z) ==
-	\<exists>dr[M]. is_domain(M,r,dr) &
+(* "is_field(M,r,z) ==
+        \<exists>dr[M]. is_domain(M,r,dr) &
(\<exists>rr[M]. is_range(M,r,rr) & union(M,dr,rr,z))" *)
constdefs field_fm :: "[i,i]=>i"
-    "field_fm(r,z) ==
-       Exists(And(domain_fm(succ(r),0),
-              Exists(And(range_fm(succ(succ(r)),0),
+    "field_fm(r,z) ==
+       Exists(And(domain_fm(succ(r),0),
+              Exists(And(range_fm(succ(succ(r)),0),
union_fm(1,0,succ(succ(z)))))))"

lemma field_type [TC]:
"[| x \<in> nat; y \<in> nat |] ==> field_fm(x,y) \<in> formula"

lemma arity_field_fm [simp]:
-     "[| x \<in> nat; y \<in> nat |]
+     "[| x \<in> nat; y \<in> nat |]
==> arity(field_fm(x,y)) = succ(x) \<union> succ(y)"
-by (simp add: field_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: field_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_field_fm [simp]:
"[| x \<in> nat; y \<in> nat; env \<in> list(A)|]
-    ==> sats(A, field_fm(x,y), env) <->
+    ==> sats(A, field_fm(x,y), env) <->
is_field(**A, nth(x,env), nth(y,env))"

lemma field_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y;
+      "[| nth(i,env) = x; nth(j,env) = y;
i \<in> nat; j \<in> nat; env \<in> list(A)|]
==> is_field(**A, x, y) <-> sats(A, field_fm(i,j), env)"
by simp

theorem field_reflection:
-     "REFLECTS[\<lambda>x. is_field(L,f(x),g(x)),
+     "REFLECTS[\<lambda>x. is_field(L,f(x),g(x)),
\<lambda>i x. is_field(**Lset(i),f(x),g(x))]"
apply (simp only: is_field_def setclass_simps)
apply (intro FOL_reflections domain_reflection range_reflection
@@ -843,140 +882,140 @@

subsubsection{*Image under a Relation, Internalized*}

-(* "image(M,r,A,z) ==
+(* "image(M,r,A,z) ==
\<forall>y[M]. (y \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>x[M]. x\<in>A & pair(M,x,y,w))))" *)
constdefs image_fm :: "[i,i,i]=>i"
-    "image_fm(r,A,z) ==
+    "image_fm(r,A,z) ==
Forall(Iff(Member(0,succ(z)),
Exists(And(Member(0,succ(succ(r))),
Exists(And(Member(0,succ(succ(succ(A)))),
-	 			        pair_fm(0,2,1)))))))"
+                                        pair_fm(0,2,1)))))))"

lemma image_type [TC]:
"[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> image_fm(x,y,z) \<in> formula"

lemma arity_image_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
==> arity(image_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: image_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: image_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_image_fm [simp]:
"[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, image_fm(x,y,z), env) <->
+    ==> sats(A, image_fm(x,y,z), env) <->
image(**A, nth(x,env), nth(y,env), nth(z,env))"

lemma image_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
+      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
==> image(**A, x, y, z) <-> sats(A, image_fm(i,j,k), env)"

theorem image_reflection:
-     "REFLECTS[\<lambda>x. image(L,f(x),g(x),h(x)),
+     "REFLECTS[\<lambda>x. image(L,f(x),g(x),h(x)),
\<lambda>i x. image(**Lset(i),f(x),g(x),h(x))]"
apply (simp only: Relative.image_def setclass_simps)
-apply (intro FOL_reflections pair_reflection)
+apply (intro FOL_reflections pair_reflection)
done

subsubsection{*Pre-Image under a Relation, Internalized*}

-(* "pre_image(M,r,A,z) ==
-	\<forall>x[M]. x \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>y[M]. y\<in>A & pair(M,x,y,w)))" *)
+(* "pre_image(M,r,A,z) ==
+        \<forall>x[M]. x \<in> z <-> (\<exists>w[M]. w\<in>r & (\<exists>y[M]. y\<in>A & pair(M,x,y,w)))" *)
constdefs pre_image_fm :: "[i,i,i]=>i"
-    "pre_image_fm(r,A,z) ==
+    "pre_image_fm(r,A,z) ==
Forall(Iff(Member(0,succ(z)),
Exists(And(Member(0,succ(succ(r))),
Exists(And(Member(0,succ(succ(succ(A)))),
-	 			        pair_fm(2,0,1)))))))"
+                                        pair_fm(2,0,1)))))))"

lemma pre_image_type [TC]:
"[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> pre_image_fm(x,y,z) \<in> formula"

lemma arity_pre_image_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
==> arity(pre_image_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: pre_image_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: pre_image_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_pre_image_fm [simp]:
"[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, pre_image_fm(x,y,z), env) <->
+    ==> sats(A, pre_image_fm(x,y,z), env) <->
pre_image(**A, nth(x,env), nth(y,env), nth(z,env))"

lemma pre_image_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
+      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
==> pre_image(**A, x, y, z) <-> sats(A, pre_image_fm(i,j,k), env)"

theorem pre_image_reflection:
-     "REFLECTS[\<lambda>x. pre_image(L,f(x),g(x),h(x)),
+     "REFLECTS[\<lambda>x. pre_image(L,f(x),g(x),h(x)),
\<lambda>i x. pre_image(**Lset(i),f(x),g(x),h(x))]"
apply (simp only: Relative.pre_image_def setclass_simps)
-apply (intro FOL_reflections pair_reflection)
+apply (intro FOL_reflections pair_reflection)
done

subsubsection{*Function Application, Internalized*}

-(* "fun_apply(M,f,x,y) ==
-        (\<exists>xs[M]. \<exists>fxs[M].
+(* "fun_apply(M,f,x,y) ==
+        (\<exists>xs[M]. \<exists>fxs[M].
upair(M,x,x,xs) & image(M,f,xs,fxs) & big_union(M,fxs,y))" *)
constdefs fun_apply_fm :: "[i,i,i]=>i"
-    "fun_apply_fm(f,x,y) ==
+    "fun_apply_fm(f,x,y) ==
Exists(Exists(And(upair_fm(succ(succ(x)), succ(succ(x)), 1),
-                         And(image_fm(succ(succ(f)), 1, 0),
+                         And(image_fm(succ(succ(f)), 1, 0),
big_union_fm(0,succ(succ(y)))))))"

lemma fun_apply_type [TC]:
"[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> fun_apply_fm(x,y,z) \<in> formula"

lemma arity_fun_apply_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
==> arity(fun_apply_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: fun_apply_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: fun_apply_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_fun_apply_fm [simp]:
"[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, fun_apply_fm(x,y,z), env) <->
+    ==> sats(A, fun_apply_fm(x,y,z), env) <->
fun_apply(**A, nth(x,env), nth(y,env), nth(z,env))"

lemma fun_apply_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
+      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
==> fun_apply(**A, x, y, z) <-> sats(A, fun_apply_fm(i,j,k), env)"
by simp

theorem fun_apply_reflection:
-     "REFLECTS[\<lambda>x. fun_apply(L,f(x),g(x),h(x)),
-               \<lambda>i x. fun_apply(**Lset(i),f(x),g(x),h(x))]"
+     "REFLECTS[\<lambda>x. fun_apply(L,f(x),g(x),h(x)),
+               \<lambda>i x. fun_apply(**Lset(i),f(x),g(x),h(x))]"
apply (simp only: fun_apply_def setclass_simps)
apply (intro FOL_reflections upair_reflection image_reflection
-             big_union_reflection)
+             big_union_reflection)
done

subsubsection{*The Concept of Relation, Internalized*}

-(* "is_relation(M,r) ==
+(* "is_relation(M,r) ==
(\<forall>z[M]. z\<in>r --> (\<exists>x[M]. \<exists>y[M]. pair(M,x,y,z)))" *)
constdefs relation_fm :: "i=>i"
-    "relation_fm(r) ==
+    "relation_fm(r) ==
Forall(Implies(Member(0,succ(r)), Exists(Exists(pair_fm(1,0,2)))))"

lemma relation_type [TC]:
"[| x \<in> nat |] ==> relation_fm(x) \<in> formula"

lemma arity_relation_fm [simp]:
"x \<in> nat ==> arity(relation_fm(x)) = succ(x)"
-by (simp add: relation_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: relation_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_relation_fm [simp]:
"[| x \<in> nat; env \<in> list(A)|]
@@ -984,26 +1023,26 @@

lemma relation_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y;
+      "[| nth(i,env) = x; nth(j,env) = y;
i \<in> nat; env \<in> list(A)|]
==> is_relation(**A, x) <-> sats(A, relation_fm(i), env)"
by simp

theorem is_relation_reflection:
-     "REFLECTS[\<lambda>x. is_relation(L,f(x)),
+     "REFLECTS[\<lambda>x. is_relation(L,f(x)),
\<lambda>i x. is_relation(**Lset(i),f(x))]"
apply (simp only: is_relation_def setclass_simps)
-apply (intro FOL_reflections pair_reflection)
+apply (intro FOL_reflections pair_reflection)
done

subsubsection{*The Concept of Function, Internalized*}

-(* "is_function(M,r) ==
-	\<forall>x[M]. \<forall>y[M]. \<forall>y'[M]. \<forall>p[M]. \<forall>p'[M].
+(* "is_function(M,r) ==
+        \<forall>x[M]. \<forall>y[M]. \<forall>y'[M]. \<forall>p[M]. \<forall>p'[M].
pair(M,x,y,p) --> pair(M,x,y',p') --> p\<in>r --> p'\<in>r --> y=y'" *)
constdefs function_fm :: "i=>i"
-    "function_fm(r) ==
+    "function_fm(r) ==
Forall(Forall(Forall(Forall(Forall(
Implies(pair_fm(4,3,1),
Implies(pair_fm(4,2,0),
@@ -1012,11 +1051,11 @@

lemma function_type [TC]:
"[| x \<in> nat |] ==> function_fm(x) \<in> formula"

lemma arity_function_fm [simp]:
"x \<in> nat ==> arity(function_fm(x)) = succ(x)"
-by (simp add: function_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: function_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_function_fm [simp]:
"[| x \<in> nat; env \<in> list(A)|]
@@ -1024,27 +1063,27 @@

lemma function_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y;
+      "[| nth(i,env) = x; nth(j,env) = y;
i \<in> nat; env \<in> list(A)|]
==> is_function(**A, x) <-> sats(A, function_fm(i), env)"
by simp

theorem is_function_reflection:
-     "REFLECTS[\<lambda>x. is_function(L,f(x)),
+     "REFLECTS[\<lambda>x. is_function(L,f(x)),
\<lambda>i x. is_function(**Lset(i),f(x))]"
apply (simp only: is_function_def setclass_simps)
-apply (intro FOL_reflections pair_reflection)
+apply (intro FOL_reflections pair_reflection)
done

subsubsection{*Typed Functions, Internalized*}

-(* "typed_function(M,A,B,r) ==
+(* "typed_function(M,A,B,r) ==
is_function(M,r) & is_relation(M,r) & is_domain(M,r,A) &
(\<forall>u[M]. u\<in>r --> (\<forall>x[M]. \<forall>y[M]. pair(M,x,y,u) --> y\<in>B))" *)

constdefs typed_function_fm :: "[i,i,i]=>i"
-    "typed_function_fm(A,B,r) ==
+    "typed_function_fm(A,B,r) ==
And(function_fm(r),
And(relation_fm(r),
And(domain_fm(r,A),
@@ -1053,64 +1092,64 @@

lemma typed_function_type [TC]:
"[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> typed_function_fm(x,y,z) \<in> formula"

lemma arity_typed_function_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
==> arity(typed_function_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: typed_function_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: typed_function_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_typed_function_fm [simp]:
"[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, typed_function_fm(x,y,z), env) <->
+    ==> sats(A, typed_function_fm(x,y,z), env) <->
typed_function(**A, nth(x,env), nth(y,env), nth(z,env))"

lemma typed_function_iff_sats:
-  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
+  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
==> typed_function(**A, x, y, z) <-> sats(A, typed_function_fm(i,j,k), env)"
by simp

-lemmas function_reflections =
+lemmas function_reflections =
empty_reflection number1_reflection
-	upair_reflection pair_reflection union_reflection
-	big_union_reflection cons_reflection successor_reflection
+        upair_reflection pair_reflection union_reflection
+        big_union_reflection cons_reflection successor_reflection
fun_apply_reflection subset_reflection
-	transitive_set_reflection membership_reflection
-	pred_set_reflection domain_reflection range_reflection field_reflection
+        transitive_set_reflection membership_reflection
+        pred_set_reflection domain_reflection range_reflection field_reflection
image_reflection pre_image_reflection
-	is_relation_reflection is_function_reflection
+        is_relation_reflection is_function_reflection

-lemmas function_iff_sats =
-        empty_iff_sats number1_iff_sats
-	upair_iff_sats pair_iff_sats union_iff_sats
-	cons_iff_sats successor_iff_sats
+lemmas function_iff_sats =
+        empty_iff_sats number1_iff_sats
+        upair_iff_sats pair_iff_sats union_iff_sats
+        cons_iff_sats successor_iff_sats
fun_apply_iff_sats  Memrel_iff_sats
-	pred_set_iff_sats domain_iff_sats range_iff_sats field_iff_sats
-        image_iff_sats pre_image_iff_sats
-	relation_iff_sats function_iff_sats
+        pred_set_iff_sats domain_iff_sats range_iff_sats field_iff_sats
+        image_iff_sats pre_image_iff_sats
+        relation_iff_sats function_iff_sats

theorem typed_function_reflection:
-     "REFLECTS[\<lambda>x. typed_function(L,f(x),g(x),h(x)),
+     "REFLECTS[\<lambda>x. typed_function(L,f(x),g(x),h(x)),
\<lambda>i x. typed_function(**Lset(i),f(x),g(x),h(x))]"
apply (simp only: typed_function_def setclass_simps)
-apply (intro FOL_reflections function_reflections)
+apply (intro FOL_reflections function_reflections)
done

subsubsection{*Composition of Relations, Internalized*}

-(* "composition(M,r,s,t) ==
-        \<forall>p[M]. p \<in> t <->
-               (\<exists>x[M]. \<exists>y[M]. \<exists>z[M]. \<exists>xy[M]. \<exists>yz[M].
-                pair(M,x,z,p) & pair(M,x,y,xy) & pair(M,y,z,yz) &
+(* "composition(M,r,s,t) ==
+        \<forall>p[M]. p \<in> t <->
+               (\<exists>x[M]. \<exists>y[M]. \<exists>z[M]. \<exists>xy[M]. \<exists>yz[M].
+                pair(M,x,z,p) & pair(M,x,y,xy) & pair(M,y,z,yz) &
xy \<in> s & yz \<in> r)" *)
constdefs composition_fm :: "[i,i,i]=>i"
-  "composition_fm(r,s,t) ==
+  "composition_fm(r,s,t) ==
Forall(Iff(Member(0,succ(t)),
-             Exists(Exists(Exists(Exists(Exists(
+             Exists(Exists(Exists(Exists(Exists(
And(pair_fm(4,2,5),
And(pair_fm(4,3,1),
And(pair_fm(3,2,0),
@@ -1118,41 +1157,41 @@

lemma composition_type [TC]:
"[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> composition_fm(x,y,z) \<in> formula"

lemma arity_composition_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
==> arity(composition_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: composition_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: composition_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_composition_fm [simp]:
"[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, composition_fm(x,y,z), env) <->
+    ==> sats(A, composition_fm(x,y,z), env) <->
composition(**A, nth(x,env), nth(y,env), nth(z,env))"

lemma composition_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
+      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
==> composition(**A, x, y, z) <-> sats(A, composition_fm(i,j,k), env)"
by simp

theorem composition_reflection:
-     "REFLECTS[\<lambda>x. composition(L,f(x),g(x),h(x)),
+     "REFLECTS[\<lambda>x. composition(L,f(x),g(x),h(x)),
\<lambda>i x. composition(**Lset(i),f(x),g(x),h(x))]"
apply (simp only: composition_def setclass_simps)
-apply (intro FOL_reflections pair_reflection)
+apply (intro FOL_reflections pair_reflection)
done

subsubsection{*Injections, Internalized*}

-(* "injection(M,A,B,f) ==
-	typed_function(M,A,B,f) &
-        (\<forall>x[M]. \<forall>x'[M]. \<forall>y[M]. \<forall>p[M]. \<forall>p'[M].
+(* "injection(M,A,B,f) ==
+        typed_function(M,A,B,f) &
+        (\<forall>x[M]. \<forall>x'[M]. \<forall>y[M]. \<forall>p[M]. \<forall>p'[M].
pair(M,x,y,p) --> pair(M,x',y,p') --> p\<in>f --> p'\<in>f --> x=x')" *)
constdefs injection_fm :: "[i,i,i]=>i"
- "injection_fm(A,B,f) ==
+ "injection_fm(A,B,f) ==
And(typed_function_fm(A,B,f),
Forall(Forall(Forall(Forall(Forall(
Implies(pair_fm(4,2,1),
@@ -1163,41 +1202,41 @@

lemma injection_type [TC]:
"[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> injection_fm(x,y,z) \<in> formula"

lemma arity_injection_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
==> arity(injection_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: injection_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: injection_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_injection_fm [simp]:
"[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, injection_fm(x,y,z), env) <->
+    ==> sats(A, injection_fm(x,y,z), env) <->
injection(**A, nth(x,env), nth(y,env), nth(z,env))"

lemma injection_iff_sats:
-  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
+  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
==> injection(**A, x, y, z) <-> sats(A, injection_fm(i,j,k), env)"
by simp

theorem injection_reflection:
-     "REFLECTS[\<lambda>x. injection(L,f(x),g(x),h(x)),
+     "REFLECTS[\<lambda>x. injection(L,f(x),g(x),h(x)),
\<lambda>i x. injection(**Lset(i),f(x),g(x),h(x))]"
apply (simp only: injection_def setclass_simps)
-apply (intro FOL_reflections function_reflections typed_function_reflection)
+apply (intro FOL_reflections function_reflections typed_function_reflection)
done

subsubsection{*Surjections, Internalized*}

(*  surjection :: "[i=>o,i,i,i] => o"
-    "surjection(M,A,B,f) ==
+    "surjection(M,A,B,f) ==
typed_function(M,A,B,f) &
(\<forall>y[M]. y\<in>B --> (\<exists>x[M]. x\<in>A & fun_apply(M,f,x,y)))" *)
constdefs surjection_fm :: "[i,i,i]=>i"
- "surjection_fm(A,B,f) ==
+ "surjection_fm(A,B,f) ==
And(typed_function_fm(A,B,f),
Forall(Implies(Member(0,succ(B)),
Exists(And(Member(0,succ(succ(A))),
@@ -1205,30 +1244,30 @@

lemma surjection_type [TC]:
"[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> surjection_fm(x,y,z) \<in> formula"

lemma arity_surjection_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
==> arity(surjection_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: surjection_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: surjection_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_surjection_fm [simp]:
"[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, surjection_fm(x,y,z), env) <->
+    ==> sats(A, surjection_fm(x,y,z), env) <->
surjection(**A, nth(x,env), nth(y,env), nth(z,env))"

lemma surjection_iff_sats:
-  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
+  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
==> surjection(**A, x, y, z) <-> sats(A, surjection_fm(i,j,k), env)"
by simp

theorem surjection_reflection:
-     "REFLECTS[\<lambda>x. surjection(L,f(x),g(x),h(x)),
+     "REFLECTS[\<lambda>x. surjection(L,f(x),g(x),h(x)),
\<lambda>i x. surjection(**Lset(i),f(x),g(x),h(x))]"
apply (simp only: surjection_def setclass_simps)
-apply (intro FOL_reflections function_reflections typed_function_reflection)
+apply (intro FOL_reflections function_reflections typed_function_reflection)
done

@@ -1242,40 +1281,40 @@

lemma bijection_type [TC]:
"[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> bijection_fm(x,y,z) \<in> formula"

lemma arity_bijection_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
==> arity(bijection_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: bijection_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: bijection_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_bijection_fm [simp]:
"[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, bijection_fm(x,y,z), env) <->
+    ==> sats(A, bijection_fm(x,y,z), env) <->
bijection(**A, nth(x,env), nth(y,env), nth(z,env))"

lemma bijection_iff_sats:
-  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
+  "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
==> bijection(**A, x, y, z) <-> sats(A, bijection_fm(i,j,k), env)"
by simp

theorem bijection_reflection:
-     "REFLECTS[\<lambda>x. bijection(L,f(x),g(x),h(x)),
+     "REFLECTS[\<lambda>x. bijection(L,f(x),g(x),h(x)),
\<lambda>i x. bijection(**Lset(i),f(x),g(x),h(x))]"
apply (simp only: bijection_def setclass_simps)
-apply (intro And_reflection injection_reflection surjection_reflection)
+apply (intro And_reflection injection_reflection surjection_reflection)
done

subsubsection{*Restriction of a Relation, Internalized*}

-(* "restriction(M,r,A,z) ==
-	\<forall>x[M]. x \<in> z <-> (x \<in> r & (\<exists>u[M]. u\<in>A & (\<exists>v[M]. pair(M,u,v,x))))" *)
+(* "restriction(M,r,A,z) ==
+        \<forall>x[M]. x \<in> z <-> (x \<in> r & (\<exists>u[M]. u\<in>A & (\<exists>v[M]. pair(M,u,v,x))))" *)
constdefs restriction_fm :: "[i,i,i]=>i"
-    "restriction_fm(r,A,z) ==
+    "restriction_fm(r,A,z) ==
Forall(Iff(Member(0,succ(z)),
And(Member(0,succ(r)),
Exists(And(Member(0,succ(succ(A))),
@@ -1283,111 +1322,111 @@

lemma restriction_type [TC]:
"[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> restriction_fm(x,y,z) \<in> formula"

lemma arity_restriction_fm [simp]:
-     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
+     "[| x \<in> nat; y \<in> nat; z \<in> nat |]
==> arity(restriction_fm(x,y,z)) = succ(x) \<union> succ(y) \<union> succ(z)"
-by (simp add: restriction_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: restriction_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_restriction_fm [simp]:
"[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
-    ==> sats(A, restriction_fm(x,y,z), env) <->
+    ==> sats(A, restriction_fm(x,y,z), env) <->
restriction(**A, nth(x,env), nth(y,env), nth(z,env))"

lemma restriction_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
+      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
==> restriction(**A, x, y, z) <-> sats(A, restriction_fm(i,j,k), env)"
by simp

theorem restriction_reflection:
-     "REFLECTS[\<lambda>x. restriction(L,f(x),g(x),h(x)),
+     "REFLECTS[\<lambda>x. restriction(L,f(x),g(x),h(x)),
\<lambda>i x. restriction(**Lset(i),f(x),g(x),h(x))]"
apply (simp only: restriction_def setclass_simps)
-apply (intro FOL_reflections pair_reflection)
+apply (intro FOL_reflections pair_reflection)
done

subsubsection{*Order-Isomorphisms, Internalized*}

(*  order_isomorphism :: "[i=>o,i,i,i,i,i] => o"
-   "order_isomorphism(M,A,r,B,s,f) ==
-        bijection(M,A,B,f) &
+   "order_isomorphism(M,A,r,B,s,f) ==
+        bijection(M,A,B,f) &
(\<forall>x[M]. x\<in>A --> (\<forall>y[M]. y\<in>A -->
(\<forall>p[M]. \<forall>fx[M]. \<forall>fy[M]. \<forall>q[M].
-            pair(M,x,y,p) --> fun_apply(M,f,x,fx) --> fun_apply(M,f,y,fy) -->
+            pair(M,x,y,p) --> fun_apply(M,f,x,fx) --> fun_apply(M,f,y,fy) -->
pair(M,fx,fy,q) --> (p\<in>r <-> q\<in>s))))"
*)

constdefs order_isomorphism_fm :: "[i,i,i,i,i]=>i"
- "order_isomorphism_fm(A,r,B,s,f) ==
-   And(bijection_fm(A,B,f),
+ "order_isomorphism_fm(A,r,B,s,f) ==
+   And(bijection_fm(A,B,f),
Forall(Implies(Member(0,succ(A)),
Forall(Implies(Member(0,succ(succ(A))),
Forall(Forall(Forall(Forall(
Implies(pair_fm(5,4,3),
Implies(fun_apply_fm(f#+6,5,2),
Implies(fun_apply_fm(f#+6,4,1),
-                 Implies(pair_fm(2,1,0),
+                 Implies(pair_fm(2,1,0),
Iff(Member(3,r#+6), Member(0,s#+6)))))))))))))))"

lemma order_isomorphism_type [TC]:
-     "[| A \<in> nat; r \<in> nat; B \<in> nat; s \<in> nat; f \<in> nat |]
+     "[| A \<in> nat; r \<in> nat; B \<in> nat; s \<in> nat; f \<in> nat |]
==> order_isomorphism_fm(A,r,B,s,f) \<in> formula"

lemma arity_order_isomorphism_fm [simp]:
-     "[| A \<in> nat; r \<in> nat; B \<in> nat; s \<in> nat; f \<in> nat |]
-      ==> arity(order_isomorphism_fm(A,r,B,s,f)) =
-          succ(A) \<union> succ(r) \<union> succ(B) \<union> succ(s) \<union> succ(f)"
-by (simp add: order_isomorphism_fm_def succ_Un_distrib [symmetric] Un_ac)
+     "[| A \<in> nat; r \<in> nat; B \<in> nat; s \<in> nat; f \<in> nat |]
+      ==> arity(order_isomorphism_fm(A,r,B,s,f)) =
+          succ(A) \<union> succ(r) \<union> succ(B) \<union> succ(s) \<union> succ(f)"
+by (simp add: order_isomorphism_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_order_isomorphism_fm [simp]:
"[| U \<in> nat; r \<in> nat; B \<in> nat; s \<in> nat; f \<in> nat; env \<in> list(A)|]
-    ==> sats(A, order_isomorphism_fm(U,r,B,s,f), env) <->
-        order_isomorphism(**A, nth(U,env), nth(r,env), nth(B,env),
+    ==> sats(A, order_isomorphism_fm(U,r,B,s,f), env) <->
+        order_isomorphism(**A, nth(U,env), nth(r,env), nth(B,env),
nth(s,env), nth(f,env))"

lemma order_isomorphism_iff_sats:
-  "[| nth(i,env) = U; nth(j,env) = r; nth(k,env) = B; nth(j',env) = s;
-      nth(k',env) = f;
+  "[| nth(i,env) = U; nth(j,env) = r; nth(k,env) = B; nth(j',env) = s;
+      nth(k',env) = f;
i \<in> nat; j \<in> nat; k \<in> nat; j' \<in> nat; k' \<in> nat; env \<in> list(A)|]
-   ==> order_isomorphism(**A,U,r,B,s,f) <->
-       sats(A, order_isomorphism_fm(i,j,k,j',k'), env)"
+   ==> order_isomorphism(**A,U,r,B,s,f) <->
+       sats(A, order_isomorphism_fm(i,j,k,j',k'), env)"
by simp

theorem order_isomorphism_reflection:
-     "REFLECTS[\<lambda>x. order_isomorphism(L,f(x),g(x),h(x),g'(x),h'(x)),
+     "REFLECTS[\<lambda>x. order_isomorphism(L,f(x),g(x),h(x),g'(x),h'(x)),
\<lambda>i x. order_isomorphism(**Lset(i),f(x),g(x),h(x),g'(x),h'(x))]"
apply (simp only: order_isomorphism_def setclass_simps)
-apply (intro FOL_reflections function_reflections bijection_reflection)
+apply (intro FOL_reflections function_reflections bijection_reflection)
done

subsubsection{*Limit Ordinals, Internalized*}

text{*A limit ordinal is a non-empty, successor-closed ordinal*}

-(* "limit_ordinal(M,a) ==
-	ordinal(M,a) & ~ empty(M,a) &
+(* "limit_ordinal(M,a) ==
+        ordinal(M,a) & ~ empty(M,a) &
(\<forall>x[M]. x\<in>a --> (\<exists>y[M]. y\<in>a & successor(M,x,y)))" *)

constdefs limit_ordinal_fm :: "i=>i"
-    "limit_ordinal_fm(x) ==
+    "limit_ordinal_fm(x) ==
And(ordinal_fm(x),
And(Neg(empty_fm(x)),
-	        Forall(Implies(Member(0,succ(x)),
+                Forall(Implies(Member(0,succ(x)),
Exists(And(Member(0,succ(succ(x))),
succ_fm(1,0)))))))"

lemma limit_ordinal_type [TC]:
"x \<in> nat ==> limit_ordinal_fm(x) \<in> formula"

lemma arity_limit_ordinal_fm [simp]:
"x \<in> nat ==> arity(limit_ordinal_fm(x)) = succ(x)"
-by (simp add: limit_ordinal_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: limit_ordinal_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_limit_ordinal_fm [simp]:
"[| x \<in> nat; env \<in> list(A)|]
@@ -1395,35 +1434,35 @@
by (simp add: limit_ordinal_fm_def limit_ordinal_def sats_ordinal_fm')

lemma limit_ordinal_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y;
+      "[| nth(i,env) = x; nth(j,env) = y;
i \<in> nat; env \<in> list(A)|]
==> limit_ordinal(**A, x) <-> sats(A, limit_ordinal_fm(i), env)"
by simp

theorem limit_ordinal_reflection:
-     "REFLECTS[\<lambda>x. limit_ordinal(L,f(x)),
+     "REFLECTS[\<lambda>x. limit_ordinal(L,f(x)),
\<lambda>i x. limit_ordinal(**Lset(i),f(x))]"
apply (simp only: limit_ordinal_def setclass_simps)
-apply (intro FOL_reflections ordinal_reflection
-             empty_reflection successor_reflection)
+apply (intro FOL_reflections ordinal_reflection
+             empty_reflection successor_reflection)
done

subsubsection{*Omega: The Set of Natural Numbers*}

(* omega(M,a) == limit_ordinal(M,a) & (\<forall>x[M]. x\<in>a --> ~ limit_ordinal(M,x)) *)
constdefs omega_fm :: "i=>i"
-    "omega_fm(x) ==
+    "omega_fm(x) ==
And(limit_ordinal_fm(x),
Forall(Implies(Member(0,succ(x)),
Neg(limit_ordinal_fm(0)))))"

lemma omega_type [TC]:
"x \<in> nat ==> omega_fm(x) \<in> formula"

lemma arity_omega_fm [simp]:
"x \<in> nat ==> arity(omega_fm(x)) = succ(x)"
-by (simp add: omega_fm_def succ_Un_distrib [symmetric] Un_ac)
+by (simp add: omega_fm_def succ_Un_distrib [symmetric] Un_ac)

lemma sats_omega_fm [simp]:
"[| x \<in> nat; env \<in> list(A)|]
@@ -1431,16 +1470,16 @@

lemma omega_iff_sats:
-      "[| nth(i,env) = x; nth(j,env) = y;
+      "[| nth(i,env) = x; nth(j,env) = y;
i \<in> nat; env \<in> list(A)|]
==> omega(**A, x) <-> sats(A, omega_fm(i), env)"
by simp

theorem omega_reflection:
-     "REFLECTS[\<lambda>x. omega(L,f(x)),
+     "REFLECTS[\<lambda>x. omega(L,f(x)),
\<lambda>i x. omega(**Lset(i),f(x))]"
apply (simp only: omega_def setclass_simps)
-apply (intro FOL_reflections limit_ordinal_reflection)
+apply (intro FOL_reflections limit_ordinal_reflection)
done

@@ -1451,10 +1490,10 @@
order_isomorphism_reflection
ordinal_reflection limit_ordinal_reflection omega_reflection

-lemmas fun_plus_iff_sats =
-	typed_function_iff_sats composition_iff_sats
-        injection_iff_sats surjection_iff_sats
-        bijection_iff_sats restriction_iff_sats
+lemmas fun_plus_iff_sats =
+        typed_function_iff_sats composition_iff_sats
+        injection_iff_sats surjection_iff_sats
+        bijection_iff_sats restriction_iff_sats
order_isomorphism_iff_sats
ordinal_iff_sats limit_ordinal_iff_sats omega_iff_sats
```
```--- a/src/ZF/Constructible/Rec_Separation.thy	Mon Jul 29 00:57:16 2002 +0200
+++ b/src/ZF/Constructible/Rec_Separation.thy	Mon Jul 29 18:07:53 2002 +0200
@@ -1,4 +1,5 @@
+

theory Rec_Separation = Separation + Datatype_absolute:

@@ -198,19 +199,14 @@

subsubsection{*Instantiating the locale @{text M_trancl}*}

-theorem M_trancl_axioms_L: "M_trancl_axioms(L)"
+theorem M_trancl_L: "PROP M_trancl(L)"
+  apply (rule M_trancl.intro)
+    apply (rule M_axioms.axioms [OF M_axioms_L])+
apply (rule M_trancl_axioms.intro)
apply (assumption | rule
rtrancl_separation wellfounded_trancl_separation)+
done

-theorem M_trancl_L: "PROP M_trancl(L)"
-  apply (rule M_trancl.intro)
-    apply (rule M_triv_axioms_L)
-   apply (rule M_axioms_axioms_L)
-  apply (rule M_trancl_axioms_L)
-  done
-
lemmas iterates_abs = M_trancl.iterates_abs [OF M_trancl_L]
and rtran_closure_rtrancl = M_trancl.rtran_closure_rtrancl [OF M_trancl_L]
and rtrancl_closed = M_trancl.rtrancl_closed [OF M_trancl_L]
@@ -438,18 +434,12 @@

subsubsection{*Instantiating the locale @{text M_wfrank}*}

-theorem M_wfrank_axioms_L: "M_wfrank_axioms(L)"
-  apply (rule M_wfrank_axioms.intro)
-  apply (assumption | rule
-    wfrank_separation wfrank_strong_replacement Ord_wfrank_separation)+
-  done
-
theorem M_wfrank_L: "PROP M_wfrank(L)"
apply (rule M_wfrank.intro)
-     apply (rule M_triv_axioms_L)
-    apply (rule M_axioms_axioms_L)
-   apply (rule M_trancl_axioms_L)
-  apply (rule M_wfrank_axioms_L)
+     apply (rule M_trancl.axioms [OF M_trancl_L])+
+  apply (rule M_wfrank_axioms.intro)
+   apply (assumption | rule
+     wfrank_separation wfrank_strong_replacement Ord_wfrank_separation)+
done

lemmas iterates_closed = M_wfrank.iterates_closed [OF M_wfrank_L]
@@ -1224,7 +1214,9 @@

subsubsection{*Instantiating the locale @{text M_datatypes}*}

-theorem M_datatypes_axioms_L: "M_datatypes_axioms(L)"
+theorem M_datatypes_L: "PROP M_datatypes(L)"
+  apply (rule M_datatypes.intro)
+      apply (rule M_wfrank.axioms [OF M_wfrank_L])+
apply (rule M_datatypes_axioms.intro)
apply (assumption | rule
list_replacement1 list_replacement2
@@ -1232,15 +1224,6 @@
nth_replacement)+
done

-theorem M_datatypes_L: "PROP M_datatypes(L)"
-  apply (rule M_datatypes.intro)
-      apply (rule M_triv_axioms_L)
-     apply (rule M_axioms_axioms_L)
-    apply (rule M_trancl_axioms_L)
-   apply (rule M_wfrank_axioms_L)
-  apply (rule M_datatypes_axioms_L)
-  done
-
lemmas list_closed = M_datatypes.list_closed [OF M_datatypes_L]
and formula_closed = M_datatypes.formula_closed [OF M_datatypes_L]
and list_abs = M_datatypes.list_abs [OF M_datatypes_L]
@@ -1338,19 +1321,11 @@

subsubsection{*Instantiating the locale @{text M_eclose}*}

-theorem M_eclose_axioms_L: "M_eclose_axioms(L)"
-  apply (rule M_eclose_axioms.intro)
-   apply (assumption | rule eclose_replacement1 eclose_replacement2)+
-  done
-
theorem M_eclose_L: "PROP M_eclose(L)"
apply (rule M_eclose.intro)
-       apply (rule M_triv_axioms_L)
-      apply (rule M_axioms_axioms_L)
-     apply (rule M_trancl_axioms_L)
-    apply (rule M_wfrank_axioms_L)
-   apply (rule M_datatypes_axioms_L)
-  apply (rule M_eclose_axioms_L)
+       apply (rule M_datatypes.axioms [OF M_datatypes_L])+
+  apply (rule M_eclose_axioms.intro)
+   apply (assumption | rule eclose_replacement1 eclose_replacement2)+
done

lemmas eclose_closed [intro, simp] = M_eclose.eclose_closed [OF M_eclose_L]```
```--- a/src/ZF/Constructible/Separation.thy	Mon Jul 29 00:57:16 2002 +0200
+++ b/src/ZF/Constructible/Separation.thy	Mon Jul 29 18:07:53 2002 +0200
@@ -448,7 +448,9 @@
text{*Separation (and Strong Replacement) for basic set-theoretic constructions
such as intersection, Cartesian Product and image.*}

-theorem M_axioms_axioms_L: "M_axioms_axioms(L)"
+theorem M_axioms_L: "PROP M_axioms(L)"
+  apply (rule M_axioms.intro)
+   apply (rule M_triv_axioms_L)
apply (rule M_axioms_axioms.intro)
apply (assumption | rule
Inter_separation cartprod_separation image_separation
@@ -458,12 +460,6 @@
obase_separation obase_equals_separation
omap_replacement is_recfun_separation)+
done
-
-theorem M_axioms_L: "PROP M_axioms(L)"
-  apply (rule M_axioms.intro)
-   apply (rule M_triv_axioms_L)
-  apply (rule M_axioms_axioms_L)
-  done

lemmas cartprod_iff = M_axioms.cartprod_iff [OF M_axioms_L]
and cartprod_closed = M_axioms.cartprod_closed [OF M_axioms_L]
@@ -570,35 +566,34 @@
and relativized_imp_well_ord = M_axioms.relativized_imp_well_ord [OF M_axioms_L]
and well_ord_abs = M_axioms.well_ord_abs [OF M_axioms_L]

-
-declare cartprod_closed [intro,simp]
-declare sum_closed [intro,simp]
-declare converse_closed [intro,simp]
+declare cartprod_closed [intro, simp]
+declare sum_closed [intro, simp]
+declare converse_closed [intro, simp]
declare converse_abs [simp]
-declare image_closed [intro,simp]
+declare image_closed [intro, simp]
declare vimage_abs [simp]
-declare vimage_closed [intro,simp]
+declare vimage_closed [intro, simp]
declare domain_abs [simp]
-declare domain_closed [intro,simp]
+declare domain_closed [intro, simp]
declare range_abs [simp]
-declare range_closed [intro,simp]
+declare range_closed [intro, simp]
declare field_abs [simp]
-declare field_closed [intro,simp]
+declare field_closed [intro, simp]
declare relation_abs [simp]
declare function_abs [simp]
-declare apply_closed [intro,simp]
+declare apply_closed [intro, simp]
declare typed_function_abs [simp]
declare injection_abs [simp]
declare surjection_abs [simp]
declare bijection_abs [simp]
-declare comp_closed [intro,simp]
+declare comp_closed [intro, simp]
declare composition_abs [simp]
declare restriction_abs [simp]
-declare restrict_closed [intro,simp]
+declare restrict_closed [intro, simp]
declare Inter_abs [simp]
-declare Inter_closed [intro,simp]
-declare Int_closed [intro,simp]
+declare Inter_closed [intro, simp]
+declare Int_closed [intro, simp]
declare is_funspace_abs [simp]
-declare finite_funspace_closed [intro,simp]
+declare finite_funspace_closed [intro, simp]

end```