merged
authorblanchet
Mon, 26 Oct 2009 14:21:20 +0100
changeset 33203 322d928d9f8f
parent 33188 3802b3b7845f (current diff)
parent 33202 0183ab3ca7b4 (diff)
child 33204 79bd3fbf5d61
merged
CONTRIBUTORS
src/HOL/IsaMakefile
--- a/CONTRIBUTORS	Mon Oct 26 12:23:59 2009 +0100
+++ b/CONTRIBUTORS	Mon Oct 26 14:21:20 2009 +0100
@@ -7,6 +7,9 @@
 Contributions to this Isabelle version
 --------------------------------------
 
+* October 2009: Jasmin Blanchette, TUM
+  Nitpick: yet another counterexample generator for Isabelle/HOL
+
 * October 2009: Sascha Boehme, TUM
   Extension of SMT method: proof-reconstruction for the SMT solver Z3.
 
--- a/NEWS	Mon Oct 26 12:23:59 2009 +0100
+++ b/NEWS	Mon Oct 26 14:21:20 2009 +0100
@@ -50,6 +50,9 @@
 this method is proof-producing. Certificates are provided to
 avoid calling the external solvers solely for re-checking proofs.
 
+* New counterexample generator tool "nitpick" based on the Kodkod
+relational model finder.
+
 * Reorganization of number theory:
   * former session NumberTheory now named Old_Number_Theory
   * new session Number_Theory by Jeremy Avigad; if possible, prefer this.
--- a/doc-src/Dirs	Mon Oct 26 12:23:59 2009 +0100
+++ b/doc-src/Dirs	Mon Oct 26 14:21:20 2009 +0100
@@ -1,1 +1,1 @@
-Intro Ref System Logics HOL ZF Inductive TutorialI IsarOverview IsarRef IsarImplementation Locales LaTeXsugar Classes Codegen Functions Main
+Intro Ref System Logics HOL ZF Inductive TutorialI IsarOverview IsarRef IsarImplementation Locales LaTeXsugar Classes Codegen Functions Nitpick Main
--- a/doc-src/Makefile.in	Mon Oct 26 12:23:59 2009 +0100
+++ b/doc-src/Makefile.in	Mon Oct 26 14:21:20 2009 +0100
@@ -45,6 +45,9 @@
 isabelle_zf.eps:
 	test -r isabelle_zf.eps || ln -s ../gfx/isabelle_zf.eps .
 
+isabelle_nitpick.eps:
+	test -r isabelle_nitpick.eps || ln -s ../gfx/isabelle_nitpick.eps .
+
 
 isabelle.pdf:
 	test -r isabelle.pdf || ln -s ../gfx/isabelle.pdf .
@@ -58,6 +61,9 @@
 isabelle_zf.pdf:
 	test -r isabelle_zf.pdf || ln -s ../gfx/isabelle_zf.pdf .
 
+isabelle_nitpick.pdf:
+	test -r isabelle_nitpick.pdf || ln -s ../gfx/isabelle_nitpick.pdf .
+
 typedef.ps:
 	test -r typedef.ps || ln -s ../gfx/typedef.ps .
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Nitpick/Makefile	Mon Oct 26 14:21:20 2009 +0100
@@ -0,0 +1,36 @@
+#
+# $Id$
+#
+
+## targets
+
+default: dvi
+
+
+## dependencies
+
+include ../Makefile.in
+
+NAME = nitpick
+FILES = nitpick.tex ../iman.sty ../manual.bib
+
+dvi: $(NAME).dvi
+
+$(NAME).dvi: $(FILES) isabelle_nitpick.eps
+	$(LATEX) $(NAME)
+	$(BIBTEX) $(NAME)
+	$(LATEX) $(NAME)
+	$(LATEX) $(NAME)
+	$(SEDINDEX) $(NAME)
+	$(LATEX) $(NAME)
+
+pdf: $(NAME).pdf
+
+$(NAME).pdf: $(FILES) isabelle_nitpick.pdf
+	$(PDFLATEX) $(NAME)
+	$(BIBTEX) $(NAME)
+	$(PDFLATEX) $(NAME)
+	$(PDFLATEX) $(NAME)
+	$(SEDINDEX) $(NAME)
+	$(FIXBOOKMARKS) $(NAME).out
+	$(PDFLATEX) $(NAME)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Nitpick/nitpick.tex	Mon Oct 26 14:21:20 2009 +0100
@@ -0,0 +1,2486 @@
+\documentclass[a4paper,12pt]{article}
+\usepackage[T1]{fontenc}
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage[french,english]{babel}
+\usepackage{color}
+\usepackage{graphicx}
+%\usepackage{mathpazo}
+\usepackage{multicol}
+\usepackage{stmaryrd}
+%\usepackage[scaled=.85]{beramono}
+\usepackage{../iman,../pdfsetup}
+
+%\oddsidemargin=4.6mm
+%\evensidemargin=4.6mm
+%\textwidth=150mm
+%\topmargin=4.6mm
+%\headheight=0mm
+%\headsep=0mm
+%\textheight=234mm
+
+\def\Colon{\mathord{:\mkern-1.5mu:}}
+%\def\lbrakk{\mathopen{\lbrack\mkern-3.25mu\lbrack}}
+%\def\rbrakk{\mathclose{\rbrack\mkern-3.255mu\rbrack}}
+\def\lparr{\mathopen{(\mkern-4mu\mid}}
+\def\rparr{\mathclose{\mid\mkern-4mu)}}
+
+\def\undef{\textit{undefined}}
+\def\unk{{?}}
+%\def\unr{\textit{others}}
+\def\unr{\ldots}
+\def\Abs#1{\hbox{\rm{\flqq}}{\,#1\,}\hbox{\rm{\frqq}}}
+\def\Q{{\smash{\lower.2ex\hbox{$\scriptstyle?$}}}}
+
+\hyphenation{Mini-Sat size-change First-Steps grand-parent nit-pick
+counter-example counter-examples data-type data-types co-data-type 
+co-data-types in-duc-tive co-in-duc-tive}
+
+\urlstyle{tt}
+
+\begin{document}
+
+\title{\includegraphics[scale=0.5]{isabelle_nitpick} \\[4ex]
+Picking Nits \\[\smallskipamount]
+\Large A User's Guide to Nitpick for Isabelle/HOL 2010}
+\author{\hbox{} \\
+Jasmin Christian Blanchette \\
+{\normalsize Fakult\"at f\"ur Informatik, Technische Universit\"at M\"unchen} \\
+\hbox{}}
+
+\maketitle
+
+\tableofcontents
+
+\setlength{\parskip}{.7em plus .2em minus .1em}
+\setlength{\parindent}{0pt}
+\setlength{\abovedisplayskip}{\parskip}
+\setlength{\abovedisplayshortskip}{.9\parskip}
+\setlength{\belowdisplayskip}{\parskip}
+\setlength{\belowdisplayshortskip}{.9\parskip}
+
+% General-purpose enum environment with correct spacing
+\newenvironment{enum}%
+    {\begin{list}{}{%
+        \setlength{\topsep}{.1\parskip}%
+        \setlength{\partopsep}{.1\parskip}%
+        \setlength{\itemsep}{\parskip}%
+        \advance\itemsep by-\parsep}}
+    {\end{list}}
+
+\def\pre{\begingroup\vskip0pt plus1ex\advance\leftskip by\leftmargin
+\advance\rightskip by\leftmargin}
+\def\post{\vskip0pt plus1ex\endgroup}
+
+\def\prew{\pre\advance\rightskip by-\leftmargin}
+\def\postw{\post}
+
+\section{Introduction}
+\label{introduction}
+
+Nitpick \cite{blanchette-nipkow-2009} is a counterexample generator for
+Isabelle/HOL \cite{isa-tutorial} that is designed to handle formulas
+combining (co)in\-duc\-tive datatypes, (co)in\-duc\-tively defined predicates, and
+quantifiers. It builds on Kodkod \cite{torlak-jackson-2007}, a highly optimized
+first-order relational model finder developed by the Software Design Group at
+MIT. It is conceptually similar to Refute \cite{weber-2008}, from which it
+borrows many ideas and code fragments, but it benefits from Kodkod's
+optimizations and a new encoding scheme. The name Nitpick is shamelessly
+appropriated from a now retired Alloy precursor.
+
+Nitpick is easy to use---you simply enter \textbf{nitpick} after a putative
+theorem and wait a few seconds. Nonetheless, there are situations where knowing
+how it works under the hood and how it reacts to various options helps
+increase the test coverage. This manual also explains how to install the tool on
+your workstation. Should the motivation fail you, think of the many hours of
+hard work Nitpick will save you. Proving non-theorems is \textsl{hard work}.
+
+Another common use of Nitpick is to find out whether the axioms of a locale are
+satisfiable, while the locale is being developed. To check this, it suffices to
+write
+
+\prew
+\textbf{lemma}~``$\textit{False}$'' \\
+\textbf{nitpick}~[\textit{show\_all}]
+\postw
+
+after the locale's \textbf{begin} keyword. To falsify \textit{False}, Nitpick
+must find a model for the axioms. If it finds no model, we have an indication
+that the axioms might be unsatisfiable.
+
+Nitpick requires the Kodkodi package for Isabelle as well as a Java 1.5 virtual
+machine called \texttt{java}. The examples presented in this manual can be found
+in Isabelle's \texttt{src/HOL/Nitpick\_Examples/Manual\_Nits.thy} theory.
+
+\newbox\boxA
+\setbox\boxA=\hbox{\texttt{nospam}}
+
+The known bugs and limitations at the time of writing are listed in
+\S\ref{known-bugs-and-limitations}. Comments and bug reports concerning Nitpick
+or this manual should be directed to
+\texttt{blan{\color{white}nospam}\kern-\wd\boxA{}chette@\allowbreak
+in.\allowbreak tum.\allowbreak de}.
+
+\vskip2.5\smallskipamount
+
+\textbf{Acknowledgment.} The author would like to thank Mark Summerfield for
+suggesting several textual improvements.
+% and Perry James for reporting a typo.
+
+\section{First Steps}
+\label{first-steps}
+
+This section introduces Nitpick by presenting small examples. If possible, you
+should try out the examples on your workstation. Your theory file should start
+the standard way:
+
+\prew
+\textbf{theory}~\textit{Scratch} \\
+\textbf{imports}~\textit{Main} \\
+\textbf{begin}
+\postw
+
+The results presented here were obtained using the JNI version of MiniSat and
+with multithreading disabled to reduce nondeterminism. This was done by adding
+the line
+
+\prew
+\textbf{nitpick\_params} [\textit{sat\_solver}~= \textit{MiniSatJNI}, \,\textit{max\_threads}~= 1]
+\postw
+
+after the \textbf{begin} keyword. The JNI version of MiniSat is bundled with
+Kodkodi and is precompiled for the major platforms. Other SAT solvers can also
+be installed, as explained in \S\ref{optimizations}. If you have already
+configured SAT solvers in Isabelle (e.g., for Refute), these will also be
+available to Nitpick.
+
+Throughout this manual, we will explicitly invoke the \textbf{nitpick} command.
+Nitpick also provides an automatic mode that can be enabled by specifying
+
+\prew
+\textbf{nitpick\_params} [\textit{auto}]
+\postw
+
+at the beginning of the theory file. In this mode, Nitpick is run for up to 5
+seconds (by default) on every newly entered theorem, much like Auto Quickcheck.
+
+\subsection{Propositional Logic}
+\label{propositional-logic}
+
+Let's start with a trivial example from propositional logic:
+
+\prew
+\textbf{lemma}~``$P \longleftrightarrow Q$'' \\
+\textbf{nitpick}
+\postw
+
+You should get the following output:
+
+\prew
+\slshape
+Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \textit{True}$ \\
+\hbox{}\qquad\qquad $Q = \textit{False}$
+\postw
+
+Nitpick can also be invoked on individual subgoals, as in the example below:
+
+\prew
+\textbf{apply}~\textit{auto} \\[2\smallskipamount]
+{\slshape goal (2 subgoals): \\
+\ 1. $P\,\Longrightarrow\, Q$ \\
+\ 2. $Q\,\Longrightarrow\, P$} \\[2\smallskipamount]
+\textbf{nitpick}~1 \\[2\smallskipamount]
+{\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \textit{True}$ \\
+\hbox{}\qquad\qquad $Q = \textit{False}$} \\[2\smallskipamount]
+\textbf{nitpick}~2 \\[2\smallskipamount]
+{\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \textit{False}$ \\
+\hbox{}\qquad\qquad $Q = \textit{True}$} \\[2\smallskipamount]
+\textbf{oops}
+\postw
+
+\subsection{Type Variables}
+\label{type-variables}
+
+If you are left unimpressed by the previous example, don't worry. The next
+one is more mind- and computer-boggling:
+
+\prew
+\textbf{lemma} ``$P~x\,\Longrightarrow\, P~(\textrm{THE}~y.\;P~y)$''
+\postw
+\pagebreak[2] %% TYPESETTING
+
+The putative lemma involves the definite description operator, {THE}, presented
+in section 5.10.1 of the Isabelle tutorial \cite{isa-tutorial}. The
+operator is defined by the axiom $(\textrm{THE}~x.\; x = a) = a$. The putative
+lemma is merely asserting the indefinite description operator axiom with {THE}
+substituted for {SOME}.
+
+The free variable $x$ and the bound variable $y$ have type $'a$. For formulas
+containing type variables, Nitpick enumerates the possible domains for each type
+variable, up to a given cardinality (8 by default), looking for a finite
+countermodel:
+
+\prew
+\textbf{nitpick} [\textit{verbose}] \\[2\smallskipamount]
+\slshape
+Trying 8 scopes: \nopagebreak \\
+\hbox{}\qquad \textit{card}~$'a$~= 1; \\
+\hbox{}\qquad \textit{card}~$'a$~= 2; \\
+\hbox{}\qquad $\qquad\vdots$ \\[.5\smallskipamount]
+\hbox{}\qquad \textit{card}~$'a$~= 8. \\[2\smallskipamount]
+Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \{a_2,\, a_3\}$ \\
+\hbox{}\qquad\qquad $x = a_3$ \\[2\smallskipamount]
+Total time: 580 ms.
+\postw
+
+Nitpick found a counterexample in which $'a$ has cardinality 3. (For
+cardinalities 1 and 2, the formula holds.) In the counterexample, the three
+values of type $'a$ are written $a_1$, $a_2$, and $a_3$.
+
+The message ``Trying $n$ scopes: {\ldots}''\ is shown only if the option
+\textit{verbose} is enabled. You can specify \textit{verbose} each time you
+invoke \textbf{nitpick}, or you can set it globally using the command
+
+\prew
+\textbf{nitpick\_params} [\textit{verbose}]
+\postw
+
+This command also displays the current default values for all of the options
+supported by Nitpick. The options are listed in \S\ref{option-reference}.
+
+\subsection{Constants}
+\label{constants}
+
+By just looking at Nitpick's output, it might not be clear why the
+counterexample in \S\ref{type-variables} is genuine. Let's invoke Nitpick again,
+this time telling it to show the values of the constants that occur in the
+formula:
+
+\prew
+\textbf{lemma}~``$P~x\,\Longrightarrow\, P~(\textrm{THE}~y.\;P~y)$'' \\
+\textbf{nitpick}~[\textit{show\_consts}] \\[2\smallskipamount]
+\slshape
+Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \{a_2,\, a_3\}$ \\
+\hbox{}\qquad\qquad $x = a_3$ \\
+\hbox{}\qquad Constant: \nopagebreak \\
+\hbox{}\qquad\qquad $\textit{The}~\textsl{fallback} = a_1$
+\postw
+
+We can see more clearly now. Since the predicate $P$ isn't true for a unique
+value, $\textrm{THE}~y.\;P~y$ can denote any value of type $'a$, even
+$a_1$. Since $P~a_1$ is false, the entire formula is falsified.
+
+As an optimization, Nitpick's preprocessor introduced the special constant
+``\textit{The} fallback'' corresponding to $\textrm{THE}~y.\;P~y$ (i.e.,
+$\mathit{The}~(\lambda y.\;P~y)$) when there doesn't exist a unique $y$
+satisfying $P~y$. We disable this optimization by passing the
+\textit{full\_descrs} option:
+
+\prew
+\textbf{nitpick}~[\textit{full\_descrs},\, \textit{show\_consts}] \\[2\smallskipamount]
+\slshape
+Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \{a_2,\, a_3\}$ \\
+\hbox{}\qquad\qquad $x = a_3$ \\
+\hbox{}\qquad Constant: \nopagebreak \\
+\hbox{}\qquad\qquad $\hbox{\slshape THE}~y.\;P~y = a_1$
+\postw
+
+As the result of another optimization, Nitpick directly assigned a value to the
+subterm $\textrm{THE}~y.\;P~y$, rather than to the \textit{The} constant. If we
+disable this second optimization by using the command
+
+\prew
+\textbf{nitpick}~[\textit{dont\_specialize},\, \textit{full\_descrs},\,
+\textit{show\_consts}]
+\postw
+
+we finally get \textit{The}:
+
+\prew
+\slshape Constant: \nopagebreak \\
+\hbox{}\qquad $\mathit{The} = \undef{}
+    (\!\begin{aligned}[t]%
+    & \{\} := a_3,\> \{a_3\} := a_3,\> \{a_2\} := a_2, \\[-2pt] %% TYPESETTING
+    & \{a_2, a_3\} := a_1,\> \{a_1\} := a_1,\> \{a_1, a_3\} := a_3, \\[-2pt]
+    & \{a_1, a_2\} := a_3,\> \{a_1, a_2, a_3\} := a_3)\end{aligned}$
+\postw
+
+Notice that $\textit{The}~(\lambda y.\;P~y) = \textit{The}~\{a_2, a_3\} = a_1$,
+just like before.\footnote{The \undef{} symbol's presence is explained as
+follows: In higher-order logic, any function can be built from the undefined
+function using repeated applications of the function update operator $f(x :=
+y)$, just like any list can be built from the empty list using $x \mathbin{\#}
+xs$.}
+
+Our misadventures with THE suggest adding `$\exists!x{.}$' (``there exists a
+unique $x$ such that'') at the front of our putative lemma's assumption:
+
+\prew
+\textbf{lemma}~``$\exists {!}x.\; P~x\,\Longrightarrow\, P~(\textrm{THE}~y.\;P~y)$''
+\postw
+
+The fix appears to work:
+
+\prew
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found no counterexample.
+\postw
+
+We can further increase our confidence in the formula by exhausting all
+cardinalities up to 50:
+
+\prew
+\textbf{nitpick} [\textit{card} $'a$~= 1--50]\footnote{The symbol `--'
+can be entered as \texttt{-} (hyphen) or
+\texttt{\char`\\\char`\<midarrow\char`\>}.} \\[2\smallskipamount]
+\slshape Nitpick found no counterexample.
+\postw
+
+Let's see if Sledgehammer \cite{sledgehammer-2009} can find a proof:
+
+\prew
+\textbf{sledgehammer} \\[2\smallskipamount]
+{\slshape Sledgehammer: external prover ``$e$'' for subgoal 1: \\
+$\exists{!}x.\; P~x\,\Longrightarrow\, P~(\hbox{\slshape THE}~y.\; P~y)$ \\
+Try this command: \textrm{apply}~(\textit{metis~the\_equality})} \\[2\smallskipamount]
+\textbf{apply}~(\textit{metis~the\_equality\/}) \nopagebreak \\[2\smallskipamount]
+{\slshape No subgoals!}% \\[2\smallskipamount]
+%\textbf{done}
+\postw
+
+This must be our lucky day.
+
+\subsection{Skolemization}
+\label{skolemization}
+
+Are all invertible functions onto? Let's find out:
+
+\prew
+\textbf{lemma} ``$\exists g.\; \forall x.~g~(f~x) = x
+ \,\Longrightarrow\, \forall y.\; \exists x.~y = f~x$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape
+Nitpick found a counterexample for \textit{card} $'a$~= 2 and \textit{card} $'b$~=~1: \\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $f = \undef{}(b_1 := a_1)$ \\
+\hbox{}\qquad Skolem constants: \nopagebreak \\
+\hbox{}\qquad\qquad $g = \undef{}(a_1 := b_1,\> a_2 := b_1)$ \\
+\hbox{}\qquad\qquad $y = a_2$
+\postw
+
+Although $f$ is the only free variable occurring in the formula, Nitpick also
+displays values for the bound variables $g$ and $y$. These values are available
+to Nitpick because it performs skolemization as a preprocessing step.
+
+In the previous example, skolemization only affected the outermost quantifiers.
+This is not always the case, as illustrated below:
+
+\prew
+\textbf{lemma} ``$\exists x.\; \forall f.\; f~x = x$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape
+Nitpick found a counterexample for \textit{card} $'a$~= 2: \\[2\smallskipamount]
+\hbox{}\qquad Skolem constant: \nopagebreak \\
+\hbox{}\qquad\qquad $\lambda x.\; f =
+    \undef{}(\!\begin{aligned}[t]
+    & a_1 := \undef{}(a_1 := a_2,\> a_2 := a_1), \\[-2pt]
+    & a_2 := \undef{}(a_1 := a_1,\> a_2 := a_1))\end{aligned}$
+\postw
+
+The variable $f$ is bound within the scope of $x$; therefore, $f$ depends on
+$x$, as suggested by the notation $\lambda x.\,f$. If $x = a_1$, then $f$ is the
+function that maps $a_1$ to $a_2$ and vice versa; otherwise, $x = a_2$ and $f$
+maps both $a_1$ and $a_2$ to $a_1$. In both cases, $f~x \not= x$.
+
+The source of the Skolem constants is sometimes more obscure:
+
+\prew
+\textbf{lemma} ``$\mathit{refl}~r\,\Longrightarrow\, \mathit{sym}~r$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape
+Nitpick found a counterexample for \textit{card} $'a$~= 2: \\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $r = \{(a_1, a_1),\, (a_2, a_1),\, (a_2, a_2)\}$ \\
+\hbox{}\qquad Skolem constants: \nopagebreak \\
+\hbox{}\qquad\qquad $\mathit{sym}.x = a_2$ \\
+\hbox{}\qquad\qquad $\mathit{sym}.y = a_1$
+\postw
+
+What happened here is that Nitpick expanded the \textit{sym} constant to its
+definition:
+
+\prew
+$\mathit{sym}~r \,\equiv\,
+ \forall x\> y.\,\> (x, y) \in r \longrightarrow (y, x) \in r.$
+\postw
+
+As their names suggest, the Skolem constants $\mathit{sym}.x$ and
+$\mathit{sym}.y$ are simply the bound variables $x$ and $y$
+from \textit{sym}'s definition.
+
+Although skolemization is a useful optimization, you can disable it by invoking
+Nitpick with \textit{dont\_skolemize}. See \S\ref{optimizations} for details.
+
+\subsection{Natural Numbers and Integers}
+\label{natural-numbers-and-integers}
+
+Because of the axiom of infinity, the type \textit{nat} does not admit any
+finite models. To deal with this, Nitpick considers prefixes $\{0,\, 1,\,
+\ldots,\, K - 1\}$ of \textit{nat} (where $K = \textit{card}~\textit{nat}$) and
+maps all other numbers to the undefined value ($\unk$). The type \textit{int} is
+handled in a similar way: If $K = \textit{card}~\textit{int}$, the subset of
+\textit{int} known to Nitpick is $\{-\lceil K/2 \rceil + 1,\, \ldots,\, +\lfloor
+K/2 \rfloor\}$. Undefined values lead to a three-valued logic.
+
+Here is an example involving \textit{int}:
+
+\prew
+\textbf{lemma} ``$\lbrakk i \le j;\> n \le (m{\Colon}\mathit{int})\rbrakk \,\Longrightarrow\, i * n + j * m \le i * m + j * n$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $i = 0$ \\
+\hbox{}\qquad\qquad $j = 1$ \\
+\hbox{}\qquad\qquad $m = 1$ \\
+\hbox{}\qquad\qquad $n = 0$
+\postw
+
+With infinite types, we don't always have the luxury of a genuine counterexample
+and must often content ourselves with a potential one. The tedious task of
+finding out whether the potential counterexample is in fact genuine can be
+outsourced to \textit{auto} by passing the option \textit{check\_potential}. For
+example:
+
+\prew
+\textbf{lemma} ``$\forall n.\; \textit{Suc}~n \mathbin{\not=} n \,\Longrightarrow\, P$'' \\
+\textbf{nitpick} [\textit{card~nat}~= 100,\, \textit{check\_potential}] \\[2\smallskipamount]
+\slshape Nitpick found a potential counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \textit{False}$ \\[2\smallskipamount]
+Confirmation by ``\textit{auto}'': The above counterexample is genuine.
+\postw
+
+You might wonder why the counterexample is first reported as potential. The root
+of the problem is that the bound variable in $\forall n.\; \textit{Suc}~n
+\mathbin{\not=} n$ ranges over an infinite type. If Nitpick finds an $n$ such
+that $\textit{Suc}~n \mathbin{=} n$, it evaluates the assumption to
+\textit{False}; but otherwise, it does not know anything about values of $n \ge
+\textit{card~nat}$ and must therefore evaluate the assumption to $\unk$, not
+\textit{True}. Since the assumption can never be satisfied, the putative lemma
+can never be falsified.
+
+Incidentally, if you distrust the so-called genuine counterexamples, you can
+enable \textit{check\_\allowbreak genuine} to verify them as well. However, be
+aware that \textit{auto} will often fail to prove that the counterexample is
+genuine or spurious.
+
+Some conjectures involving elementary number theory make Nitpick look like a
+giant with feet of clay:
+
+\prew
+\textbf{lemma} ``$P~\textit{Suc}$'' \\
+\textbf{nitpick} [\textit{card} = 1--6] \\[2\smallskipamount]
+\slshape
+Nitpick found no counterexample.
+\postw
+
+For any cardinality $k$, \textit{Suc} is the partial function $\{0 \mapsto 1,\,
+1 \mapsto 2,\, \ldots,\, k - 1 \mapsto \unk\}$, which evaluates to $\unk$ when
+it is passed as argument to $P$. As a result, $P~\textit{Suc}$ is always $\unk$.
+The next example is similar:
+
+\prew
+\textbf{lemma} ``$P~(\textit{op}~{+}\Colon
+\textit{nat}\mathbin{\Rightarrow}\textit{nat}\mathbin{\Rightarrow}\textit{nat})$'' \\
+\textbf{nitpick} [\textit{card nat} = 1] \\[2\smallskipamount]
+{\slshape Nitpick found a counterexample:} \\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \{\}$ \\[2\smallskipamount]
+\textbf{nitpick} [\textit{card nat} = 2] \\[2\smallskipamount]
+{\slshape Nitpick found no counterexample.}
+\postw
+
+The problem here is that \textit{op}~+ is total when \textit{nat} is taken to be
+$\{0\}$ but becomes partial as soon as we add $1$, because $1 + 1 \notin \{0,
+1\}$.
+
+Because numbers are infinite and are approximated using a three-valued logic,
+there is usually no need to systematically enumerate domain sizes. If Nitpick
+cannot find a genuine counterexample for \textit{card~nat}~= $k$, it is very
+unlikely that one could be found for smaller domains. (The $P~(\textit{op}~{+})$
+example above is an exception to this principle.) Nitpick nonetheless enumerates
+all cardinalities from 1 to 8 for \textit{nat}, mainly because smaller
+cardinalities are fast to handle and give rise to simpler counterexamples. This
+is explained in more detail in \S\ref{scope-monotonicity}.
+
+\subsection{Inductive Datatypes}
+\label{inductive-datatypes}
+
+Like natural numbers and integers, inductive datatypes with recursive
+constructors admit no finite models and must be approximated by a subterm-closed
+subset. For example, using a cardinality of 10 for ${'}a~\textit{list}$,
+Nitpick looks for all counterexamples that can be built using at most 10
+different lists.
+
+Let's see with an example involving \textit{hd} (which returns the first element
+of a list) and $@$ (which concatenates two lists):
+
+\prew
+\textbf{lemma} ``$\textit{hd}~(\textit{xs} \mathbin{@} [y, y]) = \textit{hd}~\textit{xs}$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $\textit{xs} = []$ \\
+\hbox{}\qquad\qquad $\textit{y} = a_3$
+\postw
+
+To see why the counterexample is genuine, we enable \textit{show\_consts}
+and \textit{show\_\allowbreak datatypes}:
+
+\prew
+{\slshape Datatype:} \\
+\hbox{}\qquad $'a$~\textit{list}~= $\{[],\, [a_3, a_3],\, [a_3],\, \unr\}$ \\
+{\slshape Constants:} \\
+\hbox{}\qquad $\lambda x_1.\; x_1 \mathbin{@} [y, y] = \undef([] := [a_3, a_3],\> [a_3, a_3] := \unk,\> [a_3] := \unk)$ \\
+\hbox{}\qquad $\textit{hd} = \undef([] := a_2,\> [a_3, a_3] := a_3,\> [a_3] := a_3)$
+\postw
+
+Since $\mathit{hd}~[]$ is undefined in the logic, it may be given any value,
+including $a_2$.
+
+The second constant, $\lambda x_1.\; x_1 \mathbin{@} [y, y]$, is simply the
+append operator whose second argument is fixed to be $[y, y]$. Appending $[a_3,
+a_3]$ to $[a_3]$ would normally give $[a_3, a_3, a_3]$, but this value is not
+representable in the subset of $'a$~\textit{list} considered by Nitpick, which
+is shown under the ``Datatype'' heading; hence the result is $\unk$. Similarly,
+appending $[a_3, a_3]$ to itself gives $\unk$.
+
+Given \textit{card}~$'a = 3$ and \textit{card}~$'a~\textit{list} = 3$, Nitpick
+considers the following subsets:
+
+\kern-.5\smallskipamount %% TYPESETTING
+
+\prew
+\begin{multicols}{3}
+$\{[],\, [a_1],\, [a_2]\}$; \\
+$\{[],\, [a_1],\, [a_3]\}$; \\
+$\{[],\, [a_2],\, [a_3]\}$; \\
+$\{[],\, [a_1],\, [a_1, a_1]\}$; \\
+$\{[],\, [a_1],\, [a_2, a_1]\}$; \\
+$\{[],\, [a_1],\, [a_3, a_1]\}$; \\
+$\{[],\, [a_2],\, [a_1, a_2]\}$; \\
+$\{[],\, [a_2],\, [a_2, a_2]\}$; \\
+$\{[],\, [a_2],\, [a_3, a_2]\}$; \\
+$\{[],\, [a_3],\, [a_1, a_3]\}$; \\
+$\{[],\, [a_3],\, [a_2, a_3]\}$; \\
+$\{[],\, [a_3],\, [a_3, a_3]\}$.
+\end{multicols}
+\postw
+
+\kern-2\smallskipamount %% TYPESETTING
+
+All subterm-closed subsets of $'a~\textit{list}$ consisting of three values
+are listed and only those. As an example of a non-subterm-closed subset,
+consider $\mathcal{S} = \{[],\, [a_1],\,\allowbreak [a_1, a_3]\}$, and observe
+that $[a_1, a_3]$ (i.e., $a_1 \mathbin{\#} [a_3]$) has $[a_3] \notin
+\mathcal{S}$ as a subterm.
+
+Here's another m\"ochtegern-lemma that Nitpick can refute without a blink:
+
+\prew
+\textbf{lemma} ``$\lbrakk \textit{length}~\textit{xs} = 1;\> \textit{length}~\textit{ys} = 1
+\rbrakk \,\Longrightarrow\, \textit{xs} = \textit{ys}$''
+\\
+\textbf{nitpick} [\textit{show\_datatypes}] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $\textit{xs} = [a_2]$ \\
+\hbox{}\qquad\qquad $\textit{ys} = [a_3]$ \\
+\hbox{}\qquad Datatypes: \\
+\hbox{}\qquad\qquad $\textit{nat} = \{0,\, 1,\, 2,\, \unr\}$ \\
+\hbox{}\qquad\qquad $'a$~\textit{list} = $\{[],\, [a_3],\, [a_2],\, \unr\}$
+\postw
+
+Because datatypes are approximated using a three-valued logic, there is usually
+no need to systematically enumerate cardinalities: If Nitpick cannot find a
+genuine counterexample for \textit{card}~$'a~\textit{list}$~= 10, it is very
+unlikely that one could be found for smaller cardinalities.
+
+\subsection{Typedefs, Records, Rationals, and Reals}
+\label{typedefs-records-rationals-and-reals}
+
+Nitpick generally treats types declared using \textbf{typedef} as datatypes
+whose single constructor is the corresponding \textit{Abs\_\kern.1ex} function.
+For example:
+
+\prew
+\textbf{typedef}~\textit{three} = ``$\{0\Colon\textit{nat},\, 1,\, 2\}$'' \\
+\textbf{by}~\textit{blast} \\[2\smallskipamount]
+\textbf{definition}~$A \mathbin{\Colon} \textit{three}$ \textbf{where} ``\kern-.1em$A \,\equiv\, \textit{Abs\_\allowbreak three}~0$'' \\
+\textbf{definition}~$B \mathbin{\Colon} \textit{three}$ \textbf{where} ``$B \,\equiv\, \textit{Abs\_three}~1$'' \\
+\textbf{definition}~$C \mathbin{\Colon} \textit{three}$ \textbf{where} ``$C \,\equiv\, \textit{Abs\_three}~2$'' \\[2\smallskipamount]
+\textbf{lemma} ``$\lbrakk P~A;\> P~B\rbrakk \,\Longrightarrow\, P~x$'' \\
+\textbf{nitpick} [\textit{show\_datatypes}] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \{\Abs{1},\, \Abs{0}\}$ \\
+\hbox{}\qquad\qquad $x = \Abs{2}$ \\
+\hbox{}\qquad Datatypes: \\
+\hbox{}\qquad\qquad $\textit{nat} = \{0,\, 1,\, 2,\, \unr\}$ \\
+\hbox{}\qquad\qquad $\textit{three} = \{\Abs{2},\, \Abs{1},\, \Abs{0},\, \unr\}$
+\postw
+
+%% MARK
+In the output above, $\Abs{n}$ abbreviates $\textit{Abs\_three}~n$.
+
+%% MARK
+Records, which are implemented as \textbf{typedef}s behind the scenes, are
+handled in much the same way:
+
+\prew
+\textbf{record} \textit{point} = \\
+\hbox{}\quad $\textit{Xcoord} \mathbin{\Colon} \textit{int}$ \\
+\hbox{}\quad $\textit{Ycoord} \mathbin{\Colon} \textit{int}$ \\[2\smallskipamount]
+\textbf{lemma} ``$\textit{Xcoord}~(p\Colon\textit{point}) = \textit{Xcoord}~(q\Colon\textit{point})$'' \\
+\textbf{nitpick} [\textit{show\_datatypes}] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $p = \lparr\textit{Xcoord} = 0,\> \textit{Ycoord} = 0\rparr$ \\
+\hbox{}\qquad\qquad $q = \lparr\textit{Xcoord} = 1,\> \textit{Ycoord} = 1\rparr$ \\
+\hbox{}\qquad Datatypes: \\
+\hbox{}\qquad\qquad $\textit{int} = \{0,\, 1,\, \unr\}$ \\
+\hbox{}\qquad\qquad $\textit{point} = \{\lparr\textit{Xcoord} = 1,\>
+\textit{Ycoord} = 1\rparr,\> \lparr\textit{Xcoord} = 0,\> \textit{Ycoord} = 0\rparr,\, \unr\}$\kern-1pt %% QUIET
+\postw
+
+Finally, Nitpick provides rudimentary support for rationals and reals using a
+similar approach:
+
+\prew
+\textbf{lemma} ``$4 * x + 3 * (y\Colon\textit{real}) \not= 1/2$'' \\
+\textbf{nitpick} [\textit{show\_datatypes}] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $x = 1/2$ \\
+\hbox{}\qquad\qquad $y = -1/2$ \\
+\hbox{}\qquad Datatypes: \\
+\hbox{}\qquad\qquad $\textit{nat} = \{0,\, 1,\, 2,\, 3,\, 4,\, 5,\, 6,\, 7,\, \unr\}$ \\
+\hbox{}\qquad\qquad $\textit{int} = \{0,\, 1,\, 2,\, 3,\, 4,\, -3,\, -2,\, -1,\, \unr\}$ \\
+\hbox{}\qquad\qquad $\textit{real} = \{1,\, 0,\, 4,\, -3/2,\, 3,\, 2,\, 1/2,\, -1/2,\, \unr\}$
+\postw
+
+\subsection{Inductive and Coinductive Predicates}
+\label{inductive-and-coinductive-predicates}
+
+Inductively defined predicates (and sets) are particularly problematic for
+counterexample generators. They can make Quickcheck~\cite{berghofer-nipkow-2004}
+loop forever and Refute~\cite{weber-2008} run out of resources. The crux of
+the problem is that they are defined using a least fixed point construction.
+
+Nitpick's philosophy is that not all inductive predicates are equal. Consider
+the \textit{even} predicate below:
+
+\prew
+\textbf{inductive}~\textit{even}~\textbf{where} \\
+``\textit{even}~0'' $\,\mid$ \\
+``\textit{even}~$n\,\Longrightarrow\, \textit{even}~(\textit{Suc}~(\textit{Suc}~n))$''
+\postw
+
+This predicate enjoys the desirable property of being well-founded, which means
+that the introduction rules don't give rise to infinite chains of the form
+
+\prew
+$\cdots\,\Longrightarrow\, \textit{even}~k''
+       \,\Longrightarrow\, \textit{even}~k'
+       \,\Longrightarrow\, \textit{even}~k.$
+\postw
+
+For \textit{even}, this is obvious: Any chain ending at $k$ will be of length
+$k/2 + 1$:
+
+\prew
+$\textit{even}~0\,\Longrightarrow\, \textit{even}~2\,\Longrightarrow\, \cdots
+       \,\Longrightarrow\, \textit{even}~(k - 2)
+       \,\Longrightarrow\, \textit{even}~k.$
+\postw
+
+Wellfoundedness is desirable because it enables Nitpick to use a very efficient
+fixed point computation.%
+\footnote{If an inductive predicate is
+well-founded, then it has exactly one fixed point, which is simultaneously the
+least and the greatest fixed point. In these circumstances, the computation of
+the least fixed point amounts to the computation of an arbitrary fixed point,
+which can be performed using a straightforward recursive equation.}
+Moreover, Nitpick can prove wellfoundedness of most well-founded predicates,
+just as Isabelle's \textbf{function} package usually discharges termination
+proof obligations automatically.
+
+Let's try an example:
+
+\prew
+\textbf{lemma} ``$\exists n.\; \textit{even}~n \mathrel{\land} \textit{even}~(\textit{Suc}~n)$'' \\
+\textbf{nitpick}~[\textit{card nat}~= 100,\, \textit{verbose}] \\[2\smallskipamount]
+\slshape The inductive predicate ``\textit{even}'' was proved well-founded.
+Nitpick can compute it efficiently. \\[2\smallskipamount]
+Trying 1 scope: \\
+\hbox{}\qquad \textit{card nat}~= 100. \\[2\smallskipamount]
+Nitpick found a potential counterexample for \textit{card nat}~= 100: \\[2\smallskipamount]
+\hbox{}\qquad Empty assignment \\[2\smallskipamount]
+Nitpick could not find a better counterexample. \\[2\smallskipamount]
+Total time: 2274 ms.
+\postw
+
+No genuine counterexample is possible because Nitpick cannot rule out the
+existence of a natural number $n \ge 100$ such that both $\textit{even}~n$ and
+$\textit{even}~(\textit{Suc}~n)$ are true. To help Nitpick, we can bound the
+existential quantifier:
+
+\prew
+\textbf{lemma} ``$\exists n \mathbin{\le} 99.\; \textit{even}~n \mathrel{\land} \textit{even}~(\textit{Suc}~n)$'' \\
+\textbf{nitpick}~[\textit{card nat}~= 100] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Empty assignment
+\postw
+
+So far we were blessed by the wellfoundedness of \textit{even}. What happens if
+we use the following definition instead?
+
+\prew
+\textbf{inductive} $\textit{even}'$ \textbf{where} \\
+``$\textit{even}'~(0{\Colon}\textit{nat})$'' $\,\mid$ \\
+``$\textit{even}'~2$'' $\,\mid$ \\
+``$\lbrakk\textit{even}'~m;\> \textit{even}'~n\rbrakk \,\Longrightarrow\, \textit{even}'~(m + n)$''
+\postw
+
+This definition is not well-founded: From $\textit{even}'~0$ and
+$\textit{even}'~0$, we can derive that $\textit{even}'~0$. Nonetheless, the
+predicates $\textit{even}$ and $\textit{even}'$ are equivalent.
+
+Let's check a property involving $\textit{even}'$. To make up for the
+foreseeable computational hurdles entailed by non-wellfoundedness, we decrease
+\textit{nat}'s cardinality to a mere 10:
+
+\prew
+\textbf{lemma}~``$\exists n \in \{0, 2, 4, 6, 8\}.\;
+\lnot\;\textit{even}'~n$'' \\
+\textbf{nitpick}~[\textit{card nat}~= 10,\, \textit{verbose},\, \textit{show\_consts}] \\[2\smallskipamount]
+\slshape
+The inductive predicate ``$\textit{even}'\!$'' could not be proved well-founded.
+Nitpick might need to unroll it. \\[2\smallskipamount]
+Trying 6 scopes: \\
+\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 0; \\
+\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 1; \\
+\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 2; \\
+\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 4; \\
+\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 8; \\
+\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 9. \\[2\smallskipamount]
+Nitpick found a counterexample for \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 2: \\[2\smallskipamount]
+\hbox{}\qquad Constant: \nopagebreak \\
+\hbox{}\qquad\qquad $\lambda i.\; \textit{even}'$ = $\undef(\!\begin{aligned}[t]
+& 2 := \{0, 2, 4, 6, 8, 1^\Q, 3^\Q, 5^\Q, 7^\Q, 9^\Q\}, \\[-2pt]
+& 1 := \{0, 2, 4, 1^\Q, 3^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q\}, \\[-2pt]
+& 0 := \{0, 2, 1^\Q, 3^\Q, 4^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q\})\end{aligned}$ \\[2\smallskipamount]
+Total time: 1140 ms.
+\postw
+
+Nitpick's output is very instructive. First, it tells us that the predicate is
+unrolled, meaning that it is computed iteratively from the empty set. Then it
+lists six scopes specifying different bounds on the numbers of iterations:\ 0,
+1, 2, 4, 8, and~9.
+
+The output also shows how each iteration contributes to $\textit{even}'$. The
+notation $\lambda i.\; \textit{even}'$ indicates that the value of the
+predicate depends on an iteration counter. Iteration 0 provides the basis
+elements, $0$ and $2$. Iteration 1 contributes $4$ ($= 2 + 2$). Iteration 2
+throws $6$ ($= 2 + 4 = 4 + 2$) and $8$ ($= 4 + 4$) into the mix. Further
+iterations would not contribute any new elements.
+
+Some values are marked with superscripted question
+marks~(`\lower.2ex\hbox{$^\Q$}'). These are the elements for which the
+predicate evaluates to $\unk$. Thus, $\textit{even}'$ evaluates to either
+\textit{True} or $\unk$, never \textit{False}.
+
+When unrolling a predicate, Nitpick tries 0, 1, 2, 4, 8, 12, 16, and 24
+iterations. However, these numbers are bounded by the cardinality of the
+predicate's domain. With \textit{card~nat}~= 10, no more than 9 iterations are
+ever needed to compute the value of a \textit{nat} predicate. You can specify
+the number of iterations using the \textit{iter} option, as explained in
+\S\ref{scope-of-search}.
+
+In the next formula, $\textit{even}'$ occurs both positively and negatively:
+
+\prew
+\textbf{lemma} ``$\textit{even}'~(n - 2) \,\Longrightarrow\, \textit{even}'~n$'' \\
+\textbf{nitpick} [\textit{card nat} = 10,\, \textit{show\_consts}] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $n = 1$ \\
+\hbox{}\qquad Constants: \nopagebreak \\
+\hbox{}\qquad\qquad $\lambda i.\; \textit{even}'$ = $\undef(\!\begin{aligned}[t]
+& 0 := \{0, 2, 1^\Q, 3^\Q, 4^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q\})\end{aligned}$  \\
+\hbox{}\qquad\qquad $\textit{even}' \subseteq \{0, 2, 4, 6, 8, \unr\}$
+\postw
+
+Notice the special constraint $\textit{even}' \subseteq \{0,\, 2,\, 4,\, 6,\,
+8,\, \unr\}$ in the output, whose right-hand side represents an arbitrary
+fixed point (not necessarily the least one). It is used to falsify
+$\textit{even}'~n$. In contrast, the unrolled predicate is used to satisfy
+$\textit{even}'~(n - 2)$.
+
+Coinductive predicates are handled dually. For example:
+
+\prew
+\textbf{coinductive} \textit{nats} \textbf{where} \\
+``$\textit{nats}~(x\Colon\textit{nat}) \,\Longrightarrow\, \textit{nats}~x$'' \\[2\smallskipamount]
+\textbf{lemma} ``$\textit{nats} = \{0, 1, 2, 3, 4\}$'' \\
+\textbf{nitpick}~[\textit{card nat} = 10,\, \textit{show\_consts}] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample:
+\\[2\smallskipamount]
+\hbox{}\qquad Constants: \nopagebreak \\
+\hbox{}\qquad\qquad $\lambda i.\; \textit{nats} = \undef(0 := \{\!\begin{aligned}[t]
+& 0^\Q, 1^\Q, 2^\Q, 3^\Q, 4^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q, \\[-2pt]
+& \unr\})\end{aligned}$ \\
+\hbox{}\qquad\qquad $nats \supseteq \{9, 5^\Q, 6^\Q, 7^\Q, 8^\Q, \unr\}$
+\postw
+
+As a special case, Nitpick uses Kodkod's transitive closure operator to encode
+negative occurrences of non-well-founded ``linear inductive predicates,'' i.e.,
+inductive predicates for which each the predicate occurs in at most one
+assumption of each introduction rule. For example:
+
+\prew
+\textbf{inductive} \textit{odd} \textbf{where} \\
+``$\textit{odd}~1$'' $\,\mid$ \\
+``$\lbrakk \textit{odd}~m;\>\, \textit{even}~n\rbrakk \,\Longrightarrow\, \textit{odd}~(m + n)$'' \\[2\smallskipamount]
+\textbf{lemma}~``$\textit{odd}~n \,\Longrightarrow\, \textit{odd}~(n - 2)$'' \\
+\textbf{nitpick}~[\textit{card nat} = 10,\, \textit{show\_consts}] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample:
+\\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $n = 1$ \\
+\hbox{}\qquad Constants: \nopagebreak \\
+\hbox{}\qquad\qquad $\textit{even} = \{0, 2, 4, 6, 8, \unr\}$ \\
+\hbox{}\qquad\qquad $\textit{odd}_{\textsl{base}} = \{1, \unr\}$ \\
+\hbox{}\qquad\qquad $\textit{odd}_{\textsl{step}} = \!
+\!\begin{aligned}[t]
+  & \{(0, 0), (0, 2), (0, 4), (0, 6), (0, 8), (1, 1), (1, 3), (1, 5), \\[-2pt]
+  & \phantom{\{} (1, 7), (1, 9), (2, 2), (2, 4), (2, 6), (2, 8), (3, 3),
+       (3, 5), \\[-2pt]
+  & \phantom{\{} (3, 7), (3, 9), (4, 4), (4, 6), (4, 8), (5, 5), (5, 7), (5, 9), \\[-2pt]
+  & \phantom{\{} (6, 6), (6, 8), (7, 7), (7, 9), (8, 8), (9, 9), \unr\}\end{aligned}$ \\
+\hbox{}\qquad\qquad $\textit{odd} \subseteq \{1, 3, 5, 7, 9, 8^\Q, \unr\}$
+\postw
+
+\noindent
+In the output, $\textit{odd}_{\textrm{base}}$ represents the base elements and
+$\textit{odd}_{\textrm{step}}$ is a transition relation that computes new
+elements from known ones. The set $\textit{odd}$ consists of all the values
+reachable through the reflexive transitive closure of
+$\textit{odd}_{\textrm{step}}$ starting with any element from
+$\textit{odd}_{\textrm{base}}$, namely 1, 3, 5, 7, and 9. Using Kodkod's
+transitive closure to encode linear predicates is normally either more thorough
+or more efficient than unrolling (depending on the value of \textit{iter}), but
+for those cases where it isn't you can disable it by passing the
+\textit{dont\_star\_linear\_preds} option.
+
+\subsection{Coinductive Datatypes}
+\label{coinductive-datatypes}
+
+While Isabelle regrettably lacks a high-level mechanism for defining coinductive
+datatypes, the \textit{Coinductive\_List} theory provides a coinductive ``lazy
+list'' datatype, $'a~\textit{llist}$, defined the hard way. Nitpick supports
+these lazy lists seamlessly and provides a hook, described in
+\S\ref{registration-of-coinductive-datatypes}, to register custom coinductive
+datatypes.
+
+(Co)intuitively, a coinductive datatype is similar to an inductive datatype but
+allows infinite objects. Thus, the infinite lists $\textit{ps}$ $=$ $[a, a, a,
+\ldots]$, $\textit{qs}$ $=$ $[a, b, a, b, \ldots]$, and $\textit{rs}$ $=$ $[0,
+1, 2, 3, \ldots]$ can be defined as lazy lists using the
+$\textit{LNil}\mathbin{\Colon}{'}a~\textit{llist}$ and
+$\textit{LCons}\mathbin{\Colon}{'}a \mathbin{\Rightarrow} {'}a~\textit{llist}
+\mathbin{\Rightarrow} {'}a~\textit{llist}$ constructors.
+
+Although it is otherwise no friend of infinity, Nitpick can find counterexamples
+involving cyclic lists such as \textit{ps} and \textit{qs} above as well as
+finite lists:
+
+\prew
+\textbf{lemma} ``$\textit{xs} \not= \textit{LCons}~a~\textit{xs}$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found a counterexample for {\itshape card}~$'a$ = 1: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $\textit{a} = a_1$ \\
+\hbox{}\qquad\qquad $\textit{xs} = \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_1~\omega$
+\postw
+
+The notation $\textrm{THE}~\omega.\; \omega = t(\omega)$ stands
+for the infinite term $t(t(t(\ldots)))$. Hence, \textit{xs} is simply the
+infinite list $[a_1, a_1, a_1, \ldots]$.
+
+The next example is more interesting:
+
+\prew
+\textbf{lemma}~``$\lbrakk\textit{xs} = \textit{LCons}~a~\textit{xs};\>\,
+\textit{ys} = \textit{iterates}~(\lambda b.\> a)~b\rbrakk \,\Longrightarrow\, \textit{xs} = \textit{ys}$'' \\
+\textbf{nitpick} [\textit{verbose}] \\[2\smallskipamount]
+\slshape The type ``\kern1pt$'a$'' passed the monotonicity test. Nitpick might be able to skip
+some scopes. \\[2\smallskipamount]
+Trying 8 scopes: \\
+\hbox{}\qquad \textit{card} $'a$~= 1, \textit{card} ``\kern1pt$'a~\textit{list}$''~= 1,
+and \textit{bisim\_depth}~= 0. \\
+\hbox{}\qquad $\qquad\vdots$ \\[.5\smallskipamount]
+\hbox{}\qquad \textit{card} $'a$~= 8, \textit{card} ``\kern1pt$'a~\textit{list}$''~= 8,
+and \textit{bisim\_depth}~= 7. \\[2\smallskipamount]
+Nitpick found a counterexample for {\itshape card}~$'a$ = 2,
+\textit{card}~``\kern1pt$'a~\textit{list}$''~= 2, and \textit{bisim\_\allowbreak
+depth}~= 1:
+\\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $\textit{a} = a_2$ \\
+\hbox{}\qquad\qquad $\textit{b} = a_1$ \\
+\hbox{}\qquad\qquad $\textit{xs} = \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_2~\omega$ \\
+\hbox{}\qquad\qquad $\textit{ys} = \textit{LCons}~a_1~(\textsl{THE}~\omega.\; \omega = \textit{LCons}~a_2~\omega)$ \\[2\smallskipamount]
+Total time: 726 ms.
+\postw
+
+The lazy list $\textit{xs}$ is simply $[a_2, a_2, a_2, \ldots]$, whereas
+$\textit{ys}$ is $[a_1, a_2, a_2, a_2, \ldots]$, i.e., a lasso-shaped list with
+$[a_1]$ as its stem and $[a_2]$ as its cycle. In general, the list segment
+within the scope of the {THE} binder corresponds to the lasso's cycle, whereas
+the segment leading to the binder is the stem.
+
+A salient property of coinductive datatypes is that two objects are considered
+equal if and only if they lead to the same observations. For example, the lazy
+lists $\textrm{THE}~\omega.\; \omega =
+\textit{LCons}~a~(\textit{LCons}~b~\omega)$ and
+$\textit{LCons}~a~(\textrm{THE}~\omega.\; \omega =
+\textit{LCons}~b~(\textit{LCons}~a~\omega))$ are identical, because both lead
+to the sequence of observations $a$, $b$, $a$, $b$, \hbox{\ldots} (or,
+equivalently, both encode the infinite list $[a, b, a, b, \ldots]$). This
+concept of equality for coinductive datatypes is called bisimulation and is
+defined coinductively.
+
+Internally, Nitpick encodes the coinductive bisimilarity predicate as part of
+the Kodkod problem to ensure that distinct objects lead to different
+observations. This precaution is somewhat expensive and often unnecessary, so it
+can be disabled by setting the \textit{bisim\_depth} option to $-1$. The
+bisimilarity check is then performed \textsl{after} the counterexample has been
+found to ensure correctness. If this after-the-fact check fails, the
+counterexample is tagged as ``likely genuine'' and Nitpick recommends to try
+again with \textit{bisim\_depth} set to a nonnegative integer. Disabling the
+check for the previous example saves approximately 150~milli\-seconds; the speed
+gains can be more significant for larger scopes.
+
+The next formula illustrates the need for bisimilarity (either as a Kodkod
+predicate or as an after-the-fact check) to prevent spurious counterexamples:
+
+\prew
+\textbf{lemma} ``$\lbrakk xs = \textit{LCons}~a~\textit{xs};\>\, \textit{ys} = \textit{LCons}~a~\textit{ys}\rbrakk
+\,\Longrightarrow\, \textit{xs} = \textit{ys}$'' \\
+\textbf{nitpick} [\textit{bisim\_depth} = $-1$,\, \textit{show\_datatypes}] \\[2\smallskipamount]
+\slshape Nitpick found a likely genuine counterexample for $\textit{card}~'a$ = 2: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $a = a_2$ \\
+\hbox{}\qquad\qquad $\textit{xs} = \textsl{THE}~\omega.\; \omega =
+\textit{LCons}~a_2~\omega$ \\
+\hbox{}\qquad\qquad $\textit{ys} = \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_2~\omega$ \\
+\hbox{}\qquad Codatatype:\strut \nopagebreak \\
+\hbox{}\qquad\qquad $'a~\textit{llist} =
+\{\!\begin{aligned}[t]
+  & \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_2~\omega, \\[-2pt]
+  & \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_2~\omega,\> \unr\}\end{aligned}$
+\\[2\smallskipamount]
+Try again with ``\textit{bisim\_depth}'' set to a nonnegative value to confirm
+that the counterexample is genuine. \\[2\smallskipamount]
+{\upshape\textbf{nitpick}} \\[2\smallskipamount]
+\slshape Nitpick found no counterexample.
+\postw
+
+In the first \textbf{nitpick} invocation, the after-the-fact check discovered 
+that the two known elements of type $'a~\textit{llist}$ are bisimilar.
+
+A compromise between leaving out the bisimilarity predicate from the Kodkod
+problem and performing the after-the-fact check is to specify a lower
+nonnegative \textit{bisim\_depth} value than the default one provided by
+Nitpick. In general, a value of $K$ means that Nitpick will require all lists to
+be distinguished from each other by their prefixes of length $K$. Be aware that
+setting $K$ to a too low value can overconstrain Nitpick, preventing it from
+finding any counterexamples.
+
+\subsection{Boxing}
+\label{boxing}
+
+Nitpick normally maps function and product types directly to the corresponding
+Kodkod concepts. As a consequence, if $'a$ has cardinality 3 and $'b$ has
+cardinality 4, then $'a \times {'}b$ has cardinality 12 ($= 4 \times 3$) and $'a
+\Rightarrow {'}b$ has cardinality 64 ($= 4^3$). In some circumstances, it pays
+off to treat these types in the same way as plain datatypes, by approximating
+them by a subset of a given cardinality. This technique is called ``boxing'' and
+is particularly useful for functions passed as arguments to other functions, for
+high-arity functions, and for large tuples. Under the hood, boxing involves
+wrapping occurrences of the types $'a \times {'}b$ and $'a \Rightarrow {'}b$ in
+isomorphic datatypes, as can be seen by enabling the \textit{debug} option.
+
+To illustrate boxing, we consider a formalization of $\lambda$-terms represented
+using de Bruijn's notation:
+
+\prew
+\textbf{datatype} \textit{tm} = \textit{Var}~\textit{nat}~$\mid$~\textit{Lam}~\textit{tm} $\mid$ \textit{App~tm~tm}
+\postw
+
+The $\textit{lift}~t~k$ function increments all variables with indices greater
+than or equal to $k$ by one:
+
+\prew
+\textbf{primrec} \textit{lift} \textbf{where} \\
+``$\textit{lift}~(\textit{Var}~j)~k = \textit{Var}~(\textrm{if}~j < k~\textrm{then}~j~\textrm{else}~j + 1)$'' $\mid$ \\
+``$\textit{lift}~(\textit{Lam}~t)~k = \textit{Lam}~(\textit{lift}~t~(k + 1))$'' $\mid$ \\
+``$\textit{lift}~(\textit{App}~t~u)~k = \textit{App}~(\textit{lift}~t~k)~(\textit{lift}~u~k)$''
+\postw
+
+The $\textit{loose}~t~k$ predicate returns \textit{True} if and only if
+term $t$ has a loose variable with index $k$ or more:
+
+\prew
+\textbf{primrec}~\textit{loose} \textbf{where} \\
+``$\textit{loose}~(\textit{Var}~j)~k = (j \ge k)$'' $\mid$ \\
+``$\textit{loose}~(\textit{Lam}~t)~k = \textit{loose}~t~(\textit{Suc}~k)$'' $\mid$ \\
+``$\textit{loose}~(\textit{App}~t~u)~k = (\textit{loose}~t~k \mathrel{\lor} \textit{loose}~u~k)$''
+\postw
+
+Next, the $\textit{subst}~\sigma~t$ function applies the substitution $\sigma$
+on $t$:
+
+\prew
+\textbf{primrec}~\textit{subst} \textbf{where} \\
+``$\textit{subst}~\sigma~(\textit{Var}~j) = \sigma~j$'' $\mid$ \\
+``$\textit{subst}~\sigma~(\textit{Lam}~t) = {}$\phantom{''} \\
+\phantom{``}$\textit{Lam}~(\textit{subst}~(\lambda n.\> \textrm{case}~n~\textrm{of}~0 \Rightarrow \textit{Var}~0 \mid \textit{Suc}~m \Rightarrow \textit{lift}~(\sigma~m)~1)~t)$'' $\mid$ \\
+``$\textit{subst}~\sigma~(\textit{App}~t~u) = \textit{App}~(\textit{subst}~\sigma~t)~(\textit{subst}~\sigma~u)$''
+\postw
+
+A substitution is a function that maps variable indices to terms. Observe that
+$\sigma$ is a function passed as argument and that Nitpick can't optimize it
+away, because the recursive call for the \textit{Lam} case involves an altered
+version. Also notice the \textit{lift} call, which increments the variable
+indices when moving under a \textit{Lam}.
+
+A reasonable property to expect of substitution is that it should leave closed
+terms unchanged. Alas, even this simple property does not hold:
+
+\pre
+\textbf{lemma}~``$\lnot\,\textit{loose}~t~0 \,\Longrightarrow\, \textit{subst}~\sigma~t = t$'' \\
+\textbf{nitpick} [\textit{verbose}] \\[2\smallskipamount]
+\slshape
+Trying 8 scopes: \nopagebreak \\
+\hbox{}\qquad \textit{card~nat}~= 1, \textit{card tm}~= 1, and \textit{card} ``$\textit{nat} \Rightarrow \textit{tm}$'' = 1; \\
+\hbox{}\qquad \textit{card~nat}~= 2, \textit{card tm}~= 2, and \textit{card} ``$\textit{nat} \Rightarrow \textit{tm}$'' = 2; \\
+\hbox{}\qquad $\qquad\vdots$ \\[.5\smallskipamount]
+\hbox{}\qquad \textit{card~nat}~= 8, \textit{card tm}~= 8, and \textit{card} ``$\textit{nat} \Rightarrow \textit{tm}$'' = 8. \\[2\smallskipamount]
+Nitpick found a counterexample for \textit{card~nat}~= 6, \textit{card~tm}~= 6,
+and \textit{card}~``$\textit{nat} \Rightarrow \textit{tm}$''~= 6: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $\sigma = \undef(\!\begin{aligned}[t]
+& 0 := \textit{Var}~0,\>
+  1 := \textit{Var}~0,\>
+  2 := \textit{Var}~0, \\[-2pt]
+& 3 := \textit{Var}~0,\>
+  4 := \textit{Var}~0,\>
+  5 := \textit{Var}~0)\end{aligned}$ \\
+\hbox{}\qquad\qquad $t = \textit{Lam}~(\textit{Lam}~(\textit{Var}~1))$ \\[2\smallskipamount]
+Total time: $4679$ ms.
+\postw
+
+Using \textit{eval}, we find out that $\textit{subst}~\sigma~t =
+\textit{Lam}~(\textit{Lam}~(\textit{Var}~0))$. Using the traditional
+$\lambda$-term notation, $t$~is
+$\lambda x\, y.\> x$ whereas $\textit{subst}~\sigma~t$ is $\lambda x\, y.\> y$.
+The bug is in \textit{subst}: The $\textit{lift}~(\sigma~m)~1$ call should be
+replaced with $\textit{lift}~(\sigma~m)~0$.
+
+An interesting aspect of Nitpick's verbose output is that it assigned inceasing
+cardinalities from 1 to 8 to the type $\textit{nat} \Rightarrow \textit{tm}$.
+For the formula of interest, knowing 6 values of that type was enough to find
+the counterexample. Without boxing, $46\,656$ ($= 6^6$) values must be
+considered, a hopeless undertaking:
+
+\prew
+\textbf{nitpick} [\textit{dont\_box}] \\[2\smallskipamount]
+{\slshape Nitpick ran out of time after checking 4 of 8 scopes.}
+\postw
+
+{\looseness=-1
+Boxing can be enabled or disabled globally or on a per-type basis using the
+\textit{box} option. Moreover, setting the cardinality of a function or
+product type implicitly enables boxing for that type. Nitpick usually performs
+reasonable choices about which types should be boxed, but option tweaking
+sometimes helps.
+
+}
+
+\subsection{Scope Monotonicity}
+\label{scope-monotonicity}
+
+The \textit{card} option (together with \textit{iter}, \textit{bisim\_depth},
+and \textit{max}) controls which scopes are actually tested. In general, to
+exhaust all models below a certain cardinality bound, the number of scopes that
+Nitpick must consider increases exponentially with the number of type variables
+(and \textbf{typedecl}'d types) occurring in the formula. Given the default
+cardinality specification of 1--8, no fewer than $8^4 = 4096$ scopes must be
+considered for a formula involving $'a$, $'b$, $'c$, and $'d$.
+
+Fortunately, many formulas exhibit a property called \textsl{scope
+monotonicity}, meaning that if the formula is falsifiable for a given scope,
+it is also falsifiable for all larger scopes \cite[p.~165]{jackson-2006}.
+
+Consider the formula
+
+\prew
+\textbf{lemma}~``$\textit{length~xs} = \textit{length~ys} \,\Longrightarrow\, \textit{rev}~(\textit{zip~xs~ys}) = \textit{zip~xs}~(\textit{rev~ys})$''
+\postw
+
+where \textit{xs} is of type $'a~\textit{list}$ and \textit{ys} is of type
+$'b~\textit{list}$. A priori, Nitpick would need to consider 512 scopes to
+exhaust the specification \textit{card}~= 1--8. However, our intuition tells us
+that any counterexample found with a small scope would still be a counterexample
+in a larger scope---by simply ignoring the fresh $'a$ and $'b$ values provided
+by the larger scope. Nitpick comes to the same conclusion after a careful
+inspection of the formula and the relevant definitions:
+
+\prew
+\textbf{nitpick}~[\textit{verbose}] \\[2\smallskipamount]
+\slshape
+The types ``\kern1pt$'a$'' and ``\kern1pt$'b$'' passed the monotonicity test.
+Nitpick might be able to skip some scopes.
+ \\[2\smallskipamount]
+Trying 8 scopes: \\
+\hbox{}\qquad \textit{card} $'a$~= 1, \textit{card} $'b$~= 1,
+\textit{card} \textit{nat}~= 1, \textit{card} ``$('a \times {'}b)$
+\textit{list}''~= 1, \\
+\hbox{}\qquad\quad \textit{card} ``\kern1pt$'a$ \textit{list}''~= 1, and
+\textit{card} ``\kern1pt$'b$ \textit{list}''~= 1. \\
+\hbox{}\qquad \textit{card} $'a$~= 2, \textit{card} $'b$~= 2,
+\textit{card} \textit{nat}~= 2, \textit{card} ``$('a \times {'}b)$
+\textit{list}''~= 2, \\
+\hbox{}\qquad\quad \textit{card} ``\kern1pt$'a$ \textit{list}''~= 2, and
+\textit{card} ``\kern1pt$'b$ \textit{list}''~= 2. \\
+\hbox{}\qquad $\qquad\vdots$ \\[.5\smallskipamount]
+\hbox{}\qquad \textit{card} $'a$~= 8, \textit{card} $'b$~= 8,
+\textit{card} \textit{nat}~= 8, \textit{card} ``$('a \times {'}b)$
+\textit{list}''~= 8, \\
+\hbox{}\qquad\quad \textit{card} ``\kern1pt$'a$ \textit{list}''~= 8, and
+\textit{card} ``\kern1pt$'b$ \textit{list}''~= 8.
+\\[2\smallskipamount]
+Nitpick found a counterexample for
+\textit{card} $'a$~= 5, \textit{card} $'b$~= 5,
+\textit{card} \textit{nat}~= 5, \textit{card} ``$('a \times {'}b)$
+\textit{list}''~= 5, \textit{card} ``\kern1pt$'a$ \textit{list}''~= 5, and
+\textit{card} ``\kern1pt$'b$ \textit{list}''~= 5:
+\\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $\textit{xs} = [a_4, a_5]$ \\
+\hbox{}\qquad\qquad $\textit{ys} = [b_3, b_3]$ \\[2\smallskipamount]
+Total time: 1636 ms.
+\postw
+
+In theory, it should be sufficient to test a single scope:
+
+\prew
+\textbf{nitpick}~[\textit{card}~= 8]
+\postw
+
+However, this is often less efficient in practice and may lead to overly complex
+counterexamples.
+
+If the monotonicity check fails but we believe that the formula is monotonic (or
+we don't mind missing some counterexamples), we can pass the
+\textit{mono} option. To convince yourself that this option is risky,
+simply consider this example from \S\ref{skolemization}:
+
+\prew
+\textbf{lemma} ``$\exists g.\; \forall x\Colon 'b.~g~(f~x) = x
+ \,\Longrightarrow\, \forall y\Colon {'}a.\; \exists x.~y = f~x$'' \\
+\textbf{nitpick} [\textit{mono}] \\[2\smallskipamount]
+{\slshape Nitpick found no counterexample.} \\[2\smallskipamount]
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape
+Nitpick found a counterexample for \textit{card} $'a$~= 2 and \textit{card} $'b$~=~1: \\
+\hbox{}\qquad $\vdots$
+\postw
+
+(It turns out the formula holds if and only if $\textit{card}~'a \le
+\textit{card}~'b$.) Although this is rarely advisable, the automatic
+monotonicity checks can be disabled by passing \textit{non\_mono}
+(\S\ref{optimizations}).
+
+As insinuated in \S\ref{natural-numbers-and-integers} and
+\S\ref{inductive-datatypes}, \textit{nat}, \textit{int}, and inductive datatypes
+are normally monotonic and treated as such. The same is true for record types,
+\textit{rat}, \textit{real}, and some \textbf{typedef}'d types. Thus, given the
+cardinality specification 1--8, a formula involving \textit{nat}, \textit{int},
+\textit{int~list}, \textit{rat}, and \textit{rat~list} will lead Nitpick to
+consider only 8~scopes instead of $32\,768$.
+
+\section{Case Studies}
+\label{case-studies}
+
+As a didactic device, the previous section focused mostly on toy formulas whose
+validity can easily be assessed just by looking at the formula. We will now
+review two somewhat more realistic case studies that are within Nitpick's
+reach:\ a context-free grammar modeled by mutually inductive sets and a
+functional implementation of AA trees. The results presented in this
+section were produced with the following settings:
+
+\prew
+\textbf{nitpick\_params} [\textit{max\_potential}~= 0,\, \textit{max\_threads} = 2]
+\postw
+
+\subsection{A Context-Free Grammar}
+\label{a-context-free-grammar}
+
+Our first case study is taken from section 7.4 in the Isabelle tutorial
+\cite{isa-tutorial}. The following grammar, originally due to Hopcroft and
+Ullman, produces all strings with an equal number of $a$'s and $b$'s:
+
+\prew
+\begin{tabular}{@{}r@{$\;\,$}c@{$\;\,$}l@{}}
+$S$ & $::=$ & $\epsilon \mid bA \mid aB$ \\
+$A$ & $::=$ & $aS \mid bAA$ \\
+$B$ & $::=$ & $bS \mid aBB$
+\end{tabular}
+\postw
+
+The intuition behind the grammar is that $A$ generates all string with one more
+$a$ than $b$'s and $B$ generates all strings with one more $b$ than $a$'s.
+
+The alphabet consists exclusively of $a$'s and $b$'s:
+
+\prew
+\textbf{datatype} \textit{alphabet}~= $a$ $\mid$ $b$
+\postw
+
+Strings over the alphabet are represented by \textit{alphabet list}s.
+Nonterminals in the grammar become sets of strings. The production rules
+presented above can be expressed as a mutually inductive definition:
+
+\prew
+\textbf{inductive\_set} $S$ \textbf{and} $A$ \textbf{and} $B$ \textbf{where} \\
+\textit{R1}:\kern.4em ``$[] \in S$'' $\,\mid$ \\
+\textit{R2}:\kern.4em ``$w \in A\,\Longrightarrow\, b \mathbin{\#} w \in S$'' $\,\mid$ \\
+\textit{R3}:\kern.4em ``$w \in B\,\Longrightarrow\, a \mathbin{\#} w \in S$'' $\,\mid$ \\
+\textit{R4}:\kern.4em ``$w \in S\,\Longrightarrow\, a \mathbin{\#} w \in A$'' $\,\mid$ \\
+\textit{R5}:\kern.4em ``$w \in S\,\Longrightarrow\, b \mathbin{\#} w \in S$'' $\,\mid$ \\
+\textit{R6}:\kern.4em ``$\lbrakk v \in B;\> v \in B\rbrakk \,\Longrightarrow\, a \mathbin{\#} v \mathbin{@} w \in B$''
+\postw
+
+The conversion of the grammar into the inductive definition was done manually by
+Joe Blow, an underpaid undergraduate student. As a result, some errors might
+have sneaked in.
+
+Debugging faulty specifications is at the heart of Nitpick's \textsl{raison
+d'\^etre}. A good approach is to state desirable properties of the specification
+(here, that $S$ is exactly the set of strings over $\{a, b\}$ with as many $a$'s
+as $b$'s) and check them with Nitpick. If the properties are correctly stated,
+counterexamples will point to bugs in the specification. For our grammar
+example, we will proceed in two steps, separating the soundness and the
+completeness of the set $S$. First, soundness:
+
+\prew
+\textbf{theorem}~\textit{S\_sound}: \\
+``$w \in S \longrightarrow \textit{length}~[x\mathbin{\leftarrow} w.\; x = a] =
+  \textit{length}~[x\mathbin{\leftarrow} w.\; x = b]$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $w = [b]$
+\postw
+
+It would seem that $[b] \in S$. How could this be? An inspection of the
+introduction rules reveals that the only rule with a right-hand side of the form
+$b \mathbin{\#} {\ldots} \in S$ that could have introduced $[b]$ into $S$ is
+\textit{R5}:
+
+\prew
+``$w \in S\,\Longrightarrow\, b \mathbin{\#} w \in S$''
+\postw
+
+On closer inspection, we can see that this rule is wrong. To match the
+production $B ::= bS$, the second $S$ should be a $B$. We fix the typo and try
+again:
+
+\prew
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $w = [a, a, b]$
+\postw
+
+Some detective work is necessary to find out what went wrong here. To get $[a,
+a, b] \in S$, we need $[a, b] \in B$ by \textit{R3}, which in turn can only come
+from \textit{R6}:
+
+\prew
+``$\lbrakk v \in B;\> v \in B\rbrakk \,\Longrightarrow\, a \mathbin{\#} v \mathbin{@} w \in B$''
+\postw
+
+Now, this formula must be wrong: The same assumption occurs twice, and the
+variable $w$ is unconstrained. Clearly, one of the two occurrences of $v$ in
+the assumptions should have been a $w$.
+
+With the correction made, we don't get any counterexample from Nitpick. Let's
+move on and check completeness:
+
+\prew
+\textbf{theorem}~\textit{S\_complete}: \\
+``$\textit{length}~[x\mathbin{\leftarrow} w.\; x = a] =
+   \textit{length}~[x\mathbin{\leftarrow} w.\; x = b]
+  \longrightarrow w \in S$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $w = [b, b, a, a]$
+\postw
+
+Apparently, $[b, b, a, a] \notin S$, even though it has the same numbers of
+$a$'s and $b$'s. But since our inductive definition passed the soundness check,
+the introduction rules we have are probably correct. Perhaps we simply lack an
+introduction rule. Comparing the grammar with the inductive definition, our
+suspicion is confirmed: Joe Blow simply forgot the production $A ::= bAA$,
+without which the grammar cannot generate two or more $b$'s in a row. So we add
+the rule
+
+\prew
+``$\lbrakk v \in A;\> w \in A\rbrakk \,\Longrightarrow\, b \mathbin{\#} v \mathbin{@} w \in A$''
+\postw
+
+With this last change, we don't get any counterexamples from Nitpick for either
+soundness or completeness. We can even generalize our result to cover $A$ and
+$B$ as well:
+
+\prew
+\textbf{theorem} \textit{S\_A\_B\_sound\_and\_complete}: \\
+``$w \in S \longleftrightarrow \textit{length}~[x \mathbin{\leftarrow} w.\; x = a] = \textit{length}~[x \mathbin{\leftarrow} w.\; x = b]$'' \\
+``$w \in A \longleftrightarrow \textit{length}~[x \mathbin{\leftarrow} w.\; x = a] = \textit{length}~[x \mathbin{\leftarrow} w.\; x = b] + 1$'' \\
+``$w \in B \longleftrightarrow \textit{length}~[x \mathbin{\leftarrow} w.\; x = b] = \textit{length}~[x \mathbin{\leftarrow} w.\; x = a] + 1$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found no counterexample.
+\postw
+
+\subsection{AA Trees}
+\label{aa-trees}
+
+AA trees are a kind of balanced trees discovered by Arne Andersson that provide
+similar performance to red-black trees, but with a simpler implementation
+\cite{andersson-1993}. They can be used to store sets of elements equipped with
+a total order $<$. We start by defining the datatype and some basic extractor
+functions:
+
+\prew
+\textbf{datatype} $'a$~\textit{tree} = $\Lambda$ $\mid$ $N$ ``\kern1pt$'a\Colon \textit{linorder}$'' \textit{nat} ``\kern1pt$'a$ \textit{tree}'' ``\kern1pt$'a$ \textit{tree}''  \\[2\smallskipamount]
+\textbf{primrec} \textit{data} \textbf{where} \\
+``$\textit{data}~\Lambda = \undef$'' $\,\mid$ \\
+``$\textit{data}~(N~x~\_~\_~\_) = x$'' \\[2\smallskipamount]
+\textbf{primrec} \textit{dataset} \textbf{where} \\
+``$\textit{dataset}~\Lambda = \{\}$'' $\,\mid$ \\
+``$\textit{dataset}~(N~x~\_~t~u) = \{x\} \cup \textit{dataset}~t \mathrel{\cup} \textit{dataset}~u$'' \\[2\smallskipamount]
+\textbf{primrec} \textit{level} \textbf{where} \\
+``$\textit{level}~\Lambda = 0$'' $\,\mid$ \\
+``$\textit{level}~(N~\_~k~\_~\_) = k$'' \\[2\smallskipamount]
+\textbf{primrec} \textit{left} \textbf{where} \\
+``$\textit{left}~\Lambda = \Lambda$'' $\,\mid$ \\
+``$\textit{left}~(N~\_~\_~t~\_) = t$'' \\[2\smallskipamount]
+\textbf{primrec} \textit{right} \textbf{where} \\
+``$\textit{right}~\Lambda = \Lambda$'' $\,\mid$ \\
+``$\textit{right}~(N~\_~\_~\_~u) = u$''
+\postw
+
+The wellformedness criterion for AA trees is fairly complex. Wikipedia states it
+as follows \cite{wikipedia-2009-aa-trees}:
+
+\kern.2\parskip %% TYPESETTING
+
+\pre
+Each node has a level field, and the following invariants must remain true for
+the tree to be valid:
+
+\raggedright
+
+\kern-.4\parskip %% TYPESETTING
+
+\begin{enum}
+\item[]
+\begin{enum}
+\item[1.] The level of a leaf node is one.
+\item[2.] The level of a left child is strictly less than that of its parent.
+\item[3.] The level of a right child is less than or equal to that of its parent.
+\item[4.] The level of a right grandchild is strictly less than that of its grandparent.
+\item[5.] Every node of level greater than one must have two children.
+\end{enum}
+\end{enum}
+\post
+
+\kern.4\parskip %% TYPESETTING
+
+The \textit{wf} predicate formalizes this description:
+
+\prew
+\textbf{primrec} \textit{wf} \textbf{where} \\
+``$\textit{wf}~\Lambda = \textit{True}$'' $\,\mid$ \\
+``$\textit{wf}~(N~\_~k~t~u) =$ \\
+\phantom{``}$(\textrm{if}~t = \Lambda~\textrm{then}$ \\
+\phantom{``$(\quad$}$k = 1 \mathrel{\land} (u = \Lambda \mathrel{\lor} (\textit{level}~u = 1 \mathrel{\land} \textit{left}~u = \Lambda \mathrel{\land} \textit{right}~u = \Lambda))$ \\
+\phantom{``$($}$\textrm{else}$ \\
+\hbox{}\phantom{``$(\quad$}$\textit{wf}~t \mathrel{\land} \textit{wf}~u
+\mathrel{\land} u \not= \Lambda \mathrel{\land} \textit{level}~t < k
+\mathrel{\land} \textit{level}~u \le k$ \\
+\hbox{}\phantom{``$(\quad$}${\land}\; \textit{level}~(\textit{right}~u) < k)$''
+\postw
+
+Rebalancing the tree upon insertion and removal of elements is performed by two
+auxiliary functions called \textit{skew} and \textit{split}, defined below:
+
+\prew
+\textbf{primrec} \textit{skew} \textbf{where} \\
+``$\textit{skew}~\Lambda = \Lambda$'' $\,\mid$ \\
+``$\textit{skew}~(N~x~k~t~u) = {}$ \\
+\phantom{``}$(\textrm{if}~t \not= \Lambda \mathrel{\land} k =
+\textit{level}~t~\textrm{then}$ \\
+\phantom{``(\quad}$N~(\textit{data}~t)~k~(\textit{left}~t)~(N~x~k~
+(\textit{right}~t)~u)$ \\
+\phantom{``(}$\textrm{else}$ \\
+\phantom{``(\quad}$N~x~k~t~u)$''
+\postw
+
+\prew
+\textbf{primrec} \textit{split} \textbf{where} \\
+``$\textit{split}~\Lambda = \Lambda$'' $\,\mid$ \\
+``$\textit{split}~(N~x~k~t~u) = {}$ \\
+\phantom{``}$(\textrm{if}~u \not= \Lambda \mathrel{\land} k =
+\textit{level}~(\textit{right}~u)~\textrm{then}$ \\
+\phantom{``(\quad}$N~(\textit{data}~u)~(\textit{Suc}~k)~
+(N~x~k~t~(\textit{left}~u))~(\textit{right}~u)$ \\
+\phantom{``(}$\textrm{else}$ \\
+\phantom{``(\quad}$N~x~k~t~u)$''
+\postw
+
+Performing a \textit{skew} or a \textit{split} should have no impact on the set
+of elements stored in the tree:
+
+\prew
+\textbf{theorem}~\textit{dataset\_skew\_split}:\\
+``$\textit{dataset}~(\textit{skew}~t) = \textit{dataset}~t$'' \\
+``$\textit{dataset}~(\textit{split}~t) = \textit{dataset}~t$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+{\slshape Nitpick ran out of time after checking 7 of 8 scopes.}
+\postw
+
+Furthermore, applying \textit{skew} or \textit{split} to a well-formed tree
+should not alter the tree:
+
+\prew
+\textbf{theorem}~\textit{wf\_skew\_split}:\\
+``$\textit{wf}~t\,\Longrightarrow\, \textit{skew}~t = t$'' \\
+``$\textit{wf}~t\,\Longrightarrow\, \textit{split}~t = t$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+{\slshape Nitpick found no counterexample.}
+\postw
+
+Insertion is implemented recursively. It preserves the sort order:
+
+\prew
+\textbf{primrec}~\textit{insort} \textbf{where} \\
+``$\textit{insort}~\Lambda~x = N~x~1~\Lambda~\Lambda$'' $\,\mid$ \\
+``$\textit{insort}~(N~y~k~t~u)~x =$ \\
+\phantom{``}$({*}~(\textit{split} \circ \textit{skew})~{*})~(N~y~k~(\textrm{if}~x < y~\textrm{then}~\textit{insort}~t~x~\textrm{else}~t)$ \\
+\phantom{``$({*}~(\textit{split} \circ \textit{skew})~{*})~(N~y~k~$}$(\textrm{if}~x > y~\textrm{then}~\textit{insort}~u~x~\textrm{else}~u))$''
+\postw
+
+Notice that we deliberately commented out the application of \textit{skew} and
+\textit{split}. Let's see if this causes any problems:
+
+\prew
+\textbf{theorem}~\textit{wf\_insort}:\kern.4em ``$\textit{wf}~t\,\Longrightarrow\, \textit{wf}~(\textit{insort}~t~x)$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found a counterexample for \textit{card} $'a$ = 4: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $t = N~a_3~1~\Lambda~\Lambda$ \\
+\hbox{}\qquad\qquad $x = a_4$ \\[2\smallskipamount]
+Hint: Maybe you forgot a type constraint?
+\postw
+
+It's hard to see why this is a counterexample. The hint is of no help here. To
+improve readability, we will restrict the theorem to \textit{nat}, so that we
+don't need to look up the value of the $\textit{op}~{<}$ constant to find out
+which element is smaller than the other. In addition, we will tell Nitpick to
+display the value of $\textit{insort}~t~x$ using the \textit{eval} option. This
+gives
+
+\prew
+\textbf{theorem} \textit{wf\_insort\_nat}:\kern.4em ``$\textit{wf}~t\,\Longrightarrow\, \textit{wf}~(\textit{insort}~t~(x\Colon\textit{nat}))$'' \\
+\textbf{nitpick} [\textit{eval} = ``$\textit{insort}~t~x$''] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $t = N~1~1~\Lambda~\Lambda$ \\
+\hbox{}\qquad\qquad $x = 0$ \\
+\hbox{}\qquad Evaluated term: \\
+\hbox{}\qquad\qquad $\textit{insort}~t~x = N~1~1~(N~0~1~\Lambda~\Lambda)~\Lambda$
+\postw
+
+Nitpick's output reveals that the element $0$ was added as a left child of $1$,
+where both have a level of 1. This violates the second AA tree invariant, which
+states that a left child's level must be less than its parent's. This shouldn't
+come as a surprise, considering that we commented out the tree rebalancing code.
+Reintroducing the code seems to solve the problem:
+
+\prew
+\textbf{theorem}~\textit{wf\_insort}:\kern.4em ``$\textit{wf}~t\,\Longrightarrow\, \textit{wf}~(\textit{insort}~t~x)$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+{\slshape Nitpick ran out of time after checking 6 of 8 scopes.}
+\postw
+
+Insertion should transform the set of elements represented by the tree in the
+obvious way:
+
+\prew
+\textbf{theorem} \textit{dataset\_insort}:\kern.4em
+``$\textit{dataset}~(\textit{insort}~t~x) = \{x\} \cup \textit{dataset}~t$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+{\slshape Nitpick ran out of time after checking 5 of 8 scopes.}
+\postw
+
+We could continue like this and sketch a complete theory of AA trees without
+performing a single proof. Once the definitions and main theorems are in place
+and have been thoroughly tested using Nitpick, we could start working on the
+proofs. Developing theories this way usually saves time, because faulty theorems
+and definitions are discovered much earlier in the process.
+
+\section{Option Reference}
+\label{option-reference}
+
+\def\flushitem#1{\item[]\noindent\kern-\leftmargin \textbf{#1}}
+\def\qty#1{$\left<\textit{#1}\right>$}
+\def\qtybf#1{$\mathbf{\left<\textbf{\textit{#1}}\right>}$}
+\def\optrue#1#2{\flushitem{\textit{#1} $\bigl[$= \qtybf{bool}$\bigr]$\quad [\textit{true}]\hfill (neg.: \textit{#2})}\nopagebreak\\[\parskip]}
+\def\opfalse#1#2{\flushitem{\textit{#1} $\bigl[$= \qtybf{bool}$\bigr]$\quad [\textit{false}]\hfill (neg.: \textit{#2})}\nopagebreak\\[\parskip]}
+\def\opsmart#1#2{\flushitem{\textit{#1} $\bigl[$= \qtybf{bool\_or\_smart}$\bigr]$\quad [\textit{smart}]\hfill (neg.: \textit{#2})}\nopagebreak\\[\parskip]}
+\def\ops#1#2{\flushitem{\textit{#1} = \qtybf{#2}} \nopagebreak\\[\parskip]}
+\def\opt#1#2#3{\flushitem{\textit{#1} = \qtybf{#2}\quad [\textit{#3}]} \nopagebreak\\[\parskip]}
+\def\opu#1#2#3{\flushitem{\textit{#1} \qtybf{#2} = \qtybf{#3}} \nopagebreak\\[\parskip]}
+\def\opusmart#1#2#3{\flushitem{\textit{#1} \qtybf{#2} $\bigl[$= \qtybf{bool\_or\_smart}$\bigr]$\hfill (neg.: \textit{#3})}\nopagebreak\\[\parskip]}
+
+Nitpick's behavior can be influenced by various options, which can be specified
+in brackets after the \textbf{nitpick} command. Default values can be set
+using \textbf{nitpick\_\allowbreak params}. For example:
+
+\prew
+\textbf{nitpick\_params} [\textit{verbose}, \,\textit{timeout} = 60$\,s$]
+\postw
+
+The options are categorized as follows:\ mode of operation
+(\S\ref{mode-of-operation}), scope of search (\S\ref{scope-of-search}), output
+format (\S\ref{output-format}), automatic counterexample checks
+(\S\ref{authentication}), optimizations
+(\S\ref{optimizations}), and timeouts (\S\ref{timeouts}).
+
+The number of options can be overwhelming at first glance. Do not let that worry
+you: Nitpick's defaults have been chosen so that it almost always does the right
+thing, and the most important options have been covered in context in
+\S\ref{first-steps}.
+
+The descriptions below refer to the following syntactic quantities:
+
+\begin{enum}
+\item[$\bullet$] \qtybf{string}: A string.
+\item[$\bullet$] \qtybf{bool}: \textit{true} or \textit{false}.
+\item[$\bullet$] \qtybf{bool\_or\_smart}: \textit{true}, \textit{false}, or \textit{smart}.
+\item[$\bullet$] \qtybf{int}: An integer. Negative integers are prefixed with a hyphen.
+\item[$\bullet$] \qtybf{int\_or\_smart}: An integer or \textit{smart}.
+\item[$\bullet$] \qtybf{int\_range}: An integer (e.g., 3) or a range
+of nonnegative integers (e.g., $1$--$4$). The range symbol `--' can be entered as \texttt{-} (hyphen) or \texttt{\char`\\\char`\<midarrow\char`\>}.
+
+\item[$\bullet$] \qtybf{int\_seq}: A comma-separated sequence of ranges of integers (e.g.,~1{,}3{,}\allowbreak6--8).
+\item[$\bullet$] \qtybf{time}: An integer followed by $\textit{min}$ (minutes), $s$ (seconds), or \textit{ms}
+(milliseconds), or the keyword \textit{none} ($\infty$ years).
+\item[$\bullet$] \qtybf{const}: The name of a HOL constant.
+\item[$\bullet$] \qtybf{term}: A HOL term (e.g., ``$f~x$'').
+\item[$\bullet$] \qtybf{term\_list}: A space-separated list of HOL terms (e.g.,
+``$f~x$''~``$g~y$'').
+\item[$\bullet$] \qtybf{type}: A HOL type.
+\end{enum}
+
+Default values are indicated in square brackets. Boolean options have a negated
+counterpart (e.g., \textit{auto} vs.\ \textit{no\_auto}). When setting Boolean
+options, ``= \textit{true}'' may be omitted.
+
+\subsection{Mode of Operation}
+\label{mode-of-operation}
+
+\begin{enum}
+\opfalse{auto}{no\_auto}
+Specifies whether Nitpick should be run automatically on newly entered theorems.
+For automatic runs, \textit{user\_axioms} (\S\ref{mode-of-operation}) and
+\textit{assms} (\S\ref{mode-of-operation}) are implicitly enabled,
+\textit{blocking} (\S\ref{mode-of-operation}), \textit{verbose}
+(\S\ref{output-format}), and \textit{debug} (\S\ref{output-format}) are
+disabled, \textit{max\_potential} (\S\ref{output-format}) is taken to be 0, and
+\textit{auto\_timeout} (\S\ref{timeouts}) is used as the time limit instead of
+\textit{timeout} (\S\ref{timeouts}). The output is also more concise.
+
+\nopagebreak
+{\small See also \textit{auto\_timeout} (\S\ref{timeouts}).}
+
+\optrue{blocking}{non\_blocking}
+Specifies whether the \textbf{nitpick} command should operate synchronously.
+The asynchronous (non-blocking) mode lets the user start proving the putative
+theorem while Nitpick looks for a counterexample, but it can also be more
+confusing. For technical reasons, automatic runs currently always block.
+
+\nopagebreak
+{\small See also \textit{auto} (\S\ref{mode-of-operation}).}
+
+\optrue{falsify}{satisfy}
+Specifies whether Nitpick should look for falsifying examples (countermodels) or
+satisfying examples (models). This manual assumes throughout that
+\textit{falsify} is enabled.
+
+\opsmart{user\_axioms}{no\_user\_axioms}
+Specifies whether the user-defined axioms (specified using 
+\textbf{axiomatization} and \textbf{axioms}) should be considered. If the option
+is set to \textit{smart}, Nitpick performs an ad hoc axiom selection based on
+the constants that occur in the formula to falsify. The option is implicitly set
+to \textit{true} for automatic runs.
+
+\textbf{Warning:} If the option is set to \textit{true}, Nitpick might
+nonetheless ignore some polymorphic axioms. Counterexamples generated under
+these conditions are tagged as ``likely genuine.'' The \textit{debug}
+(\S\ref{output-format}) option can be used to find out which axioms were
+considered.
+
+\nopagebreak
+{\small See also \textit{auto} (\S\ref{mode-of-operation}), \textit{assms}
+(\S\ref{mode-of-operation}), and \textit{debug} (\S\ref{output-format}).}
+
+\optrue{assms}{no\_assms}
+Specifies whether the relevant assumptions in structured proof should be
+considered. The option is implicitly enabled for automatic runs.
+
+\nopagebreak
+{\small See also \textit{auto} (\S\ref{mode-of-operation})
+and \textit{user\_axioms} (\S\ref{mode-of-operation}).}
+
+\opfalse{overlord}{no\_overlord}
+Specifies whether Nitpick should put its temporary files in
+\texttt{\$ISABELLE\_\allowbreak HOME\_\allowbreak USER}, which is useful for
+debugging Nitpick but also unsafe if several instances of the tool are run
+simultaneously.
+
+\nopagebreak
+{\small See also \textit{debug} (\S\ref{output-format}).}
+\end{enum}
+
+\subsection{Scope of Search}
+\label{scope-of-search}
+
+\begin{enum}
+\opu{card}{type}{int\_seq}
+Specifies the sequence of cardinalities to use for a given type. For
+\textit{nat} and \textit{int}, the cardinality fully specifies the subset used
+to approximate the type. For example:
+%
+$$\hbox{\begin{tabular}{@{}rll@{}}%
+\textit{card nat} = 4 & induces & $\{0,\, 1,\, 2,\, 3\}$ \\
+\textit{card int} = 4 & induces & $\{-1,\, 0,\, +1,\, +2\}$ \\
+\textit{card int} = 5 & induces & $\{-2,\, -1,\, 0,\, +1,\, +2\}.$%
+\end{tabular}}$$
+%
+In general:
+%
+$$\hbox{\begin{tabular}{@{}rll@{}}%
+\textit{card nat} = $K$ & induces & $\{0,\, \ldots,\, K - 1\}$ \\
+\textit{card int} = $K$ & induces & $\{-\lceil K/2 \rceil + 1,\, \ldots,\, +\lfloor K/2 \rfloor\}.$%
+\end{tabular}}$$
+%
+For free types, and often also for \textbf{typedecl}'d types, it usually makes
+sense to specify cardinalities as a range of the form \textit{$1$--$n$}.
+Although function and product types are normally mapped directly to the
+corresponding Kodkod concepts, setting
+the cardinality of such types is also allowed and implicitly enables ``boxing''
+for them, as explained in the description of the \textit{box}~\qty{type}
+and \textit{box} (\S\ref{scope-of-search}) options.
+
+\nopagebreak
+{\small See also \textit{mono} (\S\ref{scope-of-search}).}
+
+\opt{card}{int\_seq}{$\mathbf{1}$--$\mathbf{8}$}
+Specifies the default sequence of cardinalities to use. This can be overridden
+on a per-type basis using the \textit{card}~\qty{type} option described above.
+
+\opu{max}{const}{int\_seq}
+Specifies the sequence of maximum multiplicities to use for a given
+(co)in\-duc\-tive datatype constructor. A constructor's multiplicity is the
+number of distinct values that it can construct. Nonsensical values (e.g.,
+\textit{max}~[]~$=$~2) are silently repaired. This option is only available for
+datatypes equipped with several constructors.
+
+\ops{max}{int\_seq}
+Specifies the default sequence of maximum multiplicities to use for
+(co)in\-duc\-tive datatype constructors. This can be overridden on a per-constructor
+basis using the \textit{max}~\qty{const} option described above.
+
+\opusmart{wf}{const}{non\_wf}
+Specifies whether the specified (co)in\-duc\-tively defined predicate is
+well-founded. The option can take the following values:
+
+\begin{enum}
+\item[$\bullet$] \textbf{\textit{true}}: Tentatively treat the (co)in\-duc\-tive
+predicate as if it were well-founded. Since this is generally not sound when the
+predicate is not well-founded, the counterexamples are tagged as ``likely
+genuine.''
+
+\item[$\bullet$] \textbf{\textit{false}}: Treat the (co)in\-duc\-tive predicate
+as if it were not well-founded. The predicate is then unrolled as prescribed by
+the \textit{star\_linear\_preds}, \textit{iter}~\qty{const}, and \textit{iter}
+options.
+
+\item[$\bullet$] \textbf{\textit{smart}}: Try to prove that the inductive
+predicate is well-founded using Isabelle's \textit{lexicographic\_order} and
+\textit{sizechange} tactics. If this succeeds (or the predicate occurs with an
+appropriate polarity in the formula to falsify), use an efficient fixed point
+equation as specification of the predicate; otherwise, unroll the predicates
+according to the \textit{iter}~\qty{const} and \textit{iter} options.
+\end{enum}
+
+\nopagebreak
+{\small See also \textit{iter} (\S\ref{scope-of-search}),
+\textit{star\_linear\_preds} (\S\ref{optimizations}), and \textit{tac\_timeout}
+(\S\ref{timeouts}).}
+
+\opsmart{wf}{non\_wf}
+Specifies the default wellfoundedness setting to use. This can be overridden on
+a per-predicate basis using the \textit{wf}~\qty{const} option above.
+
+\opu{iter}{const}{int\_seq}
+Specifies the sequence of iteration counts to use when unrolling a given
+(co)in\-duc\-tive predicate. By default, unrolling is applied for inductive
+predicates that occur negatively and coinductive predicates that occur
+positively in the formula to falsify and that cannot be proved to be
+well-founded, but this behavior is influenced by the \textit{wf} option. The
+iteration counts are automatically bounded by the cardinality of the predicate's
+domain.
+
+{\small See also \textit{wf} (\S\ref{scope-of-search}) and
+\textit{star\_linear\_preds} (\S\ref{optimizations}).}
+
+\opt{iter}{int\_seq}{$\mathbf{1{,}2{,}4{,}8{,}12{,}16{,}24{,}32}$}
+Specifies the sequence of iteration counts to use when unrolling (co)in\-duc\-tive
+predicates. This can be overridden on a per-predicate basis using the
+\textit{iter} \qty{const} option above.
+
+\opt{bisim\_depth}{int\_seq}{$\mathbf{7}$}
+Specifies the sequence of iteration counts to use when unrolling the
+bisimilarity predicate generated by Nitpick for coinductive datatypes. A value
+of $-1$ means that no predicate is generated, in which case Nitpick performs an
+after-the-fact check to see if the known coinductive datatype values are
+bidissimilar. If two values are found to be bisimilar, the counterexample is
+tagged as ``likely genuine.'' The iteration counts are automatically bounded by
+the sum of the cardinalities of the coinductive datatypes occurring in the
+formula to falsify.
+
+\opusmart{box}{type}{dont\_box}
+Specifies whether Nitpick should attempt to wrap (``box'') a given function or
+product type in an isomorphic datatype internally. Boxing is an effective mean
+to reduce the search space and speed up Nitpick, because the isomorphic datatype
+is approximated by a subset of the possible function or pair values;
+like other drastic optimizations, it can also prevent the discovery of
+counterexamples. The option can take the following values:
+
+\begin{enum}
+\item[$\bullet$] \textbf{\textit{true}}: Box the specified type whenever
+practicable.
+\item[$\bullet$] \textbf{\textit{false}}: Never box the type.
+\item[$\bullet$] \textbf{\textit{smart}}: Box the type only in contexts where it
+is likely to help. For example, $n$-tuples where $n > 2$ and arguments to
+higher-order functions are good candidates for boxing.
+\end{enum}
+
+Setting the \textit{card}~\qty{type} option for a function or product type
+implicitly enables boxing for that type.
+
+\nopagebreak
+{\small See also \textit{verbose} (\S\ref{output-format})
+and \textit{debug} (\S\ref{output-format}).}
+
+\opsmart{box}{dont\_box}
+Specifies the default boxing setting to use. This can be overridden on a
+per-type basis using the \textit{box}~\qty{type} option described above.
+
+\opusmart{mono}{type}{non\_mono}
+Specifies whether the specified type should be considered monotonic when
+enumerating scopes. If the option is set to \textit{smart}, Nitpick performs a
+monotonicity check on the type. Setting this option to \textit{true} can reduce
+the number of scopes tried, but it also diminishes the theoretical chance of
+finding a counterexample, as demonstrated in \S\ref{scope-monotonicity}.
+
+\nopagebreak
+{\small See also \textit{card} (\S\ref{scope-of-search}),
+\textit{coalesce\_type\_vars} (\S\ref{scope-of-search}), and \textit{verbose}
+(\S\ref{output-format}).}
+
+\opsmart{mono}{non\_box}
+Specifies the default monotonicity setting to use. This can be overridden on a
+per-type basis using the \textit{mono}~\qty{type} option described above.
+
+\opfalse{coalesce\_type\_vars}{dont\_coalesce\_type\_vars}
+Specifies whether type variables with the same sort constraints should be
+merged. Setting this option to \textit{true} can reduce the number of scopes
+tried and the size of the generated Kodkod formulas, but it also diminishes the
+theoretical chance of finding a counterexample.
+
+{\small See also \textit{mono} (\S\ref{scope-of-search}).}
+\end{enum}
+
+\subsection{Output Format}
+\label{output-format}
+
+\begin{enum}
+\opfalse{verbose}{quiet}
+Specifies whether the \textbf{nitpick} command should explain what it does. This
+option is useful to determine which scopes are tried or which SAT solver is
+used. This option is implicitly disabled for automatic runs.
+
+\nopagebreak
+{\small See also \textit{auto} (\S\ref{mode-of-operation}).}
+
+\opfalse{debug}{no\_debug}
+Specifies whether Nitpick should display additional debugging information beyond
+what \textit{verbose} already displays. Enabling \textit{debug} also enables
+\textit{verbose} and \textit{show\_all} behind the scenes. The \textit{debug}
+option is implicitly disabled for automatic runs.
+
+\nopagebreak
+{\small See also \textit{auto} (\S\ref{mode-of-operation}), \textit{overlord}
+(\S\ref{mode-of-operation}), and \textit{batch\_size} (\S\ref{optimizations}).}
+
+\optrue{show\_skolems}{hide\_skolem}
+Specifies whether the values of Skolem constants should be displayed as part of
+counterexamples. Skolem constants correspond to bound variables in the original
+formula and usually help us to understand why the counterexample falsifies the
+formula.
+
+\nopagebreak
+{\small See also \textit{skolemize} (\S\ref{optimizations}).}
+
+\opfalse{show\_datatypes}{hide\_datatypes}
+Specifies whether the subsets used to approximate (co)in\-duc\-tive datatypes should
+be displayed as part of counterexamples. Such subsets are sometimes helpful when
+investigating whether a potential counterexample is genuine or spurious, but
+their potential for clutter is real.
+
+\opfalse{show\_consts}{hide\_consts}
+Specifies whether the values of constants occurring in the formula (including
+its axioms) should be displayed along with any counterexample. These values are
+sometimes helpful when investigating why a counterexample is
+genuine, but they can clutter the output.
+
+\opfalse{show\_all}{dont\_show\_all}
+Enabling this option effectively enables \textit{show\_skolems},
+\textit{show\_datatypes}, and \textit{show\_consts}.
+
+\opt{max\_potential}{int}{$\mathbf{1}$}
+Specifies the maximum number of potential counterexamples to display. Setting
+this option to 0 speeds up the search for a genuine counterexample. This option
+is implicitly set to 0 for automatic runs. If you set this option to a value
+greater than 1, you will need an incremental SAT solver: For efficiency, it is
+recommended to install the JNI version of MiniSat and set \textit{sat\_solver} =
+\textit{MiniSatJNI}. Also be aware that many of the counterexamples may look
+identical, unless the \textit{show\_all} (\S\ref{output-format}) option is
+enabled.
+
+\nopagebreak
+{\small See also \textit{auto} (\S\ref{mode-of-operation}),
+\textit{check\_potential} (\S\ref{authentication}), and
+\textit{sat\_solver} (\S\ref{optimizations}).}
+
+\opt{max\_genuine}{int}{$\mathbf{1}$}
+Specifies the maximum number of genuine counterexamples to display. If you set
+this option to a value greater than 1, you will need an incremental SAT solver:
+For efficiency, it is recommended to install the JNI version of MiniSat and set
+\textit{sat\_solver} = \textit{MiniSatJNI}. Also be aware that many of the
+counterexamples may look identical, unless the \textit{show\_all}
+(\S\ref{output-format}) option is enabled.
+
+\nopagebreak
+{\small See also \textit{check\_genuine} (\S\ref{authentication}) and
+\textit{sat\_solver} (\S\ref{optimizations}).}
+
+\ops{eval}{term\_list}
+Specifies the list of terms whose values should be displayed along with
+counterexamples. This option suffers from an ``observer effect'': Nitpick might
+find different counterexamples for different values of this option.
+
+\opu{format}{term}{int\_seq}
+Specifies how to uncurry the value displayed for a variable or constant.
+Uncurrying sometimes increases the readability of the output for high-arity
+functions. For example, given the variable $y \mathbin{\Colon} {'a}\Rightarrow
+{'b}\Rightarrow {'c}\Rightarrow {'d}\Rightarrow {'e}\Rightarrow {'f}\Rightarrow
+{'g}$, setting \textit{format}~$y$ = 3 tells Nitpick to group the last three
+arguments, as if the type had been ${'a}\Rightarrow {'b}\Rightarrow
+{'c}\Rightarrow {'d}\times {'e}\times {'f}\Rightarrow {'g}$. In general, a list
+of values $n_1,\ldots,n_k$ tells Nitpick to show the last $n_k$ arguments as an
+$n_k$-tuple, the previous $n_{k-1}$ arguments as an $n_{k-1}$-tuple, and so on;
+arguments that are not accounted for are left alone, as if the specification had
+been $1,\ldots,1,n_1,\ldots,n_k$.
+
+\nopagebreak
+{\small See also \textit{uncurry} (\S\ref{optimizations}).}
+
+\opt{format}{int\_seq}{$\mathbf{1}$}
+Specifies the default format to use. Irrespective of the default format, the
+extra arguments to a Skolem constant corresponding to the outer bound variables
+are kept separated from the remaining arguments, the \textbf{for} arguments of
+an inductive definitions are kept separated from the remaining arguments, and
+the iteration counter of an unrolled inductive definition is shown alone. The
+default format can be overridden on a per-variable or per-constant basis using
+the \textit{format}~\qty{term} option described above.
+\end{enum}
+
+%% MARK: Authentication
+\subsection{Authentication}
+\label{authentication}
+
+\begin{enum}
+\opfalse{check\_potential}{trust\_potential}
+Specifies whether potential counterexamples should be given to Isabelle's
+\textit{auto} tactic to assess their validity. If a potential counterexample is
+shown to be genuine, Nitpick displays a message to this effect and terminates.
+
+\nopagebreak
+{\small See also \textit{max\_potential} (\S\ref{output-format}) and
+\textit{auto\_timeout} (\S\ref{timeouts}).}
+
+\opfalse{check\_genuine}{trust\_genuine}
+Specifies whether genuine and likely genuine counterexamples should be given to
+Isabelle's \textit{auto} tactic to assess their validity. If a ``genuine''
+counterexample is shown to be spurious, the user is kindly asked to send a bug
+report to the author at
+\texttt{blan{\color{white}nospam}\kern-\wd\boxA{}chette@in.tum.de}.
+
+\nopagebreak
+{\small See also \textit{max\_genuine} (\S\ref{output-format}) and
+\textit{auto\_timeout} (\S\ref{timeouts}).}
+
+\ops{expect}{string}
+Specifies the expected outcome, which must be one of the following:
+
+\begin{enum}
+\item[$\bullet$] \textbf{\textit{genuine}}: Nitpick found a genuine counterexample.
+\item[$\bullet$] \textbf{\textit{likely\_genuine}}: Nitpick found a ``likely
+genuine'' counterexample (i.e., a counterexample that is genuine unless
+it contradicts a missing axiom or a dangerous option was used inappropriately).
+\item[$\bullet$] \textbf{\textit{potential}}: Nitpick found a potential counterexample.
+\item[$\bullet$] \textbf{\textit{none}}: Nitpick found no counterexample.
+\item[$\bullet$] \textbf{\textit{unknown}}: Nitpick encountered some problem (e.g.,
+Kodkod ran out of memory).
+\end{enum}
+
+Nitpick emits an error if the actual outcome differs from the expected outcome.
+This option is useful for regression testing.
+\end{enum}
+
+\subsection{Optimizations}
+\label{optimizations}
+
+\def\cpp{C\nobreak\raisebox{.1ex}{+}\nobreak\raisebox{.1ex}{+}}
+
+\sloppy
+
+\begin{enum}
+\opt{sat\_solver}{string}{smart}
+Specifies which SAT solver to use. SAT solvers implemented in C or \cpp{} tend
+to be faster than their Java counterparts, but they can be more difficult to
+install. Also, if you set the \textit{max\_potential} (\S\ref{output-format}) or
+\textit{max\_genuine} (\S\ref{output-format}) option to a value greater than 1,
+you will need an incremental SAT solver, such as \textit{MiniSatJNI}
+(recommended) or \textit{SAT4J}.
+
+The supported solvers are listed below:
+
+\begin{enum}
+
+\item[$\bullet$] \textbf{\textit{MiniSat}}: MiniSat is an efficient solver
+written in \cpp{}. To use MiniSat, set the environment variable
+\texttt{MINISAT\_HOME} to the directory that contains the \texttt{minisat}
+executable. The \cpp{} sources and executables for MiniSat are available at
+\url{http://minisat.se/MiniSat.html}. Nitpick has been tested with versions 1.14
+and 2.0 beta (2007-07-21).
+
+\item[$\bullet$] \textbf{\textit{MiniSatJNI}}: The JNI (Java Native Interface)
+version of MiniSat is bundled in \texttt{nativesolver.\allowbreak tgz}, which
+you will find on Kodkod's web site \cite{kodkod-2009}. Unlike the standard
+version of MiniSat, the JNI version can be used incrementally.
+
+\item[$\bullet$] \textbf{\textit{PicoSAT}}: PicoSAT is an efficient solver
+written in C. It is bundled with Kodkodi and requires no further installation or
+configuration steps. Alternatively, you can install a standard version of
+PicoSAT and set the environment variable \texttt{PICOSAT\_HOME} to the directory
+that contains the \texttt{picosat} executable. The C sources for PicoSAT are
+available at \url{http://fmv.jku.at/picosat/} and are also bundled with Kodkodi.
+Nitpick has been tested with version 913.
+
+\item[$\bullet$] \textbf{\textit{zChaff}}: zChaff is an efficient solver written
+in \cpp{}. To use zChaff, set the environment variable \texttt{ZCHAFF\_HOME} to
+the directory that contains the \texttt{zchaff} executable. The \cpp{} sources
+and executables for zChaff are available at
+\url{http://www.princeton.edu/~chaff/zchaff.html}. Nitpick has been tested with
+versions 2004-05-13, 2004-11-15, and 2007-03-12.
+
+\item[$\bullet$] \textbf{\textit{zChaffJNI}}: The JNI version of zChaff is
+bundled in \texttt{native\-solver.\allowbreak tgz}, which you will find on
+Kodkod's web site \cite{kodkod-2009}.
+
+\item[$\bullet$] \textbf{\textit{RSat}}: RSat is an efficient solver written in
+\cpp{}. To use RSat, set the environment variable \texttt{RSAT\_HOME} to the
+directory that contains the \texttt{rsat} executable. The \cpp{} sources for
+RSat are available at \url{http://reasoning.cs.ucla.edu/rsat/}. Nitpick has been
+tested with version 2.01.
+
+\item[$\bullet$] \textbf{\textit{BerkMin}}: BerkMin561 is an efficient solver
+written in C. To use BerkMin, set the environment variable
+\texttt{BERKMIN\_HOME} to the directory that contains the \texttt{BerkMin561}
+executable. The BerkMin executables are available at
+\url{http://eigold.tripod.com/BerkMin.html}.
+
+\item[$\bullet$] \textbf{\textit{BerkMinAlloy}}: Variant of BerkMin that is
+included with Alloy 4 and calls itself ``sat56'' in its banner text. To use this
+version of BerkMin, set the environment variable
+\texttt{BERKMINALLOY\_HOME} to the directory that contains the \texttt{berkmin}
+executable.
+
+\item[$\bullet$] \textbf{\textit{Jerusat}}: Jerusat 1.3 is an efficient solver
+written in C. To use Jerusat, set the environment variable
+\texttt{JERUSAT\_HOME} to the directory that contains the \texttt{Jerusat1.3}
+executable. The C sources for Jerusat are available at
+\url{http://www.cs.tau.ac.il/~ale1/Jerusat1.3.tgz}.
+
+\item[$\bullet$] \textbf{\textit{SAT4J}}: SAT4J is a reasonably efficient solver
+written in Java that can be used incrementally. It is bundled with Kodkodi and
+requires no further installation or configuration steps. Do not attempt to
+install the official SAT4J packages, because their API is incompatible with
+Kodkod.
+
+\item[$\bullet$] \textbf{\textit{SAT4JLight}}: Variant of SAT4J that is
+optimized for small problems. It can also be used incrementally.
+
+\item[$\bullet$] \textbf{\textit{HaifaSat}}: HaifaSat 1.0 beta is an
+experimental solver written in \cpp. To use HaifaSat, set the environment
+variable \texttt{HAIFASAT\_\allowbreak HOME} to the directory that contains the
+\texttt{HaifaSat} executable. The \cpp{} sources for HaifaSat are available at
+\url{http://cs.technion.ac.il/~gershman/HaifaSat.htm}.
+
+\item[$\bullet$] \textbf{\textit{smart}}: If \textit{sat\_solver} is set to
+\textit{smart}, Nitpick selects the first solver among MiniSat, PicoSAT, zChaff,
+RSat, BerkMin, BerkMinAlloy, and Jerusat that is recognized by Isabelle. If none
+is found, it falls back on SAT4J, which should always be available. If
+\textit{verbose} is enabled, Nitpick displays which SAT solver was chosen.
+
+\end{enum}
+\fussy
+
+\opt{batch\_size}{int\_or\_smart}{smart}
+Specifies the maximum number of Kodkod problems that should be lumped together
+when invoking Kodkodi. Each problem corresponds to one scope. Lumping problems
+together ensures that Kodkodi is launched less often, but it makes the verbose
+output less readable and is sometimes detrimental to performance. If
+\textit{batch\_size} is set to \textit{smart}, the actual value used is 1 if
+\textit{debug} (\S\ref{output-format}) is set and 64 otherwise.
+
+\optrue{destroy\_constrs}{dont\_destroy\_constrs}
+Specifies whether formulas involving (co)in\-duc\-tive datatype constructors should
+be rewritten to use (automatically generated) discriminators and destructors.
+This optimization can drastically reduce the size of the Boolean formulas given
+to the SAT solver.
+
+\nopagebreak
+{\small See also \textit{debug} (\S\ref{output-format}).}
+
+\optrue{specialize}{dont\_specialize}
+Specifies whether functions invoked with static arguments should be specialized.
+This optimization can drastically reduce the search space, especially for
+higher-order functions.
+
+\nopagebreak
+{\small See also \textit{debug} (\S\ref{output-format}) and
+\textit{show\_consts} (\S\ref{output-format}).}
+
+\optrue{skolemize}{dont\_skolemize}
+Specifies whether the formula should be skolemized. For performance reasons,
+(positive) $\forall$-quanti\-fiers that occur in the scope of a higher-order
+(positive) $\exists$-quanti\-fier are left unchanged.
+
+\nopagebreak
+{\small See also \textit{debug} (\S\ref{output-format}) and
+\textit{show\_skolems} (\S\ref{output-format}).}
+
+\optrue{star\_linear\_preds}{dont\_star\_linear\_preds}
+Specifies whether Nitpick should use Kodkod's transitive closure operator to
+encode non-well-founded ``linear inductive predicates,'' i.e., inductive
+predicates for which each the predicate occurs in at most one assumption of each
+introduction rule. Using the reflexive transitive closure is in principle
+equivalent to setting \textit{iter} to the cardinality of the predicate's
+domain, but it is usually more efficient.
+
+{\small See also \textit{wf} (\S\ref{scope-of-search}), \textit{debug}
+(\S\ref{output-format}), and \textit{iter} (\S\ref{scope-of-search}).}
+
+\optrue{uncurry}{dont\_uncurry}
+Specifies whether Nitpick should uncurry functions. Uncurrying has on its own no
+tangible effect on efficiency, but it creates opportunities for the boxing 
+optimization.
+
+\nopagebreak
+{\small See also \textit{box} (\S\ref{scope-of-search}), \textit{debug}
+(\S\ref{output-format}), and \textit{format} (\S\ref{output-format}).}
+
+\optrue{fast\_descrs}{full\_descrs}
+Specifies whether Nitpick should optimize the definite and indefinite
+description operators (THE and SOME). The optimized versions usually help
+Nitpick generate more counterexamples or at least find them faster, but only the
+unoptimized versions are complete when all types occurring in the formula are
+finite.
+
+{\small See also \textit{debug} (\S\ref{output-format}).}
+
+\optrue{peephole\_optim}{no\_peephole\_optim}
+Specifies whether Nitpick should simplify the generated Kodkod formulas using a
+peephole optimizer. These optimizations can make a significant difference.
+Unless you are tracking down a bug in Nitpick or distrust the peephole
+optimizer, you should leave this option enabled.
+
+\opt{sym\_break}{int}{20}
+Specifies an upper bound on the number of relations for which Kodkod generates
+symmetry breaking predicates. According to the Kodkod documentation
+\cite{kodkod-2009-options}, ``in general, the higher this value, the more
+symmetries will be broken, and the faster the formula will be solved. But,
+setting the value too high may have the opposite effect and slow down the
+solving.''
+
+\opt{sharing\_depth}{int}{3}
+Specifies the depth to which Kodkod should check circuits for equivalence during
+the translation to SAT. The default of 3 is the same as in Alloy. The minimum
+allowed depth is 1. Increasing the sharing may result in a smaller SAT problem,
+but can also slow down Kodkod.
+
+\opfalse{flatten\_props}{dont\_flatten\_props}
+Specifies whether Kodkod should try to eliminate intermediate Boolean variables.
+Although this might sound like a good idea, in practice it can drastically slow
+down Kodkod.
+
+\opt{max\_threads}{int}{0}
+Specifies the maximum number of threads to use in Kodkod. If this option is set
+to 0, Kodkod will compute an appropriate value based on the number of processor
+cores available.
+
+\nopagebreak
+{\small See also \textit{batch\_size} (\S\ref{optimizations}) and
+\textit{timeout} (\S\ref{timeouts}).}
+\end{enum}
+
+\subsection{Timeouts}
+\label{timeouts}
+
+\begin{enum}
+\opt{timeout}{time}{$\mathbf{30}$ s}
+Specifies the maximum amount of time that the \textbf{nitpick} command should
+spend looking for a counterexample. Nitpick tries to honor this constraint as
+well as it can but offers no guarantees. For automatic runs,
+\textit{auto\_timeout} is used instead.
+
+\nopagebreak
+{\small See also \textit{auto} (\S\ref{mode-of-operation})
+and \textit{max\_threads} (\S\ref{optimizations}).}
+
+\opt{auto\_timeout}{time}{$\mathbf{5}$ s}
+Specifies the maximum amount of time that Nitpick should use to find a
+counterexample when running automatically. Nitpick tries to honor this
+constraint as well as it can but offers no guarantees.
+
+\nopagebreak
+{\small See also \textit{auto} (\S\ref{mode-of-operation}).}
+
+\opt{tac\_timeout}{time}{$\mathbf{500}$ ms}
+Specifies the maximum amount of time that the \textit{auto} tactic should use
+when checking a counterexample, and similarly that \textit{lexicographic\_order}
+and \textit{sizechange} should use when checking whether a (co)in\-duc\-tive
+predicate is well-founded. Nitpick tries to honor this constraint as well as it
+can but offers no guarantees.
+
+\nopagebreak
+{\small See also \textit{wf} (\S\ref{scope-of-search}),
+\textit{check\_potential} (\S\ref{authentication}),
+and \textit{check\_genuine} (\S\ref{authentication}).}
+\end{enum}
+
+\section{Attribute Reference}
+\label{attribute-reference}
+
+Nitpick needs to consider the definitions of all constants occurring in a
+formula in order to falsify it. For constants introduced using the
+\textbf{definition} command, the definition is simply the associated
+\textit{\_def} axiom. In contrast, instead of using the internal representation
+of functions synthesized by Isabelle's \textbf{primrec}, \textbf{function}, and
+\textbf{nominal\_primrec} packages, Nitpick relies on the more natural
+equational specification entered by the user.
+
+Behind the scenes, Isabelle's built-in packages and theories rely on the
+following attributes to affect Nitpick's behavior:
+
+\begin{itemize}
+\flushitem{\textit{nitpick\_def}}
+
+\nopagebreak
+This attribute specifies an alternative definition of a constant. The
+alternative definition should be logically equivalent to the constant's actual
+axiomatic definition and should be of the form
+
+\qquad $c~{?}x_1~\ldots~{?}x_n \,\equiv\, t$,
+
+where ${?}x_1, \ldots, {?}x_n$ are distinct variables and $c$ does not occur in
+$t$.
+
+\flushitem{\textit{nitpick\_simp}}
+
+\nopagebreak
+This attribute specifies the equations that constitute the specification of a
+constant. For functions defined using the \textbf{primrec}, \textbf{function},
+and \textbf{nominal\_\allowbreak primrec} packages, this corresponds to the
+\textit{simps} rules. The equations must be of the form
+
+\qquad $c~t_1~\ldots\ t_n \,=\, u.$
+
+\flushitem{\textit{nitpick\_psimp}}
+
+\nopagebreak
+This attribute specifies the equations that constitute the partial specification
+of a constant. For functions defined using the \textbf{function} package, this
+corresponds to the \textit{psimps} rules. The conditional equations must be of
+the form
+
+\qquad $\lbrakk P_1;\> \ldots;\> P_m\rbrakk \,\Longrightarrow\, c\ t_1\ \ldots\ t_n \,=\, u$.
+
+\flushitem{\textit{nitpick\_intro}}
+
+\nopagebreak
+This attribute specifies the introduction rules of a (co)in\-duc\-tive predicate.
+For predicates defined using the \textbf{inductive} or \textbf{coinductive}
+command, this corresponds to the \textit{intros} rules. The introduction rules
+must be of the form
+
+\qquad $\lbrakk P_1;\> \ldots;\> P_m;\> M~(c\ t_{11}\ \ldots\ t_{1n});\>
+\ldots;\> M~(c\ t_{k1}\ \ldots\ t_{kn})\rbrakk \,\Longrightarrow\, c\ u_1\
+\ldots\ u_n$,
+
+where the $P_i$'s are side conditions that do not involve $c$ and $M$ is an
+optional monotonic operator. The order of the assumptions is irrelevant.
+
+\end{itemize}
+
+When faced with a constant, Nitpick proceeds as follows:
+
+\begin{enum}
+\item[1.] If the \textit{nitpick\_simp} set associated with the constant
+is not empty, Nitpick uses these rules as the specification of the constant.
+
+\item[2.] Otherwise, if the \textit{nitpick\_psimp} set associated with
+the constant is not empty, it uses these rules as the specification of the
+constant.
+
+\item[3.] Otherwise, it looks up the definition of the constant:
+
+\begin{enum}
+\item[1.] If the \textit{nitpick\_def} set associated with the constant
+is not empty, it uses the latest rule added to the set as the definition of the
+constant; otherwise it uses the actual definition axiom.
+\item[2.] If the definition is of the form
+
+\qquad $c~{?}x_1~\ldots~{?}x_m \,\equiv\, \lambda y_1~\ldots~y_n.\; \textit{lfp}~(\lambda f.\; t)$,
+
+then Nitpick assumes that the definition was made using an inductive package and
+based on the introduction rules marked with \textit{nitpick\_\allowbreak
+ind\_\allowbreak intros} tries to determine whether the definition is
+well-founded.
+\end{enum}
+\end{enum}
+
+As an illustration, consider the inductive definition
+
+\prew
+\textbf{inductive}~\textit{odd}~\textbf{where} \\
+``\textit{odd}~1'' $\,\mid$ \\
+``\textit{odd}~$n\,\Longrightarrow\, \textit{odd}~(\textit{Suc}~(\textit{Suc}~n))$''
+\postw
+
+Isabelle automatically attaches the \textit{nitpick\_intro} attribute to
+the above rules. Nitpick then uses the \textit{lfp}-based definition in
+conjunction with these rules. To override this, we can specify an alternative
+definition as follows:
+
+\prew
+\textbf{lemma} $\mathit{odd\_def}'$ [\textit{nitpick\_def}]: ``$\textit{odd}~n \,\equiv\, n~\textrm{mod}~2 = 1$''
+\postw
+
+Nitpick then expands all occurrences of $\mathit{odd}~n$ to $n~\textrm{mod}~2
+= 1$. Alternatively, we can specify an equational specification of the constant:
+
+\prew
+\textbf{lemma} $\mathit{odd\_simp}'$ [\textit{nitpick\_simp}]: ``$\textit{odd}~n = (n~\textrm{mod}~2 = 1)$''
+\postw
+
+Such tweaks should be done with great care, because Nitpick will assume that the
+constant is completely defined by its equational specification. For example, if
+you make ``$\textit{odd}~(2 * k + 1)$'' a \textit{nitpick\_simp} rule and neglect to provide rules to handle the $2 * k$ case, Nitpick will define
+$\textit{odd}~n$ arbitrarily for even values of $n$. The \textit{debug}
+(\S\ref{output-format}) option is extremely useful to understand what is going
+on when experimenting with \textit{nitpick\_} attributes.
+
+\section{Standard ML Interface}
+\label{standard-ml-interface}
+
+Nitpick provides a rich Standard ML interface used mainly for internal purposes
+and debugging. Among the most interesting functions exported by Nitpick are
+those that let you invoke the tool programmatically and those that let you
+register and unregister custom coinductive datatypes.
+
+\subsection{Invocation of Nitpick}
+\label{invocation-of-nitpick}
+
+The \textit{Nitpick} structure offers the following functions for invoking your
+favorite counterexample generator:
+
+\prew
+$\textbf{val}\,~\textit{pick\_nits\_in\_term} : \\
+\hbox{}\quad\textit{Proof.state} \rightarrow \textit{params} \rightarrow \textit{bool} \rightarrow \textit{term~list} \rightarrow \textit{term} \\
+\hbox{}\quad{\rightarrow}\; \textit{string} * \textit{Proof.state}$ \\
+$\textbf{val}\,~\textit{pick\_nits\_in\_subgoal} : \\
+\hbox{}\quad\textit{Proof.state} \rightarrow \textit{params} \rightarrow \textit{bool} \rightarrow \textit{int} \rightarrow \textit{string} * \textit{Proof.state}$
+\postw
+
+The return value is a new proof state paired with an outcome string
+(``genuine'', ``likely\_genuine'', ``potential'', ``none'', or ``unknown''). The
+\textit{params} type is a large record that lets you set Nitpick's options. The
+current default options can be retrieved by calling the following function
+defined in the \textit{NitpickIsar} structure:
+
+\prew
+$\textbf{val}\,~\textit{default\_params} :\,
+\textit{theory} \rightarrow (\textit{string} * \textit{string})~\textit{list} \rightarrow \textit{params}$
+\postw
+
+The second argument lets you override option values before they are parsed and
+put into a \textit{params} record. Here is an example:
+
+\prew
+$\textbf{val}\,~\textit{params} = \textit{NitpickIsar.default\_params}~\textit{thy}~[(\textrm{``}\textrm{timeout}\textrm{''},\, \textrm{``}\textrm{none}\textrm{''})]$ \\
+$\textbf{val}\,~(\textit{outcome},\, \textit{state}') = \textit{Nitpick.pick\_nits\_in\_subgoal}~\begin{aligned}[t]
+& \textit{state}~\textit{params}~\textit{false} \\[-2pt]
+& \textit{subgoal}\end{aligned}$
+\postw
+
+\subsection{Registration of Coinductive Datatypes}
+\label{registration-of-coinductive-datatypes}
+
+\let\antiq=\textrm
+
+If you have defined a custom coinductive datatype, you can tell Nitpick about
+it, so that it can use an efficient Kodkod axiomatization similar to the one it
+uses for lazy lists. The interface for registering and unregistering coinductive
+datatypes consists of the following pair of functions defined in the
+\textit{Nitpick} structure:
+
+\prew
+$\textbf{val}\,~\textit{register\_codatatype} :\,
+\textit{typ} \rightarrow \textit{string} \rightarrow \textit{styp~list} \rightarrow \textit{theory} \rightarrow \textit{theory}$ \\
+$\textbf{val}\,~\textit{unregister\_codatatype} :\,
+\textit{typ} \rightarrow \textit{theory} \rightarrow \textit{theory}$
+\postw
+
+The type $'a~\textit{llist}$ of lazy lists is already registered; had it
+not been, you could have told Nitpick about it by adding the following line
+to your theory file:
+
+\prew
+$\textbf{setup}~\,\{{*}\,~\!\begin{aligned}[t]
+& \textit{Nitpick.register\_codatatype} \\[-2pt]
+& \qquad @\{\antiq{typ}~``\kern1pt'a~\textit{llist}\textrm{''}\}~@\{\antiq{const\_name}~ \textit{llist\_case}\} \\[-2pt] %% TYPESETTING
+& \qquad (\textit{map}~\textit{dest\_Const}~[@\{\antiq{term}~\textit{LNil}\},\, @\{\antiq{term}~\textit{LCons}\}])\,\ {*}\}\end{aligned}$
+\postw
+
+The \textit{register\_codatatype} function takes a coinductive type, its case
+function, and the list of its constructors. The case function must take its
+arguments in the order that the constructors are listed. If no case function
+with the correct signature is available, simply pass the empty string.
+
+On the other hand, if your goal is to cripple Nitpick, add the following line to
+your theory file and try to check a few conjectures about lazy lists:
+
+\prew
+$\textbf{setup}~\,\{{*}\,~\textit{Nitpick.unregister\_codatatype}~@\{\antiq{typ}~``
+\kern1pt'a~\textit{list}\textrm{''}\}\ \,{*}\}$
+\postw
+
+\section{Known Bugs and Limitations}
+\label{known-bugs-and-limitations}
+
+Here are the known bugs and limitations in Nitpick at the time of writing:
+
+\begin{enum}
+\item[$\bullet$] Underspecified functions defined using the \textbf{primrec},
+\textbf{function}, or \textbf{nominal\_\allowbreak primrec} packages can lead
+Nitpick to generate spurious counterexamples for theorems that refer to values
+for which the function is not defined. For example:
+
+\prew
+\textbf{primrec} \textit{prec} \textbf{where} \\
+``$\textit{prec}~(\textit{Suc}~n) = n$'' \\[2\smallskipamount]
+\textbf{lemma} ``$\textit{prec}~0 = \undef$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\quad{\slshape Nitpick found a counterexample for \textit{card nat}~= 2: 
+\nopagebreak
+\\[2\smallskipamount]
+\hbox{}\qquad Empty assignment} \nopagebreak\\[2\smallskipamount]
+\textbf{by}~(\textit{auto simp}: \textit{prec\_def})
+\postw
+
+Such theorems are considered bad style because they rely on the internal
+representation of functions synthesized by Isabelle, which is an implementation
+detail.
+
+\item[$\bullet$] Nitpick produces spurious counterexamples when invoked after a
+\textbf{guess} command in a structured proof.
+
+\item[$\bullet$] The \textit{nitpick\_} attributes and the
+\textit{Nitpick.register\_} functions can cause havoc if used improperly.
+
+\item[$\bullet$] Local definitions are not supported and result in an error.
+
+\item[$\bullet$] All constants and types whose names start with
+\textit{Nitpick}{.} are reserved for internal use.
+\end{enum}
+
+\let\em=\sl
+\bibliography{../manual}{}
+\bibliographystyle{abbrv}
+
+\end{document}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/gfx/isabelle_nitpick.eps	Mon Oct 26 14:21:20 2009 +0100
@@ -0,0 +1,6488 @@
+%!PS-Adobe-2.0 EPSF-1.2
+%%Title: isabelle_any
+%%Creator: FreeHand 5.5
+%%CreationDate: 24.09.1998 21:04 Uhr
+%%BoundingBox: 0 0 202 178
+%%FHPathName:MacSystem:Home:Markus:TUM:Isabelle Logo:export:isabelle_any
+%ALDOriginalFile:MacSystem:Home:Markus:TUM:Isabelle Logo:export:isabelle_any
+%ALDBoundingBox: -153 -386 442 456
+%%FHPageNum:1
+%%DocumentSuppliedResources: procset Altsys_header 4 0
+%%ColorUsage: Color
+%%DocumentProcessColors: Cyan Magenta Yellow Black
+%%DocumentNeededResources: font Symbol
+%%+ font ZapfHumanist601BT-Bold
+%%DocumentFonts: Symbol
+%%+ ZapfHumanist601BT-Bold
+%%DocumentNeededFonts: Symbol
+%%+ ZapfHumanist601BT-Bold
+%%EndComments
+%!PS-AdobeFont-1.0: ZapfHumanist601BT-Bold 003.001
+%%CreationDate: Mon Jun 22 16:09:28 1992
+%%VMusage: 35200 38400   
+% Bitstream Type 1 Font Program
+% Copyright 1990-1992 as an unpublished work by Bitstream Inc., Cambridge, MA.
+% All rights reserved.
+% Confidential and proprietary to Bitstream Inc.
+% U.S. GOVERNMENT RESTRICTED RIGHTS
+% This software typeface product is provided with RESTRICTED RIGHTS. Use,
+% duplication or disclosure by the Government is subject to restrictions
+% as set forth in the license agreement and in FAR 52.227-19 (c) (2) (May, 1987),
+% when applicable, or the applicable provisions of the DOD FAR supplement
+% 252.227-7013 subdivision (a) (15) (April, 1988) or subdivision (a) (17)
+% (April, 1988).  Contractor/manufacturer is Bitstream Inc.,
+% 215 First Street, Cambridge, MA 02142.
+% Bitstream is a registered trademark of Bitstream Inc.
+11 dict begin
+/FontInfo 9 dict dup begin
+  /version (003.001) readonly def
+  /Notice (Copyright 1990-1992 as an unpublished work by Bitstream Inc.  All rights reserved.  Confidential.) readonly def
+  /FullName (Zapf Humanist 601 Bold) readonly def
+  /FamilyName (Zapf Humanist 601) readonly def
+  /Weight (Bold) readonly def
+  /ItalicAngle 0 def
+  /isFixedPitch false def
+  /UnderlinePosition -136 def
+  /UnderlineThickness 85 def
+end readonly def
+/FontName /ZapfHumanist601BT-Bold def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding StandardEncoding def
+/FontBBox {-167 -275 1170 962} readonly def
+/UniqueID 15530396 def
+currentdict end
+currentfile eexec
+a2951840838a4133839ca9d22e2b99f2b61c767cd675080aacfcb24e19cd
+1336739bb64994c56737090b4cec92c9945ff0745ef7ffc61bb0a9a3b849
+e7e98740e56c0b5af787559cc6956ab31e33cf8553d55c0b0e818ef5ec6b
+f48162eac42e7380ca921dae1c82b38fd6bcf2001abb5d001a56157094cf
+e27d8f4eac9693e88372d20358b47e0c3876558ebf757a1fbc5c1cddf62b
+3c57bf727ef1c4879422c142a084d1c7462ac293e097fabe3a3ecfcd8271
+f259833bac7912707218ec9a3063bf7385e02d8c1058ac06df00b33b8c01
+8768b278010eb4dd58c7ba59321899741cb7215d8a55bee8d3398c887f02
+e1f4869387f89141de693fcb429c7884c22dcdeddcaa62b7f5060249dfab
+cfc351201f7d188b6ed68a228abda4d33b3d269ac09cde172bc045e67449
+c0f25d224efbe8c9f9d2968a01edbfb039123c365ed0db58ad38aabe015b
+8881191dd23092f6d53d5c1cd68ebd038e098d32cb24b433b7d5d89c28ee
+05ea0b6070bb785a2974b5a160ee4cf8b6d8c73445d36720af0530441cd9
+61bc0c367f1af1ec1c5ab7255ddda153c1868aba58cd5b44835535d85326
+5d7fed5ff7118adb5d5b76cc3b72e5ff27e21eb857261b3afb7688fca12d
+1663b0d8bdc1dd47a84b65b47d3e76d3b8fa8b319f17e1bb22b45a7482fd
+f9ad1b6129e09ae47f15cd2447484cd2d64f59ab0f2f876c81e7d87ccdf9
+005aa8fc093d02db51a075d571e925f2d309a1c535a1e59d34215c6cd33e
+3c38997b4956461f376399901a8d0943dca6a335baac93fc8482c0659f04
+329c6f040b35828ea6dd1bd1858f2a9be4ef77731b5b75a1c536c6bc9479
+0821e5d88f6e2981835dbfd65ec254ebcf2cf49c917d121cd3bbb476a12b
+69c15f17d9c17bb15ad1e7d31d2afcf58c8f0ad526d68615a0f1ac3b1d1c
+d3beafeea3cf56c8f8a66367c70df9159f0b1b3157ccfd010045c4718e0e
+625c0891e85790c9b97b85517c74c9d55eaca31a01cddc64898bf0eeadf3
+53391a185e507dcb0a6f52661a56357ac818dfc740a540aadf02f4e7a79d
+8008a77cd30abde337025b01217d6a68c306abe145b7260c3478fa5f366f
+b2d37259ead8a8ec2db2f09ae0eb3a682d27b0d73a60935f80254c24426a
+003a87a29a4370cbf1b2ef1e19ad8466ec725fd5b463d06011a5e0da2258
+ff6c1483c4532bc21f2ed9b99b929b2800ddefc1a98d12ba085adc210bac
+e0274b69e24d16af015a51ca73edf779a7534a887aa780337ad966839881
+edc22ba72038aa1a96a6deba24ad676795da711b92f8cf5f54cb4322ec04
+40ef9e15b11e3005f3ff69376ecb29bb66e8fc1b685f2b05fb162fcb35aa
+d7eb2a8ec39b97ab1ff05ef02f8dbbc12085a5cd252cc4010fab7f63dfd5
+7fa1be86f724d37db5faef17ae8e8e537444e8e9db917b270344183473af
+7f47d5703a160d8ef1e772438620d3336b2fbcf6433612e4b5e64fae0329
+8a3c4010c17d93f13ba66d549c69dd58c7d26ddc90285fed831918563a16
+2a7ac2511e2f18c9eb3df905a9dcba65a31cc1c39f07458abb11b4c60346
+aea19070e126982f1dde336e79be0ecd69a8afbe2493d064d4d2ff38788b
+b3038125961302db9761403c3b8019ec641e107425002205a77ae2ae0f4f
+7550d623dd03f0ec0199f42a9a8b89514e2e21baca9b3c8c96ca48cbf9dc
+ee6d6241d713e014b49e83ad85e62a6b2f70b58e4cc72d41ea6fcbdd3b5c
+890c8af0d24200658773b1628c6cc9aaaabb08865ee4c7ff2c513ad7aa23
+155a321213fa94731683a3e282a0e60aa3c87aade3da231465bdd9097f2c
+89a1af8e5b9649143f2d9482546501ea97e8bea2f5d5eea97d4f19bb6835
+3138d3babb2461c08d537491aaede1f23d734c6f099eb5bef6e2ffaaf138
+e5ab71b8b41599091037e440127a4eaedf208c20c8a2fc62eadab191d1ab
+4d5531f826aa6b9fff2797a7f54673e0a3fae09a93a0dfafb8b11d60dc69
+5acf9b7e1a47c31d0b5a0b85b7b50cddff5ac831651d9c7469c2139c7a89
+7d2f868f36c65156921803eccfdbdd1618595ab6d2a9230ef523a1b5ee51
+f2a0d200fc0e94aff7f546593ff2a3eb865d129895af01b8ab6e4616fe20
+9123b6e2b7e0817adc3cdb78ae8b0b1d75f2986ebd8fb24c4de92ac9e8c3
+6afa520636bcad2e6a03d11c268d97fa578561f6e7523e042c4cc73a0eac
+7a841907450e83d8e7a8de4db5085f6e8b25dc85b59e018380f4b9523a7f
+02cbeec989f0221b7681ec427519062b429dcd8fc2e4f81173519f88e2e4
+3798b90a84060920f6ae789afd6a9182e7fec87cd2d4235d37a65c3f3bcc
+c742c89cbe5f3e2ba6c4f40ebba162e12569d20684cc167685285a087e7a
+0a995fe1939bf25c09553512ba2cf77ef21d2ef8da1c73ba6e5826f4099e
+27d8bc7b3545fc592b75228e70127c15a382774357457cd4586d80dc0bd6
+065aee32acfd5c0523303cece85a3dbf46853b917618c0330146f527c15b
+dbb9f6526964368b2b8593eed1551dad75659565d54c6a0a52da7a8e366f
+dd009ef853491c0fb995e19933cba1dbdc8902721c3ea6017ffdd5851cb8
+3c8bada46075ac121afe13a70e87529e40693157adcc999ed4657e017adf
+f7dbac4bc0d204f204c6f47b769aaf714f9ec1d25226f24d0a1b53e28ac5
+374ab99755852c1431b2486df5fd637e2005a25303345a1c95a15a1189ba
+f6f6883de1ad46d48427b137c2003d210ab2b2f5680f2633939f289d7553
+eb943adf8127f1c3ee7d6453b5566393700ad74ab86eb9a89f8b0380af55
+6b62f51b7dbd0c5dcc9a9fb658944d7ad5845d58dedc2d38200d0ef7cb0f
+76041dc104ef3ab89c1dc2f6a75635d48051c8a7dd9f5e60253a53957ec8
+9d1266566d7ed20d79dfc2807b397d7cf056bdaccdb72528a88aa4987682
+c909b2fe1e35a71c2f29e89a2bf32173967e79610367ce4574ba6a1cc031
+cfb176fc0313f74f91a866ef9954b95b29caf917a6b919586f54d23cb7ce
+23305886ae7760ebd6263df0d3c511ac7afc361df78bc2621f66d3268b99
+078fa59124f0eb9476496c938eb4584e87455dc6f2faa999e938460b31c6
+28021c652acfa12d4556aa4302bbcd043e60389480b796c3fc0b2e51b81e
+c2afa4a34335318a1c5a842dcaa120df414acba2e79ab5cc61c99e98108c
+5cb907a96b30d731131782f9df79aabfc16a20ace8852d047497982e11c8
+26321addf679de8a96a2d18743f6f2c3b2bc397370b10ad273fcfb76b48b
+9dad27cf89ca2c370149cd48ab956e9bbce01cbf8e1f0c661b99cf19b36e
+87b6165dd85ae3f3674525e17d85971093e110520d17f2d6253611e35ec9
+e17000e48e2926454c1e8eb4098e0115b49536f2c33505eb5e574f7a414b
+e176398c5ddf6d846ea5ddf2a5e94c0422e0115c57a8c9e56bf8ba962c82
+698c96bd6138baaca7347e44352cc62df4eeba364954ad921a5a43280980
+264df4a7fb29d005423179f7bd1d98b4280d62ce23c927551f1ffc2b8f17
+0a9c23656c0c91b640cdcfdbd88089ffb28d3ac68bad25dbbed82c083696
+1f9f86a6183cc1061ffdb32279796569d05b31c946955402d0be1fb9f2bf
+304d1ad8e1e357be49e6e2ee67f7f1e7bc699d46a5f7853fe659ba2e1930
+0d3e3ea658b9862701dcab08fdd23bf1d751777f25efbe9e02d12b5612b3
+c3fc2275190346b94ec4024e4ade08e54d75c0b4c48f4956b9182e8ce997
+74b54da4a9318c099d89f1ce3b6803a95f48b9fb8b845372be25e54478e8
+49e4707ea03a36e134efa661e4e6250d89649ae074cfd9d6b9e2071c1099
+3b8a5a5ebc3e1cb228c97565aef7f254e3f90af8a3dd281c83792755719d
+c6a5b3bab4aa6be5afe9624050eee8dfb13b018f4088c932cd48ace38dfe
+b1b4218dba8f7fada6628076acf1b54db0c95d4fb12232f1fa9d1ba848f9
+fe80c65b75d6946c00fe78839142c5302707d9269b24565dbcc551aca060
+b4d0f99b961dd3cc795a982063ac42e9fc81fc98add42744a9f92e74b00d
+637ee4606ea2099b6c763493c3159f8e52a90dafca682010c0e92bc9038a
+10abb066c75c8d97f7ad6fb1a37136e52cf2093c4fa485fe12adad10e4d0
+83b78b023628ddc5326cbf8392516027a9f3de4945f93488e4a1997efd2a
+22c2c136dbac1bdb829e082beac48cdd06dcb17bacf09451c7b636bd49a8
+fc60cb1d2292250bea78e1dd276725ab4c526b66ddabf4e1b2bf0a2571df
+2490df70735f5da321fac74fe4fab54444e53dace9832cff38a70c58104a
+4f0c0545dcf7a1a9ecb54e0e32d6d8195d30b2c98a567741fcf325a4ddeb
+244a1a35676e246ddc835fac13b569f35f22ec93191eca3efbe17ff9a950
+d08f863710b2bbecec969068c498eb2338b68f3fc3f5447449fe4de2b065
+e068ecd9255d369b2bb6c4b0b7423774bed69294758aca2bdb1a8d5bf618
+d3fa09462f7838e8a79b7a53bebe6dacb0a1561eaa074bc6f069f6a06fb2
+c4a5cb13e2172bce9be659a82665da5cded73da84322bb16aa6e19ac1958
+7515cb5d2b65e65e803f76700ce5efd3df7fe4ed431fae0e8e286b1d5056
+a0d18df926b2be7a93c503ab903abd4788680a6201fdc299f2cb5d6a9b6e
+2048109c8d1fb633a54128938594b2cce86a7e0185e7d59e6536584039ec
+9e30ff7be6ddba9fdba82de7415fdc47de84d97afb1aa3ba495bd91dee9d
+f3b21ee1164987dd8510925087cd0919f1085cba6e4dd3c7384d26667f94
+ad7f736a60d8bd76dfaa4b53c23536fc309ff2317c48ee0107ff2ca4d1b3
+f78c5a27b901c931128bdb636094ef0cd543a5b62b7dbe10ed83aed5780c
+a16067a4a7e8b7c5bf8a8e822149bc1b5bcdabe13a7f6aa6eaeff24a42f4
+a58a2b70f545103540169137fda9abb589f734b6776cb50402d6123ce802
+10dce05e3697a98c9411cf60a02c278c91e03d540b936cd00c668960e357
+1aeaf4d94cfb496b259ec0d8fdba9199fb46634ff177bc8d310ea1314eef
+d46c927a981c58e88743ed4e07d80fe841edee812e3053412bf2e710146c
+b25dec8ea70c38bb1f6e4db3c2e8ba521963c1584eeb60ea1e9555058f13
+e98307c13cbd15c26b611f543149b1ddf88dd6296ae703f58daeb67f1b03
+ab5b24c72d5770cb9d8ed242c4faaad1dd940ada00e98ff3a61799d13355
+aba916910aa9a6e5ee8af438d0ba8235346fcd139b9d2cb7db7bd3f298a3
+94ff0aff3b9042f32a004e042c346a5ea35917f229848a9c5a32909b0090
+4aa715640277a6ada99f8b2927fda22899ff1347f42bac73e2bd4bbf3945
+55fd7dd30d5c6dadf5c259fdb2455d8c607de1c5da588e20159f18e4e8da
+b714e532d888a0386c52c2b85964251af003ac9d10c0c8b9b3465e1dde48
+2e74a29e17a7cf6c9a43b5af1646f0b8508f98e9a1279ec3908073d89dcb
+aa093e8dd1004c1ecccce0803095b0069d4be7a1eb14b02efc37d137dfe3
+f0190bc9628069abc257f45d0e050e60c7f5281277937dd986fcd5b94a2b
+845a1a75addd74a142800f18ef408c08a2c2ad16a93298f148c0ae7d2990
+ded147f92f053809a60d4f992a227167aad5b5eb2bbe8a4a77dc77a08b72
+6acb34422e2532eec7e274e4a42d71ee584f5f3df5a3a5b379974ede73ab
+5f1b0a2dbfcc8cfac4747ca26eb6030dc2f85a104b754432977850c093b9
+97ed90af711b544ff682e7b1eac82b2b7b44014b09c17ecf084c994a095d
+9eeef5391305caf093b62ac9916f982a436d521fcf4d75c5b8e4d92266fd
+e99a58aa39d7693ecd1796b8851761d64bbca39a6d5a0b4533ae47123327
+f98d0ad0e8b36625cc3647b55459552906d8a1d5766845ffac101980efcf
+79657e365510be5db557cefef21193ca3cf3dad175ee2e7ae91d174fdc06
+2ff5c51ffe2f021122e96df042019d3a1883e662537ec1b69c11fbb6e750
+0132eabf5803c816153ecbff60ca3b3b39708c26cb1751afb2e65d8e5f4a
+c4397a88fb1f112672fcdd24e4ba545c5b2a7968c17b62f8e2530a8acbff
+cfca82c64b7abcab84e2c4a0a7ced67b15669301fe9ff2c756e70ff7ce33
+497be6acc4ac5617e1f043bd8a87416299a39bf17fc31c02d72d75fdc2a1
+e60669fa4d5e4a49d9afea2f53f4626680e9c0dfca223529efa415c4343a
+b6067aa800c484457ea050eaaa5d3fafeedd0eec72f327e02c6b3912b5a8
+c404de4839c9c4a99da42681cde43316606a34c7d2f02269de1aab776857
+e668f35946af4d618d36d444bdc02b1f63ea25b6260b4fb606ac8575b5c9
+782a5de4037350d5753b1537537ccb008c454eeb264e6cd4727c999e240e
+0ac89e95a896b67d54910a3531345f64198ad394b5ceb52881f1dd9e6beb
+95862dc188d45b3e46aacb5fe40097947dab9bc3c1ee46bfc9b1b3ed6167
+efd0d65ceb043d7b24c1456676e4baa47b1209a315f199bb3a91f4374cd9
+cc0b40d3f09f19f8dd8a46915eee55eeeeb3c7b8f437106ee491ef0f4ff9
+2c5c6f779e0fbe7bd5293964bb645ca362b106abeb773571d9ae83b786a3
+d5a4ea3ea970daadc46cc5e6037f76fd20e0fffc47cf4e7af9522b91f96b
+3297720fd45d9bc2200622ad2ca9445556c8a8202b1991bc63da360d021d
+55be2528e043f803e08da99b91ab9cfc5e65b2655d78206b4aecd445a7b0
+1caa0d06b0a55e8f04b70b60b04a860c8e1ab439f4910051e3f7441b47c7
+8aa3ab8519f181a9e833f3242fa58d02ed76bf0031f71f9def8484ecced8
+b6e41aca56176b6b32a2443d12492c8a0f5ba8a3e227219dfd1dd23fcb48
+fcfd255dbbf3e198874e607399db8d8498e719f00e9ed8bdd96c88817606
+357a0063c23854e64ad4e59ddd5060845b2c4cddd00c40081458f8ee02c7
+303c11747bd104440046bf2d09794fca2c4beb23ed1b66d9ccb9a4dd57ad
+a24943461ecc00704c916bdc621bfddb17913dfb0f3513b65f3ab015786a
+caa51ee9546bc8ddf87e2e104137e35ddf8f8d23724e9a53824169bc7cfa
+99562656e6f1c888d4dbff0b269c5d1e733e5f212d91297610201eb43249
+35e336dd0052738db2d64f3e89429903bb5c1810009cf766e9a06223dd2f
+219b706394a121dc029af55c6ada9052af59682ef7c51e121cf16f0319ac
+0aa9512ef900c548d673fe361da19052808797e958209072e145d46ec8cc
+a89fafd76630eff30ae979973bdf0f8c9e469d8edd3b1c93731c72f976b7
+d81142bc15c376403f967affaa5f482efd57c6f91970729d16db851f0ed3
+ea7d82f409307b5b436886c1beda94a1fa3ab1b60686f6574c844fb2c0b3
+a07174dc4f27b4fed2f8bd4d5436be4b343e5efdf0400d235bd910255341
+a20770804a26f8437e9bce6da8e9f8258a343c7aee291f1510be306ae67a
+ab1d7696453530c02fd153bbe49dbf62baad6146029cbd1656cdb76c952c
+b93edfee76fe33832930be59636bb947e8ad285f20f663cccf484fba97d6
+7446c7b6c6f5857428bb1737d9ae801df75d9cb4d7bd59ef7a4cbadde928
+38f15d232005585d2e40483d2d3e08cc8f398bb43afedb84343c3ba3835d
+0ba82a86dce859cf655f85e63e41365e0dbefcf511b9a27a2b6e66b2ad3a
+c657902842287a317e46ceaa93b5088f09d53a65815b44538af90ad3b06b
+4e5e2dc509f02e30a01e05201c67d4d39582bbe64e20b669f5fd787909a3
+30fc50a95b31426bbb57a4fbf9feacdc31f98bcf50da7e50c2bfc169c6fd
+ccf213cdb878653bcea372968ea6e31fd30dd55434cc91c0af22179ce669
+a05493f195e12432c6173ae2ac3c94fb83f38210014a9f969ea2b44e99f5
+e5a7317e848d429ad62167a4fc5001149676c0c28cdf59b8d1c5a582f516
+3eee855312777fee6dacbf993f5c058f355dbde6552dc960d336eee445dd
+11d53fd21b745d1e5ec317efbbef25e070d0a36797a6081c356ac2328e64
+e5c55fbc81dc75d9c1575548ece74b8307eef485aa8e28859a2e0435c831
+23a600efb323c362fe9f02407a5411c41a69566cd50add324b63ab939980
+b9d7a929ae4887163cfa7acbfc9fabaab8987a1f6906b9881491cd055b94
+485c968479dbb05b34ed0cd6844729a692978c6928c3392e33e8324ded88
+814cacdac8128e1425c0091a13558100d7cdbed5992795d94d39c32f32dc
+621ab6f3b75187a66741f61d6a9c91d791b1cfc3d0e94d4a76302e0c3f2e
+cbdc51f14f3251aa5c8bb989f0e13ee500b7b7f2f1e52ca970ad8a7b4b99
+57e93126254297380d67179deb8ff1e99d5cdf7a35c5bb9fa7b402e63234
+78640344e1f10c378ad23c5cd1aa18e1e0b308db70d3a624a455f8e291a2
+ee102ad10776208c2d546cb76d89ca8103a8b95f8acc2d2bdc9791324915
+6c9e05429091071f0c5b76d82c8d1c8a69d840fd460922cd2090624bc218
+0c9391005926a25042a55e322060807363462e1cdeab309033124ba3a884
+1db13f39edae04ec52cde9dbde64ddda1ad805141d4230ec76bd81fd98d7
+0d90fa1aaa26ea551bf687ddd6cdcf3de5a446b266c68434f07d9c0b382d
+5816c4e22f22cc03ff78064c6dffb12315c6bcbbf5dc510f5aaabf23471a
+234efceeb4aa2f9af9ea787c014c5587ef162fc5b35e8f4c23b168c6e247
+41d33dcc11d2a56d3ba9d8eed6e79aebf9f0faf1a3aeb89d792d69041f0b
+b8fadfc0aa090effc6ae5e2f13cdbf54b5bed69b039eef2627769613b6f1
+aefe9b66747fe8feaf7455796740f411a770d4a1764f0483719584880f45
+430e38d3af184145892a08b2add234a3f3ee4ccfc9f6995c02392adafccd
+722f366d748cfe9373fbf5f878ed47e9d221fd156bb28369df9e7d2b79da
+76120d135ebaf36cff93beb7e313c2b2de7477176fc19609a1b906c995cd
+defef08899265b6b8aefb44da1aadefd1c523dce5ca1b84c0c652b3009fd
+057789892d4d31764f181754b2e0a62c465587585509989a219711a5e4e2
+5b3b340ca8fdd3f04fef204b1b722b2f6c2ccb00c3cf1a94ba9bdfbfeda9
+e2a062c6f1ced3b8aae5dae32ade1fca1001f98d0ad0e8b36625cc3647b5
+5459552906d8a788eb8bc734ccb65fe9582c71df94fd95d22c5323de235c
+28220fb9a2ccb37362174d8cd5922c9e5a87b51d0668555100a33e33750e
+f1f795cbed962494a994be7ce8cf71fc58ff4204551b1615ed27cf088171
+fd000b72462b67935961e7c6c3a05bfd67b9ba094ea2c16fdf486da912e1
+e97bfd1c17934535e551cede20c001b5d2adb2be4cbad7d6ba0bdeae4b1a
+a739f90293e67ecbdeea4d35825e092697fb05b215083e3f3d6be260790e
+2a175fd44eb1c4c16759504827a6eb58a838c4d65fec6eef108495577019
+15740cac164111892e8d1cc447cd208e243a89ab847d8ebf4fb98bff49e7
+a3453facf3b0e8cb67590f390173ddba68324531d2e426aed152e12301d7
+538c1f3c0048a9cc00c009a1a9138460082123209c1e007266fbf236eb72
+21f87d4ca38a0b699e84ca230ffb5095f90a6528bf2a9118f95ac9ab8d2d
+ed9eed9b8b27be894b717469758c8d94fa89acc64f530f432d0e5f16c922
+36d6a63410f099c9e909450fd731d698ef658d8ffc1de14817b850814f68
+1a4a9be5cc7a71c381974c249f0b209bfdc2e97f9540c96f57bb4d283622
+00969b82011315289e6a025b137030a0af3b4b42b00fed7cec49df43c59e
+3b2495a036dd1b17a8e6adae63bfbbd48807c44b5bbf71813355e1b0e58e
+22b6fb88005fc55565be49c17244901b73ef02fc4eb7669be5af22d89c0d
+dff0fc6821d810d13e5821d48d4a71d7e463d5b60bc279d0dcf5f8da3a95
+905b56d6f2be95e6d4243b1048e3b662e62401ffaa3bc3f5f90b0854b8a3
+8c38039f61fcb359b06bbb7d59e3b39a295dccd6db9a8b83a6f64ef8dc94
+a77123dd164cfd1c46f1ee51aa19c3d6e7db92a298d10159f2b5eff2caf9
+dc93a6d267fb65bd900d6adf0c6be598050b6d3a9b3a322ab3c9e880d774
+1f58016ff97e5f606b5dbd72ba99252c669209bb556dd5be84fdd7c1ce92
+8a3b3d3aab8d37e6b740227563bb4d60f6bb04052356e1a48d2079feca44
+7ea17fd06f208426d045dee660d1d6460455f8d20dbc5ae64550bbdf60d7
+27d96cc9afef842a8c8c78ea2257e6c6d0d207c80cfe399e8874c693274e
+d2c2022d303ca50a70624b07434fb85040a76a823f446c7454dab4f9c05f
+10274eb5ba164aa3649d1bc90694316ba5cb3e7df4442e777124cff7ebef
+53df2320a0c441ab61666493cb43da46d5711c21699de85bc74359444da2
+e3e397d4c16234f81531505b621aa242a6698886f82b447104b1f1062f60
+b5c87cea9151bb3c627bfa4532b06fd147c556ed8d61ae30a8719dfb8705
+f8a6c74368381403640cc57026d3790c49e2bbd1c0e48285ec6ba44de678
+e3a1394d659c412f09644b83ee1a333a1f51ad8deb4e6d77b3b226ac2c4f
+fe653411a7976ae7c4a3cb7df309788da6b483f8a7bab4a6990db74362f5
+bc41d545a320389b2599fd726e426ed9fa2916ece67b058f6a269544e517
+128bda38d117f402409d0d8f8c88ed509aa2ba882e0c579b45af4be80770
+22d7269684eaf0f9afc3054316da6611e3fd260d67fb6fe52c9ade5dda24
+a0050a819ed21342aac9d25194778beb3145f56a66980f620998923521ea
+3f957b6ed0c5470734af9f416a16427dd03eff9a0e023452097d4ef936d5
+49a90823cef6de340a1ee02a52851b310cbcf41ae274947a62f9d1d8702a
+669023e3caf967204a340694b45fecbda4bf9552f6bdc62d43b3b2c3d571
+9983c182453e22ee34241ab908e667115f7988174684cd70084aefc55caa
+f5352a88e9dac45d1ea0e032af61fe9a9118a3931b2050fc6db66ab96a39
+74353b597f34dfd9f72150de23285eda5e555a607d198c291965a7233715
+3f4946a57af0b440ff8567b01a6f46c6d32fea5f8bf57d89dccbab7da882
+ee6c9260e89443b1d7db099477492bd0468850df3db668d741123e7ebe3d
+c21748ab4c5cbeb5de33b8963aecafe76bba0c4f6ed8e8263a116ed85e58
+fb71ec4ab0071301be7c7d3afd5fa6ad46c0232807bb7fe129e44bfd16e9
+fd0c8bb5e7cdd86a78b5fb0669093c22eda9151d85b6f58a9c8ead3727c0
+09850bd31a8b4a873d0a506240bb2aeccb8dcb6369532f21d9b967aa8443
+fd6d77cb2d65c4678a5fad188db85940f0a187aa1031dcf5b8e0d0cbfb6d
+b3b96fedec5b249b7a69de9b42dfa605bd622de7a220cce9b66e9f3394d6
+13487dc5e82c1e619079cd057b1e19ac05ebdfd7c8bf01c6c66fab49e0b6
+613df9e42beae2f7b9407a2bff8896d8035cea0fd5c11bc5889cb3d90876
+61766138d2625f42d0244adca65d1bc73989328c0eea0b97c7c766285ab3
+351ce2b183f774488a8806c33178090a3808f0ce5e339b87cf7add933301
+ca486742831ca751f0626864ce13172829a8419af5c78794a0eaa17b5bcd
+fcb684f7d4bb7af15deb432e44dc7dedf56eb8bea08b46f1e8123a49a349
+a7cbccf833a528f5e22d2d463040e09b91e543a2f33077b3e7b9ecc64f14
+306186cdae1fc317a6ced7e9b4d51a10bbbcf2fadff876b4d9082e3f4aef
+dfef230e4232572f4fa33a6e065f6895aa2ea96c5659cb579b023179f0fe
+de7ba64bbd9362a7b2b8c4eaec254915629e81d01c839096339b99bc9e25
+84536955feaa52fa20666f65bafd9b2e69c3e8c15d24fa407e7d881679b1
+789a0e2a695d13553c92c0214c9b7562cd6a9a3d77c8b0c2196cef76dc51
+d855c1dac37f96eae4cc7bf07e17dc7c08333d7af33c8b2965ea1f23446b
+3c96c52b30ea628ad572694d145b58a606f90b278290297aa372cff56b6f
+56f4aad6612eb7c7bd07db4f7d1a70d8044d16d0b5c1605ee02a852ffdb4
+450147b3f9b87d72dc431b34fcdc899462dcc1b6bb6ab1758b6a589e91e5
+8f5196251d00133b43749b7a11fb67a22664c5e38e336dbdeb5509c2d9d6
+2642c07275949df0e2db59314ae0fb34641fc171d3fe1289f919136d853c
+d9048ee9db50c699c49e27a8df199590bbc65b23b55bb387eed0c73f2db5
+1cb091f8c22af83103f214199e371f7de1df23f757817200be30610004df
+81fe8ed6eba79e856fca21a126ca326ad2f313c16e15754663ad6a065e08
+4050ff005fc899d6e233691b918a093b5f1ffda8839ab23ae66b1bb7b953
+0a7f896ec55de6fb9faf1b49656ff2e57488cd7f1c44114c75f9d571461f
+767a6040ffa14e9fb43096f164d60ca530d7cca76d526d1999ac1b52a793
+28651112a65db1f2564ecf90ea6bf2c9ecf515640719c3fb5e36cfc58591
+e227793f39b9d3a9025cb10f324a95c29c488724aa74812366ff0b118fc7
+19f9fd0f202a040be47ec99b46b4dfc3d2a17902a5779c8d52b27231a1bb
+5cd794c838daddc3e6824ca8297ba669a818c239b389400faf17aa04b802
+f763029edb9784dfdc42f223e6496a938e613463bf9bbbd59d63300a9ad7
+4e71865cac4b4e81a5864388c3886e70799c8989188341f7d17cb514cd99
+3b211883f171ec6402cc361885f4f4b110757bb3e52941a94bfaebb2faa0
+3e32eb72e25e31abdde82c2a9015478afa0f434ae3f8b97a4bef598d6eda
+44ffe1915c26ee0e8339d2d45a6a080550f538ded5542c8b96ca2f596979
+8bb6223e460e857516ab5a3323136ee8fc4b0556a7c39d0cf7acb45e48be
+4ae9db325e4750b73289e36a61b301795bdb2ca2a8b933be1c09fd0cd2cb
+8677df171d36ef1519a2269b21e4103b2ee151c513df3e10b2a216d6fb22
+18bf2005fa7e0f0563ad96661a7f55e1b5b991f8ca285651b2683c6a7c9d
+2d1941374989b06f2e9b42a6af60193dc758dd8e9fcfc7c1aa06eab47e81
+bd79660666defac0c6b9e484df9c17a61ce7a61ef73150e8cd406af6da17
+4d9c2392cc420eddda40f975ffbeacad8ce1b4e14bee29ba8552ff03376f
+c034784b38dc1d0ab7bc53943d2545b03d39797af8d58d6dffce56a353d9
+bebc833f04db321ca8642bbb7fcc63ed2349ffa08a33a5d0d78f4fd2c5ea
+4258e4671e362036f1f67fcef9d878ae2c203fd9c05200c59cc98633e65a
+99d912ec51d6f74500d5358b70e799a6817f59adfc43365d7bba1fd6766c
+5c8e76248daf3f01e7a8950fe875d657397797a45e7f99a92887300b6806
+b86db61e03c4c09d6cf507800aeead874a94e6f665746752937214302045
+0b19cfa8db69230517183a03a16e5503882ea1e419c333d3e3b73cef6762
+873ac06bec34c3f736494483442619f5bbadd86f128a5a40b854051893ea
+8d31dd6656777ad4ac2572d17c6fb21385b053495d1270e65d78334a4115
+2787ea89b86f97e72718905a11e9c5664837701a3c1c65ccaf26aebe8dab
+c1207d5da2079c37883d9235708f370203b3b2a8ec3a5bb35fab93dae115
+aef626dc44b67ca56fac18caf1c22e6fbab93564829a75776630b9c42513
+721ca0fbb0b402f4d1db8f701d2b29fa60162feaa8a167eb3113c6f57036
+e8361357913eb24dd38dc6d3bf4c3176a07ffc75cecf8e5940a310f79a8e
+f590844383d631796ade04a91144d073a9413cff34fb454f1fd75cfbe5e6
+525c3bd36ddab80138f6c19aad7417d47df1f1e0fc958fb190a8205b5321
+7c43a4dcb0599be404473d6faebe7240dc402a0e0caa21b56a601b154524
+f44988e5074c71ae8e1948bb2a2ce72fc24cf3b1813cf7408a6b097aff22
+f9d285134d09b7053464259531eb7b270cd5f39f81bbf41a36420f61e5f6
+b429036bbf20e27af1a437becd74c5bbc25ee2519402454fc94d430636e1
+736fe65a643d9b9d21c9a54eac5a8fed51ff60a47b85a0e9423e330e00cf
+220c23e056d20aec2fca3e6bc7a61a8366eb940c9bc99fb90e8704e27655
+20335a983eccc7e20b13745c4b4f30a842f1ba64745718c152697c688c73
+6cffcf5cc8eb5756201560413117a45ad3d264291cd51404f98448d31474
+d47d17d201def12867ba679f0e2605de8f3e8135ed0234890cffa68848f0
+6de427741b34c2ea654251ae8450a152538eb806ace3ecfe86d8c4a137ec
+c98c6d6cbdc191a5f8f5b5972c70b4896960037b6d4c7c63586a52d5eb59
+47af8c192eb980d0801fa670bb1d08740819f9da1dd9e153010bf9580a1d
+0925d8327ea1b88db8d934f40266ddf93e5ea137f267847d826cd7999b33
+c795d0ac05abe2ec1770dd98eea67912f1939118defc9b379e237d6477bc
+91ad08e0046b0836fafa1272b0213dce990c90815f5b30d0eb103ac9539c
+2f7bd2280264cd95b4be84cbc5139a7628ed211905dcb92cbc3180ac9e6b
+b9ecc3cb08608b2395827d5729781dea49d328ba0c1b4cf2cec9f6bbc822
+1f2bbbb9d88f9e7682b9ecc06b9705faa8a90a51678183db1e24cc2c4307
+e16b3c20f08f179ec69df7a8c4261427f5886f9179c493bf2d0ef36640d7
+79925585724aba69df6d1b4f0bd2a356eedfd74a88bea667b102420c2300
+ec420e99b9ce8be1472b617e1255a7f43a0b52f11657f1a4dbb624a24886
+9604fe2062b98f5787d010723e520a4f42a0c3943e151ee627f3d5db90e0
+7747e1a88a53c4784c8d2b042b9c23c9e436d7d88343171161a364cd8961
+37a19582a00d774ef01c7c3fc9e9c7be5074c858d2bacd707a6a4f322027
+137d6ca0421ed9f9c7e7229e867678e5272cfc7156a419e893404ad7dabf
+a5d8b6fd0787cb4fe1a901c34dd931f1b64f0c470ff807005fb66350d0ea
+eb84ebef2c2399cd14a4454ea5004bddd99988b39c4134b92121ec77faee
+55cc716eecc58b594b39c41dcab308efa4458ed71943ec5805dcd0194ddc
+1ba04a5d3d42d07ac62a907ea25cd2a7e77aba470324d41dc1a3fe088388
+787b3312f472cb4f23a414fa5f7c7a0cc5d121d7642b5b3f0cf7ca2173af
+3f878f374938251feb3ce5ddd2d7703fc79a130978ac516daf70ae903799
+28bea3a4296f48725d578d2e8fb0f932e398404fa8a242024bc011c0ae81
+7b92bb104712253a5d89c543a744332069e33ca08bd133211d233ef799f2
+fed6a20a9073021e505def8b79e1279dacc062cfd4dddc2e8e0a7fda5dd6
+bb5a745f99cccb7ec1df532308da3da0f236c74639c280ea649b2f7ec27d
+24221470b642567f3b2e1cd0b3ffa65c5ac986b557aa9b444bf470380435
+abae9b51c6da7ff753810ca7938d8a1c47d2b41fafd236cb5998f3ef365e
+1f700bb257679ba3a82e235a3e97a667a6ad94412839c96dcd49dd86ccbb
+6df8ad01756b311e9fd57ccd2eb2f19f035e214804e2b77769319a5389c2
+35f3ca2a73c616c9ef0984abcba167d7d652b330c68f4f6378aba69628b4
+2d59eaa2a7e4c782f6eb96f6758d17d35650b15cb5de9bf973b3b6f67c1d
+f3285be8322fc2b44359640a3ba5d6d7b96142583a00a9a0ef84fbf14046
+09ad55b2aefe8c5c8f58ed21623bf765f81dbb6cca6d2a51fb7730a14839
+392cad6b47f5e03448350ab36a37d9ff2b9dab69be5196511072b10cc91f
+2e6b5160b2b1bd112e6c02d14063a9bb46977b0d4bc79b921fd942f916c9
+c5708e0d133c8309de2f6ee0b1afc996c889c36de20fbbbfd32878f477cd
+7735c7c3fa59e9c46e654ea20b4381d9f6c6431082e6918d532bcd539284
+af0333a783c9e7fd4fa1e4da5ce8fea2ea4037644a24532d65fa5c1ee982
+89e4b9abaf71a35d308a9b8c337f70babc5fc8dbb0327143707ca5b675c5
+2d3cf09f7a4f667fcda03d8c82d157e661517787ce6bfb35ea772de13c66
+2bd24b74ff9ab0fbcf6635d8e06b54b5b3125d17ae13d175cb7922338ec8
+9d1159fea2110995ce48f7d2b094f06d11d59b3a64a44a83d48c78855e47
+21243e82d9858401b094a236fa0a90d61863931c30d13b9bf33a35ac0d11
+a999f2b4dfba6fc187f8c235a5217d777a5a97112e7db6a8a4b06b07d9c9
+f41820e233c8b58b9e47ac56ad1ddcc0b35dd03976bc776c6ac3692ec0ca
+f8c75ea7825bc84156468ca7b269d890ec9d4a365b0b31d2f6530185d5e0
+2acc3ce14eea55ebb5667067825a8682e135d23c78863d32065ddcf1a755
+e0de6dea7220d1a28416b96db40b1e9f159aeb070c9a9515f301f162b0cf
+e32c6c89287de6e2b40458e3393826189a10af8517ff5a10c41c9d05d999
+aa9305a2ee8e7fe46076bc9c5722ee0a140a144ae383e84a8abe70af5d29
+96a0a896cd499caa0ed7867e7c3aac563763216e7769d12218b584d853ec
+01db93ca22d0c8d6b286b20b6b26d6ef19f2cebe7030ecaa68d069fac7a0
+09d61770b5e8f83024a99142f59d88297cb8d093992c3c6c11b043b151e8
+20df640407d8bc829bfc196bf2901e63c6f16102d03ffb7c54a7a560f5f9
+5cf8379f4a2eccdcb604bd553e6157b4381940d1b3c768dbfbf2618812f5
+7fbe744b3d8ad680dd9223d8bf2412ecbb614d05b485e3b4669d22b417f5
+02cce2d705c208b15fa83b5be77ccfc1c840f385a58ae49fbe6ab4e53912
+473630e0cfecefab95ebc632a2b10a2103bfe801ca0302542080cfb4cf4d
+4c241b1a6c8d28114516e3f1bf39dc02db73e6d9a797279acfd79b02a71b
+ae34860dd0e11b18954129f8dd57c039bb7063a4c92f0f6a1e25f4ae59d6
+6c1cc6b73a79d6a56f7f2a8a64d571caa8a760f4f485d770d000ddf393ba
+784bb27b781c47678dd78ae9b5d5e8b57d163c42c7a55e4aae22061686bf
+aebcede728ff2f65e75955585208c176d100912836b5200a79062d4f09b1
+ba9465b0e937e289160ec543a4cedbbe0cdb5ecfbb4838138ee9e1ac757d
+3c5f04fb6b510b389e2f521759e403bfc8ec6bd79e2d40bdd81901c10dd7
+4620acaac9108940daf03af23f09d3c8b785db562b05e597056406557857
+e96fc8bea53c2c2ccd0ea6572abb0acacfe29e737173d665ab6dc2995f60
+807aaa4073a183aed23c26c67eb137c937999fafc63b66a021125e4ee5c1
+a745ad1fff2bd828dcef392052965ce0e9af7a2c88d730fef69da91083fd
+83d9fe9f73d42a8dbdcaba85b0fa93b210dbf49cdcbf5d4b69e07375fab1
+a39038cc51f66f0b10eebe0cc61f697f7025d9755830b2d65f1ad0db91ef
+ebbfb578053de329935bb28d6ed6c12f748a2f70458990f04d56c35557e3
+8bc5d2e5de7f52bcf00c3bcce091aaa8852d53ac686f8f407baf3f7c8968
+69f3b62f44a5e2291aff9d30d7b5c663658a41add74562dbb0f1062f564a
+9b907846291700151de04c1a55cb945eaa2e7a709218ec56d1becce1c0b7
+dc41d5f016ae8080c3b07311590a0def35337fc3c844c0ccd04926be9fec
+509b1255ef12f368d20601b1ac8c68b0a935f987a21de0f8191604e921ea
+0c04b00dc188fd73499852dbcccd4119ef799472b353be7f7dcc904ddfdb
+920839f3d4a13bb1796f2dc886f31217845f8d7a543aabbc720311fd0e6d
+a31ad3daa06d5e7e6270a34304f35ef170a7abe733428e96b0522fddbb5d
+eb35aacec147067fe066c9ef145246fa3d444d176c274b91fddb8a7bd7ff
+7cc7693c25895bf931eb321dc9d79f662a17691f9bd1662fecbcecf6d1f9
+cd8ddcda56d19811f05fa48bcb492feb355b0ec7c04d6046549c56f7799c
+2cd0d9dade8809de7d510702e525ad9cc82c41b4fb36218e3d72e905c507
+159076a9c0e4a008ccca17bd594c69f5eee656426f865fc1988d677b72ce
+b710b29a0aa8f8337552ae30e93bf7c6e5d013555872dba4737dc5f08c0f
+efd428c66fc8da675373f13f89102688977e18e14dedd7f3b676256b0263
+b66b013617d9a026794b0d6040c23c5506a98530249633a6beec46117c96
+ec036eaf6439e25b8e57754af5ebaaf9b57880ad4fc93f002fb03e9fda21
+df4acb78296b0c49a5a852c134c3b10755177a0dbd6c54ea7a2b9bdac62b
+5d7f3da649df856478e4baf97899e0f891a96536c283f5c81200c51c6ab6
+77285450c7f7e96836b6da5660f6cb76782ddfc64b6fc348ebc3ba4a46f7
+19176296d8c5a31132b3fa7d935a5d777c1dc84d669d564cb4fd689a38ce
+680d0b3b130caea0be43864826d0d154019fd0d865f1c389cd367cb5248e
+24640eb6f66603e50581f6fb5aca6cfec1d6dbf4196da10a5e1ebb14e4ca
+0251c4c8412cc1673d6e7a9666b04b090567efa0b830d2362fd384cb0303
+8a40290597bdaffe429bb89fb66b9dfcfa92f39d92a8baba7266d144ac04
+f069093ebb3fcea961ba4497d3628ad207e0c8c4fac0e5f3f2a663a8d05d
+b6dc33b890ae13d84dce64b495d24cc749b121659373ca31cee09bff2e9e
+e5b62e89d5faa4482a75f341dd172500a54b98fc108a69a3ea94db696513
+d4c7691e0095ed3900cd4489ab008b5460b34ae8dedf3721c60de7086605
+6c391137cf23255c565bf11403bdeecf8bf39ad5e4317a4bb37003b2e7c1
+400c3b8ed7f63719bddf07908dc2decdb0f68e8ef722851c4420303f6de1
+b5efc9b2598732fd1f2cbe45a504bd7fbfdafeade3add7274a1e875aba3c
+4e0abfc6444944b79f95b5009560818f7a0599e5bab4405378fadfe084f1
+653e5a0166714047e8bd4e4cb116596d8089bae9147ec1d62cd94491af75
+a1743d58bafa11b63b447c954a8d7fe11d39d969feac8fa93c614f97807d
+ac62cb7a84a974a0fa555a2e3f0ef662706efcb828ef72e2ea83b29e212d
+f89ffecabcb08dbb7119203c4c5db823bf4e8b698b763fbd4d21e57940d9
+1754959d21f3f649d856ac6615eac692ebcbac555f772eb6ba3cece5ebfb
+cfcc2f3d8dcad7edc697df93aef762cd47cc3ba9e2cdd10940be676efe7a
+a3749170edb47b7562805e3f8bd978b18057c9110ff8d19b466ea238af32
+993e2d3021745b238021f824d887d2e01a7ff12fc6f084b35292f4864579
+406c0f61d0ac7cdf7e4770b424e2ccc22353e6c82bf8ff172973df267ded
+bdaabc2a742beea02e35b9b253f98de9ca131f802deee2905ca1a6dc4608
+19a59b4a4265c723007d0215fc8ac2a91ec5f86cd6aac1e370a297103c3a
+3cff58c7ae201cbaaa8a12c93e95e73974f9abcd678451b1db02ebb2e10c
+c5abfa573a2ea4219fd1851765649318bb556b728d432ec05a86e9894aad
+9cdca63d08642655801bb37f28b6e11b958e8e800c8d521ca4aa045fe9ab
+ac02dc015d18b1901d519181ef60227170a07f3328a6d5fe4c5aedb35fc1
+3dbe86564a9b1dd4c7ec648880360cdd1742ed4ac409450f1d9681cb5e46
+5edd1de2a2c7f8ed63436f98e849504ae71bb872683ae107ad5df3ca0b47
+a5b79513e02d7c540257d465ae4521cb3449d79c931e2ce8c5b0a0a4ac88
+cef7b9e5f92bf721ad51682d6b6f6c14747f78eaac1891fe29aed4eaf177
+e3d2fc655ae889c0c30a3575a76c52e95db2f6a4d8ffee9518391954b92d
+39dae4e97c4022031f8ab390b66ada6dc9ab2de4d1dddf26ac4032981a69
+08f73d34b4849ae28832cddc0dcd116a47d9262b0f93c24fbfdf8a78e6ae
+ae3357f3fb89530854257a9db773a1acf5271fc4ca04a06b46dbe661ca11
+9f45e0080cd129e1a7c23a33f1c48af960761b117d9d91fa5a0ed3e47865
+b774a322f7dddfda2960b91fa7ba20c8f9eb213251299ae328b28ef54b0f
+55fd54f8047c555e4045cbd70964e1c953e471408e4f25fe8ca7009bfe44
+0244b1e30dff518ea7ce5078027baba4e07ecf0ebecb497b4bd88f1ff72e
+b261f6dffec0ed895e237b5608d31ef479e8c9ae9003039a5fe67252ee39
+774e1501100c0fcf154f5c5c81c70539e03118ab91f4ce247f6132d46346
+bbbb126c09d7459c1977e6e367a0c83d14edf7dea081e5f795a7c831fd1b
+325b33674ec9c2b68029a0e600746329ea2e1b9bdd5cb2b140468e53c108
+8e8f2567425443f8146ec37101fa4dfccb0e032fff6cdfd76382463551b1
+ae8ca6cbff0e34a3f75ad400a9573217f8cbb00a6d59ff46e48421e97091
+cb17f53f20ebeb89609ea55ed6ba4101f2f3ceccbc7ade21202439ef91d8
+a9a783c22de7e6601b50c4342e094d0eff223494489fa92150425da1b432
+908423fb3f41e0b115ec1ba592a4f920d15610b9fb33f9912aba67912d05
+1ee00a13282c1909a3a56c4ed06f2f4d1739dc296b7492aad0446f87a416
+c6db4d42b504dec3a6756f3d0845ab2d2e151aa5fde12b31a9c3b5ae1cc9
+d97192bc048f00dead66940004281c4d5a92c20b1f77795cb4f98b8eaa7c
+be16f9b9d4a34a1a53e0a0deadb4fb4b20d9e8064d3412ea8d2ebd259b8f
+2f04bf4bf11a5ab7883c99943d762549c3d5866bb6ed85a0e862eafbcfc7
+03bf4b77cecc0d65bce4df33e0d65456397f231f8cbf66672457cf539817
+6aa5292fae24695009e55904a04588659a3a23fa11989b925705ab45f954
+6f862b0e176fddf75b70d9ef7389f750becbffae25d58a1252cc04a79e13
+fbb6a666fd87cec5562c3e14fd78ad05be28ff3871d6fceff5aa8965bb65
+67ec76d105a6348e915b27767f5010011e80e0e2f9c34742a4eeba369e66
+8faf086a45ac9bcdd76c758db01a78602412a4244c759ece0b963d9ea58b
+0efbf4376bf115288803a54cfcf78584c8af80da2a3324096463e3898285
+57de6c6354444b12a74d5e66053f6907c48522cae9e93bccdb4632131add
+52eb374213888125de71994c31dba481b70b2e4c1f10b865d58ef09fc9dd
+2ca7f69bd2855895256caa5dd6bf7d4d8b341d677c56ca08fd7ba37485b1
+444af8be0dcdb233a512088936ab4d7fc8c03139df396b7408747b142782
+d9406db0dcd31368d2f23ddef61b0da3c0704e9049ccf7f904548c3ca963
+76eadf1ccf77f94c157f5b84f74b0c43466134876a90c5fdc2c53af70c3f
+f5c2d13cb665fed9016454bac1a629361c8ea62f4b2399233e8587db6e75
+a9cde3530f20a68ec155d275a4aa6f63aa5cd115244643b54911c954feca
+d57be2a6c40f1bac38e393969617b066f7d94e8b18dd80fccd0168d4a385
+f2f1489d1dd41b68d47e5ec66ec568333d1f584e3dca90f1367a990630d0
+14355be7dc45378aa111c319838edd441f15e125f928e044640f25ffdcc5
+c116c3f6ce0d4d3195187b22200808366eca9b508ec45e664e562186efec
+a97b22835d384758849605a01973cd9ffc1657b124950c9d9fa3e18b1a20
+7156c4f96f08b87824373c2865845d17a0dda71b1d69f5331c5676d0648b
+ca80a7958a2aa034d7e1e9fafead9248e6e64f9ec327c60ae4f724e1fb95
+8a71e82ac3842768b27b506b5982311557432dc3f270ae6eab23a42fef70
+dd0d407a02cbadeb7b8b74a2523cf46a5f61e52b053c2007f75ae053a96d
+e00646662d027d93f950e516cddff40501c76cd0d7cf76c66b7bcd1998d2
+7a19f52635c8e27511324aabbb641dd524d11d48a946937b7fa0d89a5dbc
+4b582d921811b3fd84c2a432dacb67d684a77ac08845e078e2417c7d9e08
+bd555c5265024aeb55fef4579b46f8c5e79770432c5349d5a65a47ce9338
+e1b599328bb1dff2a838f732852f3debf4bb9b828f9274d03d7cf813b123
+687c5e78a26310d87870bfcb0a76bf32aa20e46f6b2826912e562f503aed
+11e427b7765cd2a68da2ec0609259ff14f57c07963d075e96f8bd2eab9a0
+dc32714dd8905f2627c6d6f33563436bda2d7fa9a976f88947b84c72f454
+bf0b66ca84470375d2ff252b4a2df52ab613d0c8ef0465ff1d809ca82025
+c2122a8f44c56ebfa25690bf6a05675ebb8634ddfd24c3734fe8cb32d6d6
+c69c72a4951cb959175770b4286d383e7a3f158450945c8a2ccf7e54fb19
+aa8d2d98a07f0c55f834f2728d89f82a598269750115a02287c4d415cdaa
+14e1d9e7032684002f90603c0108dd26b40fb569bb21cc63d0da7e9e1873
+9df0a9c85bc340d2b0940860d95571dc244628c59bab449f057e409e58ca
+cc3369f4baa8e53c6765a55620e78341dae06e5cdf2fa5e5ba58634b29ee
+ddfee7f78672e55f18a7debbc30862f278f83f4cc123ab591371f548fbf9
+bd24b3453b9b57051c2e67edff2104f3a05a9f0cb7efd81c1b1b0a2bbe95
+21854902526e5d4fa1b3be270811b972e8726623410cec7911c07f871428
+1caaead97c503714eaadb14ae5923f020093722df1b9d9c055d7d5f95af2
+a9fbc5ab6f6c2bd655f685534d7dc5fbb5ebded6ccdcf369bd83c644dc62
+84c2810495888e9d8f464a42228cdc231d5b561c6b210bc493fc1e7bfd66
+5a6c4055a6a629f571f4f05c15cb2104b4f9d0bd1b1f0ab8252da384eeae
+f5fd5c663ad7a2c29f65a48a30ed8de196f9eb8ea314c6e86989298146a5
+589f76f12664c8d008228b33144679d16ff564453b5e4e9f813191b6c99e
+2680e20a410949ac30691b1428a255b6185b7e3802e8511192e73c376f3d
+eb807ad2727fbb4b27538b3213da0746231b1c1b595a958466155835c537
+e0df4a0ef272d4c3f7f2ef011daed38bc58bb0fd7458e48060db98971bd4
+b24bc7bd0de92573a1c7a80a5fa2b34fbe50271dabeb83aaa4235cb7f63d
+6a6b399360df8b1235e4e9ab59698930044a98d5e083b5f5a5772309b390
+9e1ff2a252734b32fee3940f0e1ba61f54dd1d3f6ff0d57c9ae75a302d14
+b9dd9034279aaca80b6bd05c74bf3d968305a5046910871223a3ef8c77d8
+25d7e6d3d2809e76064c473d1cd7c05666040b6eba647e34588f49fd70a0
+3c937933a2272c938d2fd3aa8149f215bb48f3bb45090bcb9a6ace393a44
+f1a9bda2ad09a5f566b2e8887880afa45a603a63ffe7c188e3eae926a903
+4f1803368e773f42c7391dff1b9ce8599161515c549aca46aebae7db23ec
+8f09db0e0f590aab75e8eb890df354b37cd886bdc230369783a4f22ab51e
+0f623738681b0d3f0099c925b93bbb56411205d63f6c05647b3e460ab354
+1bf98c59f7f6c2ea8f29d8fe08df254d8a16aab686baf6856c4fed3ec96b
+0328738183dbc1eebb2a3d301b0390ed8bd128bd8e7801c89941485c3c86
+22b5f223cb07dca74f0e8643240044e8c376abbd8c82ff98c6dba9b6d244
+5b6cf4189d63c6acd6e45f07485a0fa55eff370da7e71c26469740a68627
+a3c297d2bf215121fb67815b7b9403aecca10d21e59fabcbe38f5ca66e7b
+551b22e28f2d1fd7303d15a42c45bf54b40ef7fc93060ae5164e54f91c55
+20bd303a98d0667a02a900813b260c0343021ac01872fd62cb6abebc7ad3
+a4456805159839ca4a3e35db586221169ded66f852e8974e3815d4d7659f
+6a9bb93585aaf264f06cb6da6a26e51683945224158ea69719b8e4e36eb1
+01333aac974db8f84b051724cf245fe7a4c86582b5dbb9a5d9318180e33b
+8d92c22c44b0d18f8ca34dfa4ee9693c1a26fedece01635fc5eac1fefa81
+32458254ad46dfdfd2be12a1e7f32f3728f286f1d5d4394424a073696b65
+e3c459aee9310752231fa703faf35e11796c4eeef698f4109ca8c46ee322
+5dc2e3e04fa787188e583321f8410b68b9624ff60679d3f25c13e5ea7506
+a3ce8d0bebb99d9a959ad92d8cf909988d9250b310629903d6bfcad4581a
+504b91b2c91889987f36d6fd0be1d0ee5aac00aa0cb48d78a1f7a64a777f
+089573ba79452efcc31c8258fb317369feb0d7ccd48cf13da6d1ccb59a4a
+48ea0b398e590c1169113fed81639e13e96aa268d99cfdb7aee977fbe85f
+f784853a06642b5521ae0a7f610c9739af31ba7a5157ebbbad999e23794a
+d2cf25af987dc85dfa29639957cf28e7f2b7671188045130a6e2785f8d8e
+30e91f0f68c1cc9f2de902952730003e816e4f5703db7a97b4c566f80547
+42fa77be563ef681a4513b9a68b2b0956551c74545cc9883428dfa72fd5c
+4eee93256b26bc86ea34f7427cb0c0cc22c0cc343f739c6c0c46d0923675
+5e04d70587426ef875f8c89ff8492ea23e4e4d763b84a6437a440e69eb70
+65ab6d8cf5f8444a844e6ef3d158b451d121daea2d0e2b423eea24254226
+7eff1b4224c4e80af2a7becac1649e4bbef09f39415e9b1e3750d7ac47a1
+068a4f5ce30840b00574eb4e683e3ec25f6e690feeb0d354568efbc354ba
+813ca1400734a67693af127b0f636d58b83e91548f98e3d87da7fd7cdebf
+f3ecb4b9272d1c83d4980170378d32f1d98b87c440881af9ec052510982a
+0c02ba6743bdc7691a44bae5e044c25304c1a2525cf2c0694494a2e9aa34
+f36af43ab288807ffa4bd418ad51d98c75f2b2f01abfd834d3305682b6b8
+62ef69d05962aac485bb4f560583a5dbb74e967eaf6d299160753ec32249
+bb1d9851d5441cb0c624208e69dc876cd8841a66976b5d7f9c99be68363b
+8112d33d971f2c4f2a1feca88ba1a794ddb725c5e2e2c248082231059aef
+729bb5fee5006ab8809f63e162fc0743c047c7984a9e6333b433fa143d73
+72d4a74fe37314508e04f54dc7a1445e2d6178ec9c041d0cd4fda5cae830
+4b16feb21f3222261c293a8b058dc708405c1a97ff34eee4ca69ff4e1ee2
+a03380d52297574e3aa50c8afb826fc94a14e8caa9ba89d6e92913be9e07
+bf7ae011e6bd142d8952d9c2304735e875d1ddcf82fa9fc0c6449df2acf0
+d5f6cff6d21ef6b2d29022ed79c4226c97f163284f2311cf34d5b0524a1a
+a446645b9d05554f8b49075075f0734b3d1ea31410759c174fcc7305d2c1
+d7128781043cba326251a3375784a506cf32d6a11a4876f85ffa2606fbdf
+27dd16d64b2108d808e33c409dd33f6e0c6079e47e7196016f261e824fba
+b0e4f91a189747053e648ad2d942ece8f582f052668b63a23a2fae4c75a5
+180db7811aac654270ec6e341126e3561429f1d41fe7ba3f1de9f8bbb8d9
+fc5cebdef869376a2e42dcaa578c0807835e58d75c39f91a83d5c1eb86a1
+b0f7aab991f65eef030f212d38d10b1913bff71717c06c78d9a1be136f21
+4be157ba11ba309326c55c23ae8512646751fb82ae200c06bd2e644bed38
+c7cee826cb587ee8ff378b7fdc00ec316bd4a9c24e2c250cb3d64f8ecbb8
+7f4d81626d7f1e4491908bf17c48c84bb1736693eb4d0fe634484cdd590f
+a40ae94d44f348ba683a43004b487f047745fcdfdee2e913328a11a99530
+9bd117e0e5be4fb25d176d59dc2b1842418141190ed9ae1f33e5354cacfd
+a5e4bc186119e1461bcd98517e675276ddf0296d3b3cef617dfa36b4759c
+944fd721e1bf63d45cea90b5817a40d153a2f779e03487cad3c1375425ac
+8cbabf7f754d16cabe45c65f1be4441908e0969d5a5111c931e724537dea
+7cd3fbfec9b2f7d3efa747bf586e9218c3106c49276b89fa28f770fa0644
+fe1f3fe3adf07f59c755a5b39a2ac1d6f23c256a293bf3b31b6b9cf4c622
+b188d6e7401c038657c78bfde9ba09f508f1bbe3ed79793772cfc928c4da
+519f7dbf3ff7074284437d2de8d7b7c78829642d924abacf353119e9088d
+14739935a23667c432806085c3af71ffb7c5fe6b4412b9b1044c1e62ee0a
+a5ce7e0322bc65a8c7d874270d84136526e52d0c7f9f93199c6bb7301216
+a19bebcef3c5633f21d012b448d367157ad928e21f8e471e46982bc46a7f
+df1bf816a86dc62657c4ebf286134b327ce363ab6a66634eaa2a42e99034
+069fe1302febf06959eab8e7304da4d94a83ac1650a02c38c1c4b7e65c43
+e3a6fb0213e57ac49e58721a4f36996069caedefeb48f1a59303459d5873
+f3bedcdb9d00c1cf31130c27b60928f210e1aa5e1c8e04b86d2049f31265
+9198fa646c53afa9058eb8ceb41bda65f415c79ac92af5790b176de1d300
+f1c06b782d584f458dbd07d32c427d894f84215a8e7819e295ee98d976d5
+644f11920ff2f49cb1075c3bb42b9fe4b561362902f11a75669b7e7c4475
+b65f1ae48834cd67816eb63b58cda2f50bc22eeb0cc965569b476bedded1
+2701668f609393659b266bb0e37bb27afc90bca271366e34754383363592
+0f9a3b508aabfe8deef585b07a992460c592a150b325b1e50e4214a2f483
+e9dfc826c54b488493a96eaa37276f5a9666f0a5388fe388263d2c0cf614
+c6cd01571da4389f01fcdbd0ade1c435d64c5921b5bf7dbebd5268100a03
+1e1abb8cbd83873089a9e08cf80276c7e30d2bb40280278c29fa818eb079
+87623b1cfe13e0b01e27be0a8320b69b5afee820f4705202158b7f3059b3
+655bc28a754d088fde23d43d6a9389da8bc1cf3e8ea1a6f4328c196e655e
+42184444d8c0614c7167c91a492c24c8357794c61f5e47cdaf4b38004a5c
+8fceaa8151e929328bce1b8f67b22034f3f75e4d105283337c3d460e7d99
+89920c43f5e1449c74ad6ab5ea029cc6e497ea60068451c4ef2132fb87ae
+049077a156c868b768df4a4c475a532e2a22d999931c64f8bcc18f51d25f
+0f94fbd3e9e6c094f78da062f80c4aa2b86fa572cc469e629deb4ba0c553
+55e8422b562ed2f694d0e8e5540144e30841d7593b255edd4a61dd345d5a
+00e411d2c50d64782a3ebedf945fc31c00d2fe4ca800f5aeeaf12ab399db
+956362e979bd7ef0787188e43835e5389ac444d13204af6bf1875622f175
+09f32015c28729cfa3b3cca90308eefaf260e3fd9df10f3e76786b8bc0eb
+a30e8cd33689aabc55e3ce387cdb89a30573495852a48009cb58a0fd34bd
+da911159ccacc94698ffb94c5f45f15ecc9e82365174cefbe746f95eee44
+7a33b4d823487e203478eeb2d8c4bc7b743427778249c56e48fe17d0a501
+7b693509ddfe1f42bdef97aedcc26ceffa9357dd985cdf2c70bbfc987354
+6f0aa7df227ec42f9ca2482f58809e3f9650444568c54d3520bd0a7301ef
+48bfebef1fc4332b5ca851fd786c1ece136fe9e575b69393b5aec2611903
+fae6e7a5046e2ff350becb8700f209b1131044afd32fed1bc1297b6a2f29
+6ec3b87f170e92aabacc8867360e4dbce9ea29f0c1df981f6cecc8986767
+0ccfb4c9faeaad7ca9029b8ff0129fec4a040f80ead041b3bc8af7526675
+ed9e13204e64d76440a097d77c535d34165bfe9ffcade530abcc75ae224e
+890d5c110004e218bd827a02ac7340e18bf3684c43e664e0a37d5fd4fd1c
+4d4489d25a99d542c16e06685652cfa3567da4eb0cb517be1482939da0cd
+d0ea3519ad1e51bd9dc7b9077375a8cd3b5de9888697e853bacddbbdd1a3
+0e442e1d6f2d652046821813d0cc0e8f16c97cdd32daf239f5b2b65ef620
+46f6e9821b2e2ec539302747795fa746318514d38bdf0d0e490c00e114d5
+03e7fc9a8fb83b14337a5bb4d640b52630f5450bb3bfcf7cecfbb1ef5192
+ae401265450db197bcfa07315ff95a809bc5fb4249e3a728a817f2580ae3
+50d8d6577f79c883ab4a3119d9ab98219aed0d1e826023a66da814396058
+d95e52d9af8bdbcb0454721f27855b686d13bdb473f650c9865f3e04f08d
+b10f5256a3e59bcf16b12a84bb7ef3b370647cdad5929b722a05f5b3669e
+14c232bb82fcb9c1dd8155ff4515f4e83c895cafb86754e896f38e5f3beb
+5d29f1bd99cb8a09c5e50f412f6d8a773b79021ab2c4831aa663c5defc4d
+553616874dd5bd8b75c7a2af7d029aab5a72528fbc4b5ee3d30d523412c9
+60b432434017c4cd68b2062d28f307fc287e11663511d1a6b52143afac0d
+ce0f7ba3f326fb707fb8d2c985dd60090e6664f2344e098a7a1a6448026a
+2ee651e8141cd7786b6543f512e4c31d25dcaf6652b1eb52706300b771cc
+0c49295067befc044ea46341927123ad4b7d094784bda7fa7b568853d0b6
+1e4cc39e1abcc9479f91a2501009ae34ef7d5ff56205cf5288503591cc55
+c48abcc78daa4804549562afc713a4c11152e6e4331619b2e474a25ffb62
+7c46112fa4259f07871f8d6882e9a7ec62d20a86a0c502815d0a8f3f5ce7
+cb4a6a74b6db8e17d54bc919b82c7c729cc05b98855b9d8a0fabd8a9bdfd
+4333f395607631f57c0473be0fb290c4f40a7aa6ac49208570ffa1d0f849
+d4871ebcf9ef6f5106301cf54ff8cc9918d6de74d519fccba58bb1c21543
+f3bca9f43c211b2e5c233ff6dff2c9b56d3f656f6070d13dfd0be04653e4
+98c670770e01c07b731ca0e2eb56e608828fedaf1a31087f2d43cb4c0074
+e576769b0830577c86ad5de48ee216df02d7c4e4ec231afd8e76c608fc9d
+06cc86f38cf4d839e0a0829902f56cf2f86f08b975a6bdd0642d6b4c78e2
+57cf9a4f52646a952f6a220c36c91db7f44c7f44bddf33328ea8cc01827b
+5f2d79e3ee6c514a4f8597a847ef5f32c6400736e6ade28faa7bc6e9c6ba
+e4bbff236fa6dd2b0ed23fc77f92649feba149f82488260b0bea2a4fe1f4
+65d96d8c51719e5e10d4c17d1b67e700aac36b1ed55c93b4b2604e72f51e
+b30fbf5b64c6fcaaef764639ebd789f82ed354712c7f9fcd1df257e14c0e
+8fd59a0eddab684bb1b4176d79b22ad2605bf534e4b8fac2272fbdeaf210
+0424a2c5cc65f8dd5faa13313dd926128ed466046ee94bd3eb41f3ea5505
+5a70603a2ae1981bfae8e77d850fc5a5bf1bacb3df9b7cbce68ce7979fad
+a73c2900526b68236c6d37197b0c521c5b1cf5cbbc89238586eceb99818e
+aa47ca94ff615233575fe83d0d50d734351e0363030a12300f7b20450946
+17bb209c346ac1d35402b617d6260fce04ce8b3231ab5c05af30b0f3ccb3
+3616d3df334c8d963279537563222dfbb705c3e14616ad01927f952e6364
+4c4b7fa44ac97616c1521facd066aa33b2296dc03682eb6a3b9dd8e5bf62
+53f10667ecb07bbd50553f1b211067f5cf098b64b84d94ba9ad8b146dc9e
+8e9be06bc14cfe0945e22fd819856d6996e857c0bb5f292defeb493589f4
+515700753885d61eee1b8c19e6e94fe2302c07933f949d6bf119d207fb04
+dae7bcff7578bf33d77e29611c7cf03b2df12c242827ec4c4e5b5343ca3e
+4f7f38ed337583e30dedd78a082f41d60cbad55d59dbba11af1bd296ed6f
+e31d2e10d3a8b5ea698e656ff97755a47ddd862d23309e2e6ed3e3e111c0
+2c3a713d782fe301dbaff0a4225f932576622d1cbae40d20f46958298d01
+783851c894f2712bfc4736d3802e548a704878e2d139348671fb96d0ddbb
+f56d9349172caef0dfed4b84d867116d91063dcdf9ec401dfe8abb269ee6
+0d646bd12e0752313e2ddc272d9f4aeb9d940987596ab623f9198765cec4
+62f7b6c540c9a70c9a872bd28ea62e056560b61ec51fc68eafe008f20760
+246e06374ae5a6bd2577217700507978811ec29985ab644e474e41e8a105
+295fa67ae05e0739e8c7fbc51104522934942f53e1e1df1ec2a66f0a74b5
+9885cf2c2fad1cab3e2b609f126ac8b7350d5408a7df9ed5c27a10ef6505
+6f0d877cd7bb902977ba93e6e8520d2d018560ec8143876ad0dcb95b173d
+af72c0d413bbb5541f14faa57eedb3ac2430e36911d2f486d9ebf9cb6745
+2ccc763e1e46e7a4b8373e06082176a6c66d045e18f90b4b2ad15802f6ef
+cf2130cdc627601ecc19887784b6de7fb6a193bc3d057ace29f74199acae
+69526ba6f7a2c669593f9d0849f12e37201c32c88384e4548a6718cbb2ab
+714ccc917d93b865ac7d7d4dbd13979843f4f5c1f8b937ef12fcdc9aff50
+f09d2625f4367ee70a98772a273d8919952102aa03297e3cbcd876da5abd
+2ceb162b8fe1d9a22ff694495528c09a8819fbfb6946ab205d4b2424f6d5
+6fa1c704065cb64fb2aa0fdf291fd5e7daa38667e6d8e889be7f4c453da0
+59c492cd25fcf4a03a6995897145273a66cd6ba999138bc8e2aa7d080f9d
+231497ed28a9a27b6b0d4785bfaee46fee71b26d6839f2549a14e7ab7347
+0b6cf368d2d49e74c78d93477828e4582589cb447d795181d3f13dd8ad52
+3c750df8f19b3260c17a6598b406472a7204dd26c5988911ce9884de9a1d
+ce33d834becb1dc80efb07f32d3ed6c2a484c5d53746071576c3f67f25ff
+1558986fe2dc2265b4fff79c07e3f4c6c0ce8319e04c14728ed722cf214f
+65066148bc817753dfdcc0950bf80dc515002e1a92e7d8936e9b3aa9635a
+a6d512c68aebc79a62a6bd17a411bba7684e1f06be9bc3d1aca25d50c8bd
+1d75597194cf87c9ffe04ff28bea91b5b9521fd356ed9e036466137586ee
+f0a8795486438d0d9707cb2854f12963929edac394c562235ca71376d938
+e4e1518668180b857d75318bc22e9f0683749047e7649f9e20b35204b6ee
+60c0d47bebf53179a083f0b4cad5b3327a3faf2cf03753e3e46c05773629
+7e9bb305f603369cbb568350b2b5c6d23a35c551e0ab28b082e321ef4ed0
+e2704d35c75b4750af782160c2f2e9aab0e14e541e95b64ebedd66db2c12
+a8935a60177cab634e20a8871a3a72f4b21c3a34d9dac37176a321c2ce3e
+e828d140c8445117e7fe4738000c30ffae8e2a48bd618cc8813e38fa0f86
+92ca634d1e56010987483aa0f08980d91528df3d370ac724acb238e141ab
+595dcb3da7a769de170edd5763078d1084e2ebefadf8a50a816b50722617
+c9539dbd68d9062b015639708dd900aecf4f15adb36339c05a9aec7403ed
+771f9f28c60e52bda3ba6902e06334036c1dfd66d35ed00e3fc0bebf55da
+416093b5cf512217c47f905ccc91fad879d63dd1380519a02025ddf15d70
+eaa1bd8cb6be67608fbc5c94796bd09ba35933f64c5e72a26db1ae40ef49
+af5e972fa44660588292b67ac670bf046cb1f5a7a0d73ffd6df862744786
+4a56393b0f1b4cfcfa362c74634713093161b29c94a2526b7138aa92fdde
+b37a8c1f30a6b3837d9500b340515f0412e681f5bf36e7869fa157df18e5
+c79df3e6aca924d7b7dd2e0d5b87682d7ea6913b26397ac180fb75fabc1b
+8e156ed542b9d8c83079bccd141c187f90d72694de4f6d08520d11cd454b
+bd3c2e6d259694fda0c8decc724bdd650163b7f6ce1181590c06de4c0dd8
+536aba318cabf54782c919e07c2ffa1034143175d05deddfcd7dce6c86a9
+ec9bf6a4437da474aac2dbce2c91aedc20043f179d5c9120f3dfb1cf6906
+c27f2ec68cd75035c283e1672ea90d953a23a1515c420b81c3270fa06573
+4d003eca1bb71a2dacdab67e44f47c266c2ea1776648b62bc110671e6eca
+4546d3c72c8acd956e10452c32532ed51bf3d0518467fa829efd9c896e8e
+1e5c7ff6da0b51e872e403470affc95f25e1d2b9b59ddb0472705e14fdc8
+fc2af16527188508be10d098372cd7eb7d62a85c8d8dd1d0f55ae3ccd0a6
+5dd6bf776dc187bf4de409d5db3fcc5a6d852848a251f4fb4e01dac5e9b9
+587fa8c46ce03689709008b34dfb3dc105def80a1b515abcbe06e73fdf7e
+7136e40cc922fe9a9da1726747e84427f288d934747b6c587490734906b8
+a91144ac82a57957cffab561714e1ff5148a39499dfc8cc96bf5d87ced17
+825e8f80cd943d9a73945fb8bc51cf1f9cb39c605491c1bb8f1c4139974a
+59471ead310d041b1ca1ecd5e9f92007cd8243cb3fb1ec5256444699a9fc
+ed6cb31eaf0912c16fa480a1cb4a8f4a9cb6a4d9a9903d1e2f674286032b
+489b8a23ac4719fe435a9fa2d79abdbaba740e69d5ed611421b1aefcd06a
+362ddbb7b79aac41e3e90657afc0b87a6e8c57ceef70a628efe19f568634
+50f47b5c6d95870039caa3d07a54e58df064bb5f59dbe9b9a2c7c84d7e0f
+32386309560a0efa2cbfa27f861b208b2df4a062ffe2c59c057296aaf5c2
+0f48ffc9ff0692f8cfbd6fc6ed1f3a14537ba40d7267e6b5f69c997a949b
+26577a9a99db3f53167355c4967dabd522292ddaca3c537bcf303ce76add
+eb99f6664227a94d6a698dd5a5d40008349376067d057e28e55972264502
+e035b1f5e33d7b3aeae016f9be50f2aa09aa138d15d7af3c1ccb805f2d5b
+cd4e9b2b5c288b2af4a25abf0a9093749377c9e8232ba1af17962f85064a
+23b0a13f11acbb471cc700f9f1b588f72cb63d3d1a95a93502ef74ed212a
+c452f1a84619bbdf61a1dc79c0d9ba29c7f19b400f682cf66f7705849314
+f5c8bbf973f2c53bdb060932156bf2c9cd8d36cf6271075500b0e3e6ad49
+958af46a9dc950f4c29f1ab5dc0a85924f7ffef259f778459c80118b1eb1
+ed29208d1145b21b19d62f755de4972c57a09b3decb0a8096ab025fe6b9d
+be49ae35394f0ea40d3693980f97f712b27f0e28d8a549acbf1da63518d0
+374941effacf63ac3de0523cfac0dcaeb690de5836741fe58917c7ecffc1
+95e7b560a3e763aa70fc883751bd60ea0a0f893d8e9fe75a66c67e202c24
+84f66708ae74413c0101fe0b5003be20881345d917203b582a247e6c74a8
+1d0479f317aba7b9dbbc0a92e91c51fbe8775a44c57699acc9da84ad60fb
+9629929d1edabbd70b4ef9887ce4ec2469f154fada42de54240cf3302364
+7c492ba17e6936a4d85e0751df0945463368a803fb40d8ded22abe118250
+86cfff1878abe5b100bc08b991cda6fdfd579332360f0c3374842edce6ed
+e43649d6702f34668a29bf387e647f96d78f33395e8d4b3521cb4fb0956d
+12c924c16eee798cde68e319a358cc3524c753177d976d4e14a2e0cb72a4
+80cd87bfb842060b1266568af298bbec58a717c577be73ad808e004348f1
+6aead32a3d57457376ab57197534d6e469ed24474a83618f3ce21df515a1
+22918f4b62c642de0c8a62315ebe02bcfc529c5b8f7c127085c2d819e29a
+f44be20fa077ee01a8d427bbe3d97a9d2bafd77f17835279bf135900aee5
+9bc49582b18d468bf93e47ce0bdd627775264ebe9e4172839a444f928580
+8c95895b7e23592b2dcd41ee82e966c26aa2143e3057161511796e980998
+1f2e4ef5868b3bf4576e3546e6407e35cdf14654bcefa7557d09407545a2
+38173080b4771ea52054736677a8d9749a2b22b46b24fbff93c55aa2274b
+8c7ddbd751bcaf1df00ccbe1f24a80622aff192fd6db2238db941ec44ae0
+dd73f6b2f80d89bd0aa30c038583deba14913d38a7b61b54522755e251b2
+aeca62033a39ec1143b2b960f9cb87f748428bec3243b8164f07d5ff72eb
+f2ef69347bb933241c2401a96ba5ffa3f9ad060c41f4e6bf7280af65293a
+bbae49d723dbc4be61d7e13f7a5931a697e7f2c6582dff416341ccf5a24e
+9a53686a1e13bbe0bb480c19a4e72a5e477bd29f39dce1a17f63f1e8c696
+d5f8855cefdbf7ce681c7d6ac46798ca9bbdc01f9ad78ce26011ee4b0a55
+786bb41995e509058610650d4858836fcedfe72b42e1d8ba4d607e7ddbbe
+3b0222919c85de3cd428fed182f37f0d38e254378c56358e258f8e336126
+9b1f1acd7f387686e8022326a6bbc1511ed3684e2d2fc9b4e53e83e127e7
+84da13550e593bbad1c87493f27b60240852e7fa24392fbf3f478f411047
+3f00a8fdb6dcb8aae629dc7f055d85341d119f7f6951ae612ffa7df82111
+d1ca48306a57a922cf4c3106f0b5e87efba6815f6de4294c7a0394087067
+677889d22a3fd86b0796200300d2716445078027fe0c0b05c86ac80d2095
+ae874324ee6ea3553bcb92fc1522a6d1524f6fa22b71598fbce784a10b5b
+61e50307ef4409ffb7b38f27800f2185140ed08fc4ab396050b068025a9d
+e4bddcad201e72ed9b41c4ffd4cee743c9c2345b95c5071442defc8ba5fa
+9c63c56e209df41d10d93135a8080f7cccacf67e0b0ddb3e0a31df32b83f
+290b3c536e9949973cdc80aa5c8a4feee20290a95f68e59f54050192de42
+f27464ee374e4d2451ee8708933b970402c90ca3070843a449d7c3146347
+1efa666a60fd5cbf55a47e4a3c5c318fc1af944d58d32690a2c7eeef09b2
+d94721896e1e3e76e44a8efd524ed5d6f5eb9da093d277441546c6828745
+ad71b6c13f653dd631bc6fc55d0eb4648b7bd9c0eddb13222542f2b6e8d8
+b80bfab4365f4199a41ac690979285d917de79359a183e6fc254b63e6408
+6d33e3c029f472f40742a99f92999f302f79994ffd615f1a848194cb56c7
+12146850f5e400303bf5bcd4e5fdccd1fe2edf5352d525cb15d8327f45a2
+6e3ac276dc8780c65724d28dc6bf9c7c985840070c35e32859168890d599
+a884dc2a90194cc2e9cc6a20c6c0ee11b20adf3aff01db48eb8dba7b0c81
+7fc10cf5a66e8171a2823a4cd22f0e80c82011ae56dd895ae2d3ebe84ff3
+d521c31453e0909cb9b1cf0b030eb6b7059ec38038cae12d0e1cc4b5b3bf
+e6c821faac9b8792441e2612aa1ee9318b71f9966d7d3a64abe349be68b1
+744de7b212f6be73a0e1eb2fa30850acc3d9562f989cb2d4fbfbcd5d3ef7
+ba55717da1cabf197b06ee4d8650e968518b6103fbe68fcd5aab70bdd21d
+66f09f96208db67c1b345672486657295a39a7fd689b2c9216c6b46a29dd
+1283bdba295dfa839a45b86c14f553ff903a6f7a962f035ce90c241f7cde
+13bab01d8b94d89abdf5288288a5b32879f0532148c188d42233613b7a1a
+7f68e98e63b44af842b924167da2ab0cab8c470a1696a92a19e190a8e84b
+1d307b824506e72e68377107166c9c6b6dc0eed258e71e2c6c7d3e63d921
+39690865d3f347c95070cd9691a025825421be84bd571802c85e2c83ba53
+841223435a9ced5dead103b470a4c6ae9efcc8b53331c61d0e1e6d3246cd
+aa1b0da347685121196a07e97d21b10ad34e7031d95c1bafa37b4141bf33
+a6be401129dcd64086885f4b5f1b25bce75a4cc8be60af35479509e64044
+d49c8a0c286e4158a5f346ef5fe93a6d4b0a9372233c7434a7a6f9e7ea21
+30c0b4b9f62e3a74cc5d2916ebdaa51a1ef81fceb6cf221e70002a8a3106
+bfbccc2d1809dde18e9607fcaac008fabb72e8c50244507f4013c5a268a3
+6135ead9cc25362c37aa9511589f18d812e6039490f9c599f44e88754ac1
+4f6c1841d570efde27958c7f1b2c68772584e1d12fea252e3a6ec3b051a7
+6faebbf6f5101978e24a9ca927c02065e8e49150a55c64dd30757e8a33d5
+2a788437a9181efb47414dbc22fdeda203d4122137bd045611f68314e12d
+1d6a5ec270c8919562c03e3af7b0e0deceeddbdaf3eab8fb5632e44dc1e8
+d46e2396b0236a46659164e33709415e7b347f7f7b87a9224a189ddf5178
+2cf66c9d385470a51efc88696176f6d3ac3b7b95fa074c981194e22981f5
+1d925f980393b7102f1f836b12855149ef1a20d2949371ddba037b53a389
+7617c257bbdfcd74bc51c2b40f8addfe1b5f8bc45aa4d953c0d1d5f4091c
+6af796af6513c820499969593bfd22f8c6dcde1d2ee2c0ceebb5bd6a1ce4
+5fa61094e932b380cee381f4485e39b4b1797f2a7d8d90bcbf89b9cb1006
+2d50fff083743bf318157caac1c0179c87c03a2857fc002979e7cc97feda
+966b09ceb761d3f55cf07637256c6aa8b8e5cb6aa9739452a330afbe7082
+975ee39fad5e8106e8ee05771157e92d99003533d922ccc37add065b6236
+7613d039741f99edc77c230fe8d1baba720a185186662376b947bbe1a686
+4b42c61ebe1abd40d890751ab8945c629de3b6d2a49809dc693f9e397097
+cf1e568c258081242460af2de0ca44b7ba2734573967b3bdec0e5e64598c
+cbf41e630d821491504f414d9b54a3100dd5105a141cf61bd3ec41b67368
+c8cd366c543754ee800ffee3d19c9cd0d408cc772da10e4d8134964b0a61
+232e2dfbeacd0fdee12792504bb327a2e1fc44127f8577ca51d380a760b3
+740e6be46455cbf3917b90f0dfeadaa25d5d9f66cda43ebf9f75e0191a06
+25ba29666bbe8678822a453d4e876bad4a6b0d4b6cf98feb60339c9eba2a
+dce4ef7faba428422c503d0210dcf8d884ca9f5094aab9f3b1a2238b569f
+444748902907cb0d9d7ca33fccdd0cd29bc68e44f7bca5092be6272bc949
+baae5af92c302bb21f91b6ea8463265680f7c16f45d8ff35392a10eab87e
+296f3af4478032b5b021db8510deb617941130d45c46fb3647d94b162fe2
+2738766fb6d76a06ab6803818b27c5ff4205ba668f95b5ec5ce4ce6da545
+c13ff56f417a4e0b3b8554a1e2a985a167e168adc8c4db28a601a80ab451
+91bf32acfd8d25c39c2f17fb3bca1296d3d160f25b43b4d6b94f20ffe012
+b779339b12860dfc897b366e3d400e756f4f9f4d2c86fb9d94c11ebd1450
+eaf720056e2c39529331bdcb104d113b42c94af2c6a5035750b7ae7fdcba
+b6116d74bc07a11d4357ecf73d99221dad5cba4a7136425c2a3ac0e092fd
+606a4ab722195e3b7fdfb5a5e3ccbb85fc701c42bec43b54e964dff3fa04
+193043eead7681cedae9cce6919949ea60ef5630c4b9263c8f98b4bc74a1
+63ccf3d0a0bc1deff39b800ac90bd734dda7ecdc73169ad77e129887db80
+7a253f8807a422eda8a16c9ee9bb8fc0942634bfe035dac9f7e36d09844e
+39477c043399db4d07b3617da9d6eee76d0fde9201da98b906050748b68d
+8c944ace3c96e90a3c2b63eae27b9152cb7274fa336866d71b65a57f1bc2
+bb1f482a67f3993dcb3ff24abb0223f9a026c81b2b33127a1dad8929dec7
+5d46bdd790eb1addd771c5c3965a2f514d3a128117a44560cc10a729bade
+4e6c86de7c09a39602235c803902e34f5c176b18e127d71a011dd9a3a61e
+ebfaa4a4e2a5651be6f4067e5e09bb4f3514d67c2129e4d3ea9568661138
+1e45af07bd84f883c70577a986416747f3bd8d1bf86d3d7b07e8a350899d
+3c2dae237bd5ece45faba7a0ba30fcda7b7eec9fbeaa5a94620686d1e403
+1cd2512e8d89451c7bd8eb432c8862023d66f3f9fcec0d47598e2df59525
+d673a5ff493d458748cd6341f161a0a3e8996ca5b496508578fe4f653924
+2ae28bf4b7397c02b726fd5f9d8b898938bb668a546be6e42865f4f030d9
+5faa289eb24f7b8e249b224a95a2245605d67417a489626df7417855b8d3
+1c0043cadd2b461d32e1b39ccf409757c37b68f84e752bde6b5bbb847bf1
+57ea3434802def983d6ce5ceb3e9fbc4911b5484e99bb94dc3f383e50672
+0e85a91ed378e352838cf02921ee0ea94be01b5a60f9b1f58fcc1b4f527e
+43725de9b9dadc3ef462fa279bd7138095d4cff2a0563039f71e383430dc
+f628dc9611b2e3db08fb2da1d5383dc1a3c784e1e64541fde1d9d7f42505
+de96d3d0a401099fc2879af0293b0eeb143b78cc221f670c0479bc150047
+0cacb9a282e334e428b527acdfbfc56e6aec8d4d60745c1dc000011b6248
+d9ab4a17dca7cc74e17d33c0641710b02cb1edb0addc6be214b17e9f845b
+2d9c8bf03c19e131e00f91f2a393b5f2ae7c3d4ae9021c4d7891d84d5067
+377ce92836e42eacd7e540824f7ac95360ce116d41d17a50748748971c82
+27f089a22ee0d21940de854f737547b73c7517addd9bdaab425a6c2908f6
+87dd990d6cba4d84308bdd4c4435a6480ecfa1a14daabd4d8e2398178e48
+de28b84f7ce4b61d2e6e64fe043c29a941f6de7621ee6f6d8b506221df05
+db238b8fe4323cb5f259d4d3d9c94d4ae1ca37d6c34345489c0284171346
+e9830e2e3c6c167238a7ffe0989d3eac870cd44102cae139469b9d909b5a
+9c34792f693ac94ecd35d2277080e30a2d24b50391b6f2a3d3b6c81f7ed1
+a7b218903e7fed7a63269e27d793a2e0b40320ebf447c71f36d40dee002d
+7257f43c8add31edf2c571123e46fdb413e007cc89e99b6f98d77ab38bff
+cf140f787e45ffb2c7cc4ddbb59a4e32dfc36e2875f204ac851d757c1236
+12deb31324ea4c201d27fdab46e9f3988ad2bcfb8e9cfa8c487831a9b0c6
+60b20fb66b4c77f52359ac96f3b3d189aa0571c1c53db06ddb10f08882db
+0b1e93e9478d4c75626c5fbdbc6044c4d82684b310ab2af144d12bf36f1a
+c0bf6249d1da9ab319453594cb19d0e93c4e047fb49229c0cce76d0cece4
+2e76fabd2425382afe707db032cf617b046a59a2fc1bb3838d98fd5c8053
+ecb918bc14762e4ca45027623988f434ff4cb08bc9bff5d7de21940e3e03
+1ee042d9c30662aa76f96213fb5a92047af60f320e4660eadd1ec19d0086
+072f2202af5f219725f81882f10d1e065a8035a9946d0ca0e48a5e7dcf61
+0283b834eda01e7d94b3453830daade2aa6c947989b290c02ade0d7b2620
+813ad177ed82813b6a985d5c0a2d42419bda763d409da085936e33c817ae
+68e5467eddc30be172de855a0f7f5c527555b3f4d942401b450f08273b1e
+c5b5352fdb8562a71f276284cf7c27537e628f94bcbffe8d669ea2645752
+60830f1e65e83a2204cec393f6d92d4f61f317471b4b93039d298ca2cc94
+eeada0140823a2bcd1573e732e7b4bde7368f2ecca5961ad547f554ae989
+98d87b7e5d07a85c382bcea1693a697224f41eb8b406bc6a0c3eddfe8b5c
+f25b11c3e4bd91ea7d6274cd6b3ee7b8f18cc3fd502a324c645568dce9e0
+d43caa61f7306fd5488fcfc439d85f8160ebf0ac90fc541f9c74d35d7833
+09309807a639477bb038200738342e50136dc64baa7cc1b879c61f7e1b90
+e1f2bd4f6e54c4dc97b8e4adeb102979203a31fe26a7f58c609915a95abc
+4acc263179423f8ab16b04272d5592fc536f29a45cbcdbe15890f119ca9f
+c7a52eef41dfa5c4fed087eef8e698ba738e300bd58f2a1a10da1198c1f9
+b60e2032f8384a86aa84027df21cb87977528e3bb9bea1e3a6879c56402e
+a29063afc6ac0194f4944433f9a5872cf0a2a741382d7f3c0ca7817d5d7c
+4b8bf53af0f18b1eb54480519cebb61d983157e039b13025e7980eb36f54
+3451bbb84e470ffd0f98eba80c74f238729dd6278294388a2e06de68a719
+47b6d478c85f124d14aaa835620e49b7f5a4f21347302c0f0864f7ebaeec
+d0831c36187cbe9c848736764a31056d2cef27c07cca00033dcddca9a2f3
+b9ebf28e67257b69cd38bc23c711b6a2f6e4dda9bf5a19da275e6a8d683c
+723bfbb95a90a344a6f421f0b67ae84c74652288b0597e4c86c28f73808a
+77455f2948e8df634c2d14f221626b019033f9230c9167982cca9ae6dc37
+aecbcb49fd9fc1dbf2d11bba7187888721bc42a7f47c23e07d2fc5a7a91c
+0dfe255a7f9d17e69af1618502a6b90b1dd748c7eaca1e1ebe8b861b04ff
+e5f628f47eb4e7e65311037d7a5713d7cc3552dc85f452ba74c4f12aecd0
+d72892c940c3325640d62fe3bbbc71361dce6d54766e1fb99dedcb2d19d2
+fa6fa21f9116e03952ebbef659816a62db51a9b5b3916ff818518774ccd6
+79d44100d7236f211f36fa80a4cbafb3db76ba1e7e7f12082b0140eed2cb
+5e793e24501715c6c170ad4f856a4bf16bb10210025156e635264d3cf18b
+1fc1e8cd2fcfdc2ab1a24af9087975bfcf6fb703fb36e288e58d0d2ffc98
+bb4318001d931ad6161dcdf8984e6690e0f6bb07af81bf07445f8f57b355
+6b960d24e7cd152708489e4d953ab6a155a757e002ead97585e6c5333d7e
+5aaab2731f047f3490432e0ebf3d0d628eefa8c1f665b9c86aabb0706639
+5bc372e16378f0d9b439c98e7bf87be73e934995d58e4e70d3ae9a5b54c8
+87a19f2826a772c39d41805c642354d9bec75b065f148f7c1e435dabbeaf
+e4a5744e3f2894a928121ab069bffa3218a106a9dbb83971353a7c7a5616
+d9da66fbb908173f9b07aadcbd4d112cc353e7b70476046ce5a92e86eaff
+4eec40acc840005f51f55c9f5874216851e9cf3fa431d95d3032e779e356
+4bdce33966a3a798b170a06c4cc9f73700224c858c36bbf2d0326c337ce9
+46f69c19a84187fa50afc5b36010f9a7612e3a25e846d49bb907af9505e7
+d8c78748d7dcb501bbb3d6603e829deee3784f2f3ca583d3738d6d2ecfb8
+eaa887103606211a3c1b5cd74a3e0e96fb57da91baebaecd3669661e7b1d
+579ba41928a40a7028acff6cd409e601d23ff66ff2c8acb12e535360d727
+60d2e988d801930e0e9443d60dcb9f378fa75d58d73e6a3b6e5b26407c82
+67d50ad97787f8a9b91765e41552283cb67e43e59bf71cf08b9755c8ce47
+0cf374832c72d1e9702b55bcfc8b5a4e966d5072fb2a72a2108574c58601
+03082ac8c4bba3e7eeb34d6b13181365a0fbd4e0aa25ffded22008d76f67
+d44c3e29741961dbe7cbaae1622a9d2c8bca23056d2a609581d5b5e3d697
+08d7e369b48b08fa69660e0ce3157c24f8d6e59bf2f564ce495d0fca4741
+c3a58ec9f924986399480ee547ad1853288e994940bd1d0a2d2519797bf2
+8f345e1bb9cbf6997dae764e69c64534e7f9dd98f86b5710ff8b500e1c4d
+f509da50c64e213ebdf91978553a5d90908eb554f09b8fc2748c9c405903
+e7bfbf0ea7e84254fb6735f09bf865244238e5fed85336c995bc3a3b9948
+947a6eb95db4cd1b64c0fccf82d247a2202e9e7eef5a550557625a0192bc
+8bcc9e461e52833f6b8729ccd957d5c4b6e07016e864fc02b792c7400ace
+d0a8f43c755f87bba6e5c6e1022416e5454cb34a19865d951f7aea527760
+53658cbf306ead832244f3062c39a0a121a1157a8e47008163c5bfc88197
+be16e9a1ba26a035a16dd38cc28dffb666dd4ba7356c66b7bced9e26e905
+4ce25f6d36607d8f5dda1e21ac96a815bb2989f01130ba1aca9aade554fe
+effdfef5d6b0d2a01aad92f599f6a12e121010ae6acc6f150f19e7305271
+97da761b07530ca19b84b119e5edca1fad18462143b8913d6b3f6864b713
+7a93bb9e1bc29c09d660704e8d8292c61072ebfe35c354a2342b2458a353
+31d043874380d439388e46688a53bcfe01bc190ef1a6b5dec9d40aafe822
+261b28bf3e2d76f3dc4302506ce3387b4aa2a51cd4ba1faa2ed1fd7df664
+6772fe9f83d253451eeb0448b444b8ca80cc7cb653c2d1eaa0de6f2b1c72
+47e6d24ae72e620e200aff83a557a1aa7a0ce0a9cfbbeae03c31d8cbf1d8
+20b53b688ed2ffbd83418d743ee31e3d62216ac7be6c12bc1917548cf670
+d69fd2e78d9f7786ada0ea30a6f6d9fbd1f1406337151ffa1d3d40afbe03
+728fd1aa2fa8a4f075796b9de9586b71218b4356fb52daa01d3c18cb75ae
+d4d33fc809dcb6e3dcf7aee408a0cef21353d76ed480bf522fdfe86e0e0a
+b7d097defcb793057f0ce98ea4989a9b6787b14029a4bf10315a2557149a
+fe9c91e7d825f7518b343fb556f0177a8f6ca08fbda9913d52997511590e
+b9942c9813b4cf4d4aae4919401f2fc11fef0620eb5c40532cdb22d5fad6
+919a3a710de6c40d54993b5386636499c866938e33bc703a99c73adc228d
+95cac73ff4f4a275c04d0d787b62c6a184dacc4024d23f593e7721be232e
+9882fb738160e52ab905f0ce2c76ae6ff2c8bbe118a1acdb3b464178cf01
+94bc6a50df1090e9221be11e49f254b06c3236a31569b947ad041d1c6b55
+bfdec3c18c791ace0fe2a59504eef64a4eec4b5c8dd38b092745e0d5ad29
+276bf02c419c546627672a5764a4904635bff86fd0781d36fbdf13485229
+71f355de2b0ad250052f50ad70f61afc870ac7a816561d3232b73360d4ab
+2727b2fd045f254c782bb3f1f49d94c6d625047071b7e32da5c6d21a86de
+9283fd632074430772bfbd85e0c9ccab1dec16bbc049c3e223bec1b65c8a
+9e98cf58b30a74f74f1a842dc91e30c023498e280ac55edd58f4cc731d81
+e443d9b9efdf5fea63c9f357320e01b8740eedaeef2495cd02eb2f338b3e
+674fb074cc497d7b1937b188da857c2c230e9a931cbc00c85a7a36fa80b4
+56588e1bbabbe4ef429a6aef9bd4eb89c5752421bd049aa13f4dcf9b51ce
+2503e90bc118fac78a25d187353d6f5d496cd6130b337666f49619cea985
+dfbeb7e49c67c1e0f0f8e9ec8ba14624ed0982dcbb69415e4b3c8ddba140
+397eb1fc1ddd36c94c374f018873ba41109e45afa51f0e691157d5958c06
+26fbc0903ae25e47ee372389cf65472a3e4d9769550bdc42c0b72f9a297c
+d5d3c16ec67e06036e740ab664abc9f10b9499269b73ad3678daf4474329
+c2c7252c1f0df1e3b5e8f198dfef8325cb1e7e8057897a3d7fb5bb5858e0
+cfc0c115bbd7362d8e8ee41862af6eeda681cabbb06f72ebd2ae0b0be45b
+a9e1be83f1da30687a655e5d148fcc17d9f53b760810a565f6d2f4cd5da3
+5434116edef756adb4d3df544a1de593be988f2bb8d36c34deaac7d9dc15
+cba49764f1e03aa09fe21fcd7c74e3d6487ebe219569e019f10dd163046b
+c1a3cb2bcbaa8558197cb2c18709a998b4efa8ab8c9a71d2ccf942c17662
+1b88dee6b424165d6ce10ac48375e760983818e0085276b1674dd41042e1
+a01a8de111c903f74834199b3230bd475d92c6226ef74eb1daaec3475a6a
+fcb47644a17c7e390ee3b16bef1c1ca6c55eddc44fbefbdde525921b3047
+0d76817bd8ac724739a8e743eb09cf78e88adad527d4f115b8a32ed4898f
+45bab3eb802b8168aec061e3ecdb026c056fb9efe7e2df48bd516ccb12ce
+00de08ed8be4ee0c41f40f4c8f64483e0ade90a78d6d4fe9203fe0b97c60
+3b2f8882bc15a212453c691c52d00fae8a3a26934ff8acf68d4352eef75a
+0b10d938e55b7333dda2db0296a69e9775bf82b1aa6d684fd9080fc1c11f
+ab4369c7a95a9504063db900a6e345bf6dd99be041230b2e60cc86b8c345
+1d84a9c2cb4ab6d74d63dd43dc26eb6b384f5222796d4083dcc3e1651548
+d9469f09a33b213a33ac52a6a2e23802d8f8a75c01a607940daab0051410
+73a88130bc192f303616adb113c0051b65e12086cb319c0a5323fa7def40
+402f5f87a3b2c2cf0e92789985f6775ac2743e1ffe2d0668291059740d45
+43bae7a2897e5e658592bf5a72966097742e0702deecb0cb12499eab701d
+34ba37a08346217a415e44297a181bbf3744f0a49230ad6f030e11462be9
+afc2ae14e0587bc02311b48b8e2122c28cdf14414f3680fa52dbbb63b17f
+6ebe4a1204f3c5d6150cbf89a8023890383153838d4dde77d4c8b1b78823
+8918c564d3babfe58eeb154307dd1997f5ab7105426e35c279008b2677e4
+695c60f956b348799c04b734338018fc27f7de7ad9d73468fdbc5283bd14
+c066ddad9a3562f16baae15d72d7bfcb409e1c874e9db1a8cde233b282b9
+6e76e9c08d85ddfbd3cce7e64104d0b0e95291bd91f405ff82f41601ee20
+8471e613fbbee67f269e4e954c36d1d18ca9880b7cc2b08fc990978efdc5
+1d157deefedaa765c1e26ee125d4a2514a41a3b95e9151a824532d7d6486
+35ad622718fe71219a697e94c2e64f26424cbb767acdef5cda70e179cd29
+b7e318d1c6d3ad26fd5fdcbf2fc221301cc1f10f5ed86b40a1a6bcc01c90
+eafd65183e75609610637b99fea57885efe76437df02a2ffc21223d039b5
+74955d9a54ff41980eddaa8768c5ad883a0c9150877392b990d63c6805db
+7b8d6ab1358cbedaedb6feadb0ee4fb8f9c1ca03a3e755a74227a8930bb7
+2ea0a00b48fc626fa14d7d48624aedc31c556f44e982f3ccbde7ee735f73
+629ab1b65bcbcf0a3586a920477e8c960219802fcb1bc3a179032b324f8d
+c424899b38275886cb5bc771f26a0880767d49cc23426a40a4b6ff8fe48f
+d747565fc537565f6d7fd08706accc60f5fbcb45bc785f45ee9b0812366f
+ae71b23ec43f3549c8224d78baf18719f05108d5741e681457ead8abc050
+462481771a8dc6cfeb98956e163981a98c59ab44d90e9c3a946c453b5071
+db0c769f7fb5144c7ab0c9ef1a6db1addcde1d4ae1daee1b4035af256a04
+df53926c7a2dcdb94caaf12f986e20929ba4e396f3aa7c93a7abaef1294f
+5f13a0dd3c3aaa8fb38da3e15daa32163b7437af683b4f5e64cb14aebbde
+8c69ed2e8cdbfb213fc8129af29ca2c06c8f85a5038d688d1fa5d1b54ebe
+4dea81a49ce24131f8e6702e7aa4e2cba078d5dd373f894ccb275f49c690
+1dc772e1d2f5fb3fe15dbfffac62c87110162074eb72ae4e5e446bf7e650
+a554178d0d64d3c07f330f0d99e99f2239cb1597f2e5f443854cdb0f5fab
+b28fe62f22e7f3419d017980f325351bb04f8f3c3dc57fee03cc029bd29b
+202308d5a800ed2d500d41ace8e54e2557bf25b627883beb8118d800eb94
+f4253f855168f7fc8a2d29c5fcb76bb90a6c4e345722b8991a854047f46e
+4e97336be85470b6be2b9ba573dbc4967ddcdbfc3b6fc35b0c7f3f2f570c
+55dc3fee6d80bc6f46cc7e4d86a0b86f6fa61d062e213d9e442db63fbf11
+d03165b44572096995ed342893bb672f6bb55ff8fed944667995f0f89a48
+a904c47420f32afd14129c6e2bedffce1f07ea69d550b6909bb5beb4aa08
+b0b44f35e018ba5206fdb4df0228462c1fdbb95a429e53eb27bb1b0490db
+f07202c3608d0f4ce08570e3d6aa3d4581c569b57bd8c1ea0e4ed3fc5497
+e316ecec06e6be582d9170d426f6d22d8c7287b8219945c124941ca8812b
+e97efd9105eb6999edc0665016633b3b48820df736125b7c76c9f3a67d93
+8a2a0a6b743fd42aebc46a0249be459f16811ac9eba7b63bad7c2e88f175
+0eff8da5faaab5659824f9d19b3225aad2ac17c52c523414d3031d08a926
+30abf474fe02a32b44d3b7d9fe0c19aec16ca6d018b71d9d395ffaea0788
+0d4501d7cdf0f7077a2d63303d09083080d67f1f714a1b271dab9fc9866e
+4b0571a171eec8a4e351ba2d02438cd108a33b1106acaad0ccdb051061ea
+7f40543748115f29debfb4be4b42cae8762d62114ec6f8ef68c478a8e05d
+ecfa18b0368428efec9eafb2353f95e3d71e1636b9d9f94a77e692843255
+698576dce13b2b858d2d15ee47cdba3ed08d64b77ab46dd29bba6aac2106
+ab847de378cccdaf35c64e50840248915f4fc110992c493cb1b9cd0b483f
+0f1abf5e9b018210b477fea28234ffbe5e0bbe01338e0842a89f1e00a0ca
+7cdde0b2d7c324d5e17d8d3415ccad703507497ac95360ce660b656e5f66
+72a2f50761f3d02ccdc1d5692d7797699b8e2147cfd4817c81a432ff6a5f
+39cc54927fa146cbed56a55f85f123c0a94b7553a8819b329d9dd122c502
+94e3f6314d5117db89ae7597c4691b6c542979a1ca3d26a8e23d3eb698c7
+1841651e08ec771cfb974d6613f2143872c739b62796bd0a45172530793c
+28d93a65b59f79c245248d2c09428657a35b0c0e367bf7a4a4f0425b3f4b
+485d9f402e164328a4b963f456829a39035c00283d2e4fcb71a42da6d42a
+d46cb751287de34e6519c60bb3f1a6ba91f7bfa21dca96ee712af5681701
+18ece8a0535d9ba1dd4bd835e004a2f38c5ba43c9b30d17045e5649fbbac
+188922e442182d4bdafaefb39e00106a5a7765f3d67850471e3629e526af
+8691f935b57bd38465665204a214fef1006ea37dc0781073ced5fc042781
+93650393c3cadfddedcc5550ed483bb6355f54600e9758e647f9c9711f1b
+e7df05d0e50a698615307c18f6d4886f50188011ba499d03831185915f3f
+77c4b9ce708d78423b110776aaaf90396be0381616d1e9b0c1dcf68b6396
+82399da2a7323bf42ae5347599ef4ae9e5c135522c5ecb87e201853eb899
+db60d24acad17d6b7c2c7ea4dc221f3cb6d6caacd1ac0822ea3242ad9b4d
+d15116c3874e3012fad26074a23b3cc7e25d67ef349811dbc6b87b53377f
+0cf972040a037ecb91e3406a9bac68c9cab9be9a6bb28e93e3275b177cd5
+0b66935cbe8dd3d6a8365625db936b2cfc87d4d6e7322df3dbe6ccda2421
+a5e5372566f626a5e9d8bc66959e443286f8eb4bcfdeb6c49a799f1efa69
+63260d0ea2d51260baba9207fb246da927fc4c89e9c4dd5848fd4ef6f81a
+cd836f5f06ff0fe135cafd7ab512af55a57727dd05a5fe1f7c3c7bbe8ea7
+e6680fcb3bbbee1cf2e2c0bba20185f00e2dc3afd42f22de472cdb3eaa5a
+ddf8c6fb3682eea5548c51ddca25ca615221127b4438ea535ab3089c9ed9
+b971f35245cf831d9461a5da9d57bc4e5606d26535a7414cef6aee2a7b95
+bf2276044818ee0f3b0a16532934b8b745d8137b42ec2b28fae7d55fc02c
+9ccfa4e0055f8a4be96e1e235c01b8b6ad509b832a3e90161e0a449934e7
+4be973c939b31cbc19dad4c58e9be89d242f0ce200548cdd4fa2081ab3f8
+e01f358d5db24b7a50eb2096d833378921f561f132cd7988708ee10cffb6
+2256201801c667e176b1dfaecde9756d725bef093457805e16f550e8a7de
+87ecd46e5b09646b73ee74f890a36867636911e4cda2c46a40e7d57cf297
+9696046614c85b1a47ba55c60544ebd3ad7d750d003bda56dd7eed8c4702
+f8b319aaeef9d3cdc59b3e63ee93c6e1e857af273eb90909ecf36ef4c276
+895c78aa762e5376c5c542f854fba864ebce56e4b0207091139f053c2c08
+3b7ddcd0a9909b52100002bc3f8c47bcb19e7a9cb58b1ac03fee95e81195
+072d3aa7c8079632725f63425a3550a947834d29ac9a26d0774e90248e18
+996731fd9aa53ab62b40ce557d98e874b763d9d629a173f0c7babfc00ae7
+82daef5f00cf3608ebeef403dbbc19e16a1d160b889f4a10359d9eacc19d
+7b5f126b31720dce7fc35ec861dfa56ea23fa18423ff4e8fe6e53fc6ba16
+b95a2b5dec00f614e4f835281ee0b4bf549e7e882689e0b445dd46fc40c9
+090e5575fa2c34b02a51ad0bccf6a7bb83ca3b929285e5e9fd054b72c47b
+733a66c5abda526b18b2e49d0746e067e63b948a45eab2f4221c5b62ae21
+a5d9d7cd8aa9eeb49588891d22c56b14b55ceb6488f02b73ab3b7f6c5555
+b75452594658255e4cd58ac4815f2e1bc3888c6777f62aac2f0a57d416c3
+765c991f0f9a33d888aeb2d527b482c042ee23783a04a73ad13dfc590a52
+f3116f8296cacc7ab29b7d87e7864561a5d0a12bde2d36ee697064f41d1b
+ca6ef2f801caab5295d19bf4c02b10c19f73b44635ba48a0806b967d7dfc
+ce9a4850171a78532cb30020c0d66b3b1e7c75eaa7894904c181a022e8bc
+9b2b8ef1202f3c7d36bcab4742d4a4761bb55b64da0d99685d319f5da8fa
+132be6c0483f50e2657ae8af1e28f969440d6ed43eb00e95fd9e1cd490a4
+8646f6d008598751f7a41b43fbec7770fe591012b6b0c4ae18775ccc7db5
+de0ded2dd53e82c89648d46f0d0cc5d3ac5aa104239608d512a4353b9547
+04fe6eb7e73d718323cf9d748b8ec5da01ec9358267de12cc22b05ef0312
+e4b6ac5dbb6d06d7f2d911f20d527f504d62547aef136834b3695df8044c
+383b6145e824d3931a602f081d9d656f84987a1ef121772f1f5b37a116bb
+d2e77d4ccda01411545d24e15ce595db4cd62ee876b8754df0b85b44e011
+b82d76ce45795e6c2c58be8690b734a8880a074f303a70da4a1b086a6de6
+56c02cc7a4c25258eff18cb0fd868214bb46f972e26509f868d065b3cb14
+1c316898cf22293391bd7051ac3a6927aada952a8fd0658ce63357c07f34
+acbf8c99a5537da0023e901f0eb5547e1b466b7d982c8c539798b76ee2a2
+252437a81a37c3b63f625172d682eeed0b795860b2755f020ef52a138353
+003c61be2052cdd7d73b2cdcd26b127660a7b22fc51a6a2f6034f37e3e46
+c1d7f83f8b28c7c965993abba1d358362833580d9c63fa85d4cb949f97de
+579fb6807b95a58b78f596db50055947dd0d0e597d9687083e9bc0266e86
+90b884b27f4094d8fb82ffdbaac4d580340a9ef8aa242be87e54b601af19
+87a48d267c04e371ae77163ebd0de3f5297b1060442ecdeac38334844e38
+0f294d4be73935fd8a38de7fba6d082c3d9156d7e88f2cfff0459377cbb6
+041f37a7e05010753b98e0b67d5827aa312129bb3c3bd883c12323756406
+d555720da8a0bb30edcfa760c01ecc2ba3b15fecccf5a10e9f358822e0ff
+b64178fce2ea6a1105bfb72df0e4bc499b207ae26b8ea960de48e7ee7010
+b4e671dff795e4cdc5b43e81b1604d224f0616ae311f1208859c502c1a10
+940e7b9cd11be728bd3a0c8005ae23aea32c1b642812198a6f1aed32cb75
+97152b1340dd35ada1b81051e393d38f3740fa9523df6a83b8ca7dbceb33
+6e299b54cd998d4dfef804733c76156585e42b7284cbcc4047ba6b290efc
+aa60953e98cd2b4bc2893857fa6a339f820142a52ccab0df09a2709df550
+f22e5921cbca408e7998cc1cccb8adf6d8f8b71e6685ae59d290fa33f5cd
+664d73e434237424060f634262f04e9a71a977556e93b692ddc3aad26d92
+97dde71e4def64932151ad572af6e681082e9944ddbec6e7a8bdfd534233
+9ca3106ca1ccc80eab14f1655978b137fad8f399df7cbfa2d7d3d9675e0e
+9afec37369a8ede2c93145ab3f42a375926946680c215fa16bf7416fc892
+bacd806cd424b9f85b47802c4336918f7486af2a03bf0d39b10169d35494
+419cb1ab7b8f407897f70c18303e91563b497d70b7181ede6aa0c3efe089
+ca6135b34dd1019b298e3677f8da61f864a67023c31eaa716c40cf3d397f
+9a1209564c9ec759c37028079661d2a56374203c78b023ec61340bce5d96
+e477a4f77e5c0db7c0d1257b4bbbc6f889b17e6eaab045b8adef6f931e4d
+0795583d60a6b7002cf61639c6f930671f3b8ac05a1c4e002f4bfc50d8b2
+3029fc4dce1b602cc3a5533336271bccc226559ffb127e3a562f92f89824
+552b9a70466d5a3c74ae515a222b109d490f26e8fc2d9d72bc8af6d1dcc7
+80463c7af81993bac2ce4aece9d95ab736b1dc73e32d1237bc8ec2b52513
+36dbabb4ecc7ceb5d18b02043281eb9a3bfdf19bc4853c9b1722ef1cdcf4
+fcec534923db2e2653dc48545a9850c0ac2e4594abc9f7d18a0bcf2fadfb
+bf085d465a4d10528312f5d790eb9511ca01061c0d94136b99a043bcf278
+c18223b1e0f1cc062b32b79e28dec2dc59a0aaa4b5f3506923c83e6a87fa
+08a1d941bb644c994491cf7f3b0e2ccf6c8a8ba89376f76dfdb592374f93
+528e78e31e0b18719346b9f1486f652638e3120687774030444674cb0778
+96385c41f6566819652d825dd58f9a4308ff79b45d7828dcbfebc406e40a
+c46e866cb0e3e97d6ce7fcac19a9d0fe39bbde66c5f0cf775eb3b1e6d7e1
+1f67e7edb3d5c4facc85c916bf13322b56a0414ca27d145cb740fa2c37cd
+8c142d9301f1ac3704cf6a8e93973a07fde5a331cf0cbb370c7ba555de61
+18a6cea0ecb2c0e37152390cc57e2e4fb3791ddbc383ee26b6f4006d0d68
+4880888011020f856a9de47f45440f127cf27ccaea7d40a3869d39ec7dec
+ebc06382d294717644b6118354e15544fd4c6d88df9245c9a83b30e6ce09
+e2498dd1df488a019b179cb859889e6ad2838f749e3b038b280ebc8d5c3a
+b03e8f15751214691edf0f86281e612d7ec0773c8a5d2b433266402df62f
+fcc06879ca196aaf1fc73a5f01ac46b44d6cbe7743ae9a862c20445ae2be
+1544f413d010280cc2941900bf3c42ec088cb21b44a915bb810e7666b545
+5324465c5943eedcef0c09128a995f431382e2062f5e39f4338c8eba1bca
+e553cb60bb8f3e5038ac8073398c49f06dc734b18afa7921ea0d455e6e73
+db8ad9f77fb5ba6c28af6b4f18cbe46cf842c82d6c960be1520a5fd929df
+ac7e00ede976fb2be0a07f659079a421fca693de89ce9b8fcb42b0176d9d
+f3ddd58f921e13e216933d27b49d175b423751c451be7618eaab054d3b8c
+23e8dd6fd60182d61e9b5c86b3b764a29a62f913ee7524d8cb33737d7224
+d95dc4bb8c2ad6397604a0ffecc8865adcb540e5da1cd769077838515118
+ebc9f0b988545c1881dd2e7a8fd73e11bd7ae9085fb4d45526b23a346b0f
+e4281ee3d588106db5f7c386c488d8f2f4dd02d4c08e74c1034f987a44e5
+d39fd07538de57a42987ce290fb2f6557e8b5cbcaec168f5780927226415
+1e11e3667d33b36a793aa53e9e2d1102c9eb30cb3ba0ebac953e0227fe4a
+3d3c0eb57e4390c3d35db0c41946e45be2830a1ae33fa25cf2c7c9cb4550
+ce9ff6c6e3d628fc7284daa6241604c90dde6339b7f7e7df3733416cdac8
+e5291357e4983d74d3582a490438a7fdb0af97001a31990b1de68e6adb48
+917daa387e647f9f13312db57310c7dedc2a2ea80800b4f4bbaa99c6b7b2
+7ac8345cb659489307e2565ebfd17774642c9ae5d3c18068dc35170c7d58
+4cf4173f1baf98137fa249c81f3347e1dadd6b1ba0f50c3b64c1eab183a0
+937b0f7278eff101e5267fa6480da7d602844416490c2c2c7eb0d44ac8f4
+75cfd611db5ec268db07c0b3608825c3e12834a2b2efaf5e2723c5199c42
+6011cf22e64e4c0d31d563f321097935ea0c6fcbf5acd3748d90079f6ab8
+687288dc55df29fe7958f566b27b73e2ea30747247f7a2b2add0602c7d64
+d23f52e7c96748e6a54ee8c4629b2aab8882169653f0ba7f05236bf14364
+244720f3259cbed73a318b29e4a9305deb65a2c9dec8a9d0f9a9f6fae541
+83e0f4b9a9a567057a1794945168dc23cec25d1c02ea9242c9fb6d8fc11e
+e8874bd80a5226373ae87cea91853d0625c777ceb1f5a6f3debcf2f75a61
+460c7b4067f568ecd01f62901ade8bf8fbc5db9c6720420496f0cb48a002
+99870773c2e7b12e83987a5d0290d9bbf589ac889bf7d4334a5147187a7f
+71008f216ce917ca4cfba5347078f354897fd87ac48af6a6c62711d2eb3a
+5882bf3b32c0f1bfda976f850c9dcb97170e78c229a27fd5e292d161ece9
+a8c47a223cbdc28e24f79f6429c72b5752a08f917feda941582c36d9acb5
+748c86072858d053170fdbf708971a0bd5a8d8034ec769cb72ea88eb5cd7
+49f35be6ee5e9b5df6021926cae9dac3f5ec2b33680b12e95fd4ecbf28eb
+a0503c10c6f2be6c7c47e9d66a0fae6038441c50e6447892f4aaf0a25ccd
+952c2e8b201bb479099f16fc4903993ac18d4667c84c124685ae7648a826
+6bc1701cc600964fdcc01258a72104a0e5e9996b34c2691a66fa20f48d7c
+2522333dfdabf3785f37dd9b021e8ee29fa10f76f43d5f935996cbf9d98d
+92d0a84ce65613f7c4a5052f4c408bf10679fc28a4a9ff848d9e0c4976bb
+dfdfb78bb934cd72434db596cb49e199f386a0bda69449ce2e11e3a4f53d
+be134c6d7fe452a0927cf6a9a15b2406f8bd354adcde0ce136378baa565f
+b9c51a03b1fbe1e166a1f92af26bd9f072250aaa6596a236ba2d5a200c90
+a760ca050421abc78223b2e8b2eea958ab23084fa1947574e846e48aeb12
+26cebb8b5a92089e9ea771557599e2fff44d75bcf600e76ae7289ba98cf3
+98208c5104562834f568ebd62801b988b0a9fdf132b6564566103b3d2d8e
+6a099b7fbad8a13b8cd7f6729bb6651fc1019e66c4bd6ff27410bd5cdae7
+4010bd68b066bffdb4fd5e3dd9cf7e1a1353f7a4c5157e3ad508f4ca0259
+9761b7cdd6a81b3560b8765be3b0432fe4c25dcb4001b00c7fa62874f681
+ed22127dc3974605a05be8d8fcf9701f859ffce4dc598091891ab7596ac3
+4cd851ecfd2dbbaa2f99dac376f7bb40703fd0700d7499a7c24726bdc9bb
+3b88c6a82e52686c1ee945d8825092bc81848a08722ac5a1d24353f95ec8
+18f3fa487d9600318091b0ae9874b42bb3cb683a2518b18cc1bd86c6e5e8
+3d37c14ef4fe0c77b03a3314995b1e7c1066b98c4375bd1fc5fadee1b024
+7ece4f95a0f59978d543910deb2e5761632c74c508269c4e4b9e315bda02
+975dc771fc30c8164b9df9172a4e571d8ca578cd2aaeaa0dd083e74cdc2e
+d938b984b96d76a64b8c5fd12e63220bbac41e5bcd5ccb6b84bdbf6a02d5
+934ac50c654c0853209a6758bcdf560e53566d78987484bb6672ebe93f22
+dcba14e3acc132a2d9ae837adde04d8b16
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%BeginResource: procset Altsys_header 4 0
+userdict begin /AltsysDict 245 dict def end
+AltsysDict begin
+/bdf{bind def}bind def
+/xdf{exch def}bdf
+/defed{where{pop true}{false}ifelse}bdf
+/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def}ifelse}bdf
+/d{setdash}bdf
+/h{closepath}bdf
+/H{}bdf
+/J{setlinecap}bdf
+/j{setlinejoin}bdf
+/M{setmiterlimit}bdf
+/n{newpath}bdf
+/N{newpath}bdf
+/q{gsave}bdf
+/Q{grestore}bdf
+/w{setlinewidth}bdf
+/sepdef{
+ dup where not
+ {
+AltsysSepDict
+ }
+ if 
+ 3 1 roll exch put
+}bdf
+/st{settransfer}bdf
+/colorimage defed /_rci xdf
+/_NXLevel2 defed { 
+ _NXLevel2 not {   
+/colorimage where {
+userdict eq {
+/_rci false def 
+} if
+} if
+ } if
+} if
+/md defed{ 
+ md type /dicttype eq {  
+/colorimage where { 
+md eq { 
+/_rci false def 
+}if
+}if
+/settransfer where {
+md eq {
+/st systemdict /settransfer get def
+}if
+}if
+ }if 
+}if
+/setstrokeadjust defed
+{
+ true setstrokeadjust
+ /C{curveto}bdf
+ /L{lineto}bdf
+ /m{moveto}bdf
+}
+{
+ /dr{transform .25 sub round .25 add 
+exch .25 sub round .25 add exch itransform}bdf
+ /C{dr curveto}bdf
+ /L{dr lineto}bdf
+ /m{dr moveto}bdf
+ /setstrokeadjust{pop}bdf 
+}ifelse
+/rectstroke defed /xt xdf
+xt {/yt save def} if
+/privrectpath { 
+ 4 -2 roll m
+ dtransform round exch round exch idtransform 
+ 2 copy 0 lt exch 0 lt xor
+ {dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto}
+ {exch dup 0 rlineto exch 0 exch rlineto neg 0 rlineto}
+ ifelse
+ closepath
+}bdf
+/rectclip{newpath privrectpath clip newpath}def
+/rectfill{gsave newpath privrectpath fill grestore}def
+/rectstroke{gsave newpath privrectpath stroke grestore}def
+xt {yt restore} if
+/_fonthacksave false def
+/currentpacking defed 
+{
+ /_bfh {/_fonthacksave currentpacking def false setpacking} bdf
+ /_efh {_fonthacksave setpacking} bdf
+}
+{
+ /_bfh {} bdf
+ /_efh {} bdf
+}ifelse
+/packedarray{array astore readonly}ndf
+/` 
+{ 
+ false setoverprint  
+ 
+ 
+ /-save0- save def
+ 5 index concat
+ pop
+ storerect left bottom width height rectclip
+ pop
+ 
+ /dict_count countdictstack def
+ /op_count count 1 sub def
+ userdict begin
+ 
+ /showpage {} def
+ 
+ 0 setgray 0 setlinecap 1 setlinewidth
+ 0 setlinejoin 10 setmiterlimit [] 0 setdash newpath
+ 
+} bdf
+/currentpacking defed{true setpacking}if
+/min{2 copy gt{exch}if pop}bdf
+/max{2 copy lt{exch}if pop}bdf
+/xformfont { currentfont exch makefont setfont } bdf
+/fhnumcolors 1 
+ statusdict begin
+/processcolors defed 
+{
+pop processcolors
+}
+{
+/deviceinfo defed {
+deviceinfo /Colors known {
+pop deviceinfo /Colors get
+} if
+} if
+} ifelse
+ end 
+def
+/printerRes 
+ gsave
+ matrix defaultmatrix setmatrix
+ 72 72 dtransform
+ abs exch abs
+ max
+ grestore
+ def
+/graycalcs
+[
+ {Angle Frequency}   
+ {GrayAngle GrayFrequency} 
+ {0 Width Height matrix defaultmatrix idtransform 
+dup mul exch dup mul add sqrt 72 exch div} 
+ {0 GrayWidth GrayHeight matrix defaultmatrix idtransform 
+dup mul exch dup mul add sqrt 72 exch div} 
+] def
+/calcgraysteps {
+ forcemaxsteps
+ {
+maxsteps
+ }
+ {
+/currenthalftone defed
+{currenthalftone /dicttype eq}{false}ifelse
+{
+currenthalftone begin
+HalftoneType 4 le
+{graycalcs HalftoneType 1 sub get exec}
+{
+HalftoneType 5 eq
+{
+Default begin
+{graycalcs HalftoneType 1 sub get exec}
+end
+}
+{0 60} 
+ifelse
+}
+ifelse
+end
+}
+{
+currentscreen pop exch 
+}
+ifelse
+ 
+printerRes 300 max exch div exch 
+2 copy 
+sin mul round dup mul 
+3 1 roll 
+cos mul round dup mul 
+add 1 add 
+dup maxsteps gt {pop maxsteps} if 
+ }
+ ifelse
+} bdf
+/nextrelease defed { 
+ /languagelevel defed not {    
+/framebuffer defed { 
+0 40 string framebuffer 9 1 roll 8 {pop} repeat
+dup 516 eq exch 520 eq or
+{
+/fhnumcolors 3 def
+/currentscreen {60 0 {pop pop 1}}bdf
+/calcgraysteps {maxsteps} bdf
+}if
+}if
+ }if
+}if
+fhnumcolors 1 ne {
+ /calcgraysteps {maxsteps} bdf
+} if
+/currentpagedevice defed {
+ 
+ 
+ currentpagedevice /PreRenderingEnhance known
+ {
+currentpagedevice /PreRenderingEnhance get
+{
+/calcgraysteps 
+{
+forcemaxsteps 
+{maxsteps}
+{256 maxsteps min}
+ifelse
+} def
+} if
+ } if
+} if
+/gradfrequency 144 def
+printerRes 1000 lt {
+ /gradfrequency 72 def
+} if
+/adjnumsteps {
+ 
+ dup dtransform abs exch abs max  
+ 
+ printerRes div       
+ 
+ gradfrequency mul      
+ round        
+ 5 max       
+ min        
+}bdf
+/goodsep {
+ spots exch get 4 get dup sepname eq exch (_vc_Registration) eq or
+}bdf
+/BeginGradation defed
+{/bb{BeginGradation}bdf}
+{/bb{}bdf}
+ifelse
+/EndGradation defed
+{/eb{EndGradation}bdf}
+{/eb{}bdf}
+ifelse
+/bottom -0 def 
+/delta -0 def 
+/frac -0 def 
+/height -0 def 
+/left -0 def 
+/numsteps1 -0 def 
+/radius -0 def 
+/right -0 def 
+/top -0 def 
+/width -0 def 
+/xt -0 def 
+/yt -0 def 
+/df currentflat def 
+/tempstr 1 string def 
+/clipflatness currentflat def 
+/inverted? 
+ 0 currenttransfer exec .5 ge def
+/tc1 [0 0 0 1] def 
+/tc2 [0 0 0 1] def 
+/storerect{/top xdf /right xdf /bottom xdf /left xdf 
+/width right left sub def /height top bottom sub def}bdf
+/concatprocs{
+ systemdict /packedarray known 
+ {dup type /packedarraytype eq 2 index type /packedarraytype eq or}{false}ifelse
+ { 
+/proc2 exch cvlit def /proc1 exch cvlit def
+proc1 aload pop proc2 aload pop
+proc1 length proc2 length add packedarray cvx
+ }
+ { 
+/proc2 exch cvlit def /proc1 exch cvlit def
+/newproc proc1 length proc2 length add array def
+newproc 0 proc1 putinterval newproc proc1 length proc2 putinterval
+newproc cvx
+ }ifelse
+}bdf
+/i{dup 0 eq
+ {pop df dup} 
+ {dup} ifelse 
+ /clipflatness xdf setflat
+}bdf
+version cvr 38.0 le
+{/setrgbcolor{
+currenttransfer exec 3 1 roll
+currenttransfer exec 3 1 roll
+currenttransfer exec 3 1 roll
+setrgbcolor}bdf}if
+/vms {/vmsv save def} bdf
+/vmr {vmsv restore} bdf
+/vmrs{vmsv restore /vmsv save def}bdf
+/eomode{ 
+ {/filler /eofill load def /clipper /eoclip load def}
+ {/filler /fill load def /clipper /clip load def}
+ ifelse
+}bdf
+/normtaper{}bdf
+/logtaper{9 mul 1 add log}bdf
+/CD{
+ /NF exch def 
+ {    
+exch dup 
+/FID ne 1 index/UniqueID ne and
+{exch NF 3 1 roll put}
+{pop pop}
+ifelse
+ }forall 
+ NF
+}bdf
+/MN{
+ 1 index length   
+ /Len exch def 
+ dup length Len add  
+ string dup    
+ Len     
+ 4 -1 roll    
+ putinterval   
+ dup     
+ 0      
+ 4 -1 roll   
+ putinterval   
+}bdf
+/RC{4 -1 roll /ourvec xdf 256 string cvs(|______)anchorsearch
+ {1 index MN cvn/NewN exch def cvn
+ findfont dup maxlength dict CD dup/FontName NewN put dup
+ /Encoding ourvec put NewN exch definefont pop}{pop}ifelse}bdf
+/RF{ 
+ dup      
+ FontDirectory exch   
+ known     
+ {pop 3 -1 roll pop}  
+ {RC}
+ ifelse
+}bdf
+/FF{dup 256 string cvs(|______)exch MN cvn dup FontDirectory exch known
+ {exch pop findfont 3 -1 roll pop}
+ {pop dup findfont dup maxlength dict CD dup dup
+ /Encoding exch /Encoding get 256 array copy 7 -1 roll 
+ {3 -1 roll dup 4 -2 roll put}forall put definefont}
+ ifelse}bdf
+/RFJ{ 
+ dup      
+ FontDirectory exch   
+ known     
+ {pop 3 -1 roll pop  
+ FontDirectory /Ryumin-Light-83pv-RKSJ-H known 
+ {pop pop /Ryumin-Light-83pv-RKSJ-H dup}if  
+ }      
+ {RC}
+ ifelse
+}bdf
+/FFJ{dup 256 string cvs(|______)exch MN cvn dup FontDirectory exch known
+ {exch pop findfont 3 -1 roll pop}
+ {pop
+dup FontDirectory exch known not 
+ {FontDirectory /Ryumin-Light-83pv-RKSJ-H known 
+{pop /Ryumin-Light-83pv-RKSJ-H}if 
+ }if            
+ dup findfont dup maxlength dict CD dup dup
+ /Encoding exch /Encoding get 256 array copy 7 -1 roll 
+ {3 -1 roll dup 4 -2 roll put}forall put definefont}
+ ifelse}bdf
+/fps{
+ currentflat   
+ exch     
+ dup 0 le{pop 1}if 
+ {
+dup setflat 3 index stopped
+{1.3 mul dup 3 index gt{pop setflat pop pop stop}if} 
+{exit} 
+ifelse
+ }loop 
+ pop setflat pop pop
+}bdf
+/fp{100 currentflat fps}bdf
+/clipper{clip}bdf 
+/W{/clipper load 100 clipflatness dup setflat fps}bdf
+userdict begin /BDFontDict 29 dict def end
+BDFontDict begin
+/bu{}def
+/bn{}def
+/setTxMode{av 70 ge{pop}if pop}def
+/gm{m}def
+/show{pop}def
+/gr{pop}def
+/fnt{pop pop pop}def
+/fs{pop}def
+/fz{pop}def
+/lin{pop pop}def
+/:M {pop pop} def
+/sf {pop} def
+/S {pop} def
+/@b {pop pop pop pop pop pop pop pop} def
+/_bdsave /save load def
+/_bdrestore /restore load def
+/save { dup /fontsave eq {null} {_bdsave} ifelse } def
+/restore { dup null eq { pop } { _bdrestore } ifelse } def
+/fontsave null def
+end
+/MacVec 256 array def 
+MacVec 0 /Helvetica findfont
+/Encoding get 0 128 getinterval putinterval
+MacVec 127 /DEL put MacVec 16#27 /quotesingle put MacVec 16#60 /grave put
+/NUL/SOH/STX/ETX/EOT/ENQ/ACK/BEL/BS/HT/LF/VT/FF/CR/SO/SI
+/DLE/DC1/DC2/DC3/DC4/NAK/SYN/ETB/CAN/EM/SUB/ESC/FS/GS/RS/US
+MacVec 0 32 getinterval astore pop
+/Adieresis/Aring/Ccedilla/Eacute/Ntilde/Odieresis/Udieresis/aacute
+/agrave/acircumflex/adieresis/atilde/aring/ccedilla/eacute/egrave
+/ecircumflex/edieresis/iacute/igrave/icircumflex/idieresis/ntilde/oacute
+/ograve/ocircumflex/odieresis/otilde/uacute/ugrave/ucircumflex/udieresis
+/dagger/degree/cent/sterling/section/bullet/paragraph/germandbls
+/registered/copyright/trademark/acute/dieresis/notequal/AE/Oslash
+/infinity/plusminus/lessequal/greaterequal/yen/mu/partialdiff/summation
+/product/pi/integral/ordfeminine/ordmasculine/Omega/ae/oslash 
+/questiondown/exclamdown/logicalnot/radical/florin/approxequal/Delta/guillemotleft
+/guillemotright/ellipsis/nbspace/Agrave/Atilde/Otilde/OE/oe
+/endash/emdash/quotedblleft/quotedblright/quoteleft/quoteright/divide/lozenge
+/ydieresis/Ydieresis/fraction/currency/guilsinglleft/guilsinglright/fi/fl
+/daggerdbl/periodcentered/quotesinglbase/quotedblbase
+/perthousand/Acircumflex/Ecircumflex/Aacute
+/Edieresis/Egrave/Iacute/Icircumflex/Idieresis/Igrave/Oacute/Ocircumflex
+/apple/Ograve/Uacute/Ucircumflex/Ugrave/dotlessi/circumflex/tilde
+/macron/breve/dotaccent/ring/cedilla/hungarumlaut/ogonek/caron
+MacVec 128 128 getinterval astore pop
+end %. AltsysDict
+%%EndResource
+%%EndProlog
+%%BeginSetup
+AltsysDict begin
+_bfh
+%%IncludeResource: font Symbol
+_efh
+0 dict dup begin
+end 
+/f0 /Symbol FF def
+_bfh
+%%IncludeResource: font ZapfHumanist601BT-Bold
+_efh
+0 dict dup begin
+end 
+/f1 /ZapfHumanist601BT-Bold FF def
+end %. AltsysDict
+%%EndSetup
+AltsysDict begin 
+/onlyk4{false}ndf
+/ccmyk{dup 5 -1 roll sub 0 max exch}ndf
+/cmyk2gray{
+ 4 -1 roll 0.3 mul 4 -1 roll 0.59 mul 4 -1 roll 0.11 mul
+ add add add 1 min neg 1 add
+}bdf
+/setcmykcolor{1 exch sub ccmyk ccmyk ccmyk pop setrgbcolor}ndf
+/maxcolor { 
+ max max max  
+} ndf
+/maxspot {
+ pop
+} ndf
+/setcmykcoloroverprint{4{dup -1 eq{pop 0}if 4 1 roll}repeat setcmykcolor}ndf
+/findcmykcustomcolor{5 packedarray}ndf
+/setcustomcolor{exch aload pop pop 4{4 index mul 4 1 roll}repeat setcmykcolor pop}ndf
+/setseparationgray{setgray}ndf
+/setoverprint{pop}ndf 
+/currentoverprint false ndf
+/cmykbufs2gray{
+ 0 1 2 index length 1 sub
+ { 
+4 index 1 index get 0.3 mul 
+4 index 2 index get 0.59 mul 
+4 index 3 index get 0.11 mul 
+4 index 4 index get 
+add add add cvi 255 min
+255 exch sub
+2 index 3 1 roll put
+ }for
+ 4 1 roll pop pop pop
+}bdf
+/colorimage{
+ pop pop
+ [
+5 -1 roll/exec cvx 
+6 -1 roll/exec cvx 
+7 -1 roll/exec cvx 
+8 -1 roll/exec cvx
+/cmykbufs2gray cvx
+ ]cvx 
+ image
+}
+%. version 47.1 on Linotronic of Postscript defines colorimage incorrectly (rgb model only)
+version cvr 47.1 le 
+statusdict /product get (Lino) anchorsearch{pop pop true}{pop false}ifelse
+and{userdict begin bdf end}{ndf}ifelse
+fhnumcolors 1 ne {/yt save def} if
+/customcolorimage{
+ aload pop
+ (_vc_Registration) eq 
+ {
+pop pop pop pop separationimage
+ }
+ {
+/ik xdf /iy xdf /im xdf /ic xdf
+ic im iy ik cmyk2gray /xt xdf
+currenttransfer
+{dup 1.0 exch sub xt mul add}concatprocs
+st 
+image
+ }
+ ifelse
+}ndf
+fhnumcolors 1 ne {yt restore} if
+fhnumcolors 3 ne {/yt save def} if
+/customcolorimage{
+ aload pop 
+ (_vc_Registration) eq 
+ {
+pop pop pop pop separationimage
+ }
+ {
+/ik xdf /iy xdf /im xdf /ic xdf
+1.0 dup ic ik add min sub 
+1.0 dup im ik add min sub 
+1.0 dup iy ik add min sub 
+/ic xdf /iy xdf /im xdf
+currentcolortransfer
+4 1 roll 
+{dup 1.0 exch sub ic mul add}concatprocs 4 1 roll 
+{dup 1.0 exch sub iy mul add}concatprocs 4 1 roll 
+{dup 1.0 exch sub im mul add}concatprocs 4 1 roll 
+setcolortransfer
+{/dummy xdf dummy}concatprocs{dummy}{dummy}true 3 colorimage
+ }
+ ifelse
+}ndf
+fhnumcolors 3 ne {yt restore} if
+fhnumcolors 4 ne {/yt save def} if
+/customcolorimage{
+ aload pop
+ (_vc_Registration) eq 
+ {
+pop pop pop pop separationimage
+ }
+ {
+/ik xdf /iy xdf /im xdf /ic xdf
+currentcolortransfer
+{1.0 exch sub ik mul ik sub 1 add}concatprocs 4 1 roll
+{1.0 exch sub iy mul iy sub 1 add}concatprocs 4 1 roll
+{1.0 exch sub im mul im sub 1 add}concatprocs 4 1 roll
+{1.0 exch sub ic mul ic sub 1 add}concatprocs 4 1 roll
+setcolortransfer
+{/dummy xdf dummy}concatprocs{dummy}{dummy}{dummy}
+true 4 colorimage
+ }
+ ifelse
+}ndf
+fhnumcolors 4 ne {yt restore} if
+/separationimage{image}ndf
+/newcmykcustomcolor{6 packedarray}ndf
+/inkoverprint false ndf
+/setinkoverprint{pop}ndf 
+/setspotcolor { 
+ spots exch get
+ dup 4 get (_vc_Registration) eq
+ {pop 1 exch sub setseparationgray}
+ {0 5 getinterval exch setcustomcolor}
+ ifelse
+}ndf
+/currentcolortransfer{currenttransfer dup dup dup}ndf
+/setcolortransfer{st pop pop pop}ndf
+/fas{}ndf
+/sas{}ndf
+/fhsetspreadsize{pop}ndf
+/filler{fill}bdf 
+/F{gsave {filler}fp grestore}bdf
+/f{closepath F}bdf
+/S{gsave {stroke}fp grestore}bdf
+/s{closepath S}bdf
+/bc4 [0 0 0 0] def 
+/_lfp4 {
+ /iosv inkoverprint def
+ /cosv currentoverprint def
+ /yt xdf       
+ /xt xdf       
+ /ang xdf      
+ storerect
+ /taperfcn xdf
+ /k2 xdf /y2 xdf /m2 xdf /c2 xdf
+ /k1 xdf /y1 xdf /m1 xdf /c1 xdf
+ c1 c2 sub abs
+ m1 m2 sub abs
+ y1 y2 sub abs
+ k1 k2 sub abs
+ maxcolor      
+ calcgraysteps mul abs round  
+ height abs adjnumsteps   
+ dup 2 lt {pop 1} if    
+ 1 sub /numsteps1 xdf
+ currentflat mark    
+ currentflat clipflatness  
+ /delta top bottom sub numsteps1 1 add div def 
+ /right right left sub def  
+ /botsv top delta sub def  
+ {
+{
+W
+xt yt translate 
+ang rotate
+xt neg yt neg translate 
+dup setflat 
+/bottom botsv def
+0 1 numsteps1 
+{
+numsteps1 dup 0 eq {pop 0.5 } { div } ifelse 
+taperfcn /frac xdf
+bc4 0 c2 c1 sub frac mul c1 add put
+bc4 1 m2 m1 sub frac mul m1 add put
+bc4 2 y2 y1 sub frac mul y1 add put
+bc4 3 k2 k1 sub frac mul k1 add put
+bc4 vc
+1 index setflat 
+{ 
+mark {newpath left bottom right delta rectfill}stopped
+{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
+{cleartomark exit}ifelse
+}loop
+/bottom bottom delta sub def
+}for
+}
+gsave stopped grestore
+{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
+{exit}ifelse
+ }loop
+ cleartomark setflat
+ iosv setinkoverprint
+ cosv setoverprint
+}bdf
+/bcs [0 0] def 
+/_lfs4 {
+ /iosv inkoverprint def
+ /cosv currentoverprint def
+ /yt xdf       
+ /xt xdf       
+ /ang xdf      
+ storerect
+ /taperfcn xdf
+ /tint2 xdf      
+ /tint1 xdf      
+ bcs exch 1 exch put    
+ tint1 tint2 sub abs    
+ bcs 1 get maxspot    
+ calcgraysteps mul abs round  
+ height abs adjnumsteps   
+ dup 2 lt {pop 2} if    
+ 1 sub /numsteps1 xdf
+ currentflat mark    
+ currentflat clipflatness  
+ /delta top bottom sub numsteps1 1 add div def 
+ /right right left sub def  
+ /botsv top delta sub def  
+ {
+{
+W
+xt yt translate 
+ang rotate
+xt neg yt neg translate 
+dup setflat 
+/bottom botsv def
+0 1 numsteps1 
+{
+numsteps1 div taperfcn /frac xdf
+bcs 0
+1.0 tint2 tint1 sub frac mul tint1 add sub
+put bcs vc
+1 index setflat 
+{ 
+mark {newpath left bottom right delta rectfill}stopped
+{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
+{cleartomark exit}ifelse
+}loop
+/bottom bottom delta sub def
+}for
+}
+gsave stopped grestore
+{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
+{exit}ifelse
+ }loop
+ cleartomark setflat
+ iosv setinkoverprint
+ cosv setoverprint
+}bdf
+/_rfs4 {
+ /iosv inkoverprint def
+ /cosv currentoverprint def
+ /tint2 xdf      
+ /tint1 xdf      
+ bcs exch 1 exch put    
+ /radius xdf      
+ /yt xdf       
+ /xt xdf       
+ tint1 tint2 sub abs    
+ bcs 1 get maxspot    
+ calcgraysteps mul abs round  
+ radius abs adjnumsteps   
+ dup 2 lt {pop 2} if    
+ 1 sub /numsteps1 xdf
+ radius numsteps1 div 2 div /halfstep xdf 
+ currentflat mark    
+ currentflat clipflatness  
+ {
+{
+dup setflat 
+W 
+0 1 numsteps1 
+{
+dup /radindex xdf
+numsteps1 div /frac xdf
+bcs 0
+tint2 tint1 sub frac mul tint1 add
+put bcs vc
+1 index setflat 
+{ 
+newpath mark xt yt radius 1 frac sub mul halfstep add 0 360
+{ arc
+radindex numsteps1 ne 
+{
+xt yt 
+radindex 1 add numsteps1 
+div 1 exch sub 
+radius mul halfstep add
+dup xt add yt moveto 
+360 0 arcn 
+} if
+fill
+}stopped
+{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
+{cleartomark exit}ifelse
+}loop
+}for
+}
+gsave stopped grestore
+{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
+{exit}ifelse
+ }loop
+ cleartomark setflat
+ iosv setinkoverprint
+ cosv setoverprint
+}bdf
+/_rfp4 {
+ /iosv inkoverprint def
+ /cosv currentoverprint def
+ /k2 xdf /y2 xdf /m2 xdf /c2 xdf
+ /k1 xdf /y1 xdf /m1 xdf /c1 xdf
+ /radius xdf      
+ /yt xdf       
+ /xt xdf       
+ c1 c2 sub abs
+ m1 m2 sub abs
+ y1 y2 sub abs
+ k1 k2 sub abs
+ maxcolor      
+ calcgraysteps mul abs round  
+ radius abs adjnumsteps   
+ dup 2 lt {pop 1} if    
+ 1 sub /numsteps1 xdf
+ radius numsteps1 dup 0 eq {pop} {div} ifelse 
+ 2 div /halfstep xdf 
+ currentflat mark    
+ currentflat clipflatness  
+ {
+{
+dup setflat 
+W 
+0 1 numsteps1 
+{
+dup /radindex xdf
+numsteps1 dup 0 eq {pop 0.5 } { div } ifelse 
+/frac xdf
+bc4 0 c2 c1 sub frac mul c1 add put
+bc4 1 m2 m1 sub frac mul m1 add put
+bc4 2 y2 y1 sub frac mul y1 add put
+bc4 3 k2 k1 sub frac mul k1 add put
+bc4 vc
+1 index setflat 
+{ 
+newpath mark xt yt radius 1 frac sub mul halfstep add 0 360
+{ arc
+radindex numsteps1 ne 
+{
+xt yt 
+radindex 1 add 
+numsteps1 dup 0 eq {pop} {div} ifelse 
+1 exch sub 
+radius mul halfstep add
+dup xt add yt moveto 
+360 0 arcn 
+} if
+fill
+}stopped
+{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
+{cleartomark exit}ifelse
+}loop
+}for
+}
+gsave stopped grestore
+{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
+{exit}ifelse
+ }loop
+ cleartomark setflat
+ iosv setinkoverprint
+ cosv setoverprint
+}bdf
+/lfp4{_lfp4}ndf
+/lfs4{_lfs4}ndf
+/rfs4{_rfs4}ndf
+/rfp4{_rfp4}ndf
+/cvc [0 0 0 1] def 
+/vc{
+ AltsysDict /cvc 2 index put 
+ aload length 4 eq
+ {setcmykcolor}
+ {setspotcolor}
+ ifelse
+}bdf 
+/origmtx matrix currentmatrix def
+/ImMatrix matrix currentmatrix def
+0 setseparationgray
+/imgr {1692 1570.1102 2287.2756 2412 } def 
+/bleed 0 def 
+/clpr {1692 1570.1102 2287.2756 2412 } def 
+/xs 1 def 
+/ys 1 def 
+/botx 0 def 
+/overlap 0 def 
+/wdist 18 def 
+0 2 mul fhsetspreadsize 
+0 0 ne {/df 0 def /clipflatness 0 def} if 
+/maxsteps 256 def 
+/forcemaxsteps false def 
+vms
+-1845 -1956 translate
+/currentpacking defed{false setpacking}if 
+/spots[
+1 0 0 0 (Process Cyan) false newcmykcustomcolor
+0 1 0 0 (Process Magenta) false newcmykcustomcolor
+0 0 1 0 (Process Yellow) false newcmykcustomcolor
+0 0 0 1 (Process Black) false newcmykcustomcolor
+]def
+/textopf false def
+/curtextmtx{}def
+/otw .25 def
+/msf{dup/curtextmtx xdf makefont setfont}bdf
+/makesetfont/msf load def
+/curtextheight{.707104 .707104 curtextmtx dtransform
+ dup mul exch dup mul add sqrt}bdf
+/ta2{ 
+tempstr 2 index gsave exec grestore 
+cwidth cheight rmoveto 
+4 index eq{5 index 5 index rmoveto}if 
+2 index 2 index rmoveto 
+}bdf
+/ta{exch systemdict/cshow known
+{{/cheight xdf/cwidth xdf tempstr 0 2 index put ta2}exch cshow} 
+{{tempstr 0 2 index put tempstr stringwidth/cheight xdf/cwidth xdf ta2}forall} 
+ifelse 6{pop}repeat}bdf
+/sts{/textopf currentoverprint def vc setoverprint
+/ts{awidthshow}def exec textopf setoverprint}bdf
+/stol{/xt currentlinewidth def 
+ setlinewidth vc newpath 
+ /ts{{false charpath stroke}ta}def exec 
+ xt setlinewidth}bdf 
+ 
+/strk{/textopf currentoverprint def vc setoverprint
+ /ts{{false charpath stroke}ta}def exec 
+ textopf setoverprint
+ }bdf 
+n
+[] 0 d
+3.863708 M
+1 w
+0 j
+0 J
+false setoverprint
+0 i
+false eomode
+[0 0 0 1] vc
+vms
+%white border -- disabled
+%1845.2293 2127.8588 m
+%2045.9437 2127.8588 L
+%2045.9437 1956.1412 L
+%1845.2293 1956.1412 L
+%1845.2293 2127.8588 L
+%0.1417 w
+%2 J
+%2 M
+%[0 0 0 0]  vc
+%s 
+n
+1950.8 2097.2 m
+1958.8 2092.5 1967.3 2089 1975.5 2084.9 C
+1976.7 2083.5 1976.1 2081.5 1976.7 2079.9 C
+1979.6 2081.1 1981.6 2086.8 1985.3 2084 C
+1993.4 2079.3 2001.8 2075.8 2010 2071.7 C
+2010.5 2071.5 2010.5 2071.1 2010.8 2070.8 C
+2011.2 2064.3 2010.9 2057.5 2011 2050.8 C
+2015.8 2046.9 2022.2 2046.2 2026.6 2041.7 C
+2026.5 2032.5 2026.8 2022.9 2026.4 2014.1 C
+2020.4 2008.3 2015 2002.4 2008.8 1997.1 C
+2003.8 1996.8 2000.7 2001.2 1996.1 2002.1 C
+1995.2 1996.4 1996.9 1990.5 1995.6 1984.8 C
+1989.9 1979 1984.5 1973.9 1978.8 1967.8 C
+1977.7 1968.6 1976 1967.6 1974.5 1968.3 C
+1967.4 1972.5 1960.1 1976.1 1952.7 1979.3 C
+1946.8 1976.3 1943.4 1970.7 1938.5 1966.1 C
+1933.9 1966.5 1929.4 1968.8 1925.1 1970.7 C
+1917.2 1978.2 1906 1977.9 1897.2 1983.4 C
+1893.2 1985.6 1889.4 1988.6 1885 1990.1 C
+1884.6 1990.6 1883.9 1991 1883.8 1991.6 C
+1883.7 2000.4 1884 2009.9 1883.6 2018.9 C
+1887.7 2024 1893.2 2028.8 1898 2033.8 C
+1899.1 2035.5 1900.9 2036.8 1902.5 2037.9 C
+1903.9 2037.3 1905.2 2036.6 1906.4 2035.5 C
+1906.3 2039.7 1906.5 2044.6 1906.1 2048.9 C
+1906.3 2049.6 1906.7 2050.2 1907.1 2050.8 C
+1913.4 2056 1918.5 2062.7 1924.8 2068.1 C
+1926.6 2067.9 1928 2066.9 1929.4 2066 C
+1930.2 2071 1927.7 2077.1 1930.6 2081.6 C
+1936.6 2086.9 1941.5 2092.9 1947.9 2097.9 C
+1949 2098.1 1949.9 2097.5 1950.8 2097.2 C
+[0 0 0 0.18]  vc
+f 
+0.4 w
+S 
+n
+1975.2 2084.7 m
+1976.6 2083.4 1975.7 2081.1 1976 2079.4 C
+1979.3 2079.5 1980.9 2086.2 1984.8 2084 C
+1992.9 2078.9 2001.7 2075.6 2010 2071.2 C
+2011 2064.6 2010.2 2057.3 2010.8 2050.6 C
+2015.4 2046.9 2021.1 2045.9 2025.9 2042.4 C
+2026.5 2033.2 2026.8 2022.9 2025.6 2013.9 C
+2020.5 2008.1 2014.5 2003.1 2009.3 1997.6 C
+2004.1 1996.7 2000.7 2001.6 1995.9 2002.6 C
+1995.2 1996.7 1996.3 1990.2 1994.9 1984.6 C
+1989.8 1978.7 1983.6 1973.7 1978.4 1968 C
+1977.3 1969.3 1976 1967.6 1974.8 1968.5 C
+1967.7 1972.7 1960.4 1976.3 1952.9 1979.6 C
+1946.5 1976.9 1943.1 1970.5 1937.8 1966.1 C
+1928.3 1968.2 1920.6 1974.8 1911.6 1978.4 C
+1901.9 1979.7 1893.9 1986.6 1885 1990.6 C
+1884.3 1991 1884.3 1991.7 1884 1992.3 C
+1884.5 2001 1884.2 2011 1884.3 2019.9 C
+1890.9 2025.3 1895.9 2031.9 1902.3 2037.4 C
+1904.2 2037.9 1905.6 2034.2 1906.8 2035.7 C
+1907.4 2040.9 1905.7 2046.1 1907.3 2050.8 C
+1913.6 2056.2 1919.2 2062.6 1925.1 2067.9 C
+1926.9 2067.8 1928 2066.3 1929.6 2065.7 C
+1929.9 2070.5 1929.2 2076 1930.1 2080.8 C
+1936.5 2086.1 1941.6 2092.8 1948.4 2097.6 C
+1957.3 2093.3 1966.2 2088.8 1975.2 2084.7 C
+[0 0 0 0]  vc
+f 
+S 
+n
+1954.8 2093.8 m
+1961.6 2090.5 1968.2 2087 1975 2084 C
+1975 2082.8 1975.6 2080.9 1974.8 2080.6 C
+1974.3 2075.2 1974.6 2069.6 1974.5 2064 C
+1977.5 2059.7 1984.5 2060 1988.9 2056.4 C
+1989.5 2055.5 1990.5 2055.3 1990.8 2054.4 C
+1991.1 2045.7 1991.4 2036.1 1990.6 2027.8 C
+1990.7 2026.6 1992 2027.3 1992.8 2027.1 C
+1997 2032.4 2002.6 2037.8 2007.6 2042.2 C
+2008.7 2042.3 2007.8 2040.6 2007.4 2040 C
+2002.3 2035.6 1997.5 2030 1992.8 2025.2 C
+1991.6 2024.7 1990.8 2024.9 1990.1 2025.4 C
+1989.4 2024.9 1988.1 2025.2 1987.2 2024.4 C
+1987.1 2025.8 1988.3 2026.5 1989.4 2026.8 C
+1989.4 2026.6 1989.3 2026.2 1989.6 2026.1 C
+1989.9 2026.2 1989.9 2026.6 1989.9 2026.8 C
+1989.8 2026.6 1990 2026.5 1990.1 2026.4 C
+1990.2 2027 1991.1 2028.3 1990.1 2028 C
+1989.9 2037.9 1990.5 2044.1 1989.6 2054.2 C
+1985.9 2058 1979.7 2057.4 1976 2061.2 C
+1974.5 2061.6 1975.2 2059.9 1974.5 2059.5 C
+1973.9 2058 1975.6 2057.8 1975 2056.6 C
+1974.5 2057.1 1974.6 2055.3 1973.6 2055.9 C
+1971.9 2059.3 1974.7 2062.1 1973.1 2065.5 C
+1973.1 2071.2 1972.9 2077 1973.3 2082.5 C
+1967.7 2085.6 1962 2088 1956.3 2090.7 C
+1953.9 2092.4 1951 2093 1948.6 2094.8 C
+1943.7 2089.9 1937.9 2084.3 1933 2079.6 C
+1931.3 2076.1 1933.2 2071.3 1932.3 2067.2 C
+1931.3 2062.9 1933.3 2060.6 1932 2057.6 C
+1932.7 2056.5 1930.9 2053.3 1933.2 2051.8 C
+1936.8 2050.1 1940.1 2046.9 1944 2046.8 C
+1946.3 2049.7 1949.3 2051.9 1952 2054.4 C
+1954.5 2054.2 1956.4 2052.3 1958.7 2051.3 C
+1960.8 2050 1963.2 2049 1965.6 2048.4 C
+1968.3 2050.8 1970.7 2054.3 1973.6 2055.4 C
+1973 2052.2 1969.7 2050.4 1967.6 2048.2 C
+1967.1 2046.7 1968.8 2046.6 1969.5 2045.8 C
+1972.8 2043.3 1980.6 2043.4 1979.3 2038.4 C
+1979.4 2038.6 1979.2 2038.7 1979.1 2038.8 C
+1978.7 2038.6 1978.9 2038.1 1978.8 2037.6 C
+1978.9 2037.9 1978.7 2038 1978.6 2038.1 C
+1978.2 2032.7 1978.4 2027.1 1978.4 2021.6 C
+1979.3 2021.1 1980 2020.2 1981.5 2020.1 C
+1983.5 2020.5 1984 2021.8 1985.1 2023.5 C
+1985.7 2024 1987.4 2023.7 1986 2022.8 C
+1984.7 2021.7 1983.3 2020.8 1983.9 2018.7 C
+1987.2 2015.9 1993 2015.4 1994.9 2011.5 C
+1992.2 2004.9 1999.3 2005.2 2002.1 2002.4 C
+2005.9 2002.7 2004.8 1997.4 2009.1 1999 C
+2011 1999.3 2010 2002.9 2012.7 2002.4 C
+2010.2 2000.7 2009.4 1996.1 2005.5 1998.5 C
+2002.1 2000.3 1999 2002.5 1995.4 2003.8 C
+1995.2 2003.6 1994.9 2003.3 1994.7 2003.1 C
+1994.3 1997 1995.6 1991.1 1994.4 1985.3 C
+1994.3 1986 1993.8 1985 1994 1985.6 C
+1993.8 1995.4 1994.4 2001.6 1993.5 2011.7 C
+1989.7 2015.5 1983.6 2014.9 1979.8 2018.7 C
+1978.3 2019.1 1979.1 2017.4 1978.4 2017 C
+1977.8 2015.5 1979.4 2015.3 1978.8 2014.1 C
+1978.4 2014.6 1978.5 2012.8 1977.4 2013.4 C
+1975.8 2016.8 1978.5 2019.6 1976.9 2023 C
+1977 2028.7 1976.7 2034.5 1977.2 2040 C
+1971.6 2043.1 1965.8 2045.6 1960.1 2048.2 C
+1957.7 2049.9 1954.8 2050.5 1952.4 2052.3 C
+1947.6 2047.4 1941.8 2041.8 1936.8 2037.2 C
+1935.2 2033.6 1937.1 2028.8 1936.1 2024.7 C
+1935.1 2020.4 1937.1 2018.1 1935.9 2015.1 C
+1936.5 2014.1 1934.7 2010.8 1937.1 2009.3 C
+1944.4 2004.8 1952 2000.9 1959.9 1997.8 C
+1963.9 1997 1963.9 2001.9 1966.8 2003.3 C
+1970.3 2006.9 1973.7 2009.9 1976.9 2012.9 C
+1977.9 2013 1977.1 2011.4 1976.7 2010.8 C
+1971.6 2006.3 1966.8 2000.7 1962 1995.9 C
+1960 1995.2 1960.1 1996.6 1958.2 1995.6 C
+1957 1997 1955.1 1998.8 1953.2 1998 C
+1951.7 1994.5 1954.1 1993.4 1952.9 1991.1 C
+1952.1 1990.5 1953.3 1990.2 1953.2 1989.6 C
+1954.2 1986.8 1950.9 1981.4 1954.4 1981.2 C
+1954.7 1981.6 1954.7 1981.7 1955.1 1982 C
+1961.9 1979.1 1967.6 1975 1974.3 1971.6 C
+1974.7 1969.8 1976.7 1969.5 1978.4 1969.7 C
+1980.3 1970 1979.3 1973.6 1982 1973.1 C
+1975.8 1962.2 1968 1975.8 1960.8 1976.7 C
+1956.9 1977.4 1953.3 1982.4 1949.1 1978.8 C
+1946 1975.8 1941.2 1971 1939.5 1969.2 C
+1938.5 1968.6 1938.9 1967.4 1937.8 1966.8 C
+1928.7 1969.4 1920.6 1974.5 1912.4 1979.1 C
+1904 1980 1896.6 1985 1889.3 1989.4 C
+1887.9 1990.4 1885.1 1990.3 1885 1992.5 C
+1885.4 2000.6 1885.2 2012.9 1885.2 2019.9 C
+1886.1 2022 1889.7 2019.5 1888.4 2022.8 C
+1889 2023.3 1889.8 2024.4 1890.3 2024 C
+1891.2 2023.5 1891.8 2028.2 1893.4 2026.6 C
+1894.2 2026.3 1893.9 2027.3 1894.4 2027.6 C
+1893.4 2027.6 1894.7 2028.3 1894.1 2028.5 C
+1894.4 2029.6 1896 2030 1896 2029.2 C
+1896.2 2029 1896.3 2029 1896.5 2029.2 C
+1896.8 2029.8 1897.3 2030 1897 2030.7 C
+1896.5 2030.7 1896.9 2031.5 1897.2 2031.6 C
+1898.3 2034 1899.5 2030.6 1899.6 2033.3 C
+1898.5 2033 1899.6 2034.4 1900.1 2034.8 C
+1901.3 2035.8 1903.2 2034.6 1902.5 2036.7 C
+1904.4 2036.9 1906.1 2032.2 1907.6 2035.5 C
+1907.5 2040.1 1907.7 2044.9 1907.3 2049.4 C
+1908 2050.2 1908.3 2051.4 1909.5 2051.6 C
+1910.1 2051.1 1911.6 2051.1 1911.4 2052.3 C
+1909.7 2052.8 1912.4 2054 1912.6 2054.7 C
+1913.4 2055.2 1913 2053.7 1913.6 2054.4 C
+1913.6 2054.5 1913.6 2055.3 1913.6 2054.7 C
+1913.7 2054.4 1913.9 2054.4 1914 2054.7 C
+1914 2054.9 1914.1 2055.3 1913.8 2055.4 C
+1913.7 2056 1915.2 2057.6 1916 2057.6 C
+1915.9 2057.3 1916.1 2057.2 1916.2 2057.1 C
+1917 2056.8 1916.7 2057.7 1917.2 2058 C
+1917 2058.3 1916.7 2058.3 1916.4 2058.3 C
+1917.1 2059 1917.3 2060.1 1918.4 2060.4 C
+1918.1 2059.2 1919.1 2060.6 1919.1 2059.5 C
+1919 2060.6 1920.6 2060.1 1919.8 2061.2 C
+1919.6 2061.2 1919.3 2061.2 1919.1 2061.2 C
+1919.6 2061.9 1921.4 2064.2 1921.5 2062.6 C
+1922.4 2062.1 1921.6 2063.9 1922.2 2064.3 C
+1922.9 2067.3 1926.1 2064.3 1925.6 2067.2 C
+1927.2 2066.8 1928.4 2064.6 1930.1 2065.2 C
+1931.8 2067.8 1931 2071.8 1930.8 2074.8 C
+1930.6 2076.4 1930.1 2078.6 1930.6 2080.4 C
+1936.6 2085.4 1941.8 2091.6 1948.1 2096.9 C
+1950.7 2096.7 1952.6 2094.8 1954.8 2093.8 C
+[0 0.33 0.33 0.99]  vc
+f 
+S 
+n
+1989.4 2080.6 m
+1996.1 2077.3 2002.7 2073.8 2009.6 2070.8 C
+2009.6 2069.6 2010.2 2067.7 2009.3 2067.4 C
+2008.9 2062 2009.1 2056.4 2009.1 2050.8 C
+2012.3 2046.6 2019 2046.6 2023.5 2043.2 C
+2024 2042.3 2025.1 2042.1 2025.4 2041.2 C
+2025.3 2032.7 2025.6 2023.1 2025.2 2014.6 C
+2025 2015.3 2024.6 2014.2 2024.7 2014.8 C
+2024.5 2024.7 2025.1 2030.9 2024.2 2041 C
+2020.4 2044.8 2014.3 2044.2 2010.5 2048 C
+2009 2048.4 2009.8 2046.7 2009.1 2046.3 C
+2008.5 2044.8 2010.2 2044.6 2009.6 2043.4 C
+2009.1 2043.9 2009.2 2042.1 2008.1 2042.7 C
+2006.5 2046.1 2009.3 2048.9 2007.6 2052.3 C
+2007.7 2058 2007.5 2063.8 2007.9 2069.3 C
+2002.3 2072.4 1996.5 2074.8 1990.8 2077.5 C
+1988.4 2079.2 1985.6 2079.8 1983.2 2081.6 C
+1980.5 2079 1977.9 2076.5 1975.5 2074.1 C
+1975.5 2075.1 1975.5 2076.2 1975.5 2077.2 C
+1977.8 2079.3 1980.3 2081.6 1982.7 2083.7 C
+1985.3 2083.5 1987.1 2081.6 1989.4 2080.6 C
+f 
+S 
+n
+1930.1 2079.9 m
+1931.1 2075.6 1929.2 2071.1 1930.8 2067.2 C
+1930.3 2066.3 1930.1 2064.6 1928.7 2065.5 C
+1927.7 2066.4 1926.5 2067 1925.3 2067.4 C
+1924.5 2066.9 1925.6 2065.7 1924.4 2066 C
+1924.2 2067.2 1923.6 2065.5 1923.2 2065.7 C
+1922.3 2063.6 1917.8 2062.1 1919.6 2060.4 C
+1919.3 2060.5 1919.2 2060.3 1919.1 2060.2 C
+1919.7 2060.9 1918.2 2061 1917.6 2060.2 C
+1917 2059.6 1916.1 2058.8 1916.4 2058 C
+1915.5 2058 1917.4 2057.1 1915.7 2057.8 C
+1914.8 2057.1 1913.4 2056.2 1913.3 2054.9 C
+1913.1 2055.4 1911.3 2054.3 1910.9 2053.2 C
+1910.7 2052.9 1910.2 2052.5 1910.7 2052.3 C
+1911.1 2052.5 1910.9 2052 1910.9 2051.8 C
+1910.5 2051.2 1909.9 2052.6 1909.2 2051.8 C
+1908.2 2051.4 1907.8 2050.2 1907.1 2049.4 C
+1907.5 2044.8 1907.3 2040 1907.3 2035.2 C
+1905.3 2033 1902.8 2039.3 1902.3 2035.7 C
+1899.6 2036 1898.4 2032.5 1896.3 2030.7 C
+1895.7 2030.1 1897.5 2030 1896.3 2029.7 C
+1896.3 2030.6 1895 2029.7 1894.4 2029.2 C
+1892.9 2028.1 1894.2 2027.4 1893.6 2027.1 C
+1892.1 2027.9 1891.7 2025.6 1890.8 2024.9 C
+1891.1 2024.6 1889.1 2024.3 1888.4 2023 C
+1887.5 2022.6 1888.2 2021.9 1888.1 2021.3 C
+1886.7 2022 1885.2 2020.4 1884.8 2019.2 C
+1884.8 2010 1884.6 2000.2 1885 1991.8 C
+1886.9 1989.6 1889.9 1989.3 1892.2 1987.5 C
+1898.3 1982.7 1905.6 1980.1 1912.8 1978.6 C
+1921 1974.2 1928.8 1968.9 1937.8 1966.6 C
+1939.8 1968.3 1938.8 1968.3 1940.4 1970 C
+1945.4 1972.5 1947.6 1981.5 1954.6 1979.3 C
+1952.3 1981 1950.4 1978.4 1948.6 1977.9 C
+1945.1 1973.9 1941.1 1970.6 1938 1966.6 C
+1928.4 1968.5 1920.6 1974.8 1911.9 1978.8 C
+1907.1 1979.2 1902.6 1981.7 1898.2 1983.6 C
+1893.9 1986 1889.9 1989 1885.5 1990.8 C
+1884.9 1991.2 1884.8 1991.8 1884.5 1992.3 C
+1884.9 2001.3 1884.7 2011.1 1884.8 2019.6 C
+1890.6 2025 1896.5 2031.2 1902.3 2036.9 C
+1904.6 2037.6 1905 2033 1907.3 2035.5 C
+1907.2 2040.2 1907 2044.8 1907.1 2049.6 C
+1913.6 2055.3 1918.4 2061.5 1925.1 2067.4 C
+1927.3 2068.2 1929.6 2062.5 1930.6 2066.9 C
+1929.7 2070.7 1930.3 2076 1930.1 2080.1 C
+1935.6 2085.7 1941.9 2090.7 1947.2 2096.7 C
+1942.2 2091.1 1935.5 2085.2 1930.1 2079.9 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1930.8 2061.9 m
+1930.3 2057.8 1931.8 2053.4 1931.1 2050.4 C
+1931.3 2050.3 1931.7 2050.5 1931.6 2050.1 C
+1933 2051.1 1934.4 2049.5 1935.9 2048.7 C
+1937 2046.5 1939.5 2047.1 1941.2 2045.1 C
+1939.7 2042.6 1937.3 2041.2 1935.4 2039.3 C
+1934 2039.7 1934.5 2038.1 1933.7 2037.6 C
+1934 2033.3 1933.1 2027.9 1934.4 2024.4 C
+1934.3 2023.8 1933.9 2022.8 1933 2022.8 C
+1931.6 2023.1 1930.5 2024.4 1929.2 2024.9 C
+1928.4 2024.5 1929.8 2023.5 1928.7 2023.5 C
+1927.7 2024.1 1926.2 2022.6 1925.6 2021.6 C
+1926.9 2021.6 1924.8 2020.6 1925.6 2020.4 C
+1924.7 2021.7 1923.9 2019.6 1923.2 2019.2 C
+1923.3 2018.3 1923.8 2018.1 1923.2 2018 C
+1922.9 2017.8 1922.9 2017.5 1922.9 2017.2 C
+1922.8 2018.3 1921.3 2017.3 1920.3 2018 C
+1916.6 2019.7 1913 2022.1 1910 2024.7 C
+1910 2032.9 1910 2041.2 1910 2049.4 C
+1915.4 2055.2 1920 2058.7 1925.3 2064.8 C
+1927.2 2064 1929 2061.4 1930.8 2061.9 C
+[0 0 0 0]  vc
+f 
+S 
+n
+1907.6 2030.4 m
+1907.5 2027.1 1906.4 2021.7 1908.5 2019.9 C
+1908.8 2020.1 1908.9 2019 1909.2 2019.6 C
+1910 2019.6 1912 2019.2 1913.1 2018.2 C
+1913.7 2016.5 1920.2 2015.7 1917.4 2012.7 C
+1918.2 2011.2 1917 2013.8 1917.2 2012 C
+1916.9 2012.3 1916 2012.4 1915.2 2012 C
+1912.5 2010.5 1916.6 2008.8 1913.6 2009.6 C
+1912.6 2009.2 1911.1 2009 1910.9 2007.6 C
+1911 1999.2 1911.8 1989.8 1911.2 1982.2 C
+1910.1 1981.1 1908.8 1982.2 1907.6 1982.2 C
+1900.8 1986.5 1893.2 1988.8 1887.2 1994.2 C
+1887.2 2002.4 1887.2 2010.7 1887.2 2018.9 C
+1892.6 2024.7 1897.2 2028.2 1902.5 2034.3 C
+1904.3 2033.3 1906.2 2032.1 1907.6 2030.4 C
+f 
+S 
+n
+1910.7 2025.4 m
+1912.7 2022.4 1916.7 2020.8 1919.8 2018.9 C
+1920.2 2018.7 1920.6 2018.6 1921 2018.4 C
+1925 2020 1927.4 2028.5 1932 2024.2 C
+1932.3 2025 1932.5 2023.7 1932.8 2024.4 C
+1932.8 2028 1932.8 2031.5 1932.8 2035 C
+1931.9 2033.9 1932.5 2036.3 1932.3 2036.9 C
+1933.2 2036.4 1932.5 2038.5 1933 2038.4 C
+1933.1 2040.5 1935.6 2042.2 1936.6 2043.2 C
+1936.2 2042.4 1935.1 2040.8 1933.7 2040.3 C
+1932.2 2034.4 1933.8 2029.8 1933 2023.2 C
+1931.1 2024.9 1928.4 2026.4 1926.5 2023.5 C
+1925.1 2021.6 1923 2019.8 1921.5 2018.2 C
+1917.8 2018.9 1915.2 2022.5 1911.6 2023.5 C
+1910.8 2023.8 1911.2 2024.7 1910.4 2025.2 C
+1910.9 2031.8 1910.6 2039.1 1910.7 2045.6 C
+1910.1 2048 1910.7 2045.9 1911.2 2044.8 C
+1910.6 2038.5 1911.2 2031.8 1910.7 2025.4 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1910.7 2048.9 m
+1910.3 2047.4 1911.3 2046.5 1911.6 2045.3 C
+1912.9 2045.3 1913.9 2047.1 1915.2 2045.8 C
+1915.2 2044.9 1916.6 2043.3 1917.2 2042.9 C
+1918.7 2042.9 1919.4 2044.4 1920.5 2043.2 C
+1921.2 2042.2 1921.4 2040.9 1922.4 2040.3 C
+1924.5 2040.3 1925.7 2040.9 1926.8 2039.6 C
+1927.1 2037.9 1926.8 2038.1 1927.7 2037.6 C
+1929 2037.5 1930.4 2037 1931.6 2037.2 C
+1932.3 2038.2 1933.1 2038.7 1932.8 2040.3 C
+1935 2041.8 1935.9 2043.8 1938.5 2044.8 C
+1938.6 2045 1938.3 2045.5 1938.8 2045.3 C
+1939.1 2042.9 1935.4 2044.2 1935.4 2042.2 C
+1932.1 2040.8 1932.8 2037.2 1932 2034.8 C
+1932.3 2034 1932.7 2035.4 1932.5 2034.8 C
+1931.3 2031.8 1935.5 2020.1 1928.9 2025.9 C
+1924.6 2024.7 1922.6 2014.5 1917.4 2020.4 C
+1915.5 2022.8 1912 2022.6 1910.9 2025.4 C
+1911.5 2031.9 1910.9 2038.8 1911.4 2045.3 C
+1911.1 2046.5 1910 2047.4 1910.4 2048.9 C
+1915.1 2054.4 1920.4 2058.3 1925.1 2063.8 C
+1920.8 2058.6 1914.9 2054.3 1910.7 2048.9 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1934.7 2031.9 m
+1934.6 2030.7 1934.9 2029.5 1934.4 2028.5 C
+1934 2029.5 1934.3 2031.2 1934.2 2032.6 C
+1933.8 2031.7 1934.9 2031.6 1934.7 2031.9 C
+[0.92 0.92 0 0.67]  vc
+f 
+S 
+n
+vmrs
+1934.7 2019.4 m
+1934.1 2015.3 1935.6 2010.9 1934.9 2007.9 C
+1935.1 2007.8 1935.6 2008.1 1935.4 2007.6 C
+1936.8 2008.6 1938.2 2007 1939.7 2006.2 C
+1940.1 2004.3 1942.7 2005 1943.6 2003.8 C
+1945.1 2000.3 1954 2000.8 1950 1996.6 C
+1952.1 1993.3 1948.2 1989.2 1951.2 1985.6 C
+1953 1981.4 1948.4 1982.3 1947.9 1979.8 C
+1945.4 1979.6 1945.1 1975.5 1942.4 1975 C
+1942.4 1972.3 1938 1973.6 1938.5 1970.4 C
+1937.4 1969 1935.6 1970.1 1934.2 1970.2 C
+1927.5 1974.5 1919.8 1976.8 1913.8 1982.2 C
+1913.8 1990.4 1913.8 1998.7 1913.8 2006.9 C
+1919.3 2012.7 1923.8 2016.2 1929.2 2022.3 C
+1931.1 2021.6 1932.8 2018.9 1934.7 2019.4 C
+[0 0 0 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+2024.2 2038.1 m
+2024.1 2029.3 2024.4 2021.7 2024.7 2014.4 C
+2024.4 2013.6 2020.6 2013.4 2021.3 2011.2 C
+2020.5 2010.3 2018.4 2010.6 2018.9 2008.6 C
+2019 2008.8 2018.8 2009 2018.7 2009.1 C
+2018.2 2006.7 2015.2 2007.9 2015.3 2005.5 C
+2014.7 2004.8 2012.4 2005.1 2013.2 2003.6 C
+2012.3 2004.2 2012.8 2002.4 2012.7 2002.6 C
+2009.4 2003.3 2011.2 1998.6 2008.4 1999.2 C
+2007 1999.1 2006.1 1999.4 2005.7 2000.4 C
+2006.9 1998.5 2007.7 2000.5 2009.3 2000.2 C
+2009.2 2003.7 2012.4 2002.1 2012.9 2005.2 C
+2015.9 2005.6 2015.2 2008.6 2017.7 2008.8 C
+2018.4 2009.6 2018.3 2011.4 2019.6 2011 C
+2021.1 2011.7 2021.4 2014.8 2023.7 2015.1 C
+2023.7 2023.5 2023.9 2031.6 2023.5 2040.5 C
+2021.8 2041.7 2020.7 2043.6 2018.4 2043.9 C
+2020.8 2042.7 2025.5 2041.8 2024.2 2038.1 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+2023.5 2040 m
+2023.5 2031.1 2023.5 2023.4 2023.5 2015.1 C
+2020.2 2015 2021.8 2010.3 2018.4 2011 C
+2018.6 2007.5 2014.7 2009.3 2014.8 2006.4 C
+2011.8 2006.3 2012.2 2002.3 2009.8 2002.4 C
+2009.7 2001.5 2009.2 2000.1 2008.4 2000.2 C
+2008.7 2000.9 2009.7 2001.2 2009.3 2002.4 C
+2008.4 2004.2 2007.5 2003.1 2007.9 2005.5 C
+2007.9 2010.8 2007.7 2018.7 2008.1 2023.2 C
+2009 2024.3 2007.3 2023.4 2007.9 2024 C
+2007.7 2024.6 2007.3 2026.3 2008.6 2027.1 C
+2009.7 2026.8 2010 2027.6 2010.5 2028 C
+2010.5 2028.2 2010.5 2029.1 2010.5 2028.5 C
+2011.5 2028 2010.5 2030 2011.5 2030 C
+2014.2 2029.7 2012.9 2032.2 2014.8 2032.6 C
+2015.1 2033.6 2015.3 2033 2016 2033.3 C
+2017 2033.9 2016.6 2035.4 2017.2 2036.2 C
+2018.7 2036.4 2019.2 2039 2021.3 2038.4 C
+2021.6 2035.4 2019.7 2029.5 2021.1 2027.3 C
+2020.9 2023.5 2021.5 2018.5 2020.6 2016 C
+2020.9 2013.9 2021.5 2015.4 2022.3 2014.4 C
+2022.2 2015.1 2023.3 2014.8 2023.2 2015.6 C
+2022.7 2019.8 2023.3 2024.3 2022.8 2028.5 C
+2022.3 2028.2 2022.6 2027.6 2022.5 2027.1 C
+2022.5 2027.8 2022.5 2029.2 2022.5 2029.2 C
+2022.6 2029.2 2022.7 2029.1 2022.8 2029 C
+2023.9 2032.8 2022.6 2037 2023 2040.8 C
+2022.3 2041.2 2021.6 2041.5 2021.1 2042.2 C
+2022 2041.2 2022.9 2041.4 2023.5 2040 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+2009.1 1997.8 m
+2003.8 1997.7 2000.1 2002.4 1995.4 2003.1 C
+1995 1999.5 1995.2 1995 1995.2 1992 C
+1995.2 1995.8 1995 1999.7 1995.4 2003.3 C
+2000.3 2002.2 2003.8 1997.9 2009.1 1997.8 C
+2012.3 2001.2 2015.6 2004.8 2018.7 2008.1 C
+2021.6 2011.2 2027.5 2013.9 2025.9 2019.9 C
+2026.1 2017.9 2025.6 2016.2 2025.4 2014.4 C
+2020.2 2008.4 2014 2003.6 2009.1 1997.8 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+2009.3 1997.8 m
+2008.7 1997.4 2007.9 1997.6 2007.2 1997.6 C
+2007.9 1997.6 2008.9 1997.4 2009.6 1997.8 C
+2014.7 2003.6 2020.8 2008.8 2025.9 2014.8 C
+2025.8 2017.7 2026.1 2014.8 2025.6 2014.1 C
+2020.4 2008.8 2014.8 2003.3 2009.3 1997.8 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+2009.6 1997.6 m
+2009 1997.1 2008.1 1997.4 2007.4 1997.3 C
+2008.1 1997.4 2009 1997.1 2009.6 1997.6 C
+2014.8 2003.7 2021.1 2008.3 2025.9 2014.4 C
+2021.1 2008.3 2014.7 2003.5 2009.6 1997.6 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+2021.8 2011.5 m
+2021.9 2012.2 2022.3 2013.5 2023.7 2013.6 C
+2023.4 2012.7 2022.8 2011.8 2021.8 2011.5 C
+[0 0.33 0.33 0.99]  vc
+f 
+S 
+n
+2021.1 2042 m
+2022.1 2041.1 2020.9 2040.2 2020.6 2039.6 C
+2018.4 2039.5 2018.1 2036.9 2016.3 2036.4 C
+2015.8 2035.5 2015.3 2033.8 2014.8 2033.6 C
+2012.4 2033.8 2013 2030.4 2010.5 2030.2 C
+2009.6 2028.9 2009.6 2028.3 2008.4 2028 C
+2006.9 2026.7 2007.5 2024.3 2006 2023.2 C
+2006.6 2023.2 2005.7 2023.3 2005.7 2023 C
+2006.4 2022.5 2006.3 2021.1 2006.7 2020.6 C
+2006.6 2015 2006.9 2009 2006.4 2003.8 C
+2006.9 2002.5 2007.6 2001.1 2006.9 2000.7 C
+2004.6 2003.6 2003 2002.9 2000.2 2004.3 C
+1999.3 2005.8 1997.9 2006.3 1996.1 2006.7 C
+1995.7 2008.9 1996 2011.1 1995.9 2012.9 C
+1993.4 2015.1 1990.5 2016.2 1987.7 2017.7 C
+1987.1 2019.3 1991.1 2019.4 1990.4 2021.3 C
+1990.5 2021.5 1991.9 2022.3 1992 2023 C
+1994.8 2024.4 1996.2 2027.5 1998.5 2030 C
+2002.4 2033 2005.2 2037.2 2008.8 2041 C
+2010.2 2041.3 2011.6 2042 2011 2043.9 C
+2011.2 2044.8 2010.1 2045.3 2010.5 2046.3 C
+2013.8 2044.8 2017.5 2043.4 2021.1 2042 C
+[0 0.5 0.5 0.2]  vc
+f 
+S 
+n
+2019.4 2008.8 m
+2018.9 2009.2 2019.3 2009.9 2019.6 2010.3 C
+2022.2 2011.5 2020.3 2009.1 2019.4 2008.8 C
+[0 0.33 0.33 0.99]  vc
+f 
+S 
+n
+2018 2007.4 m
+2015.7 2006.7 2015.3 2003.6 2012.9 2002.8 C
+2013.5 2003.7 2013.5 2005.1 2015.6 2005.2 C
+2016.4 2006.1 2015.7 2007.7 2018 2007.4 C
+f 
+S 
+n
+vmrs
+1993.5 2008.8 m
+1993.4 2000 1993.7 1992.5 1994 1985.1 C
+1993.7 1984.3 1989.9 1984.1 1990.6 1982 C
+1989.8 1981.1 1987.7 1981.4 1988.2 1979.3 C
+1988.3 1979.6 1988.1 1979.7 1988 1979.8 C
+1987.5 1977.5 1984.5 1978.6 1984.6 1976.2 C
+1983.9 1975.5 1981.7 1975.8 1982.4 1974.3 C
+1981.6 1974.9 1982.1 1973.1 1982 1973.3 C
+1979 1973.7 1980 1968.8 1976.9 1969.7 C
+1975.9 1969.8 1975.3 1970.3 1975 1971.2 C
+1976.2 1969.2 1977 1971.2 1978.6 1970.9 C
+1978.5 1974.4 1981.7 1972.8 1982.2 1976 C
+1985.2 1976.3 1984.5 1979.3 1987 1979.6 C
+1987.7 1980.3 1987.5 1982.1 1988.9 1981.7 C
+1990.4 1982.4 1990.7 1985.5 1993 1985.8 C
+1992.9 1994.3 1993.2 2002.3 1992.8 2011.2 C
+1991.1 2012.4 1990 2014.4 1987.7 2014.6 C
+1990.1 2013.4 1994.7 2012.6 1993.5 2008.8 C
+[0 0.87 0.91 0.83]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1992.8 2010.8 m
+1992.8 2001.8 1992.8 1994.1 1992.8 1985.8 C
+1989.5 1985.7 1991.1 1981.1 1987.7 1981.7 C
+1987.9 1978.2 1983.9 1980 1984.1 1977.2 C
+1981.1 1977 1981.5 1973 1979.1 1973.1 C
+1979 1972.2 1978.5 1970.9 1977.6 1970.9 C
+1977.9 1971.6 1979 1971.9 1978.6 1973.1 C
+1977.6 1974.9 1976.8 1973.9 1977.2 1976.2 C
+1977.2 1981.5 1977 1989.4 1977.4 1994 C
+1978.3 1995 1976.6 1994.1 1977.2 1994.7 C
+1977 1995.3 1976.6 1997 1977.9 1997.8 C
+1979 1997.5 1979.3 1998.3 1979.8 1998.8 C
+1979.8 1998.9 1979.8 1999.8 1979.8 1999.2 C
+1980.8 1998.7 1979.7 2000.7 1980.8 2000.7 C
+1983.5 2000.4 1982.1 2003 1984.1 2003.3 C
+1984.4 2004.3 1984.5 2003.7 1985.3 2004 C
+1986.3 2004.6 1985.9 2006.1 1986.5 2006.9 C
+1988 2007.1 1988.4 2009.7 1990.6 2009.1 C
+1990.9 2006.1 1989 2000.2 1990.4 1998 C
+1990.2 1994.3 1990.8 1989.2 1989.9 1986.8 C
+1990.2 1984.7 1990.8 1986.2 1991.6 1985.1 C
+1991.5 1985.9 1992.6 1985.5 1992.5 1986.3 C
+1992 1990.5 1992.6 1995 1992 1999.2 C
+1991.6 1998.9 1991.9 1998.3 1991.8 1997.8 C
+1991.8 1998.5 1991.8 2000 1991.8 2000 C
+1991.9 1999.9 1992 1999.8 1992 1999.7 C
+1993.2 2003.5 1991.9 2007.7 1992.3 2011.5 C
+1991.6 2012 1990.9 2012.2 1990.4 2012.9 C
+1991.3 2011.9 1992.2 2012.1 1992.8 2010.8 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1978.4 1968.5 m
+1977 1969.2 1975.8 1968.2 1974.5 1969 C
+1968.3 1973 1961.6 1976 1955.1 1979.1 C
+1962 1975.9 1968.8 1972.5 1975.5 1968.8 C
+1976.5 1968.8 1977.6 1968.8 1978.6 1968.8 C
+1981.7 1972.1 1984.8 1975.7 1988 1978.8 C
+1990.9 1981.9 1996.8 1984.6 1995.2 1990.6 C
+1995.3 1988.6 1994.9 1986.9 1994.7 1985.1 C
+1989.5 1979.1 1983.3 1974.3 1978.4 1968.5 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1978.4 1968.3 m
+1977.9 1968.7 1977.1 1968.5 1976.4 1968.5 C
+1977.3 1968.8 1978.1 1967.9 1978.8 1968.5 C
+1984 1974.3 1990.1 1979.5 1995.2 1985.6 C
+1995.1 1988.4 1995.3 1985.6 1994.9 1984.8 C
+1989.5 1979.4 1983.9 1973.8 1978.4 1968.3 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1978.6 1968 m
+1977.9 1968 1977.4 1968.6 1978.4 1968 C
+1983.9 1973.9 1990.1 1979.1 1995.2 1985.1 C
+1990.2 1979 1983.8 1974.1 1978.6 1968 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1991.1 1982.2 m
+1991.2 1982.9 1991.6 1984.2 1993 1984.4 C
+1992.6 1983.5 1992.1 1982.5 1991.1 1982.2 C
+[0 0.33 0.33 0.99]  vc
+f 
+S 
+n
+1990.4 2012.7 m
+1991.4 2011.8 1990.2 2010.9 1989.9 2010.3 C
+1987.7 2010.2 1987.4 2007.6 1985.6 2007.2 C
+1985.1 2006.2 1984.6 2004.5 1984.1 2004.3 C
+1981.7 2004.5 1982.3 2001.2 1979.8 2000.9 C
+1978.8 1999.6 1978.8 1999.1 1977.6 1998.8 C
+1976.1 1997.4 1976.7 1995 1975.2 1994 C
+1975.8 1994 1975 1994 1975 1993.7 C
+1975.7 1993.2 1975.6 1991.8 1976 1991.3 C
+1975.9 1985.7 1976.1 1979.7 1975.7 1974.5 C
+1976.2 1973.3 1976.9 1971.8 1976.2 1971.4 C
+1973.9 1974.3 1972.2 1973.6 1969.5 1975 C
+1967.9 1977.5 1963.8 1977.1 1961.8 1980 C
+1959 1980 1957.6 1983 1954.8 1982.9 C
+1953.8 1984.2 1954.8 1985.7 1955.1 1987.2 C
+1956.2 1989.5 1959.7 1990.1 1959.9 1991.8 C
+1965.9 1998 1971.8 2005.2 1978.1 2011.7 C
+1979.5 2012 1980.9 2012.7 1980.3 2014.6 C
+1980.5 2015.6 1979.4 2016 1979.8 2017 C
+1983 2015.6 1986.8 2014.1 1990.4 2012.7 C
+[0 0.5 0.5 0.2]  vc
+f 
+S 
+n
+1988.7 1979.6 m
+1988.2 1979.9 1988.6 1980.6 1988.9 1981 C
+1991.4 1982.2 1989.6 1979.9 1988.7 1979.6 C
+[0 0.33 0.33 0.99]  vc
+f 
+S 
+n
+1987.2 1978.1 m
+1985 1977.5 1984.6 1974.3 1982.2 1973.6 C
+1982.7 1974.5 1982.8 1975.8 1984.8 1976 C
+1985.7 1976.9 1985 1978.4 1987.2 1978.1 C
+f 
+S 
+n
+1975.5 2084 m
+1975.5 2082 1975.3 2080 1975.7 2078.2 C
+1978.8 2079 1980.9 2085.5 1984.8 2083.5 C
+1993 2078.7 2001.6 2075 2010 2070.8 C
+2010.1 2064 2009.9 2057.2 2010.3 2050.6 C
+2014.8 2046.2 2020.9 2045.7 2025.6 2042 C
+2026.1 2035.1 2025.8 2028 2025.9 2021.1 C
+2025.8 2027.8 2026.1 2034.6 2025.6 2041.2 C
+2022.2 2044.9 2017.6 2046.8 2012.9 2048 C
+2012.5 2049.5 2010.4 2049.4 2009.8 2051.1 C
+2009.9 2057.6 2009.6 2064.2 2010 2070.5 C
+2001.2 2075.4 1992 2079.1 1983.2 2084 C
+1980.3 2082.3 1977.8 2079.2 1975.2 2077.5 C
+1974.9 2079.9 1977.2 2084.6 1973.3 2085.2 C
+1964.7 2088.6 1956.8 2093.7 1948.1 2097.2 C
+1949 2097.3 1949.6 2096.9 1950.3 2096.7 C
+1958.4 2091.9 1967.1 2088.2 1975.5 2084 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+vmrs
+1948.6 2094.5 m
+1950.2 2093.7 1951.8 2092.9 1953.4 2092.1 C
+1951.8 2092.9 1950.2 2093.7 1948.6 2094.5 C
+[0 0.87 0.91 0.83]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1971.6 2082.3 m
+1971.6 2081.9 1970.7 2081.1 1970.9 2081.3 C
+1970.7 2081.6 1970.6 2081.6 1970.4 2081.3 C
+1970.8 2080.1 1968.7 2081.7 1968.3 2080.8 C
+1966.6 2080.9 1966.7 2078 1964.2 2078.2 C
+1964.8 2075 1960.1 2075.8 1960.1 2072.9 C
+1958 2072.3 1957.5 2069.3 1955.3 2069.3 C
+1953.9 2070.9 1948.8 2067.8 1950 2072 C
+1949 2074 1943.2 2070.6 1944 2074.8 C
+1942.2 2076.6 1937.6 2073.9 1938 2078.2 C
+1936.7 2078.6 1935 2078.6 1933.7 2078.2 C
+1933.5 2080 1936.8 2080.7 1937.3 2082.8 C
+1939.9 2083.5 1940.6 2086.4 1942.6 2088 C
+1945.2 2089.2 1946 2091.3 1948.4 2093.6 C
+1956 2089.5 1963.9 2086.1 1971.6 2082.3 C
+[0 0.01 1 0]  vc
+f 
+S 
+n
+1958.2 2089.7 m
+1956.4 2090 1955.6 2091.3 1953.9 2091.9 C
+1955.6 2091.9 1956.5 2089.7 1958.2 2089.7 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1929.9 2080.4 m
+1929.5 2077.3 1929.7 2073.9 1929.6 2070.8 C
+1929.8 2074.1 1929.2 2077.8 1930.1 2080.8 C
+1935.8 2085.9 1941.4 2091.3 1946.9 2096.9 C
+1941.2 2091 1935.7 2086 1929.9 2080.4 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1930.1 2080.4 m
+1935.8 2086 1941.5 2090.7 1946.9 2096.7 C
+1941.5 2090.9 1935.7 2085.8 1930.1 2080.4 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1940.9 2087.1 m
+1941.7 2088 1944.8 2090.6 1943.6 2089.2 C
+1942.5 2089 1941.6 2087.7 1940.9 2087.1 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1972.8 2082.8 m
+1973 2075.3 1972.4 2066.9 1973.3 2059.5 C
+1972.5 2058.9 1972.8 2057.3 1973.1 2056.4 C
+1974.8 2055.2 1973.4 2055.5 1972.4 2055.4 C
+1970.1 2053.2 1967.9 2050.9 1965.6 2048.7 C
+1960.9 2049.9 1956.9 2052.7 1952.4 2054.7 C
+1949.3 2052.5 1946.3 2049.5 1943.6 2046.8 C
+1939.9 2047.7 1936.8 2050.1 1933.5 2051.8 C
+1930.9 2054.9 1933.5 2056.2 1932.3 2059.7 C
+1933.2 2059.7 1932.2 2060.5 1932.5 2060.2 C
+1933.2 2062.5 1931.6 2064.6 1932.5 2067.4 C
+1932.9 2069.7 1932.7 2072.2 1932.8 2074.6 C
+1933.6 2070.6 1932.2 2066.3 1933 2062.6 C
+1934.4 2058.2 1929.8 2053.5 1935.2 2051.1 C
+1937.7 2049.7 1940.2 2048 1942.8 2046.8 C
+1945.9 2049.2 1948.8 2052 1951.7 2054.7 C
+1952.7 2054.7 1953.6 2054.6 1954.4 2054.2 C
+1958.1 2052.5 1961.7 2049.3 1965.9 2049.2 C
+1968.2 2052.8 1975.2 2055 1972.6 2060.9 C
+1973.3 2062.4 1972.2 2065.2 1972.6 2067.6 C
+1972.7 2072.6 1972.4 2077.7 1972.8 2082.5 C
+1968.1 2084.9 1963.5 2087.5 1958.7 2089.5 C
+1963.5 2087.4 1968.2 2085 1972.8 2082.8 C
+f 
+S 
+n
+1935.2 2081.1 m
+1936.8 2083.4 1938.6 2084.6 1940.4 2086.6 C
+1938.8 2084.4 1936.7 2083.4 1935.2 2081.1 C
+f 
+S 
+n
+1983.2 2081.3 m
+1984.8 2080.5 1986.3 2079.7 1988 2078.9 C
+1986.3 2079.7 1984.8 2080.5 1983.2 2081.3 C
+f 
+S 
+n
+2006.2 2069.1 m
+2006.2 2068.7 2005.2 2067.9 2005.5 2068.1 C
+2005.3 2068.4 2005.2 2068.4 2005 2068.1 C
+2005.4 2066.9 2003.3 2068.5 2002.8 2067.6 C
+2001.2 2067.7 2001.2 2064.8 1998.8 2065 C
+1999.4 2061.8 1994.7 2062.6 1994.7 2059.7 C
+1992.4 2059.5 1992.4 2055.8 1990.1 2056.8 C
+1985.9 2059.5 1981.1 2061 1976.9 2063.8 C
+1977.2 2067.6 1974.9 2074.2 1978.8 2075.8 C
+1979.6 2077.8 1981.7 2078.4 1982.9 2080.4 C
+1990.6 2076.3 1998.5 2072.9 2006.2 2069.1 C
+[0 0.01 1 0]  vc
+f 
+S 
+n
+vmrs
+1992.8 2076.5 m
+1991 2076.8 1990.2 2078.1 1988.4 2078.7 C
+1990.2 2078.7 1991 2076.5 1992.8 2076.5 C
+[0 0.87 0.91 0.83]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1975.5 2073.4 m
+1976.1 2069.7 1973.9 2064.6 1977.4 2062.4 C
+1973.9 2064.5 1976.1 2069.9 1975.5 2073.6 C
+1976 2074.8 1979.3 2077.4 1978.1 2076 C
+1977 2075.7 1975.8 2074.5 1975.5 2073.4 C
+f 
+S 
+n
+2007.4 2069.6 m
+2007.6 2062.1 2007 2053.7 2007.9 2046.3 C
+2007.1 2045.7 2007.3 2044.1 2007.6 2043.2 C
+2009.4 2042 2007.9 2042.3 2006.9 2042.2 C
+2002.2 2037.4 1996.7 2032.4 1992.5 2027.3 C
+1992 2027.3 1991.6 2027.3 1991.1 2027.3 C
+1991.4 2035.6 1991.4 2045.6 1991.1 2054.4 C
+1990.5 2055.5 1988.4 2056.6 1990.6 2055.4 C
+1991.6 2055.4 1991.6 2054.1 1991.6 2053.2 C
+1990.8 2044.7 1991.9 2035.4 1991.6 2027.6 C
+1991.8 2027.6 1992 2027.6 1992.3 2027.6 C
+1997 2032.8 2002.5 2037.7 2007.2 2042.9 C
+2007.3 2044.8 2006.7 2047.4 2007.6 2048.4 C
+2006.9 2055.1 2007.1 2062.5 2007.4 2069.3 C
+2002.7 2071.7 1998.1 2074.3 1993.2 2076.3 C
+1998 2074.2 2002.7 2071.8 2007.4 2069.6 C
+f 
+S 
+n
+2006.7 2069.1 m
+2006.3 2068.6 2005.9 2067.7 2005.7 2066.9 C
+2005.7 2059.7 2005.9 2051.4 2005.5 2045.1 C
+2004.9 2045.3 2004.7 2044.5 2004.3 2045.3 C
+2005.1 2045.3 2004.2 2045.8 2004.8 2046 C
+2004.8 2052.2 2004.8 2059.2 2004.8 2064.5 C
+2005.7 2065.7 2005.1 2065.7 2005 2066.7 C
+2003.8 2067 2002.7 2067.2 2001.9 2066.4 C
+2001.3 2064.6 1998 2063.1 1998 2061.9 C
+1996.1 2062.3 1996.6 2058.3 1994.2 2058.8 C
+1992.6 2057.7 1992.7 2054.8 1989.9 2056.6 C
+1985.6 2059.3 1980.9 2060.8 1976.7 2063.6 C
+1976 2066.9 1976 2071.2 1976.7 2074.6 C
+1977.6 2070.8 1973.1 2062.1 1980.5 2061.2 C
+1984.3 2060.3 1987.5 2058.2 1990.8 2056.4 C
+1991.7 2056.8 1992.9 2057.2 1993.5 2059.2 C
+1994.3 2058.6 1994.4 2060.6 1994.7 2059.2 C
+1995.3 2062.7 1999.2 2061.4 1998.8 2064.8 C
+2001.8 2065.4 2002.5 2068.4 2005.2 2067.4 C
+2004.9 2067.9 2006 2068 2006.4 2069.1 C
+2001.8 2071.1 1997.4 2073.9 1992.8 2075.8 C
+1997.5 2073.8 2002 2071.2 2006.7 2069.1 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1988.7 2056.6 m
+1985.1 2058.7 1981.1 2060.1 1977.6 2061.9 C
+1981.3 2060.5 1985.6 2058.1 1988.7 2056.6 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1977.9 2059.5 m
+1975.7 2064.5 1973.7 2054.7 1975.2 2060.9 C
+1976 2060.6 1977.6 2059.7 1977.9 2059.5 C
+f 
+S 
+n
+1989.6 2051.3 m
+1990.1 2042.3 1989.8 2036.6 1989.9 2028 C
+1989.8 2027 1990.8 2028.3 1990.1 2027.3 C
+1988.9 2026.7 1986.7 2026.9 1986.8 2024.7 C
+1987.4 2023 1985.9 2024.6 1985.1 2023.7 C
+1984.1 2021.4 1982.5 2020.5 1980.3 2020.6 C
+1979.9 2020.8 1979.5 2021.1 1979.3 2021.6 C
+1979.7 2025.8 1978.4 2033 1979.6 2038.1 C
+1983.7 2042.9 1968.8 2044.6 1978.8 2042.7 C
+1979.3 2042.3 1979.6 2041.9 1980 2041.5 C
+1980 2034.8 1980 2027 1980 2021.6 C
+1981.3 2020.5 1981.7 2021.5 1982.9 2021.8 C
+1983.6 2024.7 1986.1 2023.8 1986.8 2026.4 C
+1987.1 2027.7 1988.6 2027.1 1989.2 2028.3 C
+1989.1 2036.7 1989.3 2044.8 1988.9 2053.7 C
+1987.2 2054.9 1986.2 2056.8 1983.9 2057.1 C
+1986.3 2055.9 1990.9 2055 1989.6 2051.3 C
+f 
+S 
+n
+1971.6 2078.9 m
+1971.4 2070.5 1972.1 2062.2 1971.6 2055.9 C
+1969.9 2053.7 1967.6 2051.7 1965.6 2049.6 C
+1961.4 2050.4 1957.6 2053.6 1953.4 2055.2 C
+1949.8 2055.6 1948.2 2051.2 1945.5 2049.6 C
+1945.1 2048.8 1944.5 2047.9 1943.6 2047.5 C
+1940.1 2047.8 1937.3 2051 1934 2052.3 C
+1933.7 2052.6 1933.7 2053 1933.2 2053.2 C
+1933.7 2060.8 1933.4 2067.2 1933.5 2074.6 C
+1933.8 2068.1 1934 2060.9 1933.2 2054 C
+1935.3 2050.9 1939.3 2049.6 1942.4 2047.5 C
+1942.8 2047.5 1943.4 2047.4 1943.8 2047.7 C
+1947.1 2050.2 1950.3 2057.9 1955.3 2054.4 C
+1955.4 2054.4 1955.5 2054.3 1955.6 2054.2 C
+1955.9 2057.6 1956.1 2061.8 1955.3 2064.8 C
+1955.4 2064.3 1955.1 2063.8 1955.6 2063.6 C
+1956 2066.6 1955.3 2068.7 1958.7 2069.8 C
+1959.2 2071.7 1961.4 2071.7 1962 2074.1 C
+1964.4 2074.2 1964 2077.7 1967.3 2078.4 C
+1967 2079.7 1968.1 2079.9 1969 2080.1 C
+1971.1 2079.9 1970 2079.2 1970.4 2078 C
+1969.5 2077.2 1970.3 2075.9 1969.7 2075.1 C
+1970.1 2069.8 1970.1 2063.6 1969.7 2058.8 C
+1969.2 2058.5 1970 2058.1 1970.2 2057.8 C
+1970.4 2058.3 1971.2 2057.7 1971.4 2058.3 C
+1971.5 2065.3 1971.2 2073.6 1971.6 2081.1 C
+1974.1 2081.4 1969.8 2084.3 1972.4 2082.5 C
+1971.9 2081.4 1971.6 2080.2 1971.6 2078.9 C
+[0 0.4 1 0]  vc
+f 
+S 
+n
+1952.4 2052 m
+1954.1 2051.3 1955.6 2050.4 1957.2 2049.6 C
+1955.6 2050.4 1954.1 2051.3 1952.4 2052 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1975.5 2039.8 m
+1975.5 2039.4 1974.5 2038.7 1974.8 2038.8 C
+1974.6 2039.1 1974.5 2039.1 1974.3 2038.8 C
+1974.6 2037.6 1972.5 2039.3 1972.1 2038.4 C
+1970.4 2038.4 1970.5 2035.5 1968 2035.7 C
+1968.6 2032.5 1964 2033.3 1964 2030.4 C
+1961.9 2029.8 1961.4 2026.8 1959.2 2026.8 C
+1957.7 2028.5 1952.6 2025.3 1953.9 2029.5 C
+1952.9 2031.5 1947 2028.2 1947.9 2032.4 C
+1946 2034.2 1941.5 2031.5 1941.9 2035.7 C
+1940.6 2036.1 1938.9 2036.1 1937.6 2035.7 C
+1937.3 2037.5 1940.7 2038.2 1941.2 2040.3 C
+1943.7 2041.1 1944.4 2043.9 1946.4 2045.6 C
+1949.1 2046.7 1949.9 2048.8 1952.2 2051.1 C
+1959.9 2047.1 1967.7 2043.6 1975.5 2039.8 C
+[0 0.01 1 0]  vc
+f 
+S 
+n
+vmrs
+1962 2047.2 m
+1960.2 2047.5 1959.5 2048.9 1957.7 2049.4 C
+1959.5 2049.5 1960.3 2047.2 1962 2047.2 C
+[0 0.87 0.91 0.83]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+2012.4 2046.3 m
+2010.3 2051.3 2008.3 2041.5 2009.8 2047.7 C
+2010.5 2047.4 2012.2 2046.5 2012.4 2046.3 C
+f 
+S 
+n
+1944.8 2044.6 m
+1945.5 2045.6 1948.6 2048.1 1947.4 2046.8 C
+1946.3 2046.5 1945.5 2045.2 1944.8 2044.6 C
+f 
+S 
+n
+1987.2 2054.9 m
+1983.7 2057.3 1979.6 2058 1976 2060.2 C
+1974.7 2058.2 1977.2 2055.8 1974.3 2054.9 C
+1973.1 2052 1970.4 2050.2 1968 2048 C
+1968 2047.7 1968 2047.4 1968.3 2047.2 C
+1969.5 2046.1 1983 2040.8 1972.4 2044.8 C
+1971.2 2046.6 1967.9 2046 1968 2048.2 C
+1970.5 2050.7 1973.8 2052.6 1974.3 2055.6 C
+1975.1 2055 1975.7 2056.7 1975.7 2057.1 C
+1975.7 2058.2 1974.8 2059.3 1975.5 2060.4 C
+1979.3 2058.2 1983.9 2057.7 1987.2 2054.9 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1967.8 2047.5 m
+1968.5 2047 1969.1 2046.5 1969.7 2046 C
+1969.1 2046.5 1968.5 2047 1967.8 2047.5 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1976.7 2040.3 m
+1976.9 2032.8 1976.3 2024.4 1977.2 2017 C
+1976.4 2016.5 1976.6 2014.8 1976.9 2013.9 C
+1978.7 2012.7 1977.2 2013 1976.2 2012.9 C
+1971.5 2008.1 1965.9 2003.1 1961.8 1998 C
+1960.9 1998 1960.1 1998 1959.2 1998 C
+1951.5 2001.1 1944.3 2005.5 1937.1 2009.6 C
+1935 2012.9 1937 2013.6 1936.1 2017.2 C
+1937.1 2017.2 1936 2018 1936.4 2017.7 C
+1937 2020.1 1935.5 2022.1 1936.4 2024.9 C
+1936.8 2027.2 1936.5 2029.7 1936.6 2032.1 C
+1937.4 2028.2 1936 2023.8 1936.8 2020.1 C
+1938.3 2015.7 1933.6 2011 1939 2008.6 C
+1945.9 2004.5 1953.1 2000.3 1960.6 1998.3 C
+1960.9 1998.3 1961.3 1998.3 1961.6 1998.3 C
+1966.2 2003.5 1971.8 2008.4 1976.4 2013.6 C
+1976.6 2015.5 1976 2018.1 1976.9 2019.2 C
+1976.1 2025.8 1976.4 2033.2 1976.7 2040 C
+1971.9 2042.4 1967.4 2045 1962.5 2047 C
+1967.3 2044.9 1972 2042.6 1976.7 2040.3 C
+f 
+S 
+n
+1939 2038.6 m
+1940.6 2040.9 1942.5 2042.1 1944.3 2044.1 C
+1942.7 2041.9 1940.6 2040.9 1939 2038.6 C
+f 
+S 
+n
+2006.2 2065.7 m
+2006 2057.3 2006.7 2049 2006.2 2042.7 C
+2002.1 2038.4 1997.7 2033.4 1993 2030 C
+1992.9 2029.3 1992.5 2028.6 1992 2028.3 C
+1992.1 2036.6 1991.9 2046.2 1992.3 2054.9 C
+1990.8 2056.2 1989 2056.7 1987.5 2058 C
+1988.7 2057.7 1990.7 2054.4 1993 2056.4 C
+1993.4 2058.8 1996 2058.2 1996.6 2060.9 C
+1999 2061 1998.5 2064.5 2001.9 2065.2 C
+2001.5 2066.5 2002.7 2066.7 2003.6 2066.9 C
+2005.7 2066.7 2004.6 2066 2005 2064.8 C
+2004 2064 2004.8 2062.7 2004.3 2061.9 C
+2004.6 2056.6 2004.6 2050.4 2004.3 2045.6 C
+2003.7 2045.3 2004.6 2044.9 2004.8 2044.6 C
+2005 2045.1 2005.7 2044.5 2006 2045.1 C
+2006 2052.1 2005.8 2060.4 2006.2 2067.9 C
+2008.7 2068.2 2004.4 2071.1 2006.9 2069.3 C
+2006.4 2068.2 2006.2 2067 2006.2 2065.7 C
+[0 0.4 1 0]  vc
+f 
+S 
+n
+2021.8 2041.7 m
+2018.3 2044.1 2014.1 2044.8 2010.5 2047 C
+2009.3 2045 2011.7 2042.6 2008.8 2041.7 C
+2004.3 2035.1 1997.6 2030.9 1993 2024.4 C
+1992.1 2024 1991.5 2024.3 1990.8 2024 C
+1993.2 2023.9 1995.3 2027.1 1996.8 2029 C
+2000.4 2032.6 2004.9 2036.9 2008.4 2040.8 C
+2008.2 2043.1 2011.4 2042.8 2009.8 2045.8 C
+2009.8 2046.3 2009.7 2046.9 2010 2047.2 C
+2013.8 2045 2018.5 2044.5 2021.8 2041.7 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+2001.6 2034 m
+2000.7 2033.1 1999.9 2032.3 1999 2031.4 C
+1999.9 2032.3 2000.7 2033.1 2001.6 2034 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+vmrs
+1989.4 2024.4 m
+1989.5 2025.4 1988.6 2024.3 1988.9 2024.7 C
+1990.5 2025.8 1990.7 2024.2 1992.8 2024.9 C
+1993.8 2025.9 1995 2027.1 1995.9 2028 C
+1994.3 2026 1991.9 2023.4 1989.4 2024.4 C
+[0 0.87 0.91 0.83]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1984.8 2019.9 m
+1984.6 2018.6 1986.3 2017.2 1987.7 2016.8 C
+1987.2 2017.5 1982.9 2017.9 1984.4 2020.6 C
+1984.1 2019.9 1984.9 2020 1984.8 2019.9 C
+f 
+S 
+n
+1981.7 2017 m
+1979.6 2022 1977.6 2012.3 1979.1 2018.4 C
+1979.8 2018.1 1981.5 2017.2 1981.7 2017 C
+f 
+S 
+n
+1884.3 2019.2 m
+1884.7 2010.5 1884.5 2000.6 1884.5 1991.8 C
+1886.6 1989.3 1889.9 1988.9 1892.4 1987 C
+1890.8 1988.7 1886 1989.1 1884.3 1992.3 C
+1884.7 2001 1884.5 2011.3 1884.5 2019.9 C
+1891 2025.1 1895.7 2031.5 1902 2036.9 C
+1896.1 2031 1890 2024.9 1884.3 2019.2 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1884 2019.4 m
+1884.5 2010.6 1884.2 2000.4 1884.3 1991.8 C
+1884.8 1990.4 1887.8 1989 1884.8 1990.8 C
+1884.3 1991.3 1884.3 1992 1884 1992.5 C
+1884.5 2001.2 1884.2 2011.1 1884.3 2019.9 C
+1887.9 2023.1 1891.1 2026.4 1894.4 2030 C
+1891.7 2026.1 1887.1 2022.9 1884 2019.4 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1885 2011.7 m
+1885 2006.9 1885 2001.9 1885 1997.1 C
+1885 2001.9 1885 2006.9 1885 2011.7 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1975.5 2036.4 m
+1975.2 2028 1976 2019.7 1975.5 2013.4 C
+1971.1 2008.5 1965.6 2003.6 1961.6 1999 C
+1958.8 1998 1956 2000 1953.6 2001.2 C
+1948.2 2004.7 1941.9 2006.5 1937.1 2010.8 C
+1937.5 2018.3 1937.3 2024.7 1937.3 2032.1 C
+1937.6 2025.6 1937.9 2018.4 1937.1 2011.5 C
+1937.3 2011 1937.6 2010.5 1937.8 2010 C
+1944.6 2005.7 1951.9 2002.3 1959.2 1999 C
+1960.1 1998.5 1960.1 1999.8 1960.4 2000.4 C
+1959.7 2006.9 1959.7 2014.2 1959.4 2021.1 C
+1959 2021.1 1959.2 2021.9 1959.2 2022.3 C
+1959.2 2021.9 1959 2021.3 1959.4 2021.1 C
+1959.8 2024.1 1959.2 2026.2 1962.5 2027.3 C
+1963 2029.2 1965.3 2029.2 1965.9 2031.6 C
+1968.3 2031.8 1967.8 2035.2 1971.2 2036 C
+1970.8 2037.2 1971.9 2037.5 1972.8 2037.6 C
+1974.9 2037.4 1973.9 2036.7 1974.3 2035.5 C
+1973.3 2034.7 1974.1 2033.4 1973.6 2032.6 C
+1973.9 2027.3 1973.9 2021.1 1973.6 2016.3 C
+1973 2016 1973.9 2015.6 1974 2015.3 C
+1974.3 2015.9 1975 2015.3 1975.2 2015.8 C
+1975.3 2022.8 1975.1 2031.2 1975.5 2038.6 C
+1977.9 2039 1973.7 2041.8 1976.2 2040 C
+1975.7 2039 1975.5 2037.8 1975.5 2036.4 C
+[0 0.4 1 0]  vc
+f 
+S 
+n
+1991.1 2012.4 m
+1987.5 2014.8 1983.4 2015.6 1979.8 2017.7 C
+1978.5 2015.7 1981 2013.3 1978.1 2012.4 C
+1973.6 2005.8 1966.8 2001.6 1962.3 1995.2 C
+1961.4 1994.7 1960.8 1995 1960.1 1994.7 C
+1962.5 1994.6 1964.6 1997.8 1966.1 1999.7 C
+1969.7 2003.3 1974.2 2007.6 1977.6 2011.5 C
+1977.5 2013.8 1980.6 2013.5 1979.1 2016.5 C
+1979.1 2017 1979 2017.6 1979.3 2018 C
+1983.1 2015.7 1987.8 2015.2 1991.1 2012.4 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1970.9 2004.8 m
+1970 2003.9 1969.2 2003 1968.3 2002.1 C
+1969.2 2003 1970 2003.9 1970.9 2004.8 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1887.9 1994.9 m
+1888.5 1992.3 1891.4 1992.2 1893.2 1990.8 C
+1898.4 1987.5 1904 1984.8 1909.5 1982.2 C
+1909.7 1982.7 1910.3 1982.1 1910.4 1982.7 C
+1909.5 1990.5 1910.1 1996.4 1910 2004.5 C
+1909.1 2003.4 1909.7 2005.8 1909.5 2006.4 C
+1910.4 2006 1909.7 2008 1910.2 2007.9 C
+1911.3 2010.6 1912.5 2012.6 1915.7 2013.4 C
+1915.8 2013.7 1915.5 2014.4 1916 2014.4 C
+1916.3 2015 1915.4 2016 1915.2 2016 C
+1916.1 2015.5 1916.5 2014.5 1916 2013.6 C
+1913.4 2013.3 1913.1 2010.5 1910.9 2009.8 C
+1910.7 2008.8 1910.4 2007.9 1910.2 2006.9 C
+1911.1 1998.8 1909.4 1990.7 1910.7 1982.4 C
+1910 1982.1 1908.9 1982.1 1908.3 1982.4 C
+1901.9 1986.1 1895 1988.7 1888.8 1993 C
+1888 1993.4 1888.4 1994.3 1887.6 1994.7 C
+1888.1 2001.3 1887.8 2008.6 1887.9 2015.1 C
+1887.3 2017.5 1887.9 2015.4 1888.4 2014.4 C
+1887.8 2008 1888.4 2001.3 1887.9 1994.9 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+vmrs
+1887.9 2018.4 m
+1887.5 2016.9 1888.5 2016 1888.8 2014.8 C
+1890.1 2014.8 1891.1 2016.6 1892.4 2015.3 C
+1892.4 2014.4 1893.8 2012.9 1894.4 2012.4 C
+1895.9 2012.4 1896.6 2013.9 1897.7 2012.7 C
+1898.4 2011.7 1898.6 2010.4 1899.6 2009.8 C
+1901.7 2009.9 1902.9 2010.4 1904 2009.1 C
+1904.3 2007.4 1904 2007.6 1904.9 2007.2 C
+1906.2 2007 1907.6 2006.5 1908.8 2006.7 C
+1910.6 2008.2 1909.8 2011.5 1912.6 2012 C
+1912.4 2013 1913.8 2012.7 1914 2013.2 C
+1911.5 2011.1 1909.1 2007.9 1909.2 2004.3 C
+1909.5 2003.5 1909.9 2004.9 1909.7 2004.3 C
+1909.9 1996.2 1909.3 1990.5 1910.2 1982.7 C
+1909.5 1982.6 1909.5 1982.6 1908.8 1982.7 C
+1903.1 1985.7 1897 1987.9 1891.7 1992 C
+1890.5 1993 1888.2 1992.9 1888.1 1994.9 C
+1888.7 2001.4 1888.1 2008.4 1888.6 2014.8 C
+1888.3 2016 1887.2 2016.9 1887.6 2018.4 C
+1892.3 2023.9 1897.6 2027.9 1902.3 2033.3 C
+1898 2028.2 1892.1 2023.8 1887.9 2018.4 C
+[0.4 0.4 0 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1910.9 1995.2 m
+1910.4 1999.8 1911 2003.3 1910.9 2008.1 C
+1910.9 2003.8 1910.9 1999.2 1910.9 1995.2 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1911.2 2004.3 m
+1911.2 2001.9 1911.2 1999.7 1911.2 1997.3 C
+1911.2 1999.7 1911.2 2001.9 1911.2 2004.3 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1958.7 1995.2 m
+1959 1995.6 1956.2 1995 1956.5 1996.8 C
+1955.8 1997.6 1954.2 1998.5 1953.6 1997.3 C
+1953.6 1990.8 1954.9 1989.6 1953.4 1983.9 C
+1953.4 1983.3 1953.3 1982.1 1954.4 1982 C
+1955.5 1982.6 1956.5 1981.3 1957.5 1981 C
+1956.3 1981.8 1954.7 1982.6 1953.9 1981.5 C
+1951.4 1983 1954.7 1988.8 1952.9 1990.6 C
+1953.8 1990.6 1953.2 1992.7 1953.4 1993.7 C
+1953.8 1994.5 1952.3 1996.1 1953.2 1997.8 C
+1956.3 1999.4 1957.5 1994 1959.9 1995.6 C
+1962 1994.4 1963.7 1997.7 1965.2 1998.8 C
+1963.5 1996.7 1961.2 1994.1 1958.7 1995.2 C
+f 
+S 
+n
+1945 2000.7 m
+1945.4 1998.7 1945.4 1997.9 1945 1995.9 C
+1944.5 1995.3 1944.2 1992.6 1945.7 1993.2 C
+1946 1992.2 1948.7 1992.5 1948.4 1990.6 C
+1947.5 1990.3 1948.1 1988.7 1947.9 1988.2 C
+1948.9 1987.8 1950.5 1986.8 1950.5 1984.6 C
+1951.5 1980.9 1946.7 1983 1947.2 1979.8 C
+1944.5 1979.9 1945.2 1976.6 1943.1 1976.7 C
+1941.8 1975.7 1942.1 1972.7 1939.2 1973.8 C
+1938.2 1974.6 1939.3 1971.6 1938.3 1970.9 C
+1938.8 1969.2 1933.4 1970.3 1937.3 1970 C
+1939.4 1971.2 1937.2 1973 1937.6 1974.3 C
+1937.2 1976.3 1937.1 1981.2 1937.8 1984.1 C
+1938.8 1982.3 1937.9 1976.6 1938.5 1973.1 C
+1938.9 1975 1938.5 1976.4 1939.7 1977.2 C
+1939.5 1983.5 1938.9 1991.3 1940.2 1997.3 C
+1939.4 1999.1 1938.6 1997.1 1937.8 1997.1 C
+1937.4 1996.7 1937.6 1996.1 1937.6 1995.6 C
+1936.5 1998.5 1940.1 1998.4 1940.9 2000.7 C
+1942.1 2000.4 1943.2 2001.3 1943.1 2002.4 C
+1943.6 2003.1 1941.1 2004.6 1942.8 2003.8 C
+1943.9 2002.5 1942.6 2000.6 1945 2000.7 C
+[0.65 0.65 0 0.42]  vc
+f 
+S 
+n
+1914.5 2006.4 m
+1914.1 2004.9 1915.2 2004 1915.5 2002.8 C
+1916.7 2002.8 1917.8 2004.6 1919.1 2003.3 C
+1919 2002.4 1920.4 2000.9 1921 2000.4 C
+1922.5 2000.4 1923.2 2001.9 1924.4 2000.7 C
+1925 1999.7 1925.3 1998.4 1926.3 1997.8 C
+1928.4 1997.9 1929.5 1998.4 1930.6 1997.1 C
+1930.9 1995.4 1930.7 1995.6 1931.6 1995.2 C
+1932.8 1995 1934.3 1994.5 1935.4 1994.7 C
+1936.1 1995.8 1936.9 1996.2 1936.6 1997.8 C
+1938.9 1999.4 1939.7 2001.3 1942.4 2002.4 C
+1942.4 2002.5 1942.2 2003 1942.6 2002.8 C
+1942.9 2000.4 1939.2 2001.8 1939.2 1999.7 C
+1936.2 1998.6 1937 1995.3 1935.9 1993.5 C
+1937.1 1986.5 1935.2 1977.9 1937.6 1971.2 C
+1937.6 1970.3 1936.6 1971 1936.4 1970.4 C
+1930.2 1973.4 1924 1976 1918.4 1980 C
+1917.2 1981 1914.9 1980.9 1914.8 1982.9 C
+1915.3 1989.4 1914.7 1996.4 1915.2 2002.8 C
+1914.9 2004 1913.9 2004.9 1914.3 2006.4 C
+1919 2011.9 1924.2 2015.9 1928.9 2021.3 C
+1924.6 2016.2 1918.7 2011.8 1914.5 2006.4 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1914.5 1982.9 m
+1915.1 1980.3 1918 1980.2 1919.8 1978.8 C
+1925 1975.5 1930.6 1972.8 1936.1 1970.2 C
+1939.4 1970.6 1936.1 1974.2 1936.6 1976.4 C
+1936.5 1981.9 1936.8 1987.5 1936.4 1992.8 C
+1935.9 1992.8 1936.2 1993.5 1936.1 1994 C
+1937.1 1993.6 1936.2 1995.9 1936.8 1995.9 C
+1937 1998 1939.5 1999.7 1940.4 2000.7 C
+1940.1 1998.6 1935 1997.2 1937.6 1993.7 C
+1938.3 1985.7 1935.9 1976.8 1937.8 1970.7 C
+1936.9 1969.8 1935.4 1970.3 1934.4 1970.7 C
+1928.3 1974.4 1921.4 1976.7 1915.5 1981 C
+1914.6 1981.4 1915.1 1982.3 1914.3 1982.7 C
+1914.7 1989.3 1914.5 1996.6 1914.5 2003.1 C
+1913.9 2005.5 1914.5 2003.4 1915 2002.4 C
+1914.5 1996 1915.1 1989.3 1914.5 1982.9 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1939.2 1994.9 m
+1939.3 1995 1939.4 1995.1 1939.5 1995.2 C
+1939.1 1989 1939.3 1981.6 1939 1976.7 C
+1938.6 1976.3 1938.6 1974.6 1938.5 1973.3 C
+1938.7 1976.1 1938.1 1979.4 1939 1981.7 C
+1937.3 1986 1937.7 1991.6 1938 1996.4 C
+1937.3 1994.3 1939.6 1996.2 1939.2 1994.9 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1938.3 1988.4 m
+1938.5 1990.5 1937.9 1994.1 1938.8 1994.7 C
+1937.9 1992.6 1939 1990.6 1938.3 1988.4 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1938.8 1985.8 m
+1938.5 1985.9 1938.4 1985.7 1938.3 1985.6 C
+1938.4 1986.2 1938 1989.5 1938.8 1987.2 C
+1938.8 1986.8 1938.8 1986.3 1938.8 1985.8 C
+f 
+S 
+n
+vmrs
+1972.8 2062.1 m
+1971.9 2061 1972.5 2059.4 1972.4 2058 C
+1972.2 2063.8 1971.9 2073.7 1972.4 2081.3 C
+1972.5 2074.9 1971.9 2067.9 1972.8 2062.1 C
+[0 1 1 0.36]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1940.2 2071.7 m
+1941.3 2072 1943.1 2072.3 1944 2071.5 C
+1943.6 2069.9 1945.2 2069.1 1946 2068.8 C
+1950 2071.1 1948.7 2065.9 1951.7 2066.2 C
+1953.5 2063.9 1956.9 2069.4 1955.6 2063.8 C
+1955.5 2064.2 1955.7 2064.8 1955.3 2065 C
+1954.3 2063.7 1956.2 2063.6 1955.6 2062.1 C
+1954.5 2060 1958.3 2050.3 1952.2 2055.6 C
+1949.1 2053.8 1946 2051 1943.8 2048 C
+1940.3 2048 1937.5 2051.3 1934.2 2052.5 C
+1933.1 2054.6 1934.4 2057.3 1934 2060 C
+1934 2065.1 1934 2069.7 1934 2074.6 C
+1934.4 2069 1934.1 2061.5 1934.2 2054.9 C
+1934.6 2054.5 1935.3 2054.7 1935.9 2054.7 C
+1937 2055.3 1935.9 2056.1 1935.9 2056.8 C
+1936.5 2063 1935.6 2070.5 1935.9 2074.6 C
+1936.7 2074.4 1937.3 2075.2 1938 2074.6 C
+1937.9 2073.6 1939.1 2072.1 1940.2 2071.7 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1933.2 2074.1 m
+1933.2 2071.5 1933.2 2069 1933.2 2066.4 C
+1933.2 2069 1933.2 2071.5 1933.2 2074.1 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+2007.4 2048.9 m
+2006.5 2047.8 2007.1 2046.2 2006.9 2044.8 C
+2006.7 2050.6 2006.5 2060.5 2006.9 2068.1 C
+2007.1 2061.7 2006.5 2054.7 2007.4 2048.9 C
+f 
+S 
+n
+1927.2 2062.4 m
+1925.8 2060.1 1928.1 2058.2 1927 2056.4 C
+1927.3 2055.5 1926.5 2053.5 1926.8 2051.8 C
+1926.8 2052.8 1926 2052.5 1925.3 2052.5 C
+1924.1 2052.8 1925 2050.5 1924.4 2050.1 C
+1925.3 2050.2 1925.4 2048.8 1926.3 2049.4 C
+1926.5 2052.3 1928.4 2047.2 1928.4 2051.1 C
+1928.9 2050.5 1929 2051.4 1928.9 2051.8 C
+1928.9 2052 1928.9 2052.3 1928.9 2052.5 C
+1929.4 2051.4 1928.9 2049 1930.1 2048.2 C
+1928.9 2047.1 1930.5 2047.1 1930.4 2046.5 C
+1931.9 2046.2 1933.1 2046.1 1934.7 2046.5 C
+1934.6 2046.9 1935.2 2047.9 1934.4 2048.4 C
+1936.9 2048.1 1933.6 2043.8 1935.9 2043.9 C
+1935.7 2043.9 1934.8 2041.3 1933.2 2041.7 C
+1932.5 2041.6 1932.4 2039.6 1932.3 2041 C
+1930.8 2042.6 1929 2040.6 1927.7 2042 C
+1927.5 2041.4 1927.1 2040.9 1927.2 2040.3 C
+1927.8 2040.6 1927.4 2039.1 1928.2 2038.6 C
+1929.4 2038 1930.5 2038.8 1931.3 2037.9 C
+1931.7 2039 1932.5 2038.6 1931.8 2037.6 C
+1930.9 2037 1928.7 2037.8 1928.2 2037.9 C
+1926.7 2037.8 1928 2039 1927 2038.8 C
+1927.4 2040.4 1925.6 2040.8 1925.1 2041 C
+1924.3 2040.4 1923.2 2040.5 1922.2 2040.5 C
+1921.4 2041.7 1921 2043.9 1919.3 2043.9 C
+1918.8 2043.4 1917.2 2043.3 1916.4 2043.4 C
+1915.9 2044.4 1915.7 2046 1914.3 2046.5 C
+1913.1 2046.6 1912 2044.5 1911.4 2046.3 C
+1912.8 2046.5 1913.8 2047.4 1915.7 2047 C
+1916.9 2047.7 1915.6 2048.8 1916 2049.4 C
+1915.4 2049.3 1913.9 2050.3 1913.3 2051.1 C
+1913.9 2054.1 1916 2050.2 1916.7 2053 C
+1916.9 2053.8 1915.5 2054.1 1916.7 2054.4 C
+1917 2054.7 1920.2 2054.3 1919.3 2056.6 C
+1918.8 2056.1 1920.2 2058.6 1920.3 2057.6 C
+1921.2 2057.9 1922.1 2057.5 1922.4 2059 C
+1922.3 2059.1 1922.2 2059.3 1922 2059.2 C
+1922.1 2059.7 1922.4 2060.3 1922.9 2060.7 C
+1923.2 2060.1 1923.8 2060.4 1924.6 2060.7 C
+1925.9 2062.6 1923.2 2062 1925.6 2063.6 C
+1926.1 2063.1 1927.3 2062.5 1927.2 2062.4 C
+[0.21 0.21 0 0]  vc
+f 
+S 
+n
+1933.2 2063.3 m
+1933.2 2060.7 1933.2 2058.2 1933.2 2055.6 C
+1933.2 2058.2 1933.2 2060.7 1933.2 2063.3 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+1965.2 2049.2 m
+1967.1 2050.1 1969.9 2053.7 1972.1 2056.4 C
+1970.5 2054 1967.6 2051.3 1965.2 2049.2 C
+f 
+S 
+n
+1991.8 2034.8 m
+1991.7 2041.5 1992 2048.5 1991.6 2055.2 C
+1990.5 2056.4 1991.9 2054.9 1991.8 2054.4 C
+1991.8 2047.9 1991.8 2041.3 1991.8 2034.8 C
+f 
+S 
+n
+1988.9 2053.2 m
+1988.9 2044.3 1988.9 2036.6 1988.9 2028.3 C
+1985.7 2028.2 1987.2 2023.5 1983.9 2024.2 C
+1983.9 2022.4 1982 2021.6 1981 2021.3 C
+1980.6 2021.1 1980.6 2021.7 1980.3 2021.6 C
+1980.3 2027 1980.3 2034.8 1980.3 2041.5 C
+1979.3 2043.2 1977.6 2043 1976.2 2043.6 C
+1977.1 2043.8 1978.5 2043.2 1978.8 2044.1 C
+1978.5 2045.3 1979.9 2045.3 1980.3 2045.8 C
+1980.5 2046.8 1980.7 2046.2 1981.5 2046.5 C
+1982.4 2047.1 1982 2048.6 1982.7 2049.4 C
+1984.2 2049.6 1984.6 2052.2 1986.8 2051.6 C
+1987.1 2048.6 1985.1 2042.7 1986.5 2040.5 C
+1986.3 2036.7 1986.9 2031.7 1986 2029.2 C
+1986.3 2027.1 1986.9 2028.6 1987.7 2027.6 C
+1987.7 2028.3 1988.7 2028 1988.7 2028.8 C
+1988.1 2033 1988.7 2037.5 1988.2 2041.7 C
+1987.8 2041.4 1988 2040.8 1988 2040.3 C
+1988 2041 1988 2042.4 1988 2042.4 C
+1988 2042.4 1988.1 2042.3 1988.2 2042.2 C
+1989.3 2046 1988 2050.2 1988.4 2054 C
+1987.8 2054.4 1987.1 2054.7 1986.5 2055.4 C
+1987.4 2054.4 1988.4 2054.6 1988.9 2053.2 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1950.8 2054.4 m
+1949.7 2053.4 1948.7 2052.3 1947.6 2051.3 C
+1948.7 2052.3 1949.7 2053.4 1950.8 2054.4 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+vmrs
+2006.7 2043.2 m
+2004.5 2040.8 2002.4 2038.4 2000.2 2036 C
+2002.4 2038.4 2004.5 2040.8 2006.7 2043.2 C
+[0 1 1 0.36]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1976.7 2019.6 m
+1975.8 2018.6 1976.4 2016.9 1976.2 2015.6 C
+1976 2021.3 1975.8 2031.2 1976.2 2038.8 C
+1976.4 2032.4 1975.8 2025.5 1976.7 2019.6 C
+f 
+S 
+n
+1988.4 2053.5 m
+1988.6 2049.2 1988.1 2042.8 1988 2040 C
+1988.4 2040.4 1988.1 2041 1988.2 2041.5 C
+1988.3 2037.2 1988 2032.7 1988.4 2028.5 C
+1987.6 2027.1 1987.2 2028.6 1986.8 2028 C
+1985.9 2028.5 1986.5 2029.7 1986.3 2030.4 C
+1986.9 2029.8 1986.6 2031 1987 2031.2 C
+1987.4 2039.6 1985 2043 1987.2 2050.4 C
+1987.2 2051.6 1985.9 2052.3 1984.6 2051.3 C
+1981.9 2049.7 1982.9 2047 1980.3 2046.5 C
+1980.3 2045.2 1978.1 2046.2 1978.6 2043.9 C
+1975.6 2043.3 1979.3 2045.6 1979.6 2046.5 C
+1980.8 2046.6 1981.5 2048.5 1982.2 2049.9 C
+1983.7 2050.8 1984.8 2052.8 1986.5 2053 C
+1986.7 2053.5 1987.5 2054.1 1987 2054.7 C
+1987.4 2053.9 1988.3 2054.3 1988.4 2053.5 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1988 2038.1 m
+1988 2036.7 1988 2035.4 1988 2034 C
+1988 2035.4 1988 2036.7 1988 2038.1 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+1999.7 2035.7 m
+1997.6 2033.5 1995.4 2031.2 1993.2 2029 C
+1995.4 2031.2 1997.6 2033.5 1999.7 2035.7 C
+f 
+S 
+n
+1944 2029.2 m
+1945.2 2029.5 1946.9 2029.8 1947.9 2029 C
+1947.4 2027.4 1949 2026.7 1949.8 2026.4 C
+1953.9 2028.6 1952.6 2023.4 1955.6 2023.7 C
+1957.4 2021.4 1960.7 2027 1959.4 2021.3 C
+1959.3 2021.7 1959.6 2022.3 1959.2 2022.5 C
+1958.1 2021.2 1960.1 2021.1 1959.4 2019.6 C
+1959.1 2012.7 1959.9 2005.1 1959.6 1999.2 C
+1955.3 2000.1 1951.3 2003.1 1947.2 2005 C
+1943.9 2006 1941.2 2008.7 1938 2010 C
+1936.9 2012.1 1938.2 2014.8 1937.8 2017.5 C
+1937.8 2022.6 1937.8 2027.3 1937.8 2032.1 C
+1938.2 2026.5 1938 2019 1938 2012.4 C
+1938.5 2012 1939.2 2012.3 1939.7 2012.2 C
+1940.8 2012.8 1939.7 2013.6 1939.7 2014.4 C
+1940.4 2020.5 1939.4 2028 1939.7 2032.1 C
+1940.6 2031.9 1941.2 2032.7 1941.9 2032.1 C
+1941.7 2031.2 1943 2029.7 1944 2029.2 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1937.1 2031.6 m
+1937.1 2029.1 1937.1 2026.5 1937.1 2024 C
+1937.1 2026.5 1937.1 2029.1 1937.1 2031.6 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+1991.8 2028 m
+1992.5 2027.8 1993.2 2029.9 1994 2030.2 C
+1992.9 2029.6 1993.1 2028.1 1991.8 2028 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1991.8 2027.8 m
+1992.4 2027.6 1992.6 2028.3 1993 2028.5 C
+1992.6 2028.2 1992.2 2027.6 1991.6 2027.8 C
+1991.6 2028.5 1991.6 2029.1 1991.6 2029.7 C
+1991.6 2029.1 1991.4 2028.3 1991.8 2027.8 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+1985.8 2025.4 m
+1985.3 2025.2 1984.8 2024.7 1984.1 2024.9 C
+1983.3 2025.3 1983.6 2027.3 1983.9 2027.6 C
+1985 2028 1986.9 2026.9 1985.8 2025.4 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+vmrs
+1993.5 2024.4 m
+1992.4 2023.7 1991.3 2022.9 1990.1 2023.2 C
+1990.7 2023.7 1989.8 2023.8 1989.4 2023.7 C
+1989.1 2023.7 1988.6 2023.9 1988.4 2023.5 C
+1988.5 2023.2 1988.3 2022.7 1988.7 2022.5 C
+1989 2022.6 1988.9 2023 1988.9 2023.2 C
+1989.1 2022.8 1990.4 2022.3 1990.6 2021.3 C
+1990.4 2021.8 1990 2021.3 1990.1 2021.1 C
+1990.1 2020.9 1990.1 2020.1 1990.1 2020.6 C
+1989.9 2021.1 1989.5 2020.6 1989.6 2020.4 C
+1989.6 2019.8 1988.7 2019.6 1988.2 2019.2 C
+1987.5 2018.7 1987.7 2020.2 1987 2019.4 C
+1987.5 2020.4 1986 2021.1 1987.5 2021.8 C
+1986.8 2023.1 1986.6 2021.1 1986 2021.1 C
+1986.1 2020.1 1985.9 2019 1986.3 2018.2 C
+1986.7 2018.4 1986.5 2019 1986.5 2019.4 C
+1986.5 2018.7 1986.4 2017.8 1987.2 2017.7 C
+1986.5 2017.2 1985.5 2019.3 1985.3 2020.4 C
+1986.2 2022 1987.3 2023.5 1989.2 2024.2 C
+1990.8 2024.3 1991.6 2022.9 1993.2 2024.4 C
+1993.8 2025.4 1995 2026.6 1995.9 2027.1 C
+1995 2026.5 1994.1 2025.5 1993.5 2024.4 C
+[0 1 1 0.36]  vc
+f 
+0.4 w
+2 J
+2 M
+[0 0.5 0.5 0.2]  vc
+S 
+n
+2023 2040.3 m
+2023.2 2036 2022.7 2029.6 2022.5 2026.8 C
+2022.9 2027.2 2022.7 2027.8 2022.8 2028.3 C
+2022.8 2024 2022.6 2019.5 2023 2015.3 C
+2022.2 2013.9 2021.7 2015.4 2021.3 2014.8 C
+2020.4 2015.3 2021 2016.5 2020.8 2017.2 C
+2021.4 2016.6 2021.1 2017.8 2021.6 2018 C
+2022 2026.4 2019.6 2029.8 2021.8 2037.2 C
+2021.7 2038.4 2020.5 2039.1 2019.2 2038.1 C
+2016.5 2036.5 2017.5 2033.8 2014.8 2033.3 C
+2014.9 2032 2012.6 2033 2013.2 2030.7 C
+2011.9 2030.8 2011.2 2030.1 2010.8 2029.2 C
+2010.8 2029.1 2010.8 2028.2 2010.8 2028.8 C
+2010 2028.8 2010.4 2026.5 2008.6 2027.3 C
+2007.9 2026.6 2007.3 2025.9 2007.9 2027.1 C
+2009.7 2028 2010 2030.1 2012.2 2030.9 C
+2012.9 2032.1 2013.7 2033.6 2015.1 2033.6 C
+2015.7 2035.1 2016.9 2036.7 2018.4 2038.4 C
+2019.8 2039.3 2022 2039.4 2021.6 2041.5 C
+2021.9 2040.7 2022.9 2041.1 2023 2040.3 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+2022.5 2024.9 m
+2022.5 2023.5 2022.5 2022.2 2022.5 2020.8 C
+2022.5 2022.2 2022.5 2023.5 2022.5 2024.9 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+1983.2 2022.8 m
+1982.4 2022.5 1982.1 2021.6 1981.2 2022.3 C
+1981.1 2022.9 1980.5 2024 1981 2024.2 C
+1981.8 2024.6 1982.9 2024.4 1983.2 2022.8 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1931.1 2019.9 m
+1929.6 2017.7 1932 2015.7 1930.8 2013.9 C
+1931.1 2013 1930.3 2011 1930.6 2009.3 C
+1930.6 2010.3 1929.8 2010 1929.2 2010 C
+1928 2010.3 1928.8 2008.1 1928.2 2007.6 C
+1929.1 2007.8 1929.3 2006.3 1930.1 2006.9 C
+1930.3 2009.8 1932.2 2004.8 1932.3 2008.6 C
+1932.7 2008 1932.8 2009 1932.8 2009.3 C
+1932.8 2009.6 1932.8 2009.8 1932.8 2010 C
+1933.2 2009 1932.7 2006.6 1934 2005.7 C
+1932.7 2004.6 1934.3 2004.6 1934.2 2004 C
+1935.8 2003.7 1937 2003.6 1938.5 2004 C
+1938.5 2004.5 1939.1 2005.4 1938.3 2006 C
+1940.7 2005.7 1937.4 2001.3 1939.7 2001.4 C
+1939.5 2001.4 1938.6 1998.8 1937.1 1999.2 C
+1936.3 1999.1 1936.2 1997.1 1936.1 1998.5 C
+1934.7 2000.1 1932.9 1998.2 1931.6 1999.5 C
+1931.3 1998.9 1930.9 1998.5 1931.1 1997.8 C
+1931.6 1998.2 1931.3 1996.6 1932 1996.1 C
+1933.2 1995.5 1934.3 1996.4 1935.2 1995.4 C
+1935.5 1996.5 1936.3 1996.1 1935.6 1995.2 C
+1934.7 1994.5 1932.5 1995.3 1932 1995.4 C
+1930.5 1995.3 1931.9 1996.5 1930.8 1996.4 C
+1931.2 1997.9 1929.5 1998.3 1928.9 1998.5 C
+1928.1 1997.9 1927.1 1998 1926 1998 C
+1925.3 1999.2 1924.8 2001.4 1923.2 2001.4 C
+1922.6 2000.9 1921 2000.9 1920.3 2000.9 C
+1919.7 2001.9 1919.6 2003.5 1918.1 2004 C
+1916.9 2004.1 1915.8 2002 1915.2 2003.8 C
+1916.7 2004 1917.6 2004.9 1919.6 2004.5 C
+1920.7 2005.2 1919.4 2006.3 1919.8 2006.9 C
+1919.2 2006.9 1917.7 2007.8 1917.2 2008.6 C
+1917.8 2011.6 1919.8 2007.8 1920.5 2010.5 C
+1920.8 2011.3 1919.3 2011.6 1920.5 2012 C
+1920.8 2012.3 1924 2011.8 1923.2 2014.1 C
+1922.6 2013.6 1924.1 2016.1 1924.1 2015.1 C
+1925.1 2015.4 1925.9 2015 1926.3 2016.5 C
+1926.2 2016.6 1926 2016.8 1925.8 2016.8 C
+1925.9 2017.2 1926.2 2017.8 1926.8 2018.2 C
+1927.1 2017.6 1927.7 2018 1928.4 2018.2 C
+1929.7 2020.1 1927.1 2019.5 1929.4 2021.1 C
+1929.9 2020.7 1931.1 2020 1931.1 2019.9 C
+[0.21 0.21 0 0]  vc
+f 
+S 
+n
+1937.1 2020.8 m
+1937.1 2018.3 1937.1 2015.7 1937.1 2013.2 C
+1937.1 2015.7 1937.1 2018.3 1937.1 2020.8 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+2020.4 2012.2 m
+2019.8 2012 2019.3 2011.5 2018.7 2011.7 C
+2017.9 2012.1 2018.1 2014.1 2018.4 2014.4 C
+2019.6 2014.8 2021.4 2013.7 2020.4 2012.2 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1976 2013.9 m
+1973.8 2011.5 1971.6 2009.1 1969.5 2006.7 C
+1971.6 2009.1 1973.8 2011.5 1976 2013.9 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+1995.4 2012.7 m
+1996.1 2010.3 1993.8 2006.2 1997.3 2005.7 C
+1998.9 2005.4 2000 2003.7 2001.4 2003.1 C
+2003.9 2003.1 2005.3 2001.3 2006.9 1999.7 C
+2004.5 2003.5 2000 2002.2 1997.6 2005.7 C
+1996.5 2005.9 1994.8 2006.1 1995.2 2007.6 C
+1995.7 2009.4 1995.2 2011.6 1994.7 2012.9 C
+1992 2015.8 1987.8 2015.7 1985.3 2018.7 C
+1988.3 2016.3 1992.3 2015.3 1995.4 2012.7 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1995.6 2012.4 m
+1995.6 2011.2 1995.6 2010 1995.6 2008.8 C
+1995.6 2010 1995.6 2011.2 1995.6 2012.4 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+vmrs
+2017.7 2009.6 m
+2016.9 2009.3 2016.7 2008.4 2015.8 2009.1 C
+2014.2 2010.6 2016 2010.6 2016.5 2011.5 C
+2017.2 2010.9 2018.1 2010.8 2017.7 2009.6 C
+[0 1 1 0.23]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+2014.4 2006.4 m
+2013.5 2006.8 2012.1 2005.6 2012 2006.7 C
+2013 2007.3 2011.9 2009.2 2012.9 2008.4 C
+2014.2 2008.3 2014.6 2007.8 2014.4 2006.4 C
+f 
+S 
+n
+1969 2006.4 m
+1966.5 2003.8 1964 2001.2 1961.6 1998.5 C
+1964 2001.2 1966.5 2003.8 1969 2006.4 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+2012 2005.2 m
+2012.2 2004.2 2011.4 2003.3 2010.3 2003.3 C
+2009 2003.6 2010 2004.7 2009.6 2004.8 C
+2009.3 2005.7 2011.4 2006.7 2012 2005.2 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1962.8 1995.2 m
+1961.7 1994.4 1960.6 1993.7 1959.4 1994 C
+1959.5 1994.9 1957.5 1994.1 1956.8 1994.7 C
+1955.9 1995.5 1956.7 1997 1955.1 1997.3 C
+1956.9 1996.7 1956.8 1994 1959.2 1994.7 C
+1961.1 1991 1968.9 2003.2 1962.8 1995.2 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+1954.6 1995.6 m
+1955.9 1994.7 1955.1 1989.8 1955.3 1988 C
+1954.5 1988.3 1954.9 1986.6 1954.4 1986 C
+1955.7 1989.2 1953.9 1991.1 1954.8 1994.2 C
+1954.5 1995.9 1953.5 1995.3 1953.9 1997.3 C
+1955.3 1998.3 1953.2 1995.5 1954.6 1995.6 C
+f 
+S 
+n
+1992.3 2011 m
+1992.5 2006.7 1992 2000.3 1991.8 1997.6 C
+1992.2 1997.9 1992 1998.5 1992 1999 C
+1992.1 1994.7 1991.9 1990.2 1992.3 1986 C
+1991.4 1984.6 1991 1986.1 1990.6 1985.6 C
+1989.7 1986 1990.3 1987.2 1990.1 1988 C
+1990.7 1987.4 1990.4 1988.5 1990.8 1988.7 C
+1991.3 1997.1 1988.9 2000.6 1991.1 2007.9 C
+1991 2009.1 1989.8 2009.9 1988.4 2008.8 C
+1985.7 2007.2 1986.8 2004.5 1984.1 2004 C
+1984.2 2002.7 1981.9 2003.7 1982.4 2001.4 C
+1981.2 2001.5 1980.5 2000.8 1980 2000 C
+1980 1999.8 1980 1998.9 1980 1999.5 C
+1979.3 1999.5 1979.7 1997.2 1977.9 1998 C
+1977.2 1997.3 1976.6 1996.7 1977.2 1997.8 C
+1979 1998.7 1979.3 2000.8 1981.5 2001.6 C
+1982.2 2002.8 1983 2004.3 1984.4 2004.3 C
+1985 2005.8 1986.2 2007.5 1987.7 2009.1 C
+1989 2010 1991.3 2010.2 1990.8 2012.2 C
+1991.2 2011.4 1992.2 2011.8 1992.3 2011 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1991.8 1995.6 m
+1991.8 1994.3 1991.8 1992.9 1991.8 1991.6 C
+1991.8 1992.9 1991.8 1994.3 1991.8 1995.6 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+1959.2 1994.2 m
+1958.8 1993.3 1960.7 1993.9 1961.1 1993.7 C
+1961.5 1993.9 1961.2 1994.4 1961.8 1994.2 C
+1960.9 1994 1960.8 1992.9 1959.9 1992.5 C
+1959.6 1993.5 1958.3 1993.5 1958.2 1994.2 C
+1958.1 1994.1 1958 1994 1958 1994 C
+1957.2 1994.9 1958 1993.4 1956.8 1993 C
+1955.6 1992.5 1956 1991 1956.3 1989.9 C
+1956.5 1989.8 1956.6 1990 1956.8 1990.1 C
+1957.1 1989 1956 1989.1 1955.8 1988.2 C
+1955.1 1990.4 1956.2 1995 1954.8 1995.9 C
+1954.1 1995.5 1954.5 1996.5 1954.4 1997.1 C
+1955 1996.8 1954.8 1997.4 1955.6 1996.8 C
+1956 1996 1956.3 1993.2 1958.7 1994.2 C
+1958.9 1994.2 1959.7 1994.2 1959.2 1994.2 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1958.2 1994 m
+1958.4 1993.5 1959.7 1993.1 1959.9 1992 C
+1959.7 1992.5 1959.3 1992 1959.4 1991.8 C
+1959.4 1991.6 1959.4 1990.8 1959.4 1991.3 C
+1959.2 1991.8 1958.8 1991.3 1958.9 1991.1 C
+1958.9 1990.5 1958 1990.3 1957.5 1989.9 C
+1956.8 1989.5 1956.9 1991 1956.3 1990.1 C
+1956.7 1991 1955.4 1992.1 1956.5 1992.3 C
+1956.8 1993.5 1958.3 1992.9 1957.2 1994 C
+1957.8 1994.3 1958.1 1992.4 1958.2 1994 C
+[0 0.5 0.5 0.2]  vc
+f 
+S 
+n
+vmrs
+1954.4 1982.7 m
+1956.1 1982.7 1954.1 1982.5 1953.9 1982.9 C
+1953.9 1983.7 1953.7 1984.7 1954.1 1985.3 C
+1954.4 1984.2 1953.6 1983.6 1954.4 1982.7 C
+[0 1 1 0.36]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1989.6 1982.9 m
+1989.1 1982.7 1988.6 1982.3 1988 1982.4 C
+1987.2 1982.8 1987.4 1984.8 1987.7 1985.1 C
+1988.9 1985.6 1990.7 1984.4 1989.6 1982.9 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1987 1980.3 m
+1986.2 1980 1986 1979.1 1985.1 1979.8 C
+1983.5 1981.4 1985.3 1981.4 1985.8 1982.2 C
+1986.5 1981.7 1987.4 1981.5 1987 1980.3 C
+f 
+S 
+n
+1983.6 1977.2 m
+1982.7 1977.5 1981.4 1976.3 1981.2 1977.4 C
+1982.3 1978 1981.2 1979.9 1982.2 1979.1 C
+1983.5 1979 1983.9 1978.5 1983.6 1977.2 C
+f 
+S 
+n
+1981.2 1976 m
+1981.5 1974.9 1980.6 1974 1979.6 1974 C
+1978.3 1974.3 1979.3 1975.4 1978.8 1975.5 C
+1978.6 1976.4 1980.7 1977.4 1981.2 1976 C
+f 
+S 
+n
+1972.1 2082.3 m
+1971.8 2081.8 1971.3 2080.9 1971.2 2080.1 C
+1971.1 2072.9 1971.3 2064.6 1970.9 2058.3 C
+1970.3 2058.5 1970.1 2057.7 1969.7 2058.5 C
+1970.6 2058.5 1969.7 2059 1970.2 2059.2 C
+1970.2 2065.4 1970.2 2072.4 1970.2 2077.7 C
+1971.1 2078.9 1970.6 2078.9 1970.4 2079.9 C
+1969.2 2080.2 1968.2 2080.4 1967.3 2079.6 C
+1966.8 2077.8 1963.4 2076.3 1963.5 2075.1 C
+1961.5 2075.5 1962 2071.5 1959.6 2072 C
+1959.2 2070 1956.5 2069.3 1955.8 2067.6 C
+1956 2068.4 1955.3 2069.7 1956.5 2069.8 C
+1958.6 2068.9 1958.1 2073.5 1960.1 2072.4 C
+1960.7 2075.9 1964.7 2074.6 1964.2 2078 C
+1967.2 2078.6 1967.9 2081.6 1970.7 2080.6 C
+1970.3 2081.1 1971.5 2081.2 1971.9 2082.3 C
+1967.2 2084.3 1962.9 2087.1 1958.2 2089 C
+1962.9 2087 1967.4 2084.4 1972.1 2082.3 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1971.9 2080.1 m
+1971.9 2075.1 1971.9 2070 1971.9 2065 C
+1971.9 2070 1971.9 2075.1 1971.9 2080.1 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+2010.8 2050.6 m
+2013.2 2049 2010.5 2050.1 2010.5 2051.3 C
+2010.5 2057.7 2010.5 2064.1 2010.5 2070.5 C
+2008.7 2072.4 2006 2073.3 2003.6 2074.4 C
+2016.4 2073.7 2008 2058.4 2010.8 2050.6 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+2006.4 2066.9 m
+2006.4 2061.9 2006.4 2056.8 2006.4 2051.8 C
+2006.4 2056.8 2006.4 2061.9 2006.4 2066.9 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1971.9 2060.7 m
+1972.2 2060.3 1971.4 2068.2 1972.4 2061.9 C
+1971.8 2061.6 1972.4 2060.9 1971.9 2060.7 C
+f 
+S 
+n
+vmrs
+1986.5 2055.2 m
+1987.5 2054.3 1986.3 2053.4 1986 2052.8 C
+1983.8 2052.7 1983.6 2050.1 1981.7 2049.6 C
+1981.2 2048.7 1980.8 2047 1980.3 2046.8 C
+1978.5 2047 1978 2044.6 1976.7 2043.9 C
+1974 2044.4 1972 2046.6 1969.2 2047 C
+1969 2047.2 1968.8 2047.5 1968.5 2047.7 C
+1970.6 2049.6 1973.1 2051.3 1974.3 2054.2 C
+1975.7 2054.5 1977 2055.2 1976.4 2057.1 C
+1976.7 2058 1975.5 2058.5 1976 2059.5 C
+1979.2 2058 1983 2056.6 1986.5 2055.2 C
+[0 0.5 0.5 0.2]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1970.2 2054.2 m
+1971.5 2055.3 1972.5 2056.8 1972.1 2058.3 C
+1972.8 2056.5 1971.6 2055.6 1970.2 2054.2 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1992 2052.5 m
+1992 2053.4 1992.2 2054.4 1991.8 2055.2 C
+1992.2 2054.4 1992 2053.4 1992 2052.5 C
+f 
+S 
+n
+1957.2 2053 m
+1958.1 2052.6 1959 2052.2 1959.9 2051.8 C
+1959 2052.2 1958.1 2052.6 1957.2 2053 C
+f 
+S 
+n
+2006.4 2047.5 m
+2006.8 2047.1 2006 2055 2006.9 2048.7 C
+2006.4 2048.4 2007 2047.7 2006.4 2047.5 C
+f 
+S 
+n
+2004.8 2041 m
+2006.1 2042.1 2007.1 2043.6 2006.7 2045.1 C
+2007.3 2043.3 2006.2 2042.4 2004.8 2041 C
+f 
+S 
+n
+1976 2039.8 m
+1975.6 2039.3 1975.2 2038.4 1975 2037.6 C
+1974.9 2030.4 1975.2 2022.1 1974.8 2015.8 C
+1974.2 2016 1974 2015.3 1973.6 2016 C
+1974.4 2016 1973.5 2016.5 1974 2016.8 C
+1974 2022.9 1974 2030 1974 2035.2 C
+1974.9 2036.4 1974.4 2036.4 1974.3 2037.4 C
+1973.1 2037.7 1972 2037.9 1971.2 2037.2 C
+1970.6 2035.3 1967.3 2033.9 1967.3 2032.6 C
+1965.3 2033 1965.9 2029.1 1963.5 2029.5 C
+1963 2027.6 1960.4 2026.8 1959.6 2025.2 C
+1959.8 2025.9 1959.2 2027.2 1960.4 2027.3 C
+1962.5 2026.4 1961.9 2031 1964 2030 C
+1964.6 2033.4 1968.5 2032.1 1968 2035.5 C
+1971 2036.1 1971.8 2039.1 1974.5 2038.1 C
+1974.2 2038.7 1975.3 2038.7 1975.7 2039.8 C
+1971 2041.8 1966.7 2044.6 1962 2046.5 C
+1966.8 2044.5 1971.3 2041.9 1976 2039.8 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1975.7 2037.6 m
+1975.7 2032.6 1975.7 2027.6 1975.7 2022.5 C
+1975.7 2027.6 1975.7 2032.6 1975.7 2037.6 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1992 2035.5 m
+1992 2034.2 1992 2032.9 1992 2031.6 C
+1992 2032.9 1992 2034.2 1992 2035.5 C
+f 
+S 
+n
+2015.3 2036 m
+2015.4 2034.1 2013.3 2034 2012.9 2033.3 C
+2011.5 2031 2009.3 2029.4 2007.4 2028 C
+2006.9 2027.1 2006.6 2023.8 2005 2024.9 C
+2004 2024.9 2002.9 2024.9 2001.9 2024.9 C
+2001.4 2026.5 2001 2028.4 2003.8 2028.3 C
+2006.6 2030.4 2008.9 2033.7 2011.2 2036.2 C
+2011.8 2036.4 2012.9 2035.8 2012.9 2036.7 C
+2013 2035.5 2015.3 2037.4 2015.3 2036 C
+[0 0 0 0]  vc
+f 
+S 
+n
+vmrs
+2009.1 2030.4 m
+2009.1 2029 2007.5 2029.4 2006.9 2028.3 C
+2007.2 2027.1 2006.5 2025.5 2005.7 2024.7 C
+2004.6 2025.1 2003.1 2024.9 2001.9 2024.9 C
+2001.8 2026.2 2000.9 2027 2002.4 2028 C
+2004.5 2027.3 2004.9 2029.4 2006.9 2029 C
+2007 2030.2 2007.6 2030.7 2008.4 2031.4 C
+2008.8 2031.5 2009.1 2031.1 2009.1 2030.4 C
+[0 0 0 0.18]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+2003.8 2029.5 m
+2003 2029.4 2001.9 2029.1 2002.4 2030.4 C
+2003.1 2031.3 2005.2 2030.3 2003.8 2029.5 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1999.2 2025.2 m
+1999.1 2025.6 1998 2025.7 1998.8 2026.6 C
+2000.9 2028.5 1999.5 2023.4 1999.2 2025.2 C
+f 
+S 
+n
+2007.6 2024.2 m
+2007.6 2022.9 2008.4 2024.2 2007.6 2022.8 C
+2007.6 2017.5 2007.8 2009.1 2007.4 2003.8 C
+2007.9 2003.7 2008.7 2002.8 2009.1 2002.1 C
+2009.6 2000.8 2008.3 2000.8 2007.9 2000.2 C
+2004.9 2000 2008.9 2001.3 2007.2 2002.1 C
+2006.7 2007.7 2007 2015.1 2006.9 2021.1 C
+2006.7 2022.1 2005.4 2022.8 2006.2 2023.5 C
+2006.6 2023.1 2008 2025.9 2007.6 2024.2 C
+f 
+S 
+n
+1989.9 2023.5 m
+1989.5 2022.6 1991.4 2023.2 1991.8 2023 C
+1992.2 2023.2 1991.9 2023.7 1992.5 2023.5 C
+1991.6 2023.2 1991.6 2022.2 1990.6 2021.8 C
+1990.4 2022.8 1989 2022.8 1988.9 2023.5 C
+1988.5 2023 1988.7 2022.6 1988.7 2023.5 C
+1989.1 2023.5 1990.2 2023.5 1989.9 2023.5 C
+f 
+[0 0.5 0.5 0.2]  vc
+S 
+n
+2003.3 2023.5 m
+2003.1 2023.3 2003.1 2023.2 2003.3 2023 C
+2003.7 2023.1 2003.9 2022.9 2003.8 2022.5 C
+2003.4 2022.2 2001.2 2022.3 2002.4 2023 C
+2002.6 2022.9 2002.7 2023.1 2002.8 2023.2 C
+2000.7 2023.7 2003.9 2023.4 2003.3 2023.5 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1986.8 2019.4 m
+1987.8 2019.8 1987.5 2018.6 1987.2 2018 C
+1986.2 2017.8 1987.3 2020.5 1986.3 2019.2 C
+1986.3 2017.7 1986.3 2020.6 1986.3 2021.3 C
+1988.5 2023.1 1985.6 2020.3 1986.8 2019.4 C
+f 
+S 
+n
+1975.7 2018.2 m
+1976.1 2017.8 1975.2 2025.7 1976.2 2019.4 C
+1975.7 2019.2 1976.3 2018.4 1975.7 2018.2 C
+f 
+S 
+n
+1974 2011.7 m
+1975.4 2012.8 1976.4 2014.3 1976 2015.8 C
+1976.6 2014 1975.5 2013.1 1974 2011.7 C
+f 
+S 
+n
+1984.6 2006.7 m
+1984.7 2004.8 1982.6 2004.8 1982.2 2004 C
+1980.8 2001.7 1978.6 2000.1 1976.7 1998.8 C
+1976.1 1997.8 1975.8 1994.5 1974.3 1995.6 C
+1973.3 1995.6 1972.2 1995.6 1971.2 1995.6 C
+1970.7 1997.2 1970.3 1999.1 1973.1 1999 C
+1975.8 2001.2 1978.2 2004.4 1980.5 2006.9 C
+1981.1 2007.1 1982.1 2006.5 1982.2 2007.4 C
+1982.3 2006.2 1984.5 2008.1 1984.6 2006.7 C
+[0 0 0 0]  vc
+f 
+S 
+n
+vmrs
+1978.4 2001.2 m
+1978.4 1999.7 1976.8 2000.1 1976.2 1999 C
+1976.5 1997.8 1975.8 1996.2 1975 1995.4 C
+1973.9 1995.8 1972.4 1995.6 1971.2 1995.6 C
+1971 1997 1970.2 1997.7 1971.6 1998.8 C
+1973.8 1998 1974.2 2000.1 1976.2 1999.7 C
+1976.3 2000.9 1976.9 2001.4 1977.6 2002.1 C
+1978.1 2002.2 1978.4 2001.8 1978.4 2001.2 C
+[0 0 0 0.18]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1973.1 2000.2 m
+1972.3 2000.1 1971.2 1999.8 1971.6 2001.2 C
+1972.4 2002 1974.5 2001 1973.1 2000.2 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1960.8 1998.5 m
+1961.6 1998.2 1962.6 2000.3 1963.2 2000.9 C
+1962.3 2000.1 1962.2 1998.7 1960.8 1998.5 C
+f 
+S 
+n
+1968.5 1995.9 m
+1968.4 1996.4 1967.3 1996.4 1968 1997.3 C
+1970.1 1999.2 1968.8 1994.1 1968.5 1995.9 C
+f 
+S 
+n
+1976.9 1994.9 m
+1976.9 1993.7 1977.6 1994.9 1976.9 1993.5 C
+1976.9 1988.2 1977.1 1979.8 1976.7 1974.5 C
+1977.2 1974.5 1978 1973.5 1978.4 1972.8 C
+1978.8 1971.5 1977.6 1971.5 1977.2 1970.9 C
+1974.2 1970.7 1978.2 1972 1976.4 1972.8 C
+1976 1978.4 1976.3 1985.8 1976.2 1991.8 C
+1976 1992.8 1974.6 1993.5 1975.5 1994.2 C
+1975.9 1993.8 1977.3 1996.6 1976.9 1994.9 C
+f 
+S 
+n
+1972.6 1994.2 m
+1972.4 1994 1972.4 1993.9 1972.6 1993.7 C
+1973 1993.8 1973.1 1993.7 1973.1 1993.2 C
+1972.7 1992.9 1970.5 1993.1 1971.6 1993.7 C
+1971.9 1993.7 1972 1993.8 1972.1 1994 C
+1970 1994.4 1973.1 1994.1 1972.6 1994.2 C
+f 
+S 
+n
+1948.1 2093.8 m
+1947 2092.7 1945.9 2091.6 1944.8 2090.4 C
+1945.9 2091.6 1947 2092.7 1948.1 2093.8 C
+[0 0.4 1 0]  vc
+f 
+S 
+n
+1953.4 2091.4 m
+1954.8 2090.7 1956.3 2090 1957.7 2089.2 C
+1956.3 2090 1954.8 2090.7 1953.4 2091.4 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1954.1 2091.4 m
+1956.6 2089.6 1957.2 2089.6 1954.1 2091.4 C
+[0 0.4 1 0]  vc
+f 
+S 
+n
+1962.3 2087.3 m
+1963.7 2086.6 1965.2 2085.9 1966.6 2085.2 C
+1965.2 2085.9 1963.7 2086.6 1962.3 2087.3 C
+f 
+S 
+n
+vmrs
+1967.1 2084.9 m
+1968.3 2084.4 1969.7 2083.8 1970.9 2083.2 C
+1969.7 2083.8 1968.3 2084.4 1967.1 2084.9 C
+[0 0.4 1 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1982.7 2080.6 m
+1981.5 2079.5 1980.5 2078.4 1979.3 2077.2 C
+1980.5 2078.4 1981.5 2079.5 1982.7 2080.6 C
+f 
+S 
+n
+1988 2078.2 m
+1989.4 2077.5 1990.8 2076.8 1992.3 2076 C
+1990.8 2076.8 1989.4 2077.5 1988 2078.2 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1988.7 2078.2 m
+1991.1 2076.4 1991.8 2076.4 1988.7 2078.2 C
+[0 0.4 1 0]  vc
+f 
+S 
+n
+1976.2 2063.8 m
+1978.6 2062.2 1976 2063.3 1976 2064.5 C
+1976.1 2067.8 1975.5 2071.4 1976.4 2074.4 C
+1975.7 2071.1 1975.9 2067.2 1976.2 2063.8 C
+f 
+S 
+n
+1996.8 2074.1 m
+1998.3 2073.4 1999.7 2072.7 2001.2 2072 C
+1999.7 2072.7 1998.3 2073.4 1996.8 2074.1 C
+f 
+S 
+n
+2001.6 2071.7 m
+2002.9 2071.2 2004.2 2070.6 2005.5 2070 C
+2004.2 2070.6 2002.9 2071.2 2001.6 2071.7 C
+f 
+S 
+n
+1981.5 2060.7 m
+1980.2 2061.2 1978.9 2061.5 1977.9 2062.6 C
+1978.9 2061.5 1980.2 2061.2 1981.5 2060.7 C
+f 
+S 
+n
+1982 2060.4 m
+1982.7 2060.1 1983.6 2059.8 1984.4 2059.5 C
+1983.6 2059.8 1982.7 2060.1 1982 2060.4 C
+f 
+S 
+n
+1952 2051.3 m
+1950.8 2050.2 1949.7 2049.1 1948.6 2048 C
+1949.7 2049.1 1950.8 2050.2 1952 2051.3 C
+f 
+S 
+n
+vmrs
+1977.4 2047.7 m
+1975.8 2047.8 1974.8 2046.1 1974.5 2045.3 C
+1974.9 2044.4 1976 2044.5 1976.7 2044.8 C
+1977.9 2045 1977 2048.4 1979.3 2047.5 C
+1979.9 2047.5 1980.8 2048.6 1979.8 2049.2 C
+1978.2 2050.4 1980.8 2049.5 1980.3 2049.4 C
+1981.4 2049.8 1980.3 2048.4 1980.3 2048 C
+1979.8 2047.5 1979 2046.6 1978.4 2046.5 C
+1977.3 2045.9 1977.2 2043.3 1975.2 2044.6 C
+1974.7 2045.3 1973.6 2045 1973.3 2045.8 C
+1975 2046.3 1975.8 2049.8 1978.1 2049.4 C
+1978.4 2050.9 1978.7 2048.5 1977.9 2049.2 C
+1977.7 2048.7 1977.2 2047.8 1977.4 2047.7 C
+[0 0.5 0.5 0.2]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1957.2 2048.9 m
+1958.7 2048.2 1960.1 2047.5 1961.6 2046.8 C
+1960.1 2047.5 1958.7 2048.2 1957.2 2048.9 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1958 2048.9 m
+1960.4 2047.1 1961.1 2047.1 1958 2048.9 C
+[0 0.4 1 0]  vc
+f 
+S 
+n
+1966.1 2044.8 m
+1967.6 2044.1 1969 2043.4 1970.4 2042.7 C
+1969 2043.4 1967.6 2044.1 1966.1 2044.8 C
+f 
+S 
+n
+1970.9 2042.4 m
+1972.2 2041.9 1973.5 2041.3 1974.8 2040.8 C
+1973.5 2041.3 1972.2 2041.9 1970.9 2042.4 C
+f 
+S 
+n
+2012 2034.5 m
+2010.4 2034.6 2009.3 2032.9 2009.1 2032.1 C
+2009.4 2031 2010.3 2031.3 2011.2 2031.6 C
+2012.5 2031.8 2011.6 2035.2 2013.9 2034.3 C
+2014.4 2034.3 2015.4 2035.4 2014.4 2036 C
+2012.7 2037.2 2015.3 2036.3 2014.8 2036.2 C
+2015.9 2036.6 2014.8 2035.2 2014.8 2034.8 C
+2014.4 2034.3 2013.6 2033.4 2012.9 2033.3 C
+2011.5 2031 2009.3 2029.4 2007.4 2028 C
+2007.5 2026.5 2007.3 2027.9 2007.2 2028.3 C
+2007.9 2028.8 2008.7 2029.1 2009.3 2030 C
+2009.6 2030.7 2009 2031.9 2008.4 2031.6 C
+2006.7 2031 2007.7 2028 2005 2028.8 C
+2004.8 2028.6 2004.3 2028.2 2003.8 2028.3 C
+2006.6 2030.4 2008.9 2033.7 2011.2 2036.2 C
+2011.8 2036.4 2012.9 2035.8 2012.9 2036.7 C
+2012.7 2036.1 2011.8 2035 2012 2034.5 C
+[0 0.5 0.5 0.2]  vc
+f 
+S 
+n
+1981.2 2005.2 m
+1979.7 2005.3 1978.6 2003.6 1978.4 2002.8 C
+1978.7 2001.8 1979.6 2002.1 1980.5 2002.4 C
+1981.8 2002.5 1980.9 2005.9 1983.2 2005 C
+1983.7 2005.1 1984.7 2006.1 1983.6 2006.7 C
+1982 2007.9 1984.6 2007 1984.1 2006.9 C
+1985.2 2007.3 1984.1 2006 1984.1 2005.5 C
+1983.6 2005 1982.9 2004.1 1982.2 2004 C
+1980.8 2001.7 1978.6 2000.1 1976.7 1998.8 C
+1976.7 1997.2 1976.6 1998.6 1976.4 1999 C
+1977.2 1999.5 1978 1999.8 1978.6 2000.7 C
+1978.8 2001.5 1978.3 2002.7 1977.6 2002.4 C
+1976 2001.8 1977 1998.7 1974.3 1999.5 C
+1974.1 1999.3 1973.6 1998.9 1973.1 1999 C
+1975.8 2001.2 1978.2 2004.4 1980.5 2006.9 C
+1981.1 2007.1 1982.1 2006.5 1982.2 2007.4 C
+1982 2006.8 1981.1 2005.7 1981.2 2005.2 C
+f 
+S 
+n
+1966.8 1976.4 m
+1969.4 1973 1974.4 1974.6 1976.2 1970.4 C
+1972.7 1974 1968 1975.1 1964 1977.4 C
+1960.9 1979.9 1957.1 1981.8 1953.9 1982.7 C
+1958.4 1981.1 1962.6 1978.8 1966.8 1976.4 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1948.4 2093.8 m
+1949.8 2093.1 1951.2 2092.5 1952.7 2091.9 C
+1951.2 2092.5 1949.8 2093.1 1948.4 2093.8 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1948.1 2093.6 m
+1947.3 2092.8 1946.5 2091.9 1945.7 2091.2 C
+1946.5 2091.9 1947.3 2092.8 1948.1 2093.6 C
+f 
+S 
+n
+vmrs
+1942.1 2087.8 m
+1943.5 2088.4 1944.3 2089.5 1945.2 2090.7 C
+1944.8 2089.3 1943.3 2088.3 1942.1 2087.8 C
+[0 0.2 1 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1933.5 2078.4 m
+1933.5 2078 1933.2 2079 1933.7 2079.4 C
+1935 2080.4 1936.2 2081.3 1937.1 2082.8 C
+1936.7 2080.7 1933.7 2080.7 1933.5 2078.4 C
+f 
+S 
+n
+1982.9 2080.6 m
+1984.4 2079.9 1985.8 2079.3 1987.2 2078.7 C
+1985.8 2079.3 1984.4 2079.9 1982.9 2080.6 C
+f 
+S 
+n
+1982.7 2080.4 m
+1981.9 2079.6 1981.1 2078.7 1980.3 2078 C
+1981.1 2078.7 1981.9 2079.6 1982.7 2080.4 C
+f 
+S 
+n
+1977.4 2075.1 m
+1977.9 2075.3 1979.1 2076.4 1979.8 2077.5 C
+1979 2076.8 1978.7 2075.1 1977.4 2075.1 C
+f 
+S 
+n
+1952.2 2051.3 m
+1953.6 2050.7 1955.1 2050.1 1956.5 2049.4 C
+1955.1 2050.1 1953.6 2050.7 1952.2 2051.3 C
+f 
+S 
+n
+1952 2051.1 m
+1951.2 2050.3 1950.3 2049.5 1949.6 2048.7 C
+1950.3 2049.5 1951.2 2050.3 1952 2051.1 C
+f 
+S 
+n
+1946 2045.3 m
+1947.3 2045.9 1948.1 2047 1949.1 2048.2 C
+1948.6 2046.8 1947.1 2045.8 1946 2045.3 C
+f 
+S 
+n
+1937.3 2036 m
+1937.4 2035.5 1937 2036.5 1937.6 2036.9 C
+1938.8 2037.9 1940.1 2038.8 1940.9 2040.3 C
+1940.6 2038.2 1937.6 2038.2 1937.3 2036 C
+f 
+S 
+n
+1935.2 2073.2 m
+1936.4 2069.9 1935.8 2061.8 1935.6 2056.4 C
+1935.8 2055.9 1936.3 2055.7 1936.1 2055.2 C
+1935.7 2054.7 1935 2055 1934.4 2054.9 C
+1934.4 2061.5 1934.4 2068.7 1934.4 2074.6 C
+1935.7 2075.1 1936 2073.7 1935.2 2073.2 C
+[0 0.01 1 0]  vc
+f 
+S 
+n
+vmrs
+1939 2030.7 m
+1940.3 2027.4 1939.7 2019.3 1939.5 2013.9 C
+1939.7 2013.5 1940.1 2013.2 1940 2012.7 C
+1939.5 2012.3 1938.8 2012.5 1938.3 2012.4 C
+1938.3 2019 1938.3 2026.2 1938.3 2032.1 C
+1939.5 2032.7 1939.8 2031.2 1939 2030.7 C
+[0 0.01 1 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1975.2 2077.2 m
+1975.3 2077.3 1975.4 2077.4 1975.5 2077.5 C
+1974.7 2073.2 1974.9 2067.5 1975.2 2063.6 C
+1975.4 2064 1974.6 2063.9 1974.8 2064.3 C
+1974.9 2069.9 1974.3 2076.5 1975.2 2081.1 C
+1974.9 2079.9 1974.9 2078.4 1975.2 2077.2 C
+[0.92 0.92 0 0.67]  vc
+f 
+S 
+n
+1930.8 2067.4 m
+1931.5 2070.1 1929.6 2072.1 1930.6 2074.6 C
+1931 2072.6 1930.8 2069.8 1930.8 2067.4 C
+f 
+S 
+n
+2010 2050.1 m
+2009.8 2050.5 2009.5 2050.9 2009.3 2051.1 C
+2009.5 2056.7 2008.9 2063.3 2009.8 2067.9 C
+2009.5 2062.1 2009.3 2054.7 2010 2050.1 C
+f 
+S 
+n
+1930.1 2060.9 m
+1929.3 2057.1 1930.7 2054.8 1929.9 2051.3 C
+1930.2 2050.2 1931.1 2049.6 1931.8 2049.2 C
+1931.4 2049.6 1930.4 2049.5 1930.1 2050.1 C
+1928.4 2054.8 1933.4 2063.5 1925.3 2064.3 C
+1927.2 2063.9 1928.5 2062.1 1930.1 2060.9 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1929.6 2061.2 m
+1929.6 2057.6 1929.6 2054.1 1929.6 2050.6 C
+1930 2049.9 1930.5 2049.4 1931.1 2049.2 C
+1930 2048.6 1930.5 2050.2 1929.4 2049.6 C
+1928 2054.4 1932.8 2063 1925.3 2064 C
+1926.9 2063.3 1928.3 2062.4 1929.6 2061.2 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1930.8 2061.6 m
+1930.5 2058 1931.6 2054 1930.8 2051.3 C
+1930.3 2054.5 1930.9 2058.5 1930.4 2061.9 C
+1930.5 2061.2 1931 2062.2 1930.8 2061.6 C
+[0.92 0.92 0 0.67]  vc
+f 
+S 
+n
+1941.2 2045.1 m
+1939.7 2042.6 1937.3 2041.2 1935.4 2039.3 C
+1934.2 2040 1933.7 2036.4 1934 2039.3 C
+1934.9 2040.1 1936.1 2039.9 1936.8 2040.8 C
+1935.3 2044.2 1942.3 2041.7 1939.5 2046 C
+1937.1 2048.5 1940.5 2045.6 1941.2 2045.1 C
+f 
+S 
+n
+1910 2045.8 m
+1910 2039.4 1910 2033 1910 2026.6 C
+1910 2033 1910 2039.4 1910 2045.8 C
+f 
+S 
+n
+1978.8 2022.3 m
+1979.1 2021.7 1979.4 2020.4 1978.6 2021.6 C
+1978.6 2026.9 1978.6 2033 1978.6 2037.6 C
+1979.2 2037 1979.1 2038.2 1979.1 2038.6 C
+1978.7 2033.6 1978.9 2026.8 1978.8 2022.3 C
+f 
+S 
+n
+vmrs
+2026.1 2041.2 m
+2026.1 2034.8 2026.1 2028.3 2026.1 2021.8 C
+2026.1 2028.5 2026.3 2035.4 2025.9 2042 C
+2024.4 2042.9 2022.9 2044.1 2021.3 2044.8 C
+2023.1 2044 2025.1 2042.8 2026.1 2041.2 C
+[0.07 0.06 0 0.58]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+2026.4 2021.8 m
+2026.3 2028.5 2026.5 2035.4 2026.1 2042 C
+2025.6 2042.8 2024.7 2042.7 2024.2 2043.4 C
+2024.7 2042.7 2025.5 2042.7 2026.1 2042.2 C
+2026.5 2035.5 2026.3 2027.9 2026.4 2021.8 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+2025.6 2038.4 m
+2025.6 2033 2025.6 2027.6 2025.6 2022.3 C
+2025.6 2027.6 2025.6 2033 2025.6 2038.4 C
+[0.92 0.92 0 0.67]  vc
+f 
+S 
+n
+1934 2023.5 m
+1934 2024.7 1933.8 2026 1934.2 2027.1 C
+1934 2025.5 1934.7 2024.6 1934 2023.5 C
+f 
+S 
+n
+1928.2 2023.5 m
+1928 2024.6 1927.4 2023.1 1926.8 2023.2 C
+1926.2 2021 1921.4 2019.3 1923.2 2018 C
+1922.7 2016.5 1923.2 2019.3 1922.2 2018.2 C
+1924.4 2020.4 1926.2 2023.3 1928.9 2024.9 C
+1927.9 2024.2 1929.8 2023.5 1928.2 2023.5 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1934 2019.2 m
+1932 2019.6 1930.8 2022.6 1928.7 2021.8 C
+1924.5 2016.5 1918.2 2011.8 1914 2006.7 C
+1914 2005.7 1914 2004.6 1914 2003.6 C
+1913.6 2004.3 1913.9 2005.8 1913.8 2006.9 C
+1919 2012.4 1924.1 2016.5 1929.2 2022.3 C
+1931 2021.7 1932.2 2019.8 1934 2019.2 C
+f 
+S 
+n
+1928.7 2024.9 m
+1926.3 2022.7 1924.1 2020.4 1921.7 2018.2 C
+1924.1 2020.4 1926.3 2022.7 1928.7 2024.9 C
+[0.65 0.65 0 0.42]  vc
+f 
+S 
+n
+1914.3 2006.7 m
+1918.7 2011.8 1924.5 2016.4 1928.9 2021.6 C
+1924.2 2016.1 1919 2012.1 1914.3 2006.7 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1924.8 2020.8 m
+1921.2 2016.9 1925.6 2022.5 1926 2021.1 C
+1924.2 2021 1926.7 2019.6 1924.8 2020.8 C
+[0.92 0.92 0 0.67]  vc
+f 
+S 
+n
+1934 2018.4 m
+1933.2 2014.7 1934.5 2012.3 1933.7 2008.8 C
+1934 2007.8 1935 2007.2 1935.6 2006.7 C
+1935.3 2007.1 1934.3 2007 1934 2007.6 C
+1932.2 2012.3 1937.2 2021 1929.2 2021.8 C
+1931.1 2021.4 1932.3 2019.6 1934 2018.4 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+vmrs
+1933.5 2018.7 m
+1933.5 2015.1 1933.5 2011.7 1933.5 2008.1 C
+1933.8 2007.4 1934.3 2006.9 1934.9 2006.7 C
+1933.8 2006.1 1934.3 2007.7 1933.2 2007.2 C
+1931.9 2012 1936.7 2020.5 1929.2 2021.6 C
+1930.7 2020.8 1932.2 2019.9 1933.5 2018.7 C
+[0.4 0.4 0 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1934.7 2019.2 m
+1934.3 2015.6 1935.4 2011.5 1934.7 2008.8 C
+1934.1 2012 1934.7 2016 1934.2 2019.4 C
+1934.4 2018.7 1934.8 2019.8 1934.7 2019.2 C
+[0.92 0.92 0 0.67]  vc
+f 
+S 
+n
+1917.6 2013.6 m
+1917.8 2011.1 1916.8 2014.2 1917.2 2012.2 C
+1916.3 2012.9 1914.8 2011.8 1914.3 2010.8 C
+1914.2 2010.5 1914.4 2010.4 1914.5 2010.3 C
+1913.9 2008.8 1913.9 2011.9 1914.3 2012 C
+1916.3 2012 1917.6 2013.6 1916.7 2015.6 C
+1913.7 2017.4 1919.6 2014.8 1917.6 2013.6 C
+f 
+S 
+n
+1887.2 2015.3 m
+1887.2 2008.9 1887.2 2002.5 1887.2 1996.1 C
+1887.2 2002.5 1887.2 2008.9 1887.2 2015.3 C
+f 
+S 
+n
+1916.7 2014.4 m
+1917 2012.1 1913 2013 1913.8 2010.8 C
+1912.1 2009.8 1910.9 2009.4 1910.7 2007.9 C
+1910.4 2010.6 1913.4 2010.4 1914 2012.4 C
+1914.9 2012.8 1916.6 2012.9 1916.4 2014.4 C
+1916.9 2015.1 1914.5 2016.6 1916.2 2015.8 C
+1916.4 2015.3 1916.7 2015 1916.7 2014.4 C
+[0.65 0.65 0 0.42]  vc
+f 
+S 
+n
+1914 2009.3 m
+1912.8 2010.9 1909.6 2005.3 1911.9 2009.8 C
+1912.3 2009.6 1913.6 2010.2 1914 2009.3 C
+[0.92 0.92 0 0.67]  vc
+f 
+S 
+n
+1951.2 1998.8 m
+1949 1996.4 1951.5 1994 1950.3 1991.8 C
+1949.1 1989.1 1954 1982.7 1948.8 1981.2 C
+1949.2 1981.5 1951 1982.4 1950.8 1983.6 C
+1951.9 1988.6 1947.1 1986.5 1948.1 1990.4 C
+1948.5 1990.3 1948.7 1990.7 1948.6 1991.1 C
+1949 1992.5 1947.3 1991.9 1948.1 1992.5 C
+1947.1 1992.7 1945.7 1993.5 1945.2 1994.7 C
+1944.5 1996.8 1947.7 2000.5 1943.8 2001.4 C
+1943.4 2002 1943.7 2004 1942.4 2004.5 C
+1945.2 2002.2 1948.9 2000.9 1951.2 1998.8 C
+f 
+S 
+n
+1994.9 1993 m
+1995.1 1996.5 1994.5 2000.3 1995.4 2003.6 C
+1994.5 2000.3 1995.1 1996.5 1994.9 1993 C
+f 
+S 
+n
+1913.8 2003.3 m
+1913.8 1996.9 1913.8 1990.5 1913.8 1984.1 C
+1913.8 1990.5 1913.8 1996.9 1913.8 2003.3 C
+f 
+S 
+n
+1941.9 1998 m
+1940.5 1997.3 1940.7 1999.4 1940.7 2000 C
+1942.8 2001.3 1942.6 1998.8 1941.9 1998 C
+[0 0 0 0]  vc
+f 
+S 
+n
+vmrs
+1942.1 1999.2 m
+1942.2 1998.9 1941.8 1998.8 1941.6 1998.5 C
+1940.4 1998 1940.7 1999.7 1940.7 2000 C
+1941.6 2000.3 1942.6 2000.4 1942.1 1999.2 C
+[0.92 0.92 0 0.67]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1940 1997.1 m
+1939.8 1996 1939.7 1995.9 1939.2 1995.2 C
+1939.1 1995.3 1938.5 1997.9 1937.8 1996.4 C
+1938 1997.3 1939.4 1998.6 1940 1997.1 C
+f 
+S 
+n
+1911.2 1995.9 m
+1911.2 1991.6 1911.3 1987.2 1911.4 1982.9 C
+1911.3 1987.2 1911.2 1991.6 1911.2 1995.9 C
+f 
+S 
+n
+1947.2 1979.1 m
+1945.1 1978.8 1944.6 1975.7 1942.4 1975 C
+1940.5 1972.6 1942.2 1973.7 1942.4 1975.7 C
+1945.8 1975.5 1944.2 1979.8 1947.6 1979.6 C
+1948.3 1982.3 1948.5 1980 1947.2 1979.1 C
+f 
+S 
+n
+1939.5 1973.3 m
+1940.1 1972.6 1939.8 1974.2 1940.2 1973.1 C
+1939.1 1972.8 1938.8 1968.5 1935.9 1969.7 C
+1937.4 1969.2 1938.5 1970.6 1939 1971.4 C
+1939.2 1972.7 1938.6 1973.9 1939.5 1973.3 C
+f 
+S 
+n
+1975.2 2073.2 m
+1975.2 2070.2 1975.2 2067.2 1975.2 2064.3 C
+1975.2 2067.2 1975.2 2070.2 1975.2 2073.2 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1929.9 2065.7 m
+1928.1 2065.6 1926 2068.8 1924.1 2066.9 C
+1918.1 2060.9 1912.9 2055.7 1907.1 2049.9 C
+1906.7 2047.1 1906.9 2043.9 1906.8 2041 C
+1906.8 2043.9 1906.8 2046.8 1906.8 2049.6 C
+1913.2 2055.5 1918.7 2061.9 1925.1 2067.6 C
+1927.1 2067.9 1928.6 2064.4 1930.1 2066.2 C
+1929.7 2070.3 1929.9 2074.7 1929.9 2078.9 C
+1929.6 2074.4 1930.5 2070.1 1929.9 2065.7 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1930.1 2061.6 m
+1928.1 2062.1 1927 2065.1 1924.8 2064.3 C
+1920.7 2058.9 1914.4 2054.3 1910.2 2049.2 C
+1910.2 2048.1 1910.2 2047.1 1910.2 2046 C
+1909.8 2046.8 1910 2048.3 1910 2049.4 C
+1915.1 2054.9 1920.3 2059 1925.3 2064.8 C
+1927.1 2064.2 1928.4 2062.3 1930.1 2061.6 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1932 2049.9 m
+1932.3 2050.3 1932 2050.4 1932.8 2050.4 C
+1932 2050.4 1932.2 2049.2 1931.3 2049.6 C
+1931.4 2050.5 1930.3 2050.4 1930.4 2051.3 C
+1931.1 2051.1 1930.7 2049.4 1932 2049.9 C
+f 
+S 
+n
+1938.3 2046 m
+1936.3 2046.8 1935.2 2047.2 1934.2 2048.9 C
+1935.3 2047.7 1936.8 2046.2 1938.3 2046 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+vmrs
+1938.3 2047 m
+1937.9 2046.9 1936.6 2047.1 1936.1 2048 C
+1936.5 2047.5 1937.3 2046.7 1938.3 2047 C
+[0.18 0.18 0 0.78]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1910.2 2043.2 m
+1910.1 2037.5 1910 2031.8 1910 2026.1 C
+1910 2031.8 1910.1 2037.5 1910.2 2043.2 C
+f 
+S 
+n
+1933.5 2032.1 m
+1933.7 2035.2 1932.8 2035.8 1933.7 2038.6 C
+1933.3 2036.6 1934.6 2018 1933.5 2032.1 C
+f 
+S 
+n
+1907.3 2021.8 m
+1906.6 2025.9 1909.4 2032.6 1903.2 2034 C
+1902.8 2034.1 1902.4 2033.9 1902 2033.8 C
+1897.9 2028.5 1891.6 2023.8 1887.4 2018.7 C
+1887.4 2017.7 1887.4 2016.6 1887.4 2015.6 C
+1887 2016.3 1887.2 2017.8 1887.2 2018.9 C
+1892.3 2024.4 1897.5 2028.5 1902.5 2034.3 C
+1904.3 2033.6 1905.7 2032 1907.3 2030.9 C
+1907.3 2027.9 1907.3 2024.9 1907.3 2021.8 C
+f 
+S 
+n
+1933.7 2023.2 m
+1932 2021.7 1931.1 2024.9 1929.4 2024.9 C
+1931.2 2024.7 1932.4 2021.5 1933.7 2023.2 C
+f 
+S 
+n
+1989.2 2024.4 m
+1987.4 2023.7 1985.8 2022.2 1985.1 2020.4 C
+1984.6 2020.1 1986 2018.9 1985.1 2019.2 C
+1985.6 2020.8 1984.1 2019.4 1984.6 2021.1 C
+1986.3 2022.3 1988.1 2025.3 1989.2 2024.4 C
+f 
+S 
+n
+1904.4 2031.9 m
+1903 2029.7 1905.3 2027.7 1904.2 2025.9 C
+1904.5 2025 1903.7 2023 1904 2021.3 C
+1904 2022.3 1903.2 2022 1902.5 2022 C
+1901.3 2022.3 1902.2 2020.1 1901.6 2019.6 C
+1902.5 2019.8 1902.6 2018.3 1903.5 2018.9 C
+1903.7 2021.8 1905.6 2016.8 1905.6 2020.6 C
+1905.9 2020 1906.3 2020.8 1906.1 2021.1 C
+1905.8 2022.7 1906.7 2020.4 1906.4 2019.9 C
+1906.4 2018.5 1908.2 2017.8 1906.8 2016.5 C
+1906.9 2015.7 1907.7 2017.1 1907.1 2016.3 C
+1908.5 2015.8 1910.3 2015.1 1911.6 2016 C
+1912.2 2016.2 1911.9 2018 1911.6 2018 C
+1914.5 2017.1 1910.4 2013.6 1913.3 2013.4 C
+1912.4 2011.3 1910.5 2011.8 1909.5 2010 C
+1910 2010.5 1909 2010.8 1908.8 2011.2 C
+1907.5 2009.9 1906.1 2011.7 1904.9 2011.5 C
+1904.7 2010.9 1904.3 2010.5 1904.4 2009.8 C
+1905 2010.2 1904.6 2008.6 1905.4 2008.1 C
+1906.6 2007.5 1907.7 2008.4 1908.5 2007.4 C
+1908.9 2008.5 1909.7 2008.1 1909 2007.2 C
+1908.1 2006.5 1905.9 2007.3 1905.4 2007.4 C
+1903.9 2007.3 1905.2 2008.5 1904.2 2008.4 C
+1904.6 2009.9 1902.8 2010.3 1902.3 2010.5 C
+1901.5 2009.9 1900.4 2010 1899.4 2010 C
+1898.6 2011.2 1898.2 2013.4 1896.5 2013.4 C
+1896 2012.9 1894.4 2012.9 1893.6 2012.9 C
+1893.1 2013.9 1892.9 2015.5 1891.5 2016 C
+1890.3 2016.1 1889.2 2014 1888.6 2015.8 C
+1890 2016 1891 2016.9 1892.9 2016.5 C
+1894.1 2017.2 1892.8 2018.3 1893.2 2018.9 C
+1892.6 2018.9 1891.1 2019.8 1890.5 2020.6 C
+1891.1 2023.6 1893.2 2019.8 1893.9 2022.5 C
+1894.1 2023.3 1892.7 2023.6 1893.9 2024 C
+1894.2 2024.3 1897.4 2023.8 1896.5 2026.1 C
+1896 2025.6 1897.4 2028.1 1897.5 2027.1 C
+1898.4 2027.4 1899.3 2027 1899.6 2028.5 C
+1899.5 2028.6 1899.4 2028.8 1899.2 2028.8 C
+1899.3 2029.2 1899.6 2029.8 1900.1 2030.2 C
+1900.4 2029.6 1901 2030 1901.8 2030.2 C
+1903.1 2032.1 1900.4 2031.5 1902.8 2033.1 C
+1903.3 2032.7 1904.5 2032 1904.4 2031.9 C
+[0.21 0.21 0 0]  vc
+f 
+S 
+n
+1909.2 2019.4 m
+1908.8 2020.3 1910.2 2019.8 1909.2 2019.2 C
+1908.3 2019.3 1907.6 2020.2 1907.6 2021.3 C
+1908.5 2021 1907.6 2019 1909.2 2019.4 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1915.5 2015.6 m
+1913.5 2016.3 1912.4 2016.8 1911.4 2018.4 C
+1912.5 2017.2 1914 2015.7 1915.5 2015.6 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1915.5 2016.5 m
+1915.1 2016.4 1913.8 2016.6 1913.3 2017.5 C
+1913.7 2017 1914.5 2016.2 1915.5 2016.5 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+vmrs
+1887.4 2012.7 m
+1887.3 2007 1887.2 2001.3 1887.2 1995.6 C
+1887.2 2001.3 1887.3 2007 1887.4 2012.7 C
+[0.18 0.18 0 0.78]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1935.9 2007.4 m
+1936.2 2007.8 1935.8 2007.9 1936.6 2007.9 C
+1935.9 2007.9 1936.1 2006.7 1935.2 2007.2 C
+1935.2 2008.1 1934.1 2007.9 1934.2 2008.8 C
+1935 2008.7 1934.6 2006.9 1935.9 2007.4 C
+f 
+S 
+n
+1942.1 2003.6 m
+1940.1 2004.3 1939.1 2004.8 1938 2006.4 C
+1939.1 2005.2 1940.6 2003.7 1942.1 2003.6 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1942.1 2004.5 m
+1941.8 2004.4 1940.4 2004.6 1940 2005.5 C
+1940.4 2005 1941.2 2004.2 1942.1 2004.5 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1914 2000.7 m
+1914 1995 1913.9 1989.3 1913.8 1983.6 C
+1913.9 1989.3 1914 1995 1914 2000.7 C
+f 
+S 
+n
+1941.6 1998.3 m
+1943.4 2001.9 1942.4 1996 1940.9 1998.3 C
+1941.2 1998.3 1941.4 1998.3 1941.6 1998.3 C
+f 
+S 
+n
+1954.8 1989.9 m
+1953.9 1989.6 1954.7 1991.6 1953.9 1991.1 C
+1954.5 1993.1 1953.6 1998 1954.6 1993.2 C
+1954 1992.2 1954.7 1990.7 1954.8 1989.9 C
+f 
+S 
+n
+1947.6 1992.5 m
+1946.2 1993.5 1944.9 1993 1944.8 1994.7 C
+1945.5 1994 1947 1992.2 1947.6 1992.5 C
+f 
+S 
+n
+1910.7 1982.2 m
+1910.3 1981.8 1909.7 1982 1909.2 1982 C
+1909.7 1982 1910.3 1981.9 1910.7 1982.2 C
+1911 1987.1 1910 1992.6 1910.7 1997.3 C
+1910.7 1992.3 1910.7 1987.2 1910.7 1982.2 C
+[0.65 0.65 0 0.42]  vc
+f 
+S 
+n
+1910.9 1992.8 m
+1910.9 1991.3 1910.9 1989.7 1910.9 1988.2 C
+1910.9 1989.7 1910.9 1991.3 1910.9 1992.8 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+vmrs
+1953.6 1983.6 m
+1954.1 1985.3 1953.2 1988.6 1954.8 1989.4 C
+1954.1 1987.9 1954.4 1985.4 1953.6 1983.6 C
+[0.18 0.18 0 0.78]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1910.7 1982 m
+1911.6 1982.9 1911 1984.4 1911.2 1985.6 C
+1911 1984.4 1911.6 1982.9 1910.7 1982 C
+f 
+S 
+n
+1947.2 1979.6 m
+1947.5 1980.6 1948.3 1980.6 1947.4 1979.6 C
+1946.2 1979.4 1945.7 1978.8 1947.2 1979.6 C
+f 
+S 
+n
+1930.4 2061.4 m
+1930.4 2058 1930.4 2053.5 1930.4 2051.1 C
+1930.7 2054.6 1929.8 2057.4 1930.1 2061.2 C
+1929.5 2061.9 1929.7 2061.2 1930.4 2061.4 C
+[0.65 0.65 0 0.42]  vc
+f 
+S 
+n
+1939.5 2044.8 m
+1940 2041.5 1935.2 2044.3 1936.4 2040.8 C
+1934.9 2040.9 1934.1 2039.7 1933.5 2038.6 C
+1933.3 2035.4 1933.2 2040 1934 2040.3 C
+1936.2 2040.6 1936.3 2043.6 1938.5 2043.4 C
+1939.7 2044.2 1939.4 2045.6 1938.3 2046.5 C
+1939.1 2046.6 1939.6 2045.6 1939.5 2044.8 C
+f 
+S 
+n
+1910.4 2045.3 m
+1910.4 2039.5 1910.4 2033.6 1910.4 2027.8 C
+1910.4 2033.6 1910.4 2039.5 1910.4 2045.3 C
+f 
+S 
+n
+1906.8 2030.9 m
+1907.6 2026.8 1905 2020.8 1909 2018.7 C
+1906.5 2018.9 1906.8 2022.4 1906.8 2024.7 C
+1906.4 2028.2 1907.9 2032 1903 2033.8 C
+1902.2 2034 1903.8 2033.4 1904.2 2033.1 C
+1905.1 2032.4 1905.9 2031.5 1906.8 2030.9 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1907.1 2030.7 m
+1907.1 2028.8 1907.1 2027 1907.1 2025.2 C
+1907.1 2027 1907.1 2028.8 1907.1 2030.7 C
+[0.65 0.65 0 0.42]  vc
+f 
+S 
+n
+1932 2023.2 m
+1932.2 2023.6 1931.7 2023.7 1931.6 2024 C
+1932 2023.7 1932.3 2022.8 1933 2023 C
+1933.9 2024.3 1933.3 2026.2 1933.5 2027.8 C
+1933.5 2026.4 1934.9 2022.2 1932 2023.2 C
+f 
+S 
+n
+2026.1 2021.6 m
+2026.1 2020.8 2026.1 2019.9 2026.1 2019.2 C
+2026.1 2019.9 2026.1 2020.8 2026.1 2021.6 C
+f 
+S 
+n
+vmrs
+1934.2 2018.9 m
+1934.2 2015.5 1934.2 2011 1934.2 2008.6 C
+1934.5 2012.1 1933.7 2014.9 1934 2018.7 C
+1933.4 2019.5 1933.5 2018.7 1934.2 2018.9 C
+[0.65 0.65 0 0.42]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1887.6 2014.8 m
+1887.6 2009 1887.6 2003.1 1887.6 1997.3 C
+1887.6 2003.1 1887.6 2009 1887.6 2014.8 C
+f 
+S 
+n
+1914.3 2002.8 m
+1914.3 1997 1914.3 1991.1 1914.3 1985.3 C
+1914.3 1991.1 1914.3 1997 1914.3 2002.8 C
+f 
+S 
+n
+1995.4 1992.3 m
+1995.4 1991.5 1995.4 1990.7 1995.4 1989.9 C
+1995.4 1990.7 1995.4 1991.5 1995.4 1992.3 C
+f 
+S 
+n
+1896 1988.4 m
+1896.9 1988 1897.8 1987.7 1898.7 1987.2 C
+1897.8 1987.7 1896.9 1988 1896 1988.4 C
+f 
+S 
+n
+1899.4 1986.8 m
+1900.4 1986.3 1901.3 1985.8 1902.3 1985.3 C
+1901.3 1985.8 1900.4 1986.3 1899.4 1986.8 C
+f 
+S 
+n
+1902.8 1985.1 m
+1905.2 1984 1905.2 1984 1902.8 1985.1 C
+f 
+S 
+n
+1949.1 1983.4 m
+1950.2 1984.4 1947.8 1984.6 1949.3 1985.1 C
+1949.5 1984.4 1949.6 1984.1 1949.1 1983.4 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1906.1 1983.4 m
+1908.6 1982 1908.6 1982 1906.1 1983.4 C
+[0.65 0.65 0 0.42]  vc
+f 
+S 
+n
+1922.7 1976.4 m
+1923.6 1976 1924.4 1975.7 1925.3 1975.2 C
+1924.4 1975.7 1923.6 1976 1922.7 1976.4 C
+f 
+S 
+n
+vmrs
+1926 1974.8 m
+1927 1974.3 1928 1973.8 1928.9 1973.3 C
+1928 1973.8 1927 1974.3 1926 1974.8 C
+[0.65 0.65 0 0.42]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1929.4 1973.1 m
+1931.9 1972 1931.9 1972 1929.4 1973.1 C
+f 
+S 
+n
+1932.8 1971.4 m
+1935.3 1970 1935.3 1970 1932.8 1971.4 C
+f 
+S 
+n
+1949.6 2097.2 m
+1951.1 2096.4 1952.6 2095.5 1954.1 2094.8 C
+1952.6 2095.5 1951.1 2096.4 1949.6 2097.2 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1955.1 2094.3 m
+1956.7 2093.5 1958.3 2092.7 1959.9 2091.9 C
+1958.3 2092.7 1956.7 2093.5 1955.1 2094.3 C
+f 
+S 
+n
+1960.4 2091.6 m
+1961.3 2091.2 1962.1 2090.9 1963 2090.4 C
+1962.1 2090.9 1961.3 2091.2 1960.4 2091.6 C
+f 
+S 
+n
+1963.5 2090.2 m
+1964.4 2089.7 1965.2 2089.2 1966.1 2088.8 C
+1965.2 2089.2 1964.4 2089.7 1963.5 2090.2 C
+f 
+S 
+n
+1966.6 2088.5 m
+1969.5 2087.1 1972.4 2085.8 1975.2 2084.4 C
+1972.4 2085.8 1969.5 2087.1 1966.6 2088.5 C
+f 
+S 
+n
+1965.2 2086.1 m
+1965.9 2085.7 1966.8 2085.3 1967.6 2084.9 C
+1966.8 2085.3 1965.9 2085.7 1965.2 2086.1 C
+f 
+S 
+n
+1968.3 2084.7 m
+1969.2 2084.3 1970 2083.9 1970.9 2083.5 C
+1970 2083.9 1969.2 2084.3 1968.3 2084.7 C
+f 
+S 
+n
+vmrs
+1984.1 2084 m
+1985.6 2083.2 1987.2 2082.3 1988.7 2081.6 C
+1987.2 2082.3 1985.6 2083.2 1984.1 2084 C
+[0.07 0.06 0 0.58]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1976 2078.7 m
+1978.1 2080.1 1980 2082 1982 2083.7 C
+1980 2081.9 1977.9 2080.3 1976 2078.2 C
+1975.5 2079.9 1975.8 2081.9 1975.7 2083.7 C
+1975.8 2082 1975.5 2080.2 1976 2078.7 C
+f 
+S 
+n
+1989.6 2081.1 m
+1991.3 2080.3 1992.8 2079.5 1994.4 2078.7 C
+1992.8 2079.5 1991.3 2080.3 1989.6 2081.1 C
+f 
+S 
+n
+1933.2 2074.6 m
+1932.4 2076.2 1932.8 2077.5 1933 2078.7 C
+1933 2077.6 1932.9 2074.8 1933.2 2074.6 C
+f 
+S 
+n
+1994.9 2078.4 m
+1995.8 2078 1996.7 2077.7 1997.6 2077.2 C
+1996.7 2077.7 1995.8 2078 1994.9 2078.4 C
+f 
+S 
+n
+1998 2077 m
+1998.9 2076.5 1999.8 2076 2000.7 2075.6 C
+1999.8 2076 1998.9 2076.5 1998 2077 C
+f 
+S 
+n
+2001.2 2075.3 m
+2004 2073.9 2006.9 2072.6 2009.8 2071.2 C
+2006.9 2072.6 2004 2073.9 2001.2 2075.3 C
+f 
+S 
+n
+1980.5 2060.7 m
+1979.9 2060.7 1976.7 2062.8 1975.7 2064.5 C
+1975.7 2067.5 1975.7 2070.5 1975.7 2073.4 C
+1976.3 2068.7 1973.9 2061.6 1980.5 2060.7 C
+f 
+S 
+n
+1999.7 2072.9 m
+2000.5 2072.5 2001.3 2072.1 2002.1 2071.7 C
+2001.3 2072.1 2000.5 2072.5 1999.7 2072.9 C
+f 
+S 
+n
+2002.8 2071.5 m
+2003.7 2071.1 2004.6 2070.7 2005.5 2070.3 C
+2004.6 2070.7 2003.7 2071.1 2002.8 2071.5 C
+f 
+S 
+n
+vmrs
+2015.1 2047.5 m
+2014.4 2047.5 2011.2 2049.6 2010.3 2051.3 C
+2010.3 2057.7 2010.3 2064.1 2010.3 2070.5 C
+2010.3 2063.9 2010.1 2057.1 2010.5 2050.6 C
+2012 2049.3 2013.5 2048.3 2015.1 2047.5 C
+[0.07 0.06 0 0.58]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1910.4 2049.2 m
+1914.8 2054.3 1920.7 2058.9 1925.1 2064 C
+1920.4 2058.6 1915.1 2054.6 1910.4 2049.2 C
+f 
+S 
+n
+1988.2 2057.3 m
+1989.1 2056.8 1989.9 2056.2 1990.8 2055.6 C
+1989.9 2056.2 1989.1 2056.8 1988.2 2057.3 C
+f 
+S 
+n
+1991.6 2051.3 m
+1991.6 2046.3 1991.6 2041.2 1991.6 2036.2 C
+1991.6 2041.2 1991.6 2046.3 1991.6 2051.3 C
+f 
+S 
+n
+1935.6 2047.5 m
+1932.9 2051.7 1939.7 2043.8 1935.6 2047.5 C
+f 
+S 
+n
+1938.8 2043.9 m
+1938.1 2043.3 1938.2 2043.7 1937.3 2043.4 C
+1938.7 2043 1938.2 2044.9 1939 2045.3 C
+1938.2 2045.3 1938.7 2046.6 1937.8 2046.5 C
+1939.1 2046.2 1939.1 2044.5 1938.8 2043.9 C
+f 
+S 
+n
+1972.4 2045.6 m
+1973.4 2045 1974.5 2044.4 1975.5 2043.9 C
+1974.5 2044.4 1973.4 2045 1972.4 2045.6 C
+f 
+S 
+n
+1969 2043.6 m
+1969.8 2043.2 1970.6 2042.9 1971.4 2042.4 C
+1970.6 2042.9 1969.8 2043.2 1969 2043.6 C
+f 
+S 
+n
+1972.1 2042.2 m
+1973 2041.8 1973.9 2041.4 1974.8 2041 C
+1973.9 2041.4 1973 2041.8 1972.1 2042.2 C
+f 
+S 
+n
+1906.6 2035 m
+1905 2034.7 1904.8 2036.6 1903.5 2036.9 C
+1904.9 2037 1905.8 2033.4 1907.1 2035.7 C
+1907.1 2037.2 1907.1 2038.6 1907.1 2040 C
+1906.9 2038.4 1907.5 2036.4 1906.6 2035 C
+f 
+S 
+n
+vmrs
+1937.1 2032.1 m
+1936.2 2033.7 1936.6 2035 1936.8 2036.2 C
+1936.8 2035.1 1936.8 2032.4 1937.1 2032.1 C
+[0.07 0.06 0 0.58]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1887.6 2018.7 m
+1892 2023.8 1897.9 2028.4 1902.3 2033.6 C
+1897.6 2028.1 1892.3 2024.1 1887.6 2018.7 C
+f 
+S 
+n
+1999.7 2031.4 m
+1998.7 2030.3 1997.6 2029.2 1996.6 2028 C
+1997.6 2029.2 1998.7 2030.3 1999.7 2031.4 C
+f 
+S 
+n
+1912.8 2017 m
+1910.6 2021.1 1913.6 2015.3 1914.5 2016 C
+1914 2016.3 1913.4 2016.7 1912.8 2017 C
+f 
+S 
+n
+1939.5 2005 m
+1936.7 2009.2 1943.6 2001.3 1939.5 2005 C
+f 
+S 
+n
+1942.6 2001.4 m
+1941.9 2000.8 1942 2001.2 1941.2 2000.9 C
+1942.5 2000.6 1942.1 2002.4 1942.8 2002.8 C
+1942 2002.8 1942.5 2004.1 1941.6 2004 C
+1943 2003.7 1942.9 2002.1 1942.6 2001.4 C
+f 
+S 
+n
+2006.2 2000.7 m
+2005.4 2001.5 2004 2002.8 2004 2002.8 C
+2004.5 2002.4 2005.5 2001.4 2006.2 2000.7 C
+f 
+S 
+n
+1998.5 2001.6 m
+1997.7 2002 1996.8 2002.4 1995.9 2002.6 C
+1995.5 1999.3 1995.7 1995.7 1995.6 1992.3 C
+1995.6 1995.7 1995.6 1999.2 1995.6 2002.6 C
+1996.6 2002.4 1997.7 2002.2 1998.5 2001.6 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1996.1 2002.8 m
+1995.9 2002.8 1995.8 2002.8 1995.6 2002.8 C
+1995.2 1999.5 1995.5 1995.9 1995.4 1992.5 C
+1995.4 1995.9 1995.4 1999.4 1995.4 2002.8 C
+1996.4 2003.1 1998.2 2001.6 1996.1 2002.8 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1969 2002.1 m
+1968 2001 1966.9 1999.9 1965.9 1998.8 C
+1966.9 1999.9 1968 2001 1969 2002.1 C
+f 
+S 
+n
+vmrs
+2000 2001.2 m
+2002.1 2000 2004.1 1998.9 2006.2 1997.8 C
+2004.1 1998.9 2002.1 2000 2000 2001.2 C
+[0.07 0.06 0 0.58]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1895.8 1984.8 m
+1898.3 1983.6 1900.8 1982.3 1903.2 1981 C
+1900.8 1982.3 1898.3 1983.6 1895.8 1984.8 C
+f 
+S 
+n
+1905.2 1980.3 m
+1906.4 1979.9 1907.6 1979.5 1908.8 1979.1 C
+1907.6 1979.5 1906.4 1979.9 1905.2 1980.3 C
+f 
+S 
+n
+1964.7 1977.4 m
+1963.8 1977.5 1962.5 1980.2 1960.8 1980 C
+1962.5 1980.2 1963.3 1978 1964.7 1977.4 C
+f 
+S 
+n
+1952 1979.6 m
+1955.2 1979.2 1955.2 1979.2 1952 1979.6 C
+f 
+S 
+n
+1937.8 1966.4 m
+1941.2 1969.5 1946.1 1976.4 1951.5 1979.3 C
+1946.1 1976.7 1942.8 1970.4 1937.8 1966.4 C
+f 
+S 
+n
+1911.9 1978.6 m
+1914.3 1977.4 1916.7 1976.2 1919.1 1975 C
+1916.7 1976.2 1914.3 1977.4 1911.9 1978.6 C
+f 
+S 
+n
+1975.5 1971.4 m
+1974.6 1972.2 1973.3 1973.6 1973.3 1973.6 C
+1973.7 1973.1 1974.8 1972.1 1975.5 1971.4 C
+f 
+S 
+n
+1922.4 1972.8 m
+1924.9 1971.6 1927.4 1970.3 1929.9 1969 C
+1927.4 1970.3 1924.9 1971.6 1922.4 1972.8 C
+f 
+S 
+n
+1969.2 1971.9 m
+1971.1 1970.9 1972.9 1969.8 1974.8 1968.8 C
+1972.9 1969.8 1971.1 1970.9 1969.2 1971.9 C
+f 
+S 
+n
+vmrs
+1931.8 1968.3 m
+1933 1967.9 1934.2 1967.5 1935.4 1967.1 C
+1934.2 1967.5 1933 1967.9 1931.8 1968.3 C
+[0.07 0.06 0 0.58]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1940.7 2072.4 m
+1941.5 2072.4 1942.3 2072.3 1943.1 2072.2 C
+1942.3 2072.3 1941.5 2072.4 1940.7 2072.4 C
+[0 0 0 0.18]  vc
+f 
+S 
+n
+1948.6 2069.3 m
+1947 2069.5 1945.7 2068.9 1944.8 2069.8 C
+1945.9 2068.5 1948.4 2070.2 1948.6 2069.3 C
+f 
+S 
+n
+1954.6 2066.4 m
+1954.7 2067.9 1955.6 2067.3 1955.6 2068.8 C
+1955.4 2067.8 1956 2066.6 1954.6 2066.4 C
+f 
+S 
+n
+1929.2 2061.2 m
+1927.8 2062.1 1926.3 2064.1 1924.8 2063.3 C
+1926.3 2064.6 1928 2062 1929.2 2061.2 C
+f 
+S 
+n
+1924.4 2067.4 m
+1918.5 2061.6 1912.7 2055.9 1906.8 2050.1 C
+1912.7 2055.9 1918.5 2061.6 1924.4 2067.4 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1924.6 2062.8 m
+1923.9 2062.1 1923.2 2061.2 1922.4 2060.4 C
+1923.2 2061.2 1923.9 2062.1 1924.6 2062.8 C
+[0 0 0 0.18]  vc
+f 
+S 
+n
+1919.3 2057.3 m
+1917.5 2055.6 1915.7 2053.8 1913.8 2052 C
+1915.7 2053.8 1917.5 2055.6 1919.3 2057.3 C
+f 
+S 
+n
+1929.2 2055.2 m
+1929.2 2054.2 1929.2 2053.2 1929.2 2052.3 C
+1929.2 2053.2 1929.2 2054.2 1929.2 2055.2 C
+f 
+S 
+n
+1926.3 2049.6 m
+1925.4 2049 1925.4 2050.5 1924.4 2050.4 C
+1925.3 2051.3 1924.5 2051.9 1925.6 2052.5 C
+1926.9 2052.6 1926 2050.6 1926.3 2049.6 C
+f 
+S 
+n
+vmrs
+1911.2 2046.8 m
+1910.1 2048.9 1911.9 2050.1 1913.1 2051.3 C
+1912.1 2049.9 1910.6 2048.8 1911.2 2046.8 C
+[0 0 0 0.18]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1934 2048.7 m
+1932.6 2048.7 1930.1 2047.7 1929.6 2049.4 C
+1930.9 2048.6 1933.3 2049 1934 2048.7 C
+f 
+S 
+n
+1980 2048.4 m
+1979.5 2046.8 1976.3 2047.9 1977.2 2045.6 C
+1976.8 2045.1 1976.1 2044.7 1975.2 2044.8 C
+1973.7 2046 1976.3 2046.4 1976.7 2047.5 C
+1977.8 2047.2 1978.2 2050 1979.6 2049.2 C
+1980 2049 1979.6 2048.6 1980 2048.4 C
+f 
+S 
+n
+1938.3 2045.6 m
+1938.2 2044.4 1936.8 2043.8 1935.9 2043.4 C
+1936.4 2044.4 1939.1 2044.3 1937.6 2045.8 C
+1937 2046.1 1935.9 2046.1 1935.9 2046.8 C
+1936.7 2046.3 1937.8 2046.2 1938.3 2045.6 C
+f 
+S 
+n
+1932.5 2040 m
+1932.8 2038.1 1932 2038.9 1932.3 2040.3 C
+1933.1 2040.3 1932.7 2041.7 1933.7 2041.5 C
+1933.1 2041 1932.9 2040.5 1932.5 2040 C
+f 
+S 
+n
+2014.6 2035.2 m
+2014.1 2033.6 2010.9 2034.7 2011.7 2032.4 C
+2011.3 2031.9 2009.4 2030.7 2009.3 2032.1 C
+2009.5 2033.7 2012.9 2033.8 2012.4 2035.7 C
+2013 2036.4 2014.2 2036.5 2014.6 2035.2 C
+f 
+S 
+n
+1906.4 2030.7 m
+1905 2031.6 1903.5 2033.6 1902 2032.8 C
+1903.4 2034 1905.6 2031.4 1906.4 2030.7 C
+f 
+S 
+n
+1901.8 2037.2 m
+1899.5 2034.8 1897.2 2032.5 1894.8 2030.2 C
+1897.2 2032.5 1899.5 2034.8 1901.8 2037.2 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1901.8 2032.4 m
+1901.1 2031.6 1900.4 2030.7 1899.6 2030 C
+1900.4 2030.7 1901.1 2031.6 1901.8 2032.4 C
+[0 0 0 0.18]  vc
+f 
+S 
+n
+1944.5 2030 m
+1945.3 2029.9 1946.1 2029.8 1946.9 2029.7 C
+1946.1 2029.8 1945.3 2029.9 1944.5 2030 C
+f 
+S 
+n
+vmrs
+1997.8 2027.8 m
+1997.7 2027.9 1997.6 2028.1 1997.3 2028 C
+1997.4 2029.1 1998.5 2029.5 1999.2 2030 C
+2000.1 2029.5 1998.9 2028 1997.8 2027.8 C
+[0 0 0 0.18]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1906.4 2029.2 m
+1906.4 2026.6 1906.4 2024 1906.4 2021.3 C
+1906.4 2024 1906.4 2026.6 1906.4 2029.2 C
+f 
+S 
+n
+2006.2 2025.9 m
+2006 2025.9 2005.8 2025.8 2005.7 2025.6 C
+2005.7 2025.5 2005.7 2025.3 2005.7 2025.2 C
+2004.6 2025.8 2002.7 2024.7 2001.9 2026.1 C
+2001.9 2027.9 2007.8 2029.2 2006.2 2025.9 C
+[0 0 0 0]  vc
+f 
+S 
+n
+1952.4 2026.8 m
+1950.9 2027 1949.6 2026.4 1948.6 2027.3 C
+1949.7 2026.1 1952.2 2027.7 1952.4 2026.8 C
+[0 0 0 0.18]  vc
+f 
+S 
+n
+1896.5 2026.8 m
+1894.7 2025.1 1892.9 2023.3 1891 2021.6 C
+1892.9 2023.3 1894.7 2025.1 1896.5 2026.8 C
+f 
+S 
+n
+1958.4 2024 m
+1958.5 2025.5 1959.4 2024.8 1959.4 2026.4 C
+1959.3 2025.3 1959.8 2024.1 1958.4 2024 C
+f 
+S 
+n
+1903.5 2019.2 m
+1902.6 2018.6 1902.6 2020 1901.6 2019.9 C
+1902.5 2020.8 1901.7 2021.4 1902.8 2022 C
+1904.1 2022.2 1903.2 2020.1 1903.5 2019.2 C
+f 
+S 
+n
+1933 2018.7 m
+1931.7 2019.6 1930.1 2021.6 1928.7 2020.8 C
+1930.1 2022.1 1931.8 2019.5 1933 2018.7 C
+f 
+S 
+n
+1888.4 2016.3 m
+1887.3 2018.4 1889.1 2019.6 1890.3 2020.8 C
+1889.3 2019.5 1887.8 2018.3 1888.4 2016.3 C
+f 
+S 
+n
+1928.4 2020.4 m
+1927.7 2019.6 1927 2018.7 1926.3 2018 C
+1927 2018.7 1927.7 2019.6 1928.4 2020.4 C
+f 
+S 
+n
+vmrs
+1911.2 2018.2 m
+1909.8 2018.3 1907.3 2017.2 1906.8 2018.9 C
+1908.1 2018.1 1910.5 2018.6 1911.2 2018.2 C
+[0 0 0 0.18]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1915.5 2015.1 m
+1915.4 2013.9 1914 2013.3 1913.1 2012.9 C
+1913.6 2013.9 1916.3 2013.8 1914.8 2015.3 C
+1914.2 2015.6 1913.1 2015.6 1913.1 2016.3 C
+1913.9 2015.9 1915 2015.7 1915.5 2015.1 C
+f 
+S 
+n
+1923.2 2014.8 m
+1921.3 2013.1 1919.5 2011.3 1917.6 2009.6 C
+1919.5 2011.3 1921.3 2013.1 1923.2 2014.8 C
+f 
+S 
+n
+1933 2012.7 m
+1933 2011.7 1933 2010.8 1933 2009.8 C
+1933 2010.8 1933 2011.7 1933 2012.7 C
+f 
+S 
+n
+1909.7 2008.1 m
+1908.9 2009.2 1910.1 2009.9 1910.4 2011 C
+1911.1 2010.7 1908.9 2009.7 1909.7 2008.1 C
+f 
+S 
+n
+1930.1 2007.2 m
+1929.2 2006.6 1929.2 2008 1928.2 2007.9 C
+1929.1 2008.8 1928.4 2009.4 1929.4 2010 C
+1930.7 2010.2 1929.9 2008.1 1930.1 2007.2 C
+f 
+S 
+n
+1915 2004.3 m
+1914 2006.4 1915.7 2007.6 1916.9 2008.8 C
+1915.9 2007.5 1914.4 2006.3 1915 2004.3 C
+f 
+S 
+n
+1937.8 2006.2 m
+1936.4 2006.3 1934 2005.2 1933.5 2006.9 C
+1934.7 2006.1 1937.1 2006.6 1937.8 2006.2 C
+f 
+S 
+n
+1983.9 2006 m
+1983.3 2004.3 1980.2 2005.4 1981 2003.1 C
+1980.6 2002.7 1978.7 2001.5 1978.6 2002.8 C
+1978.8 2004.4 1982.1 2004.5 1981.7 2006.4 C
+1982.3 2007.2 1983.5 2007.2 1983.9 2006 C
+f 
+S 
+n
+1942.1 2003.1 m
+1942 2001.9 1940.6 2001.3 1939.7 2000.9 C
+1940.2 2001.9 1943 2001.8 1941.4 2003.3 C
+1940.9 2003.6 1939.7 2003.6 1939.7 2004.3 C
+1940.5 2003.9 1941.6 2003.7 1942.1 2003.1 C
+f 
+S 
+n
+vmrs
+1967.1 1998.5 m
+1967 1998.6 1966.8 1998.8 1966.6 1998.8 C
+1966.7 1999.8 1967.8 2000.2 1968.5 2000.7 C
+1969.4 2000.2 1968.2 1998.8 1967.1 1998.5 C
+[0 0 0 0.18]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1936.4 1997.6 m
+1936.7 1995.6 1935.8 1996.4 1936.1 1997.8 C
+1936.9 1997.9 1936.5 1999.2 1937.6 1999 C
+1937 1998.5 1936.8 1998 1936.4 1997.6 C
+f 
+S 
+n
+1975.5 1996.6 m
+1975.2 1996.7 1975.1 1996.5 1975 1996.4 C
+1975 1996.2 1975 1996.1 1975 1995.9 C
+1973.9 1996.5 1972 1995.5 1971.2 1996.8 C
+1971.2 1998.6 1977 1999.9 1975.5 1996.6 C
+[0 0 0 0]  vc
+f 
+S 
+n
+1949.3 2097.4 m
+1950.3 2096.9 1951.2 2096.4 1952.2 2096 C
+1951.2 2096.4 1950.3 2096.9 1949.3 2097.4 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1960.8 2091.6 m
+1961.7 2091.2 1962.6 2090.9 1963.5 2090.4 C
+1962.6 2090.9 1961.7 2091.2 1960.8 2091.6 C
+f 
+S 
+n
+1964.4 2090 m
+1965.7 2089.2 1967 2088.5 1968.3 2087.8 C
+1967 2088.5 1965.7 2089.2 1964.4 2090 C
+f 
+S 
+n
+1976 2083.7 m
+1976.3 2082.3 1975.2 2079.1 1976.9 2079.4 C
+1978.8 2080.7 1980.3 2082.9 1982.2 2084.2 C
+1980.6 2083.1 1978.2 2080.2 1976 2078.9 C
+1975.6 2081.2 1977 2084.9 1973.8 2085.4 C
+1972.2 2086.1 1970.7 2087 1969 2087.6 C
+1971.4 2086.5 1974.1 2085.6 1976 2083.7 C
+f 
+S 
+n
+1983.9 2084.2 m
+1984.8 2083.7 1985.8 2083.2 1986.8 2082.8 C
+1985.8 2083.2 1984.8 2083.7 1983.9 2084.2 C
+f 
+S 
+n
+1995.4 2078.4 m
+1996.3 2078 1997.1 2077.7 1998 2077.2 C
+1997.1 2077.7 1996.3 2078 1995.4 2078.4 C
+f 
+S 
+n
+1999 2076.8 m
+2000.3 2076 2001.6 2075.3 2002.8 2074.6 C
+2001.6 2075.3 2000.3 2076 1999 2076.8 C
+f 
+S 
+n
+vmrs
+1929.6 2065.7 m
+1930.1 2065.6 1929.8 2068.6 1929.9 2070 C
+1929.8 2068.6 1930.1 2067 1929.6 2065.7 C
+[0.4 0.4 0 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1906.6 2049.4 m
+1906.6 2046.7 1906.6 2043.9 1906.6 2041.2 C
+1906.6 2043.9 1906.6 2046.7 1906.6 2049.4 C
+f 
+S 
+n
+2016 2047.5 m
+2014.8 2048 2013.5 2048.3 2012.4 2049.4 C
+2013.5 2048.3 2014.8 2048 2016 2047.5 C
+f 
+S 
+n
+2016.5 2047.2 m
+2017.3 2046.9 2018.1 2046.6 2018.9 2046.3 C
+2018.1 2046.6 2017.3 2046.9 2016.5 2047.2 C
+f 
+S 
+n
+1912.4 2028.5 m
+1911.8 2032.4 1912.4 2037.2 1911.9 2041.2 C
+1911.5 2037.2 1911.7 2032.9 1911.6 2028.8 C
+1911.6 2033.5 1911.6 2038.9 1911.6 2042.9 C
+1912.5 2042.2 1911.6 2043.9 1912.6 2043.6 C
+1912.9 2039.3 1913.1 2033.3 1912.4 2028.5 C
+[0.21 0.21 0 0]  vc
+f 
+S 
+n
+1906.8 2040.8 m
+1906.8 2039 1906.8 2037.2 1906.8 2035.5 C
+1906.8 2037.2 1906.8 2039 1906.8 2040.8 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1905.9 2035.2 m
+1904.9 2036.4 1903.7 2037.2 1902.3 2037.4 C
+1903.7 2037.2 1904.9 2036.4 1905.9 2035.2 C
+f 
+S 
+n
+1906.1 2031.2 m
+1907 2031.1 1906.4 2028 1906.6 2030.7 C
+1905.5 2032.1 1904 2032.8 1902.5 2033.6 C
+1903.9 2033.2 1905 2032.1 1906.1 2031.2 C
+f 
+S 
+n
+1908.3 2018.7 m
+1905.2 2018.6 1907.1 2023.2 1906.6 2025.4 C
+1906.8 2023 1905.9 2019.5 1908.3 2018.7 C
+f 
+S 
+n
+1889.6 1998 m
+1889 2001.9 1889.6 2006.7 1889.1 2010.8 C
+1888.7 2006.7 1888.9 2002.4 1888.8 1998.3 C
+1888.8 2003 1888.8 2008.4 1888.8 2012.4 C
+1889.7 2011.7 1888.8 2013.4 1889.8 2013.2 C
+1890.1 2008.8 1890.3 2002.8 1889.6 1998 C
+[0.21 0.21 0 0]  vc
+f 
+S 
+n
+vmrs
+1999 2001.4 m
+2001 2000.3 2003 1999.2 2005 1998 C
+2003 1999.2 2001 2000.3 1999 2001.4 C
+[0.4 0.4 0 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1916.2 1986 m
+1915.7 1989.9 1916.3 1994.7 1915.7 1998.8 C
+1915.3 1994.7 1915.5 1990.4 1915.5 1986.3 C
+1915.5 1991 1915.5 1996.4 1915.5 2000.4 C
+1916.3 1999.7 1915.5 2001.4 1916.4 2001.2 C
+1916.7 1996.8 1917 1990.8 1916.2 1986 C
+[0.21 0.21 0 0]  vc
+f 
+S 
+n
+1886.9 1989.6 m
+1887.8 1989.2 1888.7 1988.9 1889.6 1988.4 C
+1888.7 1988.9 1887.8 1989.2 1886.9 1989.6 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1892.4 1986.8 m
+1895.1 1985.1 1897.9 1983.6 1900.6 1982 C
+1897.9 1983.6 1895.1 1985.1 1892.4 1986.8 C
+f 
+S 
+n
+1907.3 1979.3 m
+1908.5 1978.9 1909.7 1978.5 1910.9 1978.1 C
+1909.7 1978.5 1908.5 1978.9 1907.3 1979.3 C
+f 
+S 
+n
+1938.5 1966.6 m
+1942.6 1970.1 1945.9 1976.4 1951.7 1979.1 C
+1946.2 1976.1 1943.1 1970.9 1938.5 1966.6 C
+f 
+S 
+n
+1955.1 1978.6 m
+1955.9 1978.2 1956.7 1977.8 1957.5 1977.4 C
+1956.7 1977.8 1955.9 1978.2 1955.1 1978.6 C
+f 
+S 
+n
+1913.6 1977.6 m
+1914.5 1977.2 1915.3 1976.9 1916.2 1976.4 C
+1915.3 1976.9 1914.5 1977.2 1913.6 1977.6 C
+f 
+S 
+n
+1919.1 1974.8 m
+1921.8 1973.1 1924.5 1971.6 1927.2 1970 C
+1924.5 1971.6 1921.8 1973.1 1919.1 1974.8 C
+f 
+S 
+n
+1963.5 1974.5 m
+1964.5 1974 1965.6 1973.4 1966.6 1972.8 C
+1965.6 1973.4 1964.5 1974 1963.5 1974.5 C
+f 
+S 
+n
+vmrs
+1967.8 1972.4 m
+1970 1971.2 1972.1 1970 1974.3 1968.8 C
+1972.1 1970 1970 1971.2 1967.8 1972.4 C
+[0.4 0.4 0 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1934 1967.3 m
+1935.2 1966.9 1936.4 1966.5 1937.6 1966.1 C
+1936.4 1966.5 1935.2 1966.9 1934 1967.3 C
+f 
+S 
+n
+1928.9 2061.2 m
+1928.9 2059.2 1928.9 2057.3 1928.9 2055.4 C
+1928.9 2057.3 1928.9 2059.2 1928.9 2061.2 C
+[0.21 0.21 0 0]  vc
+f 
+S 
+n
+1917.2 2047 m
+1917.8 2046.5 1919.6 2046.8 1920 2047.2 C
+1920 2046.5 1920.9 2046.8 1921 2046.3 C
+1921.9 2047.3 1921.3 2044.1 1921.5 2044.1 C
+1919.7 2044.8 1915.7 2043.5 1916.2 2046 C
+1916.2 2048.3 1917 2045.9 1917.2 2047 C
+[0 0 0 0]  vc
+f 
+S 
+n
+1922 2044.1 m
+1923.5 2043.2 1927 2045.4 1927.5 2042.9 C
+1927.1 2042.6 1927.3 2040.9 1927.2 2041.5 C
+1924.9 2042.3 1920.9 2040.6 1922 2044.1 C
+f 
+S 
+n
+1934.9 2043.9 m
+1935.2 2043.4 1934.4 2042.7 1934 2042.2 C
+1933.2 2041.8 1932.4 2042.8 1932.8 2043.2 C
+1932.9 2044 1934.3 2043.3 1934.9 2043.9 C
+f 
+S 
+n
+1906.1 2030.7 m
+1906.1 2028.8 1906.1 2027 1906.1 2025.2 C
+1906.1 2027 1906.1 2028.8 1906.1 2030.7 C
+[0.21 0.21 0 0]  vc
+f 
+S 
+n
+1932.8 2018.7 m
+1932.8 2016.8 1932.8 2014.8 1932.8 2012.9 C
+1932.8 2014.8 1932.8 2016.8 1932.8 2018.7 C
+f 
+S 
+n
+1894.4 2016.5 m
+1895 2016 1896.8 2016.3 1897.2 2016.8 C
+1897.2 2016 1898.1 2016.3 1898.2 2015.8 C
+1899.1 2016.8 1898.5 2013.6 1898.7 2013.6 C
+1896.9 2014.4 1892.9 2013 1893.4 2015.6 C
+1893.4 2017.8 1894.2 2015.4 1894.4 2016.5 C
+[0 0 0 0]  vc
+f 
+S 
+n
+1899.2 2013.6 m
+1900.7 2012.7 1904.2 2014.9 1904.7 2012.4 C
+1904.3 2012.1 1904.5 2010.5 1904.4 2011 C
+1902.1 2011.8 1898.1 2010.1 1899.2 2013.6 C
+f 
+S 
+n
+vmrs
+1912.1 2013.4 m
+1912.4 2012.9 1911.6 2012.3 1911.2 2011.7 C
+1910.4 2011.4 1909.6 2012.3 1910 2012.7 C
+1910.1 2013.5 1911.5 2012.9 1912.1 2013.4 C
+[0 0 0 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1921 2004.5 m
+1921.6 2004 1923.4 2004.3 1923.9 2004.8 C
+1923.8 2004 1924.8 2004.3 1924.8 2003.8 C
+1925.7 2004.8 1925.1 2001.6 1925.3 2001.6 C
+1923.6 2002.4 1919.6 2001 1920 2003.6 C
+1920 2005.8 1920.8 2003.4 1921 2004.5 C
+f 
+S 
+n
+1925.8 2001.6 m
+1927.3 2000.7 1930.8 2002.9 1931.3 2000.4 C
+1930.9 2000.1 1931.1 1998.5 1931.1 1999 C
+1928.7 1999.8 1924.8 1998.1 1925.8 2001.6 C
+f 
+S 
+n
+1938.8 2001.4 m
+1939 2000.9 1938.2 2000.3 1937.8 1999.7 C
+1937.1 1999.4 1936.2 2000.3 1936.6 2000.7 C
+1936.7 2001.5 1938.1 2000.9 1938.8 2001.4 C
+f 
+S 
+n
+1908.6691 2008.1348 m
+1897.82 2010.0477 L
+1894.1735 1989.3671 L
+1905.0226 1987.4542 L
+1908.6691 2008.1348 L
+n
+q
+_bfh
+%%IncludeResource: font Symbol
+_efh
+{
+f0 [19.696045 -3.4729 3.4729 19.696045 0 0] makesetfont
+1895.041763 1994.291153 m
+0 0 32 0 0 (l) ts
+}
+true
+[0 0 0 1]sts
+Q
+1979.2185 1991.7809 m
+1960.6353 1998.5452 L
+1953.4532 1978.8124 L
+1972.0363 1972.0481 L
+1979.2185 1991.7809 L
+n
+q
+_bfh
+%%IncludeResource: font Symbol
+_efh
+{
+f0 [18.793335 -6.84082 6.84021 18.793335 0 0] makesetfont
+1955.163254 1983.510773 m
+0 0 32 0 0 (\256) ts
+}
+true
+[0 0 0 1]sts
+Q
+1952.1544 2066.5423 m
+1938.0739 2069.025 L
+1934.4274 2048.3444 L
+1948.5079 2045.8617 L
+1952.1544 2066.5423 L
+n
+q
+_bfh
+%%IncludeResource: font Symbol
+_efh
+{
+f0 [19.696045 -3.4729 3.4729 19.696045 0 0] makesetfont
+1935.29567 2053.268433 m
+0 0 32 0 0 (") ts
+}
+true
+[0 0 0 1]sts
+Q
+1931.7231 2043.621 m
+1919.3084 2048.14 L
+1910.6898 2024.4607 L
+1923.1046 2019.9417 L
+1931.7231 2043.621 L
+n
+q
+_bfh
+%%IncludeResource: font Symbol
+_efh
+{
+f0 [22.552002 -8.208984 8.208252 22.552002 0 0] makesetfont
+1912.741867 2030.098648 m
+0 0 32 0 0 (=) ts
+}
+true
+[0 0 0 1]sts
+Q
+1944 2024.5 m
+1944 2014 L
+0.8504 w
+0 J
+3.863693 M
+[0 0 0 1]  vc
+false setoverprint
+S 
+n
+1944.25 2019.1673 m
+1952.5 2015.9173 L
+S 
+n
+1931.0787 2124.423 m
+1855.5505 2043.4285 L
+1871.0419 2013.0337 L
+1946.5701 2094.0282 L
+1931.0787 2124.423 L
+n
+q
+_bfh
+%%IncludeResource: font ZapfHumanist601BT-Bold
+_efh
+{
+f1 [22.155762 23.759277 -14.753906 28.947754 0 0] makesetfont
+1867.35347 2020.27063 m
+0 0 32 0 0 (Isabelle) ts
+}
+true
+[0 0 0 1]sts
+Q
+1933.5503 1996.9547 m
+1922.7012 1998.8677 L
+1919.0547 1978.1871 L
+1929.9038 1976.2741 L
+1933.5503 1996.9547 L
+n
+q
+_bfh
+%%IncludeResource: font Symbol
+_efh
+{
+f0 [19.696045 -3.4729 3.4729 19.696045 0 0] makesetfont
+1919.922913 1983.111069 m
+0 0 32 0 0 (b) ts
+}
+true
+[0 0 0 1]sts
+Q
+2006.3221 2025.7184 m
+1993.8573 2027.9162 L
+1990.2108 2007.2356 L
+2002.6756 2005.0378 L
+2006.3221 2025.7184 L
+n
+q
+_bfh
+%%IncludeResource: font Symbol
+_efh
+{
+f0 [19.696045 -3.4729 3.4729 19.696045 0 0] makesetfont
+1991.07901 2012.159653 m
+0 0 32 0 0 (a) ts
+}
+true
+[0 0 0 1]sts
+Q
+vmrs
+2030.0624 2094.056 m
+1956.3187 2120.904 L
+1956.321 2095.3175 L
+2030.0647 2068.4695 L
+2030.0624 2094.056 L
+n
+q
+_bfh
+%%IncludeResource: font ZapfHumanist601BT-Bold
+_efh
+{
+f1 [22.898804 -8.336792 -0.002197 24.368408 0 0] makesetfont
+1956.320496 2101.409561 m
+0 0 32 0 0 (Nitpick) ts
+}
+true
+[0 0 0 1]sts
+Q
+vmr
+vmr
+end
+%%Trailer
+%%DocumentNeededResources: font Symbol
+%%+ font ZapfHumanist601BT-Bold
+%%DocumentFonts: Symbol
+%%+ ZapfHumanist601BT-Bold
+%%DocumentNeededFonts: Symbol
+%%+ ZapfHumanist601BT-Bold
Binary file doc-src/gfx/isabelle_nitpick.pdf has changed
--- a/doc-src/manual.bib	Mon Oct 26 12:23:59 2009 +0100
+++ b/doc-src/manual.bib	Mon Oct 26 14:21:20 2009 +0100
@@ -49,7 +49,7 @@
 
 @Unpublished{abrial93,
   author	= {J. R. Abrial and G. Laffitte},
-  title		= {Towards the Mechanization of the Proofs of some Classical
+  title		= {Towards the Mechanization of the Proofs of Some Classical
 		  Theorems of Set Theory},
   note		= {preprint},
   year		= 1993,
@@ -73,6 +73,17 @@
   crossref	= {types93},
   pages		= {213-237}}
 
+@inproceedings{andersson-1993,
+  author = "Arne Andersson",
+  title = "Balanced Search Trees Made Simple",
+  editor = "F. K. H. A. Dehne and N. Santoro and S. Whitesides",
+  booktitle = "WADS 1993",
+  series = LNCS,
+  volume = {709},
+  pages = "61--70",
+  year = 1993,
+  publisher = Springer}
+
 @book{andrews86,
   author	= "Peter Andrews",
   title		= "An Introduction to Mathematical Logic and Type Theory: to Truth
@@ -167,6 +178,15 @@
   author          = "Stefan Berghofer and Tobias Nipkow",
   pages           = "38--52"}
 
+@inproceedings{berghofer-nipkow-2004,
+  author = {Stefan Berghofer and Tobias Nipkow},
+  title = {Random Testing in {I}sabelle/{HOL}},
+  pages = {230--239},
+  editor = "J. Cuellar and Z. Liu",
+  booktitle = {{SEFM} 2004},
+  publisher = IEEE,
+  year = 2004}
+
 @InProceedings{Berghofer-Nipkow:2002,
   author =       {Stefan Berghofer and Tobias Nipkow},
   title =        {Executing Higher Order Logic},
@@ -200,6 +220,14 @@
 title="Introduction to Functional Programming using Haskell",
 publisher=PH,year=1998}
 
+@inproceedings{blanchette-nipkow-2009,
+  title = "Nitpick: A Counterexample Generator for Higher-Order Logic Based on a Relational Model Finder (Extended Abstract)",
+  author = "Jasmin Christian Blanchette and Tobias Nipkow",
+  booktitle = "{TAP} 2009: Short Papers",
+  editor = "Catherine Dubois",
+  publisher = "ETH Technical Report 630",
+  year = 2009}
+
 @Article{boyer86,
   author	= {Robert Boyer and Ewing Lusk and William McCune and Ross
 		   Overbeek and Mark Stickel and Lawrence Wos},
@@ -241,7 +269,7 @@
 }
 
 @InProceedings{bulwahn-et-al:2008:imperative,
-  author   = {Lukas Bulwahn and Alexander Krauss and Florian Haftmann and Levent Erkök and John Matthews},
+  author   = {Lukas Bulwahn and Alexander Krauss and Florian Haftmann and Levent Erkök and John Matthews},
   title    = {Imperative Functional Programming with {Isabelle/HOL}},
   crossref = {tphols2008},
 }
@@ -597,6 +625,12 @@
   year =    2003,
   note =    {\url{http://www.haskell.org/definition/}}}
 
+@book{jackson-2006,
+  author = "Daniel Jackson",
+  title = "Software Abstractions: Logic, Language, and Analysis",
+  publisher = MIT,
+  year = 2006}
+
 %K
 
 @InProceedings{kammueller-locales,
@@ -878,10 +912,11 @@
 
 @Book{isa-tutorial,
   author	= {Tobias Nipkow and Lawrence C. Paulson and Markus Wenzel},
-  title		= {Isabelle/HOL: A Proof Assistant for Higher-Order Logic},
-  publisher	= {Springer},
+  title		= {Isabelle/{HOL}: A Proof Assistant for Higher-Order Logic},
+  publisher	= Springer,
   year		= 2002,
-  note		= {LNCS Tutorial 2283}}
+  series    = LNCS,
+  volume    = 2283}
 
 @Article{noel,
   author	= {Philippe No{\"e}l},
@@ -1021,7 +1056,7 @@
                    Essays in Honor of {Robin Milner}},
   booktitle	= {Proof, Language, and Interaction: 
                    Essays in Honor of {Robin Milner}},
-  publisher	= {MIT Press},
+  publisher	= MIT,
   year		= 2000,
   editor	= {Gordon Plotkin and Colin Stirling and Mads Tofte}}
 
@@ -1236,6 +1271,12 @@
   number =       4
 }
 
+@misc{sledgehammer-2009,
+  key = "Sledgehammer",
+  title = "The {S}ledgehammer: Let Automatic Theorem Provers
+Write Your {I}s\-a\-belle Scripts",
+  note = "\url{http://www.cl.cam.ac.uk/research/hvg/Isabelle/sledgehammer.html}"}
+
 @inproceedings{slind-tfl,
   author	= {Konrad Slind},
   title		= {Function Definition in Higher Order Logic},
@@ -1295,6 +1336,27 @@
 title={Haskell: The Craft of Functional Programming},
 publisher={Addison-Wesley},year=1999}
 
+@misc{kodkod-2009,
+  author = "Emina Torlak",
+  title = {Kodkod: Constraint Solver for Relational Logic},
+  note = "\url{http://alloy.mit.edu/kodkod/}"}
+
+@misc{kodkod-2009-options,
+  author = "Emina Torlak",
+  title = "Kodkod {API}: Class {Options}",
+  note = "\url{http://alloy.mit.edu/kodkod/docs/kodkod/engine/config/Options.html}"}
+
+@inproceedings{torlak-jackson-2007,
+  title = "Kodkod: A Relational Model Finder",
+  author = "Emina Torlak and Daniel Jackson",
+  editor = "Orna Grumberg and Michael Huth",
+  booktitle = "TACAS 2007",
+  series = LNCS,
+  volume = {4424},
+  pages = "632--647",
+  year = 2007,
+  publisher = Springer}
+
 @Unpublished{Trybulec:1993:MizarFeatures,
   author = 	 {A. Trybulec},
   title = 	 {Some Features of the {Mizar} Language},
@@ -1320,6 +1382,13 @@
   year          = 1989
 }
 
+@phdthesis{weber-2008,
+  author = "Tjark Weber",
+  title = "SAT-Based Finite Model Generation for Higher-Order Logic",
+  school = {Dept.\ of Informatics, T.U. M\"unchen},
+  type = "{Ph.D.}\ thesis",
+  year = 2008}
+
 @Misc{x-symbol,
   author =	 {Christoph Wedler},
   title =	 {Emacs package ``{X-Symbol}''},
@@ -1570,7 +1639,7 @@
 			Essays in Honor of {Larry Wos}},
   booktitle	= {Automated Reasoning and its Applications: 
 			Essays in Honor of {Larry Wos}},
-  publisher	= {MIT Press},
+  publisher	= MIT,
   year		= 1997,
   editor	= {Robert Veroff}}
 
@@ -1669,3 +1738,8 @@
   title         = {{ML} Modules and {Haskell} Type Classes: A Constructive Comparison},
   author        = {Stefan Wehr et. al.}
 }
+
+@misc{wikipedia-2009-aa-trees,
+  key = "Wikipedia",
+  title = "Wikipedia: {AA} Tree",
+  note = "\url{http://en.wikipedia.org/wiki/AA_tree}"}
--- a/etc/isar-keywords-ZF.el	Mon Oct 26 12:23:59 2009 +0100
+++ b/etc/isar-keywords-ZF.el	Mon Oct 26 14:21:20 2009 +0100
@@ -9,12 +9,9 @@
     "\\.\\."
     "Isabelle\\.command"
     "Isar\\.begin_document"
-    "Isar\\.command"
     "Isar\\.define_command"
     "Isar\\.edit_document"
     "Isar\\.end_document"
-    "Isar\\.insert"
-    "Isar\\.remove"
     "ML"
     "ML_command"
     "ML_prf"
@@ -252,12 +249,9 @@
 (defconst isar-keywords-control
   '("Isabelle\\.command"
     "Isar\\.begin_document"
-    "Isar\\.command"
     "Isar\\.define_command"
     "Isar\\.edit_document"
     "Isar\\.end_document"
-    "Isar\\.insert"
-    "Isar\\.remove"
     "ProofGeneral\\.inform_file_processed"
     "ProofGeneral\\.inform_file_retracted"
     "ProofGeneral\\.kill_proof"
--- a/etc/isar-keywords.el	Mon Oct 26 12:23:59 2009 +0100
+++ b/etc/isar-keywords.el	Mon Oct 26 14:21:20 2009 +0100
@@ -9,12 +9,9 @@
     "\\.\\."
     "Isabelle\\.command"
     "Isar\\.begin_document"
-    "Isar\\.command"
     "Isar\\.define_command"
     "Isar\\.edit_document"
     "Isar\\.end_document"
-    "Isar\\.insert"
-    "Isar\\.remove"
     "ML"
     "ML_command"
     "ML_prf"
@@ -135,6 +132,8 @@
     "method_setup"
     "moreover"
     "next"
+    "nitpick"
+    "nitpick_params"
     "no_notation"
     "no_syntax"
     "no_translations"
@@ -317,12 +316,9 @@
 (defconst isar-keywords-control
   '("Isabelle\\.command"
     "Isar\\.begin_document"
-    "Isar\\.command"
     "Isar\\.define_command"
     "Isar\\.edit_document"
     "Isar\\.end_document"
-    "Isar\\.insert"
-    "Isar\\.remove"
     "ProofGeneral\\.inform_file_processed"
     "ProofGeneral\\.inform_file_retracted"
     "ProofGeneral\\.kill_proof"
@@ -360,6 +356,7 @@
     "header"
     "help"
     "kill_thy"
+    "nitpick"
     "normal_form"
     "pr"
     "pretty_setmargin"
@@ -482,6 +479,7 @@
     "local_setup"
     "locale"
     "method_setup"
+    "nitpick_params"
     "no_notation"
     "no_syntax"
     "no_translations"
--- a/lib/jedit/isabelle.xml	Mon Oct 26 12:23:59 2009 +0100
+++ b/lib/jedit/isabelle.xml	Mon Oct 26 14:21:20 2009 +0100
@@ -36,12 +36,9 @@
       <OPERATOR>..</OPERATOR>
       <INVALID>Isabelle.command</INVALID>
       <INVALID>Isar.begin_document</INVALID>
-      <INVALID>Isar.command</INVALID>
       <INVALID>Isar.define_command</INVALID>
       <INVALID>Isar.edit_document</INVALID>
       <INVALID>Isar.end_document</INVALID>
-      <INVALID>Isar.insert</INVALID>
-      <INVALID>Isar.remove</INVALID>
       <OPERATOR>ML</OPERATOR>
       <LABEL>ML_command</LABEL>
       <OPERATOR>ML_prf</OPERATOR>
@@ -196,6 +193,8 @@
       <OPERATOR>moreover</OPERATOR>
       <KEYWORD4>morphisms</KEYWORD4>
       <OPERATOR>next</OPERATOR>
+      <LABEL>nitpick</LABEL>
+      <OPERATOR>nitpick_params</OPERATOR>
       <OPERATOR>no_notation</OPERATOR>
       <OPERATOR>no_syntax</OPERATOR>
       <OPERATOR>no_translations</OPERATOR>
@@ -246,6 +245,7 @@
       <LABEL>print_drafts</LABEL>
       <LABEL>print_facts</LABEL>
       <LABEL>print_induct_rules</LABEL>
+      <LABEL>print_interps</LABEL>
       <LABEL>print_locale</LABEL>
       <LABEL>print_locales</LABEL>
       <LABEL>print_methods</LABEL>
--- a/src/HOL/GCD.thy	Mon Oct 26 12:23:59 2009 +0100
+++ b/src/HOL/GCD.thy	Mon Oct 26 14:21:20 2009 +0100
@@ -1702,4 +1702,12 @@
   show ?thesis by(simp add: Gcd_def fold_set gcd_commute_int)
 qed
 
+lemma gcd_eq_nitpick_gcd [nitpick_def]: "gcd x y \<equiv> Nitpick.nat_gcd x y"
+apply (rule eq_reflection)
+apply (induct x y rule: nat_gcd.induct)
+by (simp add: gcd_nat.simps Nitpick.nat_gcd.simps)
+
+lemma lcm_eq_nitpick_lcm [nitpick_def]: "lcm x y \<equiv> Nitpick.nat_lcm x y"
+by (simp only: lcm_nat_def Nitpick.nat_lcm_def gcd_eq_nitpick_gcd)
+
 end
--- a/src/HOL/Induct/LList.thy	Mon Oct 26 12:23:59 2009 +0100
+++ b/src/HOL/Induct/LList.thy	Mon Oct 26 14:21:20 2009 +0100
@@ -905,4 +905,9 @@
 lemma lappend_assoc': "lappend (lappend l1 l2) l3 = lappend l1 (lappend l2 l3)"
 by (rule_tac l = l1 in llist_fun_equalityI, auto)
 
+setup {*
+Nitpick.register_codatatype @{typ "'a llist"} @{const_name llist_case}
+                            (map dest_Const [@{term LNil}, @{term LCons}])
+*}
+
 end
--- a/src/HOL/IsaMakefile	Mon Oct 26 12:23:59 2009 +0100
+++ b/src/HOL/IsaMakefile	Mon Oct 26 14:21:20 2009 +0100
@@ -35,6 +35,7 @@
   HOL-Modelcheck \
   HOL-Multivariate_Analysis \
   HOL-NanoJava \
+  HOL-Nitpick_Examples \
   HOL-Nominal-Examples \
   HOL-Number_Theory \
   HOL-Old_Number_Theory \
@@ -44,9 +45,9 @@
   HOL-SMT-Examples \
   HOL-Statespace \
   HOL-Subst \
-      TLA-Buffer \
-      TLA-Inc \
-      TLA-Memory \
+  TLA-Buffer \
+  TLA-Inc \
+  TLA-Memory \
   HOL-UNITY \
   HOL-Unix \
   HOL-W0 \
@@ -132,6 +133,7 @@
   Inductive.thy \
   Lattices.thy \
   Nat.thy \
+  Nitpick.thy \
   Option.thy \
   OrderedGroup.thy \
   Orderings.thy \
@@ -178,6 +180,21 @@
   Tools/Function/size.ML \
   Tools/Function/sum_tree.ML \
   Tools/Function/termination.ML \
+  Tools/Nitpick/kodkod.ML \
+  Tools/Nitpick/kodkod_sat.ML \
+  Tools/Nitpick/minipick.ML \
+  Tools/Nitpick/nitpick.ML \
+  Tools/Nitpick/nitpick_hol.ML \
+  Tools/Nitpick/nitpick_isar.ML \
+  Tools/Nitpick/nitpick_kodkod.ML \
+  Tools/Nitpick/nitpick_model.ML \
+  Tools/Nitpick/nitpick_mono.ML \
+  Tools/Nitpick/nitpick_nut.ML \
+  Tools/Nitpick/nitpick_peephole.ML \
+  Tools/Nitpick/nitpick_rep.ML \
+  Tools/Nitpick/nitpick_scope.ML \
+  Tools/Nitpick/nitpick_tests.ML \
+  Tools/Nitpick/nitpick_util.ML \
   Tools/inductive_codegen.ML \
   Tools/inductive.ML \
   Tools/inductive_realizer.ML \
@@ -566,6 +583,21 @@
 	@$(ISABELLE_TOOL) usedir $(OUT)/HOL Metis_Examples
 
 
+## HOL-Nitpick_Examples
+
+HOL-Nitpick_Examples: HOL $(LOG)/HOL-Nitpick_Examples.gz
+
+$(LOG)/HOL-Nitpick_Examples.gz: $(OUT)/HOL Nitpick_Examples/ROOT.ML \
+  Nitpick_Examples/Core_Nits.thy Nitpick_Examples/Datatype_Nits.thy \
+  Nitpick_Examples/Induct_Nits.thy Nitpick_Examples/Manual_Nits.thy \
+  Nitpick_Examples/Mini_Nits.thy Nitpick_Examples/Mono_Nits.thy \
+  Nitpick_Examples/Nitpick_Examples.thy Nitpick_Examples/Pattern_Nits.thy \
+  Nitpick_Examples/Record_Nits.thy Nitpick_Examples/Refute_Nits.thy \
+  Nitpick_Examples/Special_Nits.thy Nitpick_Examples/Tests_Nits.thy \
+  Nitpick_Examples/Typedef_Nits.thy
+	@$(ISABELLE_TOOL) usedir $(OUT)/HOL Nitpick_Examples
+
+
 ## HOL-Algebra
 
 HOL-Algebra: HOL $(LOG)/HOL-Algebra.gz
--- a/src/HOL/Library/Coinductive_List.thy	Mon Oct 26 12:23:59 2009 +0100
+++ b/src/HOL/Library/Coinductive_List.thy	Mon Oct 26 14:21:20 2009 +0100
@@ -200,6 +200,7 @@
   [code del]: "llist_case c d l =
     List_case c (\<lambda>x y. d (inv Datatype.Leaf x) (Abs_llist y)) (Rep_llist l)"
 
+
 syntax  (* FIXME? *)
   LNil :: logic
   LCons :: logic
@@ -848,4 +849,9 @@
   qed
 qed
 
+setup {*
+Nitpick.register_codatatype @{typ "'a llist"} @{const_name llist_case}
+                            (map dest_Const [@{term LNil}, @{term LCons}])
+*}
+
 end
--- a/src/HOL/Main.thy	Mon Oct 26 12:23:59 2009 +0100
+++ b/src/HOL/Main.thy	Mon Oct 26 14:21:20 2009 +0100
@@ -1,7 +1,7 @@
 header {* Main HOL *}
 
 theory Main
-imports Plain Quickcheck Map Recdef SAT
+imports Plain Nitpick Quickcheck Recdef
 begin
 
 text {*
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Nitpick.thy	Mon Oct 26 14:21:20 2009 +0100
@@ -0,0 +1,240 @@
+(*  Title:      HOL/Nitpick.thy
+    Author:     Jasmin Blanchette, TU Muenchen
+    Copyright   2008, 2009
+
+Nitpick: Yet another counterexample generator for Isabelle/HOL.
+*)
+
+header {* Nitpick: Yet Another Counterexample Generator for Isabelle/HOL *}
+
+theory Nitpick
+imports Map SAT
+uses ("Tools/Nitpick/kodkod.ML")
+     ("Tools/Nitpick/kodkod_sat.ML")
+     ("Tools/Nitpick/nitpick_util.ML")
+     ("Tools/Nitpick/nitpick_hol.ML")
+     ("Tools/Nitpick/nitpick_mono.ML")
+     ("Tools/Nitpick/nitpick_scope.ML")
+     ("Tools/Nitpick/nitpick_peephole.ML")
+     ("Tools/Nitpick/nitpick_rep.ML")
+     ("Tools/Nitpick/nitpick_nut.ML")
+     ("Tools/Nitpick/nitpick_kodkod.ML")
+     ("Tools/Nitpick/nitpick_model.ML")
+     ("Tools/Nitpick/nitpick.ML")
+     ("Tools/Nitpick/nitpick_isar.ML")
+     ("Tools/Nitpick/nitpick_tests.ML")
+     ("Tools/Nitpick/minipick.ML")
+begin
+
+typedecl bisim_iterator
+
+(* FIXME: use axiomatization (here and elsewhere) *)
+axiomatization unknown :: 'a
+           and undefined_fast_The :: 'a
+           and undefined_fast_Eps :: 'a
+           and bisim :: "bisim_iterator \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
+           and bisim_iterator_max :: bisim_iterator
+           and Tha :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
+
+datatype ('a, 'b) pair_box = PairBox 'a 'b
+datatype ('a, 'b) fun_box = FunBox "'a \<Rightarrow> 'b"
+
+text {*
+Alternative definitions.
+*}
+
+lemma If_def [nitpick_def]:
+"(if P then Q else R) \<equiv> (P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> R)"
+by (rule eq_reflection) (rule if_bool_eq_conj)
+
+lemma Ex1_def [nitpick_def]:
+"Ex1 P \<equiv> \<exists>x. P = {x}"
+apply (rule eq_reflection)
+apply (simp add: Ex1_def expand_set_eq)
+apply (rule iffI)
+ apply (erule exE)
+ apply (erule conjE)
+ apply (rule_tac x = x in exI)
+ apply (rule allI)
+ apply (rename_tac y)
+ apply (erule_tac x = y in allE)
+by (auto simp: mem_def)
+
+lemma rtrancl_def [nitpick_def]: "r\<^sup>* \<equiv> (r\<^sup>+)\<^sup>="
+by simp
+
+lemma rtranclp_def [nitpick_def]:
+"rtranclp r a b \<equiv> (a = b \<or> tranclp r a b)"
+by (rule eq_reflection) (auto dest: rtranclpD)
+
+lemma tranclp_def [nitpick_def]:
+"tranclp r a b \<equiv> trancl (split r) (a, b)"
+by (simp add: trancl_def Collect_def mem_def)
+
+definition refl' :: "('a \<times> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
+"refl' r \<equiv> \<forall>x. (x, x) \<in> r"
+
+definition wf' :: "('a \<times> 'a \<Rightarrow> bool) \<Rightarrow> bool" where
+"wf' r \<equiv> acyclic r \<and> (finite r \<or> unknown)"
+
+axiomatization wf_wfrec :: "('a \<times> 'a \<Rightarrow> bool) \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
+
+definition wf_wfrec' :: "('a \<times> 'a \<Rightarrow> bool) \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where
+[nitpick_simp]: "wf_wfrec' R F x = F (Recdef.cut (wf_wfrec R F) R x) x"
+
+definition wfrec' ::  "('a \<times> 'a \<Rightarrow> bool) \<Rightarrow> (('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b" where
+"wfrec' R F x \<equiv> if wf R then wf_wfrec' R F x
+                else THE y. wfrec_rel R (%f x. F (Recdef.cut f R x) x) x y"
+
+definition card' :: "('a \<Rightarrow> bool) \<Rightarrow> nat" where
+"card' X \<equiv> length (SOME xs. set xs = X \<and> distinct xs)"
+
+definition setsum' :: "('a \<Rightarrow> 'b\<Colon>comm_monoid_add) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'b" where
+"setsum' f A \<equiv> if finite A then listsum (map f (SOME xs. set xs = A \<and> distinct xs)) else 0"
+
+inductive fold_graph' :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'b \<Rightarrow> bool" where
+"fold_graph' f z {} z" |
+"\<lbrakk>x \<in> A; fold_graph' f z (A - {x}) y\<rbrakk> \<Longrightarrow> fold_graph' f z A (f x y)"
+
+text {*
+The following lemmas are not strictly necessary but they help the
+\textit{special\_level} optimization.
+*}
+
+lemma The_psimp [nitpick_psimp]:
+"P = {x} \<Longrightarrow> The P = x"
+by (subgoal_tac "{x} = (\<lambda>y. y = x)") (auto simp: mem_def)
+
+lemma Eps_psimp [nitpick_psimp]:
+"\<lbrakk>P x; \<not> P y; Eps P = y\<rbrakk> \<Longrightarrow> Eps P = x"
+apply (case_tac "P (Eps P)")
+ apply auto
+apply (erule contrapos_np)
+by (rule someI)
+
+lemma unit_case_def [nitpick_def]:
+"unit_case x u \<equiv> x"
+apply (subgoal_tac "u = ()")
+ apply (simp only: unit.cases)
+by simp
+
+lemma nat_case_def [nitpick_def]:
+"nat_case x f n \<equiv> if n = 0 then x else f (n - 1)"
+apply (rule eq_reflection)
+by (case_tac n) auto
+
+lemmas dvd_def = dvd_eq_mod_eq_0 [THEN eq_reflection, nitpick_def]
+
+lemma list_size_simp [nitpick_simp]:
+"list_size f xs = (if xs = [] then 0
+                   else Suc (f (hd xs) + list_size f (tl xs)))"
+"size xs = (if xs = [] then 0 else Suc (size (tl xs)))"
+by (case_tac xs) auto
+
+text {*
+Auxiliary definitions used to provide an alternative representation for
+@{text rat} and @{text real}.
+*}
+
+function nat_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
+[simp del]: "nat_gcd x y = (if y = 0 then x else nat_gcd y (x mod y))"
+by auto
+termination
+apply (relation "measure (\<lambda>(x, y). x + y + (if y > x then 1 else 0))")
+ apply auto
+ apply (metis mod_less_divisor xt1(9))
+by (metis mod_mod_trivial mod_self nat_neq_iff xt1(10))
+
+definition nat_lcm :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
+"nat_lcm x y = x * y div (nat_gcd x y)"
+
+definition int_gcd :: "int \<Rightarrow> int \<Rightarrow> int" where
+"int_gcd x y = int (nat_gcd (nat (abs x)) (nat (abs y)))"
+
+definition int_lcm :: "int \<Rightarrow> int \<Rightarrow> int" where
+"int_lcm x y = int (nat_lcm (nat (abs x)) (nat (abs y)))"
+
+definition Frac :: "int \<times> int \<Rightarrow> bool" where
+"Frac \<equiv> \<lambda>(a, b). b > 0 \<and> int_gcd a b = 1"
+
+axiomatization Abs_Frac :: "int \<times> int \<Rightarrow> 'a"
+           and Rep_Frac :: "'a \<Rightarrow> int \<times> int"
+
+definition zero_frac :: 'a where
+"zero_frac \<equiv> Abs_Frac (0, 1)"
+
+definition one_frac :: 'a where
+"one_frac \<equiv> Abs_Frac (1, 1)"
+
+definition num :: "'a \<Rightarrow> int" where
+"num \<equiv> fst o Rep_Frac"
+
+definition denom :: "'a \<Rightarrow> int" where
+"denom \<equiv> snd o Rep_Frac"
+
+function norm_frac :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
+[simp del]: "norm_frac a b = (if b < 0 then norm_frac (- a) (- b)
+                              else if a = 0 \<or> b = 0 then (0, 1)
+                              else let c = int_gcd a b in (a div c, b div c))"
+by pat_completeness auto
+termination by (relation "measure (\<lambda>(_, b). if b < 0 then 1 else 0)") auto
+
+definition frac :: "int \<Rightarrow> int \<Rightarrow> 'a" where
+"frac a b \<equiv> Abs_Frac (norm_frac a b)"
+
+definition plus_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
+[nitpick_simp]:
+"plus_frac q r = (let d = int_lcm (denom q) (denom r) in
+                    frac (num q * (d div denom q) + num r * (d div denom r)) d)"
+
+definition times_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where
+[nitpick_simp]:
+"times_frac q r = frac (num q * num r) (denom q * denom r)"
+
+definition uminus_frac :: "'a \<Rightarrow> 'a" where
+"uminus_frac q \<equiv> Abs_Frac (- num q, denom q)"
+
+definition number_of_frac :: "int \<Rightarrow> 'a" where
+"number_of_frac n \<equiv> Abs_Frac (n, 1)"
+
+definition inverse_frac :: "'a \<Rightarrow> 'a" where
+"inverse_frac q \<equiv> frac (denom q) (num q)"
+
+definition less_eq_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where
+[nitpick_simp]:
+"less_eq_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) \<le> 0"
+
+definition of_frac :: "'a \<Rightarrow> 'b\<Colon>{inverse,ring_1}" where
+"of_frac q \<equiv> of_int (num q) / of_int (denom q)"
+
+use "Tools/Nitpick/kodkod.ML"
+use "Tools/Nitpick/kodkod_sat.ML"
+use "Tools/Nitpick/nitpick_util.ML"
+use "Tools/Nitpick/nitpick_hol.ML"
+use "Tools/Nitpick/nitpick_mono.ML"
+use "Tools/Nitpick/nitpick_scope.ML"
+use "Tools/Nitpick/nitpick_peephole.ML"
+use "Tools/Nitpick/nitpick_rep.ML"
+use "Tools/Nitpick/nitpick_nut.ML"
+use "Tools/Nitpick/nitpick_kodkod.ML"
+use "Tools/Nitpick/nitpick_model.ML"
+use "Tools/Nitpick/nitpick.ML"
+use "Tools/Nitpick/nitpick_isar.ML"
+use "Tools/Nitpick/nitpick_tests.ML"
+use "Tools/Nitpick/minipick.ML"
+
+hide (open) const unknown undefined_fast_The undefined_fast_Eps bisim 
+    bisim_iterator_max Tha refl' wf' wf_wfrec wf_wfrec' wfrec' card' setsum'
+    fold_graph' nat_gcd nat_lcm int_gcd int_lcm Frac Abs_Frac Rep_Frac zero_frac
+    one_frac num denom norm_frac frac plus_frac times_frac uminus_frac
+    number_of_frac inverse_frac less_eq_frac of_frac
+hide (open) type bisim_iterator pair_box fun_box
+hide (open) fact If_def Ex1_def rtrancl_def rtranclp_def tranclp_def refl'_def
+    wf'_def wf_wfrec'_def wfrec'_def card'_def setsum'_def fold_graph'_def
+    The_psimp Eps_psimp unit_case_def nat_case_def dvd_def list_size_simp
+    nat_gcd_def nat_lcm_def int_gcd_def int_lcm_def Frac_def zero_frac_def
+    one_frac_def num_def denom_def norm_frac_def frac_def plus_frac_def
+    times_frac_def uminus_frac_def number_of_frac_def inverse_frac_def
+    less_eq_frac_def of_frac_def
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Nitpick_Examples/Core_Nits.thy	Mon Oct 26 14:21:20 2009 +0100
@@ -0,0 +1,1123 @@
+(*  Title:      HOL/Nitpick_Examples/Core_Nits.thy
+    Author:     Jasmin Blanchette, TU Muenchen
+    Copyright   2009
+
+Examples featuring Nitpick's functional core.
+*)
+
+header {* Examples Featuring Nitpick's Functional Core *}
+
+theory Core_Nits
+imports Main
+begin
+
+subsection {* Curry in a Hurry *}
+
+lemma "(\<lambda>f x y. (curry o split) f x y) = (\<lambda>f x y. (\<lambda>x. x) f x y)"
+nitpick [card = 1\<midarrow>4, expect = none]
+nitpick [card = 100, expect = none, timeout = none]
+by auto
+
+lemma "(\<lambda>f p. (split o curry) f p) = (\<lambda>f p. (\<lambda>x. x) f p)"
+nitpick [card = 2]
+nitpick [card = 1\<midarrow>4, expect = none]
+nitpick [card = 10, expect = none]
+by auto
+
+lemma "split (curry f) = f"
+nitpick [card = 1\<midarrow>4, expect = none]
+nitpick [card = 10, expect = none]
+nitpick [card = 40, expect = none]
+by auto
+
+lemma "curry (split f) = f"
+nitpick [card = 1\<midarrow>4, expect = none]
+nitpick [card = 40, expect = none]
+by auto
+
+lemma "(split o curry) f = f"
+nitpick [card = 1\<midarrow>4, expect = none]
+nitpick [card = 40, expect = none]
+by auto
+
+lemma "(curry o split) f = f"
+nitpick [card = 1\<midarrow>4, expect = none]
+nitpick [card = 1000, expect = none]
+by auto
+
+lemma "(split o curry) f = (\<lambda>x. x) f"
+nitpick [card = 1\<midarrow>4, expect = none]
+nitpick [card = 40, expect = none]
+by auto
+
+lemma "(curry o split) f = (\<lambda>x. x) f"
+nitpick [card = 1\<midarrow>4, expect = none]
+nitpick [card = 40, expect = none]
+by auto
+
+lemma "((split o curry) f) p = ((\<lambda>x. x) f) p"
+nitpick [card = 1\<midarrow>4, expect = none]
+nitpick [card = 40, expect = none]
+by auto
+
+lemma "((curry o split) f) x = ((\<lambda>x. x) f) x"
+nitpick [card = 1\<midarrow>4, expect = none]
+nitpick [card = 1000, expect = none]
+by auto
+
+lemma "((curry o split) f) x y = ((\<lambda>x. x) f) x y"
+nitpick [card = 1\<midarrow>4, expect = none]
+nitpick [card = 1000, expect = none]
+by auto
+
+lemma "split o curry = (\<lambda>x. x)"
+nitpick [card = 1\<midarrow>4, expect = none]
+nitpick [card = 40, expect = none]
+apply (rule ext)+
+by auto
+
+lemma "curry o split = (\<lambda>x. x)"
+nitpick [card = 1\<midarrow>4, expect = none]
+nitpick [card = 100, expect = none]
+apply (rule ext)+
+by auto
+
+lemma "split (\<lambda>x y. f (x, y)) = f"
+nitpick [card = 1\<midarrow>4, expect = none]
+nitpick [card = 40, expect = none]
+by auto
+
+subsection {* Representations *}
+
+lemma "\<exists>f. f = (\<lambda>x. x) \<and> f y = y"
+nitpick [expect = none]
+by auto
+
+lemma "(\<exists>g. \<forall>x. g (f x) = x) \<longrightarrow> (\<forall>y. \<exists>x. y = f x)"
+nitpick [card 'a = 35, card 'b = 34, expect = genuine]
+nitpick [card = 1\<midarrow>15, mono, expect = none]
+oops
+
+lemma "\<exists>f. f = (\<lambda>x. x) \<and> f y \<noteq> y"
+nitpick [card = 1, expect = genuine]
+nitpick [card = 2, expect = genuine]
+nitpick [card = 5, expect = genuine]
+oops
+
+lemma "P (\<lambda>x. x)"
+nitpick [card = 1, expect = genuine]
+nitpick [card = 5, expect = genuine]
+oops
+
+lemma "{(a\<Colon>'a\<times>'a, b\<Colon>'b)}^-1 = {(b, a)}"
+nitpick [card = 1\<midarrow>6, expect = none]
+nitpick [card = 20, expect = none]
+by auto
+
+lemma "fst (a, b) = a"
+nitpick [card = 1\<midarrow>20, expect = none]
+by auto
+
+lemma "\<exists>P. P = Id"
+nitpick [card = 1\<midarrow>4, expect = none]
+by auto
+
+lemma "(a\<Colon>'a\<Rightarrow>'b, a) \<in> Id\<^sup>*"
+nitpick [card = 1\<midarrow>3, expect = none]
+by auto
+
+lemma "(a\<Colon>'a\<times>'a, a) \<in> Id\<^sup>* \<union> {(a, b)}\<^sup>*"
+nitpick [card = 1\<midarrow>6, expect = none]
+by auto
+
+lemma "Id (a, a)"
+nitpick [card = 1\<midarrow>100, expect = none]
+by (auto simp: Id_def Collect_def)
+
+lemma "Id ((a\<Colon>'a, b\<Colon>'a), (a, b))"
+nitpick [card = 1\<midarrow>20, expect = none]
+by (auto simp: Id_def Collect_def)
+
+lemma "UNIV (x\<Colon>'a\<times>'a)"
+nitpick [card = 1\<midarrow>50, expect = none]
+sorry
+
+lemma "{} = A - A"
+nitpick [card = 1\<midarrow>100, expect = none]
+by auto
+
+lemma "g = Let (A \<or> B)"
+nitpick [card = 1, expect = none]
+nitpick [card = 2, expect = genuine]
+nitpick [card = 20, expect = genuine]
+oops
+
+lemma "(let a_or_b = A \<or> B in a_or_b \<or> \<not> a_or_b)"
+nitpick [expect = none]
+by auto
+
+lemma "A \<subseteq> B"
+nitpick [card = 100, expect = genuine]
+oops
+
+lemma "A = {b}"
+nitpick [card = 100, expect = genuine]
+oops
+
+lemma "{a, b} = {b}"
+nitpick [card = 100, expect = genuine]
+oops
+
+lemma "(a\<Colon>'a\<times>'a, a\<Colon>'a\<times>'a) \<in> R"
+nitpick [card = 1, expect = genuine]
+nitpick [card = 2, expect = genuine]
+nitpick [card = 4, expect = genuine]
+nitpick [card = 20, expect = genuine]