1.1 --- a/src/HOL/Library/Multiset.thy Sat Sep 15 23:53:10 2012 +0200
1.2 +++ b/src/HOL/Library/Multiset.thy Sun Sep 16 06:51:36 2012 +0200
1.3 @@ -162,7 +162,6 @@
1.4
1.5 lemma diff_add:
1.6 "(M::'a multiset) - (N + Q) = M - N - Q"
1.7 - find_theorems solves
1.8 by (simp add: multiset_eq_iff)
1.9
1.10 lemma diff_union_swap:

2.1 --- a/src/HOL/Probability/Caratheodory.thy Sat Sep 15 23:53:10 2012 +0200
2.2 +++ b/src/HOL/Probability/Caratheodory.thy Sun Sep 16 06:51:36 2012 +0200
2.3 @@ -1125,7 +1125,7 @@
2.4 note eq = this
2.5
2.6 have "(\<Sum>n. \<mu>_r (A' n)) = (\<Sum>n. \<Sum>c\<in>C'. \<mu>_r (A' n \<inter> c))"
2.7 - using C' A' find_theorems "\<Union> _ ` _"
2.8 + using C' A'
2.9 by (subst volume_finite_additive[symmetric, OF V(1)])
2.10 (auto simp: disjoint_def disjoint_family_on_def Union_image_eq[symmetric] simp del: Union_image_eq
2.11 intro!: G.Int G.finite_Union arg_cong[where f="\<lambda>X. suminf (\<lambda>i. \<mu>_r (X i))"] ext