1.1 --- a/NEWS Sun Jul 15 01:14:04 2018 +0100
1.2 +++ b/NEWS Sun Jul 15 23:44:38 2018 +0200
1.3 @@ -376,8 +376,9 @@
1.4
1.5 * Theory HOL-Library.Code_Lazy provides a new preprocessor for the code
1.6 generator to generate code for algebraic types with lazy evaluation
1.7 -semantics even in call-by-value target languages. See theory
1.8 -HOL-Codegenerator_Test.Code_Lazy_Test for some examples.
1.9 +semantics even in call-by-value target languages. See the theories
1.10 +HOL-ex.Code_Lazy_Demo and HOL-Codegenerator_Test.Code_Lazy_Test for
1.11 +some examples.
1.12
1.13 * Theory HOL-Library.Landau_Symbols has been moved here from AFP.
1.14
2.1 --- a/src/HOL/ROOT Sun Jul 15 01:14:04 2018 +0100
2.2 +++ b/src/HOL/ROOT Sun Jul 15 23:44:38 2018 +0200
2.3 @@ -534,6 +534,7 @@
2.4 Chinese
2.5 Classical
2.6 Code_Binary_Nat_examples
2.7 + Code_Lazy_Demo
2.8 Code_Timing
2.9 Coercion_Examples
2.10 Coherent
3.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
3.2 +++ b/src/HOL/ex/Code_Lazy_Demo.thy Sun Jul 15 23:44:38 2018 +0200
3.3 @@ -0,0 +1,178 @@
3.4 +(* Author: Andreas Lochbihler, Digital Asset *)
3.5 +
3.6 +theory Code_Lazy_Demo imports
3.7 + "HOL-Library.Code_Lazy"
3.8 + "HOL-Library.Debug"
3.9 + "HOL-Library.RBT_Impl"
3.10 +begin
3.11 +
3.12 +text \<open>This theory demonstrates the use of the @{theory "HOL-Library.Code_Lazy"} theory.\<close>
3.13 +
3.14 +section \<open>Streams\<close>
3.15 +
3.16 +text \<open>Lazy evaluation for streams\<close>
3.17 +
3.18 +codatatype 'a stream =
3.19 + SCons (shd: 'a) (stl: "'a stream") (infixr "##" 65)
3.20 +
3.21 +primcorec up :: "nat \<Rightarrow> nat stream" where
3.22 + "up n = n ## up (n + 1)"
3.23 +
3.24 +primrec stake :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a list" where
3.25 + "stake 0 xs = []"
3.26 +| "stake (Suc n) xs = shd xs # stake n (stl xs)"
3.27 +
3.28 +code_thms up stake \<comment> \<open>The original code equations\<close>
3.29 +
3.30 +code_lazy_type stream
3.31 +
3.32 +code_thms up stake \<comment> \<open>The lazified code equations\<close>
3.33 +
3.34 +value "stake 5 (up 3)"
3.35 +
3.36 +
3.37 +section \<open>Finite lazy lists\<close>
3.38 +
3.39 +text \<open>Lazy types need not be infinite. We can also have lazy types that are finite.\<close>
3.40 +
3.41 +datatype 'a llist
3.42 + = LNil ("\<^bold>\<lbrakk>\<^bold>\<rbrakk>")
3.43 + | LCons (lhd: 'a) (ltl: "'a llist") (infixr "###" 65)
3.44 +
3.45 +syntax "_llist" :: "args => 'a list" ("\<^bold>\<lbrakk>(_)\<^bold>\<rbrakk>")
3.46 +translations
3.47 + "\<^bold>\<lbrakk>x, xs\<^bold>\<rbrakk>" == "x###\<^bold>\<lbrakk>xs\<^bold>\<rbrakk>"
3.48 + "\<^bold>\<lbrakk>x\<^bold>\<rbrakk>" == "x###\<^bold>\<lbrakk>\<^bold>\<rbrakk>"
3.49 +
3.50 +fun lnth :: "nat \<Rightarrow> 'a llist \<Rightarrow> 'a" where
3.51 + "lnth 0 (x ### xs) = x"
3.52 +| "lnth (Suc n) (x ### xs) = lnth n xs"
3.53 +
3.54 +definition llist :: "nat llist" where
3.55 + "llist = \<^bold>\<lbrakk>1, 2, 3, hd [], 4\<^bold>\<rbrakk>"
3.56 +
3.57 +code_lazy_type llist
3.58 +
3.59 +value [code] "llist"
3.60 +value [code] "lnth 2 llist"
3.61 +value [code] "let x = lnth 2 llist in (x, llist)"
3.62 +
3.63 +fun lfilter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a llist \<Rightarrow> 'a llist" where
3.64 + "lfilter P \<^bold>\<lbrakk>\<^bold>\<rbrakk> = \<^bold>\<lbrakk>\<^bold>\<rbrakk>"
3.65 +| "lfilter P (x ### xs) =
3.66 + (if P x then x ### lfilter P xs else lfilter P xs)"
3.67 +
3.68 +export_code lfilter in SML
3.69 +
3.70 +value [code] "lfilter odd llist"
3.71 +
3.72 +value [code] "lhd (lfilter odd llist)"
3.73 +
3.74 +
3.75 +section \<open>Iterator for red-black trees\<close>
3.76 +
3.77 +text \<open>Thanks to laziness, we do not need to program a complicated iterator for a tree.
3.78 + A conversion function to lazy lists is enough.\<close>
3.79 +
3.80 +primrec lappend :: "'a llist \<Rightarrow> 'a llist \<Rightarrow> 'a llist"
3.81 + (infixr "@@" 65) where
3.82 + "\<^bold>\<lbrakk>\<^bold>\<rbrakk> @@ ys = ys"
3.83 +| "(x ### xs) @@ ys = x ### (xs @@ ys)"
3.84 +
3.85 +primrec rbt_iterator :: "('a, 'b) rbt \<Rightarrow> ('a \<times> 'b) llist" where
3.86 + "rbt_iterator rbt.Empty = \<^bold>\<lbrakk>\<^bold>\<rbrakk>"
3.87 +| "rbt_iterator (Branch _ l k v r) =
3.88 + (let _ = Debug.flush (STR ''tick'') in
3.89 + rbt_iterator l @@ (k, v) ### rbt_iterator r)"
3.90 +
3.91 +definition tree :: "(nat, unit) rbt"
3.92 + where "tree = fold (\<lambda>k. rbt_insert k ()) [0..<100] rbt.Empty"
3.93 +
3.94 +definition find_min :: "('a :: linorder, 'b) rbt \<Rightarrow> ('a \<times> 'b) option" where
3.95 + "find_min rbt =
3.96 + (case rbt_iterator rbt of \<^bold>\<lbrakk>\<^bold>\<rbrakk> \<Rightarrow> None
3.97 + | kv ### _ \<Rightarrow> Some kv)"
3.98 +
3.99 +value "find_min tree" \<comment> \<open>Observe that @{const rbt_iterator} is evaluated only for going down
3.100 + to the first leaf, not for the whole tree (as seen by the ticks).\<close>
3.101 +
3.102 +text \<open>With strict lists, the whole tree is converted into a list.\<close>
3.103 +
3.104 +deactivate_lazy_type llist
3.105 +value "find_min tree"
3.106 +activate_lazy_type llist
3.107 +
3.108 +
3.109 +
3.110 +section \<open>Branching datatypes\<close>
3.111 +
3.112 +datatype tree
3.113 + = L ("\<spadesuit>")
3.114 + | Node tree tree (infix "\<triangle>" 900)
3.115 +
3.116 +notation (output) Node ("\<triangle>(//\<^bold>l: _//\<^bold>r: _)")
3.117 +
3.118 +code_lazy_type tree
3.119 +
3.120 +fun mk_tree :: "nat \<Rightarrow> tree" where mk_tree_0:
3.121 + "mk_tree 0 = \<spadesuit>"
3.122 +| "mk_tree (Suc n) = (let t = mk_tree n in t \<triangle> t)"
3.123 +
3.124 +declare mk_tree.simps [code]
3.125 +
3.126 +code_thms mk_tree
3.127 +
3.128 +function subtree :: "bool list \<Rightarrow> tree \<Rightarrow> tree" where
3.129 + "subtree [] t = t"
3.130 +| "subtree (True # p) (l \<triangle> r) = subtree p l"
3.131 +| "subtree (False # p) (l \<triangle> r) = subtree p r"
3.132 +| "subtree _ \<spadesuit> = \<spadesuit>"
3.133 + by pat_completeness auto
3.134 +termination by lexicographic_order
3.135 +
3.136 +value [code] "mk_tree 10"
3.137 +value [code] "let t = mk_tree 10; _ = subtree [True, True, False, False] t in t"
3.138 + \<comment> \<open>Since @{const mk_tree} shares the two subtrees of a node thanks to the let binding,
3.139 + digging into one subtree spreads to the whole tree.\<close>
3.140 +value [code] "let t = mk_tree 3; _ = subtree [True, True, False, False] t in t"
3.141 +
3.142 +lemma mk_tree_Suc_debug [code]: \<comment> \<open>Make the evaluation visible with tracing.\<close>
3.143 + "mk_tree (Suc n) =
3.144 + (let _ = Debug.flush (STR ''tick''); t = mk_tree n in t \<triangle> t)"
3.145 + by simp
3.146 +
3.147 +value [code] "mk_tree 10"
3.148 + \<comment> \<open>The recursive call to @{const mk_tree} is not guarded by a lazy constructor,
3.149 + so all the suspensions are built up immediately.\<close>
3.150 +
3.151 +lemma mk_tree_Suc [code]: "mk_tree (Suc n) = mk_tree n \<triangle> mk_tree n"
3.152 + \<comment> \<open>In this code equation, there is no sharing and the recursive calls are guarded by a constructor.\<close>
3.153 + by(simp add: Let_def)
3.154 +
3.155 +value [code] "mk_tree 10"
3.156 +value [code] "let t = mk_tree 10; _ = subtree [True, True, False, False] t in t"
3.157 +
3.158 +lemma mk_tree_Suc_debug' [code]:
3.159 + "mk_tree (Suc n) = (let _ = Debug.flush (STR ''tick'') in mk_tree n \<triangle> mk_tree n)"
3.160 + by(simp add: Let_def)
3.161 +
3.162 +value [code] "mk_tree 10" \<comment> \<open>Only one tick thanks to the guarding constructor\<close>
3.163 +value [code] "let t = mk_tree 10; _ = subtree [True, True, False, False] t in t"
3.164 +value [code] "let t = mk_tree 3; _ = subtree [True, True, False, False] t in t"
3.165 +
3.166 +
3.167 +section \<open>Pattern matching elimination\<close>
3.168 +
3.169 +text \<open>The pattern matching elimination handles deep pattern matches and overlapping equations
3.170 + and only eliminates necessary pattern matches.\<close>
3.171 +
3.172 +function crazy :: "nat llist llist \<Rightarrow> tree \<Rightarrow> bool \<Rightarrow> unit" where
3.173 + "crazy (\<^bold>\<lbrakk>0\<^bold>\<rbrakk> ### xs) _ _ = Debug.flush (1 :: integer)"
3.174 +| "crazy xs \<spadesuit> True = Debug.flush (2 :: integer)"
3.175 +| "crazy xs t b = Debug.flush (3 :: integer)"
3.176 + by pat_completeness auto
3.177 +termination by lexicographic_order
3.178 +
3.179 +code_thms crazy
3.180 +
3.181 +end
3.182 \ No newline at end of file