use SMT2 for Boogie examples
authorboehmes
Thu May 01 22:57:38 2014 +0200 (2014-05-01)
changeset 56818689a3eeb6f9e
parent 56817 0a08878f8b37
child 56819 ad1bbed53788
use SMT2 for Boogie examples
src/HOL/ROOT
src/HOL/SMT_Examples/Boogie.thy
src/HOL/SMT_Examples/Boogie_Dijkstra.certs
src/HOL/SMT_Examples/Boogie_Dijkstra.certs2
src/HOL/SMT_Examples/Boogie_Max.certs
src/HOL/SMT_Examples/Boogie_Max.certs2
src/HOL/SMT_Examples/VCC_Max.certs
src/HOL/SMT_Examples/VCC_Max.certs2
src/HOL/SMT_Examples/boogie.ML
     1.1 --- a/src/HOL/ROOT	Thu May 01 22:57:36 2014 +0200
     1.2 +++ b/src/HOL/ROOT	Thu May 01 22:57:38 2014 +0200
     1.3 @@ -775,12 +775,12 @@
     1.4    theories [condition = ISABELLE_FULL_TEST]
     1.5      SMT_Tests
     1.6    files
     1.7 -    "Boogie_Dijkstra.certs"
     1.8 -    "Boogie_Max.certs"
     1.9 +    "Boogie_Dijkstra.certs2"
    1.10 +    "Boogie_Max.certs2"
    1.11      "SMT_Examples.certs"
    1.12      "SMT_Examples.certs2"
    1.13      "SMT_Word_Examples.certs2"
    1.14 -    "VCC_Max.certs"
    1.15 +    "VCC_Max.certs2"
    1.16  
    1.17  session "HOL-SPARK" (main) in "SPARK" = "HOL-Word" +
    1.18    options [document = false]
     2.1 --- a/src/HOL/SMT_Examples/Boogie.thy	Thu May 01 22:57:36 2014 +0200
     2.2 +++ b/src/HOL/SMT_Examples/Boogie.thy	Thu May 01 22:57:38 2014 +0200
     2.3 @@ -51,22 +51,22 @@
     2.4  
     2.5  section {* Verification condition proofs *}
     2.6  
     2.7 -declare [[smt_oracle = false]]
     2.8 -declare [[smt_read_only_certificates = true]]
     2.9 +declare [[smt2_oracle = false]]
    2.10 +declare [[smt2_read_only_certificates = true]]
    2.11  
    2.12  
    2.13 -declare [[smt_certificates = "Boogie_Max.certs"]]
    2.14 +declare [[smt2_certificates = "Boogie_Max.certs2"]]
    2.15  
    2.16  boogie_file Boogie_Max
    2.17  
    2.18  
    2.19 -declare [[smt_certificates = "Boogie_Dijkstra.certs"]]
    2.20 +declare [[smt2_certificates = "Boogie_Dijkstra.certs2"]]
    2.21  
    2.22  boogie_file Boogie_Dijkstra
    2.23  
    2.24  
    2.25 -declare [[z3_with_extensions = true]]
    2.26 -declare [[smt_certificates = "VCC_Max.certs"]]
    2.27 +declare [[z3_new_extensions = true]]
    2.28 +declare [[smt2_certificates = "VCC_Max.certs2"]]
    2.29  
    2.30  boogie_file VCC_Max
    2.31  
     3.1 --- a/src/HOL/SMT_Examples/Boogie_Dijkstra.certs	Thu May 01 22:57:36 2014 +0200
     3.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     3.3 @@ -1,6137 +0,0 @@
     3.4 -5d68fa8702e4a020dc142c33743a5a5445fcba10 6136 0
     3.5 -#2 := false
     3.6 -#53 := 0::Int
     3.7 -decl f30 :: (-> S2 Int)
     3.8 -decl ?v1!7 :: (-> S2 S2)
     3.9 -decl ?v0!20 :: S2
    3.10 -#2123 := ?v0!20
    3.11 -#5431 := (?v1!7 ?v0!20)
    3.12 -#18254 := (f30 #5431)
    3.13 -#1012 := -1::Int
    3.14 -#17799 := (* -1::Int #18254)
    3.15 -decl f15 :: (-> S4 Int)
    3.16 -decl f5 :: (-> S5 S2 S4)
    3.17 -decl f6 :: (-> S6 S2 S5)
    3.18 -decl f7 :: S6
    3.19 -#8 := f7
    3.20 -#5439 := (f6 f7 #5431)
    3.21 -#5440 := (f5 #5439 ?v0!20)
    3.22 -#5441 := (f15 #5440)
    3.23 -#5442 := (* -1::Int #5441)
    3.24 -#18528 := (+ #5442 #17799)
    3.25 -#2126 := (f30 ?v0!20)
    3.26 -#18529 := (+ #2126 #18528)
    3.27 -#15418 := (>= #18529 0::Int)
    3.28 -decl f19 :: (-> S11 S2 Int)
    3.29 -decl f20 :: S11
    3.30 -#109 := f20
    3.31 -#5432 := (f19 f20 #5431)
    3.32 -#5433 := (* -1::Int #5432)
    3.33 -#5443 := (+ #5433 #5442)
    3.34 -#5169 := (f19 f20 ?v0!20)
    3.35 -#5444 := (+ #5169 #5443)
    3.36 -#11830 := (>= #5444 0::Int)
    3.37 -#5445 := (= #5444 0::Int)
    3.38 -#5446 := (not #5445)
    3.39 -decl f1 :: S1
    3.40 -#3 := f1
    3.41 -decl f9 :: (-> S7 S2 S1)
    3.42 -decl f21 :: S7
    3.43 -#115 := f21
    3.44 -#5436 := (f9 f21 #5431)
    3.45 -#5437 := (= #5436 f1)
    3.46 -#5438 := (not #5437)
    3.47 -#5434 := (+ #5169 #5433)
    3.48 -#5435 := (<= #5434 0::Int)
    3.49 -#5447 := (or #5435 #5438 #5446)
    3.50 -#5448 := (not #5447)
    3.51 -#5194 := (* -1::Int #5169)
    3.52 -decl f14 :: Int
    3.53 -#54 := f14
    3.54 -#5429 := (+ f14 #5194)
    3.55 -#5430 := (<= #5429 0::Int)
    3.56 -#17547 := (not #5430)
    3.57 -#5195 := (+ #2126 #5194)
    3.58 -#17503 := (>= #5195 0::Int)
    3.59 -#5176 := (= #2126 #5169)
    3.60 -decl f28 :: S2
    3.61 -#186 := f28
    3.62 -#19609 := (= f28 ?v0!20)
    3.63 -#19613 := (not #19609)
    3.64 -#14451 := (= ?v0!20 f28)
    3.65 -#15274 := (not #14451)
    3.66 -#16593 := (iff #15274 #19613)
    3.67 -#15457 := (iff #14451 #19609)
    3.68 -#14873 := (iff #19609 #14451)
    3.69 -#7691 := [commutativity]: #14873
    3.70 -#16696 := [symm #7691]: #15457
    3.71 -#14829 := [monotonicity #16696]: #16593
    3.72 -#5398 := (f9 f21 ?v0!20)
    3.73 -#5399 := (= #5398 f1)
    3.74 -#14460 := (or #14451 #5399)
    3.75 -#15350 := (not #14460)
    3.76 -decl f10 :: (-> S8 S1 S7)
    3.77 -decl f11 :: (-> S9 S2 S8)
    3.78 -decl f12 :: (-> S10 S7 S9)
    3.79 -decl f13 :: S10
    3.80 -#27 := f13
    3.81 -#196 := (f12 f13 f21)
    3.82 -#197 := (f11 #196 f28)
    3.83 -#198 := (f10 #197 f1)
    3.84 -#14446 := (f9 #198 ?v0!20)
    3.85 -#14450 := (= #14446 f1)
    3.86 -#14478 := (iff #14450 #14460)
    3.87 -#11 := (:var 0 S2)
    3.88 -#42 := (:var 1 S1)
    3.89 -#40 := (:var 2 S2)
    3.90 -#38 := (:var 3 S7)
    3.91 -#39 := (f12 f13 #38)
    3.92 -#41 := (f11 #39 #40)
    3.93 -#43 := (f10 #41 #42)
    3.94 -#44 := (f9 #43 #11)
    3.95 -#3717 := (pattern #44)
    3.96 -#48 := (f9 #38 #11)
    3.97 -#49 := (= #48 f1)
    3.98 -#47 := (= #42 f1)
    3.99 -#46 := (= #11 #40)
   3.100 -#50 := (if #46 #47 #49)
   3.101 -#45 := (= #44 f1)
   3.102 -#51 := (iff #45 #50)
   3.103 -#3718 := (forall (vars (?v0 S7) (?v1 S2) (?v2 S1) (?v3 S2)) (:pat #3717) #51)
   3.104 -#52 := (forall (vars (?v0 S7) (?v1 S2) (?v2 S1) (?v3 S2)) #51)
   3.105 -#3721 := (iff #52 #3718)
   3.106 -#3719 := (iff #51 #51)
   3.107 -#3720 := [refl]: #3719
   3.108 -#3722 := [quant-intro #3720]: #3721
   3.109 -#1579 := (~ #52 #52)
   3.110 -#1609 := (~ #51 #51)
   3.111 -#1610 := [refl]: #1609
   3.112 -#1580 := [nnf-pos #1610]: #1579
   3.113 -#322 := [asserted]: #52
   3.114 -#1611 := [mp~ #322 #1580]: #52
   3.115 -#3723 := [mp #1611 #3722]: #3718
   3.116 -#7628 := (not #3718)
   3.117 -#15363 := (or #7628 #14478)
   3.118 -#4146 := (= f1 f1)
   3.119 -#14455 := (if #14451 #4146 #5399)
   3.120 -#14456 := (iff #14450 #14455)
   3.121 -#15337 := (or #7628 #14456)
   3.122 -#15318 := (iff #15337 #15363)
   3.123 -#15276 := (iff #15363 #15363)
   3.124 -#15289 := [rewrite]: #15276
   3.125 -#14479 := (iff #14456 #14478)
   3.126 -#14476 := (iff #14455 #14460)
   3.127 -#1 := true
   3.128 -#14457 := (if #14451 true #5399)
   3.129 -#14461 := (iff #14457 #14460)
   3.130 -#14475 := [rewrite]: #14461
   3.131 -#14458 := (iff #14455 #14457)
   3.132 -#4148 := (iff #4146 true)
   3.133 -#4149 := [rewrite]: #4148
   3.134 -#14459 := [monotonicity #4149]: #14458
   3.135 -#14477 := [trans #14459 #14475]: #14476
   3.136 -#14480 := [monotonicity #14477]: #14479
   3.137 -#15256 := [monotonicity #14480]: #15318
   3.138 -#15235 := [trans #15256 #15289]: #15318
   3.139 -#15310 := [quant-inst #115 #186 #3 #2123]: #15337
   3.140 -#15352 := [mp #15310 #15235]: #15363
   3.141 -#16371 := [unit-resolution #15352 #3723]: #14478
   3.142 -#15284 := (not #14450)
   3.143 -decl f29 :: S7
   3.144 -#195 := f29
   3.145 -#4622 := (f9 f29 ?v0!20)
   3.146 -#4623 := (= #4622 f1)
   3.147 -#4630 := (not #4623)
   3.148 -#15122 := (iff #4630 #15284)
   3.149 -#15124 := (iff #4623 #14450)
   3.150 -#16582 := (iff #14450 #4623)
   3.151 -#16482 := (= #14446 #4622)
   3.152 -#9268 := (= #198 f29)
   3.153 -#199 := (= f29 #198)
   3.154 -#91 := (f6 f7 #11)
   3.155 -#3782 := (pattern #91)
   3.156 -#217 := (f9 f29 #11)
   3.157 -#3943 := (pattern #217)
   3.158 -#207 := (f30 #11)
   3.159 -#3918 := (pattern #207)
   3.160 -#2136 := (f5 #91 ?v0!20)
   3.161 -#2137 := (f15 #2136)
   3.162 -#2127 := (* -1::Int #2126)
   3.163 -#2472 := (+ #2127 #2137)
   3.164 -#2473 := (+ #207 #2472)
   3.165 -#2476 := (= #2473 0::Int)
   3.166 -#3030 := (not #2476)
   3.167 -#218 := (= #217 f1)
   3.168 -#225 := (not #218)
   3.169 -#2133 := (+ #207 #2127)
   3.170 -#2134 := (>= #2133 0::Int)
   3.171 -#3031 := (or #2134 #225 #3030)
   3.172 -#3977 := (forall (vars (?v1 S2)) (:pat #3918 #3943 #3782) #3031)
   3.173 -#3982 := (not #3977)
   3.174 -#2128 := (+ f14 #2127)
   3.175 -#2129 := (<= #2128 0::Int)
   3.176 -decl f16 :: S2
   3.177 -#65 := f16
   3.178 -#2124 := (= ?v0!20 f16)
   3.179 -#9 := (:var 1 S2)
   3.180 -#92 := (f5 #91 #9)
   3.181 -#3773 := (pattern #92)
   3.182 -#229 := (f30 #9)
   3.183 -#1275 := (* -1::Int #229)
   3.184 -#1276 := (+ #207 #1275)
   3.185 -#93 := (f15 #92)
   3.186 -#1296 := (+ #93 #1276)
   3.187 -#1294 := (>= #1296 0::Int)
   3.188 -#1027 := (* -1::Int #93)
   3.189 -#1028 := (+ f14 #1027)
   3.190 -#1029 := (<= #1028 0::Int)
   3.191 -#3022 := (or #225 #1029 #1294)
   3.192 -#3969 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3773) #3022)
   3.193 -#3974 := (not #3969)
   3.194 -#3985 := (or #3974 #2124 #2129 #3982)
   3.195 -#3988 := (not #3985)
   3.196 -decl ?v0!19 :: S2
   3.197 -#2092 := ?v0!19
   3.198 -#2105 := (f30 ?v0!19)
   3.199 -#2106 := (* -1::Int #2105)
   3.200 -decl ?v1!18 :: S2
   3.201 -#2091 := ?v1!18
   3.202 -#2104 := (f30 ?v1!18)
   3.203 -#2107 := (+ #2104 #2106)
   3.204 -#2095 := (f6 f7 ?v1!18)
   3.205 -#2096 := (f5 #2095 ?v0!19)
   3.206 -#2097 := (f15 #2096)
   3.207 -#2108 := (+ #2097 #2107)
   3.208 -#2109 := (>= #2108 0::Int)
   3.209 -#2098 := (* -1::Int #2097)
   3.210 -#2099 := (+ f14 #2098)
   3.211 -#2100 := (<= #2099 0::Int)
   3.212 -#2093 := (f9 f29 ?v1!18)
   3.213 -#2094 := (= #2093 f1)
   3.214 -#2985 := (not #2094)
   3.215 -#3000 := (or #2985 #2100 #2109)
   3.216 -#3005 := (not #3000)
   3.217 -#3991 := (or #3005 #3988)
   3.218 -#3994 := (not #3991)
   3.219 -#3960 := (pattern #207 #229)
   3.220 -#1274 := (>= #1276 0::Int)
   3.221 -#226 := (f9 f29 #9)
   3.222 -#227 := (= #226 f1)
   3.223 -#2962 := (not #227)
   3.224 -#2977 := (or #218 #2962 #1274)
   3.225 -#3961 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3960) #2977)
   3.226 -#3966 := (not #3961)
   3.227 -#3997 := (or #3966 #3994)
   3.228 -#4000 := (not #3997)
   3.229 -decl ?v0!17 :: S2
   3.230 -#2065 := ?v0!17
   3.231 -#2074 := (f30 ?v0!17)
   3.232 -#2075 := (* -1::Int #2074)
   3.233 -decl ?v1!16 :: S2
   3.234 -#2064 := ?v1!16
   3.235 -#2073 := (f30 ?v1!16)
   3.236 -#2076 := (+ #2073 #2075)
   3.237 -#2077 := (>= #2076 0::Int)
   3.238 -#2069 := (f9 f29 ?v0!17)
   3.239 -#2070 := (= #2069 f1)
   3.240 -#2939 := (not #2070)
   3.241 -#2066 := (f9 f29 ?v1!16)
   3.242 -#2067 := (= #2066 f1)
   3.243 -#2954 := (or #2067 #2939 #2077)
   3.244 -#2959 := (not #2954)
   3.245 -#4003 := (or #2959 #4000)
   3.246 -#4006 := (not #4003)
   3.247 -#1265 := (>= #207 0::Int)
   3.248 -#3952 := (forall (vars (?v0 S2)) (:pat #3918) #1265)
   3.249 -#3957 := (not #3952)
   3.250 -#4009 := (or #3957 #4006)
   3.251 -#4012 := (not #4009)
   3.252 -decl ?v0!15 :: S2
   3.253 -#2049 := ?v0!15
   3.254 -#2050 := (f30 ?v0!15)
   3.255 -#2051 := (>= #2050 0::Int)
   3.256 -#2052 := (not #2051)
   3.257 -#4015 := (or #2052 #4012)
   3.258 -#4018 := (not #4015)
   3.259 -#221 := (f30 f16)
   3.260 -#222 := (= #221 0::Int)
   3.261 -#713 := (not #222)
   3.262 -#4021 := (or #713 #4018)
   3.263 -#4024 := (not #4021)
   3.264 -#4027 := (or #713 #4024)
   3.265 -#4030 := (not #4027)
   3.266 -#112 := (f19 f20 #11)
   3.267 -#3805 := (pattern #112)
   3.268 -#212 := (= #207 #112)
   3.269 -#603 := (or #225 #212)
   3.270 -#3944 := (forall (vars (?v0 S2)) (:pat #3943 #3918 #3805) #603)
   3.271 -#3949 := (not #3944)
   3.272 -#4033 := (or #3949 #4030)
   3.273 -#4036 := (not #4033)
   3.274 -decl ?v0!14 :: S2
   3.275 -#2024 := ?v0!14
   3.276 -#2029 := (f19 f20 ?v0!14)
   3.277 -#2028 := (f30 ?v0!14)
   3.278 -#2030 := (= #2028 #2029)
   3.279 -#2025 := (f9 f29 ?v0!14)
   3.280 -#2026 := (= #2025 f1)
   3.281 -#2027 := (not #2026)
   3.282 -#2031 := (or #2027 #2030)
   3.283 -#2032 := (not #2031)
   3.284 -#4039 := (or #2032 #4036)
   3.285 -#4042 := (not #4039)
   3.286 -#1255 := (* -1::Int #207)
   3.287 -#1256 := (+ #112 #1255)
   3.288 -#1254 := (>= #1256 0::Int)
   3.289 -#3935 := (forall (vars (?v0 S2)) (:pat #3805 #3918) #1254)
   3.290 -#3940 := (not #3935)
   3.291 -#4045 := (or #3940 #4042)
   3.292 -#4048 := (not #4045)
   3.293 -decl ?v0!13 :: S2
   3.294 -#2006 := ?v0!13
   3.295 -#2008 := (f30 ?v0!13)
   3.296 -#2009 := (* -1::Int #2008)
   3.297 -#2007 := (f19 f20 ?v0!13)
   3.298 -#2010 := (+ #2007 #2009)
   3.299 -#2011 := (>= #2010 0::Int)
   3.300 -#2012 := (not #2011)
   3.301 -#4051 := (or #2012 #4048)
   3.302 -#4054 := (not #4051)
   3.303 -#200 := (f6 f7 f28)
   3.304 -#201 := (f5 #200 #11)
   3.305 -#3917 := (pattern #201)
   3.306 -#202 := (f15 #201)
   3.307 -#1229 := (* -1::Int #202)
   3.308 -#190 := (f19 f20 f28)
   3.309 -#1235 := (* -1::Int #190)
   3.310 -#1236 := (+ #1235 #1229)
   3.311 -#1237 := (+ #112 #1236)
   3.312 -#1238 := (<= #1237 0::Int)
   3.313 -#1230 := (+ f14 #1229)
   3.314 -#1231 := (<= #1230 0::Int)
   3.315 -#2911 := (or #1231 #1238)
   3.316 -#2912 := (not #2911)
   3.317 -#2933 := (or #2912 #212)
   3.318 -#3927 := (forall (vars (?v0 S2)) (:pat #3917 #3805 #3918) #2933)
   3.319 -#3932 := (not #3927)
   3.320 -#1385 := (+ #202 #1255)
   3.321 -#1386 := (+ #190 #1385)
   3.322 -#1383 := (= #1386 0::Int)
   3.323 -#2925 := (or #1231 #1238 #1383)
   3.324 -#3919 := (forall (vars (?v0 S2)) (:pat #3917 #3805 #3918) #2925)
   3.325 -#3924 := (not #3919)
   3.326 -#778 := (not #199)
   3.327 -#116 := (f9 f21 #11)
   3.328 -#3839 := (pattern #116)
   3.329 -#1398 := (+ #112 #1235)
   3.330 -#1397 := (>= #1398 0::Int)
   3.331 -#117 := (= #116 f1)
   3.332 -#1401 := (or #117 #1397)
   3.333 -#3909 := (forall (vars (?v0 S2)) (:pat #3839 #3805) #1401)
   3.334 -#3914 := (not #3909)
   3.335 -#1410 := (+ f14 #1235)
   3.336 -#1411 := (<= #1410 0::Int)
   3.337 -#187 := (f9 f21 f28)
   3.338 -#188 := (= #187 f1)
   3.339 -decl ?v0!12 :: S2
   3.340 -#1961 := ?v0!12
   3.341 -#1965 := (f19 f20 ?v0!12)
   3.342 -#1966 := (* -1::Int #1965)
   3.343 -#1967 := (+ f14 #1966)
   3.344 -#1968 := (<= #1967 0::Int)
   3.345 -#1962 := (f9 f21 ?v0!12)
   3.346 -#1963 := (= #1962 f1)
   3.347 -#4057 := (or #1963 #1968 #188 #1411 #3914 #778 #3924 #3932 #4054)
   3.348 -#4060 := (not #4057)
   3.349 -decl f25 :: S11
   3.350 -#148 := f25
   3.351 -#168 := (f19 f25 f16)
   3.352 -#169 := (= #168 0::Int)
   3.353 -#156 := (f19 f25 #9)
   3.354 -#1149 := (* -1::Int #156)
   3.355 -#153 := (f19 f25 #11)
   3.356 -#1150 := (+ #153 #1149)
   3.357 -#1156 := (+ #93 #1150)
   3.358 -#1179 := (>= #1156 0::Int)
   3.359 -#1136 := (* -1::Int #153)
   3.360 -#1137 := (+ f14 #1136)
   3.361 -#1138 := (<= #1137 0::Int)
   3.362 -#2865 := (or #1138 #1029 #1179)
   3.363 -#3871 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3773) #2865)
   3.364 -#3876 := (not #3871)
   3.365 -#3879 := (or #3876 #169)
   3.366 -#3882 := (not #3879)
   3.367 -decl ?v0!11 :: S2
   3.368 -#1905 := ?v0!11
   3.369 -#1920 := (f19 f25 ?v0!11)
   3.370 -#1921 := (* -1::Int #1920)
   3.371 -decl ?v1!10 :: S2
   3.372 -#1904 := ?v1!10
   3.373 -#1911 := (f6 f7 ?v1!10)
   3.374 -#1912 := (f5 #1911 ?v0!11)
   3.375 -#1913 := (f15 #1912)
   3.376 -#2441 := (+ #1913 #1921)
   3.377 -#1906 := (f19 f25 ?v1!10)
   3.378 -#2442 := (+ #1906 #2441)
   3.379 -#2445 := (>= #2442 0::Int)
   3.380 -#1914 := (* -1::Int #1913)
   3.381 -#1915 := (+ f14 #1914)
   3.382 -#1916 := (<= #1915 0::Int)
   3.383 -#1907 := (* -1::Int #1906)
   3.384 -#1908 := (+ f14 #1907)
   3.385 -#1909 := (<= #1908 0::Int)
   3.386 -#2843 := (or #1909 #1916 #2445)
   3.387 -#2848 := (not #2843)
   3.388 -#3885 := (or #2848 #3882)
   3.389 -#3888 := (not #3885)
   3.390 -#3848 := (pattern #153)
   3.391 -decl ?v1!9 :: (-> S2 S2)
   3.392 -#1880 := (?v1!9 #11)
   3.393 -#1885 := (f6 f7 #1880)
   3.394 -#1886 := (f5 #1885 #11)
   3.395 -#1887 := (f15 #1886)
   3.396 -#2424 := (* -1::Int #1887)
   3.397 -#1881 := (f19 f25 #1880)
   3.398 -#2407 := (* -1::Int #1881)
   3.399 -#2425 := (+ #2407 #2424)
   3.400 -#2426 := (+ #153 #2425)
   3.401 -#2427 := (= #2426 0::Int)
   3.402 -#2813 := (not #2427)
   3.403 -#2408 := (+ #153 #2407)
   3.404 -#2409 := (<= #2408 0::Int)
   3.405 -#2814 := (or #2409 #2813)
   3.406 -#2815 := (not #2814)
   3.407 -#66 := (= #11 f16)
   3.408 -#2821 := (or #66 #1138 #2815)
   3.409 -#3863 := (forall (vars (?v0 S2)) (:pat #3848) #2821)
   3.410 -#3868 := (not #3863)
   3.411 -#3891 := (or #3868 #3888)
   3.412 -#3894 := (not #3891)
   3.413 -decl ?v0!8 :: S2
   3.414 -#1840 := ?v0!8
   3.415 -#1853 := (f5 #91 ?v0!8)
   3.416 -#1854 := (f15 #1853)
   3.417 -#1843 := (f19 f25 ?v0!8)
   3.418 -#1844 := (* -1::Int #1843)
   3.419 -#2377 := (+ #1844 #1854)
   3.420 -#2378 := (+ #153 #2377)
   3.421 -#2381 := (= #2378 0::Int)
   3.422 -#2777 := (not #2381)
   3.423 -#1850 := (+ #153 #1844)
   3.424 -#1851 := (>= #1850 0::Int)
   3.425 -#2778 := (or #1851 #2777)
   3.426 -#3849 := (forall (vars (?v1 S2)) (:pat #3848 #3782) #2778)
   3.427 -#3854 := (not #3849)
   3.428 -#1845 := (+ f14 #1844)
   3.429 -#1846 := (<= #1845 0::Int)
   3.430 -#1841 := (= ?v0!8 f16)
   3.431 -#3857 := (or #1841 #1846 #3854)
   3.432 -#3860 := (not #3857)
   3.433 -#3897 := (or #3860 #3894)
   3.434 -#3900 := (not #3897)
   3.435 -decl f27 :: S11
   3.436 -#151 := f27
   3.437 -decl f26 :: S11
   3.438 -#150 := f26
   3.439 -#152 := (= f26 f27)
   3.440 -#522 := (not #152)
   3.441 -#149 := (= f25 f20)
   3.442 -#531 := (not #149)
   3.443 -decl f24 :: S2
   3.444 -#146 := f24
   3.445 -decl f23 :: S2
   3.446 -#145 := f23
   3.447 -#147 := (= f23 f24)
   3.448 -#540 := (not #147)
   3.449 -decl f22 :: S7
   3.450 -#143 := f22
   3.451 -#144 := (= f22 f21)
   3.452 -#549 := (not #144)
   3.453 -#1091 := (* -1::Int #112)
   3.454 -#1092 := (+ f14 #1091)
   3.455 -#1093 := (<= #1092 0::Int)
   3.456 -#2763 := (or #117 #1093)
   3.457 -#3840 := (forall (vars (?v0 S2)) (:pat #3839 #3805) #2763)
   3.458 -#3845 := (not #3840)
   3.459 -#3903 := (or #3845 #549 #540 #531 #522 #3900)
   3.460 -#3906 := (not #3903)
   3.461 -#4063 := (or #3906 #4060)
   3.462 -#4066 := (not #4063)
   3.463 -#1796 := (?v1!7 #11)
   3.464 -#1803 := (f6 f7 #1796)
   3.465 -#1804 := (f5 #1803 #11)
   3.466 -#1805 := (f15 #1804)
   3.467 -#2350 := (* -1::Int #1805)
   3.468 -#1797 := (f19 f20 #1796)
   3.469 -#2333 := (* -1::Int #1797)
   3.470 -#2351 := (+ #2333 #2350)
   3.471 -#2352 := (+ #112 #2351)
   3.472 -#2353 := (= #2352 0::Int)
   3.473 -#2747 := (not #2353)
   3.474 -#1801 := (f9 f21 #1796)
   3.475 -#1802 := (= #1801 f1)
   3.476 -#2746 := (not #1802)
   3.477 -#2334 := (+ #112 #2333)
   3.478 -#2335 := (<= #2334 0::Int)
   3.479 -#2748 := (or #2335 #2746 #2747)
   3.480 -#2749 := (not #2748)
   3.481 -#2755 := (or #66 #1093 #2749)
   3.482 -#3831 := (forall (vars (?v0 S2)) (:pat #3805) #2755)
   3.483 -#3836 := (not #3831)
   3.484 -#122 := (f19 f20 #9)
   3.485 -#1105 := (* -1::Int #122)
   3.486 -#1106 := (+ #112 #1105)
   3.487 -#1107 := (+ #93 #1106)
   3.488 -#1460 := (>= #1107 0::Int)
   3.489 -#118 := (not #117)
   3.490 -#2727 := (or #118 #1029 #1460)
   3.491 -#3823 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3773) #2727)
   3.492 -#3828 := (not #3823)
   3.493 -#119 := (f9 f21 #9)
   3.494 -#3814 := (pattern #116 #119)
   3.495 -#1109 := (>= #1106 0::Int)
   3.496 -#120 := (= #119 f1)
   3.497 -#2690 := (not #120)
   3.498 -#2705 := (or #117 #2690 #1109)
   3.499 -#3815 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3814) #2705)
   3.500 -#3820 := (not #3815)
   3.501 -#1483 := (>= #112 0::Int)
   3.502 -#3806 := (forall (vars (?v0 S2)) (:pat #3805) #1483)
   3.503 -#3811 := (not #3806)
   3.504 -#110 := (f19 f20 f16)
   3.505 -#111 := (= #110 0::Int)
   3.506 -#878 := (not #111)
   3.507 -decl f17 :: (-> S2 Int)
   3.508 -#67 := (f17 #11)
   3.509 -#3736 := (pattern #67)
   3.510 -decl ?v1!6 :: (-> S2 S2)
   3.511 -#1743 := (?v1!6 #11)
   3.512 -#1750 := (f6 f7 #1743)
   3.513 -#1751 := (f5 #1750 #11)
   3.514 -#1752 := (f15 #1751)
   3.515 -#2308 := (* -1::Int #1752)
   3.516 -#1744 := (f17 #1743)
   3.517 -#2291 := (* -1::Int #1744)
   3.518 -#2309 := (+ #2291 #2308)
   3.519 -#2310 := (+ #67 #2309)
   3.520 -#2311 := (= #2310 0::Int)
   3.521 -#2674 := (not #2311)
   3.522 -decl f18 :: S7
   3.523 -#75 := f18
   3.524 -#1748 := (f9 f18 #1743)
   3.525 -#1749 := (= #1748 f1)
   3.526 -#2673 := (not #1749)
   3.527 -#2292 := (+ #67 #2291)
   3.528 -#2293 := (<= #2292 0::Int)
   3.529 -#2675 := (or #2293 #2673 #2674)
   3.530 -#2676 := (not #2675)
   3.531 -#1053 := (* -1::Int #67)
   3.532 -#1054 := (+ f14 #1053)
   3.533 -#1055 := (<= #1054 0::Int)
   3.534 -#2682 := (or #66 #1055 #2676)
   3.535 -#3797 := (forall (vars (?v0 S2)) (:pat #3736) #2682)
   3.536 -#3802 := (not #3797)
   3.537 -#4069 := (or #3802 #878 #3811 #3820 #3828 #3836 #4066)
   3.538 -#4072 := (not #4069)
   3.539 -#76 := (f9 f18 #11)
   3.540 -#3749 := (pattern #76)
   3.541 -decl ?v0!5 :: S2
   3.542 -#1702 := ?v0!5
   3.543 -#1715 := (f5 #91 ?v0!5)
   3.544 -#1716 := (f15 #1715)
   3.545 -#1705 := (f17 ?v0!5)
   3.546 -#1706 := (* -1::Int #1705)
   3.547 -#1717 := (+ #1706 #1716)
   3.548 -#1718 := (+ #67 #1717)
   3.549 -#1719 := (= #1718 0::Int)
   3.550 -#2637 := (not #1719)
   3.551 -#77 := (= #76 f1)
   3.552 -#78 := (not #77)
   3.553 -#1712 := (+ #67 #1706)
   3.554 -#1713 := (>= #1712 0::Int)
   3.555 -#2638 := (or #1713 #78 #2637)
   3.556 -#3783 := (forall (vars (?v1 S2)) (:pat #3736 #3749 #3782) #2638)
   3.557 -#3788 := (not #3783)
   3.558 -#1707 := (+ f14 #1706)
   3.559 -#1708 := (<= #1707 0::Int)
   3.560 -#1703 := (= ?v0!5 f16)
   3.561 -#3791 := (or #1703 #1708 #3788)
   3.562 -#6181 := (= f14 #1705)
   3.563 -#6178 := (= #1705 f14)
   3.564 -#6207 := (iff #6178 #6181)
   3.565 -#6203 := (iff #6181 #6178)
   3.566 -#6186 := [commutativity]: #6203
   3.567 -#6185 := [symm #6186]: #6207
   3.568 -#1704 := (not #1703)
   3.569 -#3794 := (not #3791)
   3.570 -#6196 := [hypothesis]: #3794
   3.571 -#3351 := (or #3791 #1704)
   3.572 -#3352 := [def-axiom]: #3351
   3.573 -#6201 := [unit-resolution #3352 #6196]: #1704
   3.574 -#72 := (= #67 f14)
   3.575 -#364 := (or #66 #72)
   3.576 -#3743 := (forall (vars (?v0 S2)) (:pat #3736) #364)
   3.577 -#367 := (forall (vars (?v0 S2)) #364)
   3.578 -#3746 := (iff #367 #3743)
   3.579 -#3744 := (iff #364 #364)
   3.580 -#3745 := [refl]: #3744
   3.581 -#3747 := [quant-intro #3745]: #3746
   3.582 -#1589 := (~ #367 #367)
   3.583 -#1619 := (~ #364 #364)
   3.584 -#1620 := [refl]: #1619
   3.585 -#1590 := [nnf-pos #1620]: #1589
   3.586 -#1318 := (= #1296 0::Int)
   3.587 -#1321 := (not #1274)
   3.588 -#1330 := (and #1321 #218 #1318)
   3.589 -#1335 := (exists (vars (?v1 S2)) #1330)
   3.590 -#1307 := (+ f14 #1255)
   3.591 -#1308 := (<= #1307 0::Int)
   3.592 -#1309 := (not #1308)
   3.593 -#71 := (not #66)
   3.594 -#1312 := (and #71 #1309)
   3.595 -#1315 := (not #1312)
   3.596 -#1338 := (or #1315 #1335)
   3.597 -#1341 := (forall (vars (?v0 S2)) #1338)
   3.598 -#1030 := (not #1029)
   3.599 -#1288 := (and #218 #1030)
   3.600 -#1291 := (not #1288)
   3.601 -#1298 := (or #1291 #1294)
   3.602 -#1301 := (forall (vars (?v0 S2) (?v1 S2)) #1298)
   3.603 -#1304 := (not #1301)
   3.604 -#1344 := (or #1304 #1341)
   3.605 -#1347 := (and #1301 #1344)
   3.606 -#228 := (and #225 #227)
   3.607 -#609 := (not #228)
   3.608 -#1279 := (or #609 #1274)
   3.609 -#1282 := (forall (vars (?v0 S2) (?v1 S2)) #1279)
   3.610 -#1285 := (not #1282)
   3.611 -#1350 := (or #1285 #1347)
   3.612 -#1353 := (and #1282 #1350)
   3.613 -#1268 := (forall (vars (?v0 S2)) #1265)
   3.614 -#1271 := (not #1268)
   3.615 -#1356 := (or #1271 #1353)
   3.616 -#1359 := (and #1268 #1356)
   3.617 -#1362 := (or #713 #1359)
   3.618 -#1365 := (and #222 #1362)
   3.619 -#606 := (forall (vars (?v0 S2)) #603)
   3.620 -#736 := (not #606)
   3.621 -#1368 := (or #736 #1365)
   3.622 -#1371 := (and #606 #1368)
   3.623 -#1259 := (forall (vars (?v0 S2)) #1254)
   3.624 -#1262 := (not #1259)
   3.625 -#1374 := (or #1262 #1371)
   3.626 -#1377 := (and #1259 #1374)
   3.627 -#1239 := (not #1238)
   3.628 -#1232 := (not #1231)
   3.629 -#1242 := (and #1232 #1239)
   3.630 -#1245 := (or #1242 #212)
   3.631 -#1248 := (forall (vars (?v0 S2)) #1245)
   3.632 -#1251 := (not #1248)
   3.633 -#1380 := (not #1242)
   3.634 -#1388 := (or #1380 #1383)
   3.635 -#1391 := (forall (vars (?v0 S2)) #1388)
   3.636 -#1394 := (not #1391)
   3.637 -#1404 := (forall (vars (?v0 S2)) #1401)
   3.638 -#1407 := (not #1404)
   3.639 -#1094 := (not #1093)
   3.640 -#1203 := (and #118 #1094)
   3.641 -#1206 := (exists (vars (?v0 S2)) #1203)
   3.642 -#1422 := (not #1206)
   3.643 -#1446 := (or #1422 #188 #1411 #1407 #778 #1394 #1251 #1377)
   3.644 -#1139 := (not #1138)
   3.645 -#1173 := (and #1139 #1030)
   3.646 -#1176 := (not #1173)
   3.647 -#1182 := (or #1176 #1179)
   3.648 -#1185 := (forall (vars (?v0 S2) (?v1 S2)) #1182)
   3.649 -#1188 := (not #1185)
   3.650 -#1191 := (or #1188 #169)
   3.651 -#1194 := (and #1185 #1191)
   3.652 -#1154 := (= #1156 0::Int)
   3.653 -#1148 := (>= #1150 0::Int)
   3.654 -#1151 := (not #1148)
   3.655 -#1158 := (and #1151 #1154)
   3.656 -#1161 := (exists (vars (?v1 S2)) #1158)
   3.657 -#1142 := (and #71 #1139)
   3.658 -#1145 := (not #1142)
   3.659 -#1164 := (or #1145 #1161)
   3.660 -#1167 := (forall (vars (?v0 S2)) #1164)
   3.661 -#1170 := (not #1167)
   3.662 -#1197 := (or #1170 #1194)
   3.663 -#1200 := (and #1167 #1197)
   3.664 -#1224 := (or #1206 #549 #540 #531 #522 #1200)
   3.665 -#1451 := (and #1224 #1446)
   3.666 -#1103 := (= #1107 0::Int)
   3.667 -#1110 := (not #1109)
   3.668 -#1119 := (and #1110 #117 #1103)
   3.669 -#1124 := (exists (vars (?v1 S2)) #1119)
   3.670 -#1097 := (and #71 #1094)
   3.671 -#1100 := (not #1097)
   3.672 -#1127 := (or #1100 #1124)
   3.673 -#1130 := (forall (vars (?v0 S2)) #1127)
   3.674 -#1133 := (not #1130)
   3.675 -#1454 := (and #117 #1030)
   3.676 -#1457 := (not #1454)
   3.677 -#1463 := (or #1457 #1460)
   3.678 -#1466 := (forall (vars (?v0 S2) (?v1 S2)) #1463)
   3.679 -#1469 := (not #1466)
   3.680 -#121 := (and #118 #120)
   3.681 -#391 := (not #121)
   3.682 -#1474 := (or #391 #1109)
   3.683 -#1477 := (forall (vars (?v0 S2) (?v1 S2)) #1474)
   3.684 -#1480 := (not #1477)
   3.685 -#1486 := (forall (vars (?v0 S2)) #1483)
   3.686 -#1489 := (not #1486)
   3.687 -#87 := (f17 #9)
   3.688 -#1015 := (* -1::Int #87)
   3.689 -#1042 := (+ #1015 #93)
   3.690 -#1043 := (+ #67 #1042)
   3.691 -#1065 := (= #1043 0::Int)
   3.692 -#1016 := (+ #67 #1015)
   3.693 -#1014 := (>= #1016 0::Int)
   3.694 -#1068 := (not #1014)
   3.695 -#1077 := (and #1068 #77 #1065)
   3.696 -#1082 := (exists (vars (?v1 S2)) #1077)
   3.697 -#1056 := (not #1055)
   3.698 -#1059 := (and #71 #1056)
   3.699 -#1062 := (not #1059)
   3.700 -#1085 := (or #1062 #1082)
   3.701 -#1088 := (forall (vars (?v0 S2)) #1085)
   3.702 -#1492 := (not #1088)
   3.703 -#1513 := (or #1492 #878 #1489 #1480 #1469 #1133 #1451)
   3.704 -#1518 := (and #1088 #1513)
   3.705 -#1040 := (>= #1043 0::Int)
   3.706 -#1033 := (and #77 #1030)
   3.707 -#1036 := (not #1033)
   3.708 -#1044 := (or #1036 #1040)
   3.709 -#1047 := (forall (vars (?v0 S2) (?v1 S2)) #1044)
   3.710 -#1050 := (not #1047)
   3.711 -#1521 := (or #1050 #1518)
   3.712 -#1524 := (and #1047 #1521)
   3.713 -#84 := (f9 f18 #9)
   3.714 -#85 := (= #84 f1)
   3.715 -#86 := (and #78 #85)
   3.716 -#370 := (not #86)
   3.717 -#1018 := (or #370 #1014)
   3.718 -#1021 := (forall (vars (?v0 S2) (?v1 S2)) #1018)
   3.719 -#1024 := (not #1021)
   3.720 -#1527 := (or #1024 #1524)
   3.721 -#1530 := (and #1021 #1527)
   3.722 -#1005 := (>= #67 0::Int)
   3.723 -#1006 := (forall (vars (?v0 S2)) #1005)
   3.724 -#1009 := (not #1006)
   3.725 -#1533 := (or #1009 #1530)
   3.726 -#1536 := (and #1006 #1533)
   3.727 -#80 := (f17 f16)
   3.728 -#81 := (= #80 0::Int)
   3.729 -#946 := (not #81)
   3.730 -#1539 := (or #946 #1536)
   3.731 -#1542 := (and #81 #1539)
   3.732 -#79 := (forall (vars (?v0 S2)) #78)
   3.733 -#965 := (not #79)
   3.734 -#974 := (not #367)
   3.735 -#68 := (= #67 0::Int)
   3.736 -#358 := (or #71 #68)
   3.737 -#361 := (forall (vars (?v0 S2)) #358)
   3.738 -#983 := (not #361)
   3.739 -#1554 := (or #983 #974 #965 #1542)
   3.740 -#1559 := (not #1554)
   3.741 -#247 := (implies false true)
   3.742 -#234 := (+ #207 #93)
   3.743 -#241 := (= #229 #234)
   3.744 -#242 := (and #218 #241)
   3.745 -#240 := (< #207 #229)
   3.746 -#243 := (and #240 #242)
   3.747 -#244 := (exists (vars (?v1 S2)) #243)
   3.748 -#238 := (< #207 f14)
   3.749 -#239 := (and #71 #238)
   3.750 -#245 := (implies #239 #244)
   3.751 -#246 := (forall (vars (?v0 S2)) #245)
   3.752 -#248 := (implies #246 #247)
   3.753 -#249 := (and #246 #248)
   3.754 -#235 := (<= #229 #234)
   3.755 -#94 := (< #93 f14)
   3.756 -#233 := (and #218 #94)
   3.757 -#236 := (implies #233 #235)
   3.758 -#237 := (forall (vars (?v0 S2) (?v1 S2)) #236)
   3.759 -#250 := (implies #237 #249)
   3.760 -#251 := (and #237 #250)
   3.761 -#230 := (<= #229 #207)
   3.762 -#231 := (implies #228 #230)
   3.763 -#232 := (forall (vars (?v0 S2) (?v1 S2)) #231)
   3.764 -#252 := (implies #232 #251)
   3.765 -#253 := (and #232 #252)
   3.766 -#223 := (<= 0::Int #207)
   3.767 -#224 := (forall (vars (?v0 S2)) #223)
   3.768 -#254 := (implies #224 #253)
   3.769 -#255 := (and #224 #254)
   3.770 -#256 := (implies #222 #255)
   3.771 -#257 := (and #222 #256)
   3.772 -#258 := (implies true #257)
   3.773 -#259 := (implies true #258)
   3.774 -#219 := (implies #218 #212)
   3.775 -#220 := (forall (vars (?v0 S2)) #219)
   3.776 -#260 := (implies #220 #259)
   3.777 -#261 := (and #220 #260)
   3.778 -#215 := (<= #207 #112)
   3.779 -#216 := (forall (vars (?v0 S2)) #215)
   3.780 -#262 := (implies #216 #261)
   3.781 -#263 := (and #216 #262)
   3.782 -#204 := (+ #190 #202)
   3.783 -#205 := (< #204 #112)
   3.784 -#203 := (< #202 f14)
   3.785 -#206 := (and #203 #205)
   3.786 -#211 := (not #206)
   3.787 -#213 := (implies #211 #212)
   3.788 -#214 := (forall (vars (?v0 S2)) #213)
   3.789 -#264 := (implies #214 #263)
   3.790 -#208 := (= #207 #204)
   3.791 -#209 := (implies #206 #208)
   3.792 -#210 := (forall (vars (?v0 S2)) #209)
   3.793 -#265 := (implies #210 #264)
   3.794 -#266 := (implies #199 #265)
   3.795 -#192 := (<= #190 #112)
   3.796 -#193 := (implies #118 #192)
   3.797 -#194 := (forall (vars (?v0 S2)) #193)
   3.798 -#267 := (implies #194 #266)
   3.799 -#191 := (< #190 f14)
   3.800 -#268 := (implies #191 #267)
   3.801 -#189 := (not #188)
   3.802 -#269 := (implies #189 #268)
   3.803 -#131 := (< #112 f14)
   3.804 -#140 := (and #118 #131)
   3.805 -#141 := (exists (vars (?v0 S2)) #140)
   3.806 -#270 := (implies #141 #269)
   3.807 -#271 := (implies true #270)
   3.808 -#272 := (implies true #271)
   3.809 -#170 := (implies #169 true)
   3.810 -#171 := (and #169 #170)
   3.811 -#158 := (+ #153 #93)
   3.812 -#165 := (<= #156 #158)
   3.813 -#154 := (< #153 f14)
   3.814 -#164 := (and #154 #94)
   3.815 -#166 := (implies #164 #165)
   3.816 -#167 := (forall (vars (?v0 S2) (?v1 S2)) #166)
   3.817 -#172 := (implies #167 #171)
   3.818 -#173 := (and #167 #172)
   3.819 -#159 := (= #156 #158)
   3.820 -#157 := (< #153 #156)
   3.821 -#160 := (and #157 #159)
   3.822 -#161 := (exists (vars (?v1 S2)) #160)
   3.823 -#155 := (and #71 #154)
   3.824 -#162 := (implies #155 #161)
   3.825 -#163 := (forall (vars (?v0 S2)) #162)
   3.826 -#174 := (implies #163 #173)
   3.827 -#175 := (and #163 #174)
   3.828 -#176 := (implies true #175)
   3.829 -#177 := (implies #152 #176)
   3.830 -#178 := (implies #149 #177)
   3.831 -#179 := (implies #147 #178)
   3.832 -#180 := (implies #144 #179)
   3.833 -#181 := (implies true #180)
   3.834 -#182 := (implies true #181)
   3.835 -#142 := (not #141)
   3.836 -#183 := (implies #142 #182)
   3.837 -#184 := (implies true #183)
   3.838 -#185 := (implies true #184)
   3.839 -#273 := (and #185 #272)
   3.840 -#274 := (implies true #273)
   3.841 -#127 := (+ #112 #93)
   3.842 -#134 := (= #122 #127)
   3.843 -#135 := (and #117 #134)
   3.844 -#133 := (< #112 #122)
   3.845 -#136 := (and #133 #135)
   3.846 -#137 := (exists (vars (?v1 S2)) #136)
   3.847 -#132 := (and #71 #131)
   3.848 -#138 := (implies #132 #137)
   3.849 -#139 := (forall (vars (?v0 S2)) #138)
   3.850 -#275 := (implies #139 #274)
   3.851 -#128 := (<= #122 #127)
   3.852 -#126 := (and #117 #94)
   3.853 -#129 := (implies #126 #128)
   3.854 -#130 := (forall (vars (?v0 S2) (?v1 S2)) #129)
   3.855 -#276 := (implies #130 #275)
   3.856 -#123 := (<= #122 #112)
   3.857 -#124 := (implies #121 #123)
   3.858 -#125 := (forall (vars (?v0 S2) (?v1 S2)) #124)
   3.859 -#277 := (implies #125 #276)
   3.860 -#113 := (<= 0::Int #112)
   3.861 -#114 := (forall (vars (?v0 S2)) #113)
   3.862 -#278 := (implies #114 #277)
   3.863 -#279 := (implies #111 #278)
   3.864 -#280 := (implies true #279)
   3.865 -#281 := (implies true #280)
   3.866 -#96 := (+ #67 #93)
   3.867 -#103 := (= #87 #96)
   3.868 -#104 := (and #77 #103)
   3.869 -#102 := (< #67 #87)
   3.870 -#105 := (and #102 #104)
   3.871 -#106 := (exists (vars (?v1 S2)) #105)
   3.872 -#100 := (< #67 f14)
   3.873 -#101 := (and #71 #100)
   3.874 -#107 := (implies #101 #106)
   3.875 -#108 := (forall (vars (?v0 S2)) #107)
   3.876 -#282 := (implies #108 #281)
   3.877 -#283 := (and #108 #282)
   3.878 -#97 := (<= #87 #96)
   3.879 -#95 := (and #77 #94)
   3.880 -#98 := (implies #95 #97)
   3.881 -#99 := (forall (vars (?v0 S2) (?v1 S2)) #98)
   3.882 -#284 := (implies #99 #283)
   3.883 -#285 := (and #99 #284)
   3.884 -#88 := (<= #87 #67)
   3.885 -#89 := (implies #86 #88)
   3.886 -#90 := (forall (vars (?v0 S2) (?v1 S2)) #89)
   3.887 -#286 := (implies #90 #285)
   3.888 -#287 := (and #90 #286)
   3.889 -#82 := (<= 0::Int #67)
   3.890 -#83 := (forall (vars (?v0 S2)) #82)
   3.891 -#288 := (implies #83 #287)
   3.892 -#289 := (and #83 #288)
   3.893 -#290 := (implies #81 #289)
   3.894 -#291 := (and #81 #290)
   3.895 -#292 := (implies true #291)
   3.896 -#293 := (implies #79 #292)
   3.897 -#73 := (implies #71 #72)
   3.898 -#74 := (forall (vars (?v0 S2)) #73)
   3.899 -#294 := (implies #74 #293)
   3.900 -#69 := (implies #66 #68)
   3.901 -#70 := (forall (vars (?v0 S2)) #69)
   3.902 -#295 := (implies #70 #294)
   3.903 -#296 := (implies true #295)
   3.904 -#297 := (implies true #296)
   3.905 -#298 := (not #297)
   3.906 -#1562 := (iff #298 #1559)
   3.907 -#616 := (+ #93 #207)
   3.908 -#634 := (= #229 #616)
   3.909 -#637 := (and #218 #634)
   3.910 -#640 := (and #240 #637)
   3.911 -#643 := (exists (vars (?v1 S2)) #640)
   3.912 -#649 := (not #239)
   3.913 -#650 := (or #649 #643)
   3.914 -#655 := (forall (vars (?v0 S2)) #650)
   3.915 -#619 := (<= #229 #616)
   3.916 -#625 := (not #233)
   3.917 -#626 := (or #625 #619)
   3.918 -#631 := (forall (vars (?v0 S2) (?v1 S2)) #626)
   3.919 -#677 := (not #631)
   3.920 -#678 := (or #677 #655)
   3.921 -#683 := (and #631 #678)
   3.922 -#610 := (or #609 #230)
   3.923 -#613 := (forall (vars (?v0 S2) (?v1 S2)) #610)
   3.924 -#689 := (not #613)
   3.925 -#690 := (or #689 #683)
   3.926 -#695 := (and #613 #690)
   3.927 -#701 := (not #224)
   3.928 -#702 := (or #701 #695)
   3.929 -#707 := (and #224 #702)
   3.930 -#714 := (or #713 #707)
   3.931 -#719 := (and #222 #714)
   3.932 -#737 := (or #736 #719)
   3.933 -#742 := (and #606 #737)
   3.934 -#748 := (not #216)
   3.935 -#749 := (or #748 #742)
   3.936 -#754 := (and #216 #749)
   3.937 -#597 := (or #206 #212)
   3.938 -#600 := (forall (vars (?v0 S2)) #597)
   3.939 -#760 := (not #600)
   3.940 -#761 := (or #760 #754)
   3.941 -#591 := (or #211 #208)
   3.942 -#594 := (forall (vars (?v0 S2)) #591)
   3.943 -#769 := (not #594)
   3.944 -#770 := (or #769 #761)
   3.945 -#779 := (or #778 #770)
   3.946 -#585 := (or #117 #192)
   3.947 -#588 := (forall (vars (?v0 S2)) #585)
   3.948 -#787 := (not #588)
   3.949 -#788 := (or #787 #779)
   3.950 -#796 := (not #191)
   3.951 -#797 := (or #796 #788)
   3.952 -#805 := (or #188 #797)
   3.953 -#813 := (or #142 #805)
   3.954 -#440 := (+ #93 #153)
   3.955 -#464 := (<= #156 #440)
   3.956 -#470 := (not #164)
   3.957 -#471 := (or #470 #464)
   3.958 -#476 := (forall (vars (?v0 S2) (?v1 S2)) #471)
   3.959 -#491 := (not #476)
   3.960 -#492 := (or #491 #169)
   3.961 -#497 := (and #476 #492)
   3.962 -#443 := (= #156 #440)
   3.963 -#446 := (and #157 #443)
   3.964 -#449 := (exists (vars (?v1 S2)) #446)
   3.965 -#455 := (not #155)
   3.966 -#456 := (or #455 #449)
   3.967 -#461 := (forall (vars (?v0 S2)) #456)
   3.968 -#503 := (not #461)
   3.969 -#504 := (or #503 #497)
   3.970 -#509 := (and #461 #504)
   3.971 -#523 := (or #522 #509)
   3.972 -#532 := (or #531 #523)
   3.973 -#541 := (or #540 #532)
   3.974 -#550 := (or #549 #541)
   3.975 -#569 := (or #141 #550)
   3.976 -#829 := (and #569 #813)
   3.977 -#398 := (+ #93 #112)
   3.978 -#416 := (= #122 #398)
   3.979 -#419 := (and #117 #416)
   3.980 -#422 := (and #133 #419)
   3.981 -#425 := (exists (vars (?v1 S2)) #422)
   3.982 -#431 := (not #132)
   3.983 -#432 := (or #431 #425)
   3.984 -#437 := (forall (vars (?v0 S2)) #432)
   3.985 -#842 := (not #437)
   3.986 -#843 := (or #842 #829)
   3.987 -#401 := (<= #122 #398)
   3.988 -#407 := (not #126)
   3.989 -#408 := (or #407 #401)
   3.990 -#413 := (forall (vars (?v0 S2) (?v1 S2)) #408)
   3.991 -#851 := (not #413)
   3.992 -#852 := (or #851 #843)
   3.993 -#392 := (or #391 #123)
   3.994 -#395 := (forall (vars (?v0 S2) (?v1 S2)) #392)
   3.995 -#860 := (not #395)
   3.996 -#861 := (or #860 #852)
   3.997 -#869 := (not #114)
   3.998 -#870 := (or #869 #861)
   3.999 -#879 := (or #878 #870)
  3.1000 -#384 := (not #101)
  3.1001 -#385 := (or #384 #106)
  3.1002 -#388 := (forall (vars (?v0 S2)) #385)
  3.1003 -#898 := (not #388)
  3.1004 -#899 := (or #898 #879)
  3.1005 -#904 := (and #388 #899)
  3.1006 -#377 := (not #95)
  3.1007 -#378 := (or #377 #97)
  3.1008 -#381 := (forall (vars (?v0 S2) (?v1 S2)) #378)
  3.1009 -#910 := (not #381)
  3.1010 -#911 := (or #910 #904)
  3.1011 -#916 := (and #381 #911)
  3.1012 -#371 := (or #370 #88)
  3.1013 -#374 := (forall (vars (?v0 S2) (?v1 S2)) #371)
  3.1014 -#922 := (not #374)
  3.1015 -#923 := (or #922 #916)
  3.1016 -#928 := (and #374 #923)
  3.1017 -#934 := (not #83)
  3.1018 -#935 := (or #934 #928)
  3.1019 -#940 := (and #83 #935)
  3.1020 -#947 := (or #946 #940)
  3.1021 -#952 := (and #81 #947)
  3.1022 -#966 := (or #965 #952)
  3.1023 -#975 := (or #974 #966)
  3.1024 -#984 := (or #983 #975)
  3.1025 -#1000 := (not #984)
  3.1026 -#1560 := (iff #1000 #1559)
  3.1027 -#1557 := (iff #984 #1554)
  3.1028 -#1545 := (or #965 #1542)
  3.1029 -#1548 := (or #974 #1545)
  3.1030 -#1551 := (or #983 #1548)
  3.1031 -#1555 := (iff #1551 #1554)
  3.1032 -#1556 := [rewrite]: #1555
  3.1033 -#1552 := (iff #984 #1551)
  3.1034 -#1549 := (iff #975 #1548)
  3.1035 -#1546 := (iff #966 #1545)
  3.1036 -#1543 := (iff #952 #1542)
  3.1037 -#1540 := (iff #947 #1539)
  3.1038 -#1537 := (iff #940 #1536)
  3.1039 -#1534 := (iff #935 #1533)
  3.1040 -#1531 := (iff #928 #1530)
  3.1041 -#1528 := (iff #923 #1527)
  3.1042 -#1525 := (iff #916 #1524)
  3.1043 -#1522 := (iff #911 #1521)
  3.1044 -#1519 := (iff #904 #1518)
  3.1045 -#1516 := (iff #899 #1513)
  3.1046 -#1495 := (or #1133 #1451)
  3.1047 -#1498 := (or #1469 #1495)
  3.1048 -#1501 := (or #1480 #1498)
  3.1049 -#1504 := (or #1489 #1501)
  3.1050 -#1507 := (or #878 #1504)
  3.1051 -#1510 := (or #1492 #1507)
  3.1052 -#1514 := (iff #1510 #1513)
  3.1053 -#1515 := [rewrite]: #1514
  3.1054 -#1511 := (iff #899 #1510)
  3.1055 -#1508 := (iff #879 #1507)
  3.1056 -#1505 := (iff #870 #1504)
  3.1057 -#1502 := (iff #861 #1501)
  3.1058 -#1499 := (iff #852 #1498)
  3.1059 -#1496 := (iff #843 #1495)
  3.1060 -#1452 := (iff #829 #1451)
  3.1061 -#1449 := (iff #813 #1446)
  3.1062 -#1425 := (or #1251 #1377)
  3.1063 -#1428 := (or #1394 #1425)
  3.1064 -#1431 := (or #778 #1428)
  3.1065 -#1434 := (or #1407 #1431)
  3.1066 -#1437 := (or #1411 #1434)
  3.1067 -#1440 := (or #188 #1437)
  3.1068 -#1443 := (or #1422 #1440)
  3.1069 -#1447 := (iff #1443 #1446)
  3.1070 -#1448 := [rewrite]: #1447
  3.1071 -#1444 := (iff #813 #1443)
  3.1072 -#1441 := (iff #805 #1440)
  3.1073 -#1438 := (iff #797 #1437)
  3.1074 -#1435 := (iff #788 #1434)
  3.1075 -#1432 := (iff #779 #1431)
  3.1076 -#1429 := (iff #770 #1428)
  3.1077 -#1426 := (iff #761 #1425)
  3.1078 -#1378 := (iff #754 #1377)
  3.1079 -#1375 := (iff #749 #1374)
  3.1080 -#1372 := (iff #742 #1371)
  3.1081 -#1369 := (iff #737 #1368)
  3.1082 -#1366 := (iff #719 #1365)
  3.1083 -#1363 := (iff #714 #1362)
  3.1084 -#1360 := (iff #707 #1359)
  3.1085 -#1357 := (iff #702 #1356)
  3.1086 -#1354 := (iff #695 #1353)
  3.1087 -#1351 := (iff #690 #1350)
  3.1088 -#1348 := (iff #683 #1347)
  3.1089 -#1345 := (iff #678 #1344)
  3.1090 -#1342 := (iff #655 #1341)
  3.1091 -#1339 := (iff #650 #1338)
  3.1092 -#1336 := (iff #643 #1335)
  3.1093 -#1333 := (iff #640 #1330)
  3.1094 -#1324 := (and #218 #1318)
  3.1095 -#1327 := (and #1321 #1324)
  3.1096 -#1331 := (iff #1327 #1330)
  3.1097 -#1332 := [rewrite]: #1331
  3.1098 -#1328 := (iff #640 #1327)
  3.1099 -#1325 := (iff #637 #1324)
  3.1100 -#1319 := (iff #634 #1318)
  3.1101 -#1320 := [rewrite]: #1319
  3.1102 -#1326 := [monotonicity #1320]: #1325
  3.1103 -#1322 := (iff #240 #1321)
  3.1104 -#1323 := [rewrite]: #1322
  3.1105 -#1329 := [monotonicity #1323 #1326]: #1328
  3.1106 -#1334 := [trans #1329 #1332]: #1333
  3.1107 -#1337 := [quant-intro #1334]: #1336
  3.1108 -#1316 := (iff #649 #1315)
  3.1109 -#1313 := (iff #239 #1312)
  3.1110 -#1310 := (iff #238 #1309)
  3.1111 -#1311 := [rewrite]: #1310
  3.1112 -#1314 := [monotonicity #1311]: #1313
  3.1113 -#1317 := [monotonicity #1314]: #1316
  3.1114 -#1340 := [monotonicity #1317 #1337]: #1339
  3.1115 -#1343 := [quant-intro #1340]: #1342
  3.1116 -#1305 := (iff #677 #1304)
  3.1117 -#1302 := (iff #631 #1301)
  3.1118 -#1299 := (iff #626 #1298)
  3.1119 -#1295 := (iff #619 #1294)
  3.1120 -#1297 := [rewrite]: #1295
  3.1121 -#1292 := (iff #625 #1291)
  3.1122 -#1289 := (iff #233 #1288)
  3.1123 -#1031 := (iff #94 #1030)
  3.1124 -#1032 := [rewrite]: #1031
  3.1125 -#1290 := [monotonicity #1032]: #1289
  3.1126 -#1293 := [monotonicity #1290]: #1292
  3.1127 -#1300 := [monotonicity #1293 #1297]: #1299
  3.1128 -#1303 := [quant-intro #1300]: #1302
  3.1129 -#1306 := [monotonicity #1303]: #1305
  3.1130 -#1346 := [monotonicity #1306 #1343]: #1345
  3.1131 -#1349 := [monotonicity #1303 #1346]: #1348
  3.1132 -#1286 := (iff #689 #1285)
  3.1133 -#1283 := (iff #613 #1282)
  3.1134 -#1280 := (iff #610 #1279)
  3.1135 -#1277 := (iff #230 #1274)
  3.1136 -#1278 := [rewrite]: #1277
  3.1137 -#1281 := [monotonicity #1278]: #1280
  3.1138 -#1284 := [quant-intro #1281]: #1283
  3.1139 -#1287 := [monotonicity #1284]: #1286
  3.1140 -#1352 := [monotonicity #1287 #1349]: #1351
  3.1141 -#1355 := [monotonicity #1284 #1352]: #1354
  3.1142 -#1272 := (iff #701 #1271)
  3.1143 -#1269 := (iff #224 #1268)
  3.1144 -#1266 := (iff #223 #1265)
  3.1145 -#1267 := [rewrite]: #1266
  3.1146 -#1270 := [quant-intro #1267]: #1269
  3.1147 -#1273 := [monotonicity #1270]: #1272
  3.1148 -#1358 := [monotonicity #1273 #1355]: #1357
  3.1149 -#1361 := [monotonicity #1270 #1358]: #1360
  3.1150 -#1364 := [monotonicity #1361]: #1363
  3.1151 -#1367 := [monotonicity #1364]: #1366
  3.1152 -#1370 := [monotonicity #1367]: #1369
  3.1153 -#1373 := [monotonicity #1370]: #1372
  3.1154 -#1263 := (iff #748 #1262)
  3.1155 -#1260 := (iff #216 #1259)
  3.1156 -#1257 := (iff #215 #1254)
  3.1157 -#1258 := [rewrite]: #1257
  3.1158 -#1261 := [quant-intro #1258]: #1260
  3.1159 -#1264 := [monotonicity #1261]: #1263
  3.1160 -#1376 := [monotonicity #1264 #1373]: #1375
  3.1161 -#1379 := [monotonicity #1261 #1376]: #1378
  3.1162 -#1252 := (iff #760 #1251)
  3.1163 -#1249 := (iff #600 #1248)
  3.1164 -#1246 := (iff #597 #1245)
  3.1165 -#1243 := (iff #206 #1242)
  3.1166 -#1240 := (iff #205 #1239)
  3.1167 -#1241 := [rewrite]: #1240
  3.1168 -#1233 := (iff #203 #1232)
  3.1169 -#1234 := [rewrite]: #1233
  3.1170 -#1244 := [monotonicity #1234 #1241]: #1243
  3.1171 -#1247 := [monotonicity #1244]: #1246
  3.1172 -#1250 := [quant-intro #1247]: #1249
  3.1173 -#1253 := [monotonicity #1250]: #1252
  3.1174 -#1427 := [monotonicity #1253 #1379]: #1426
  3.1175 -#1395 := (iff #769 #1394)
  3.1176 -#1392 := (iff #594 #1391)
  3.1177 -#1389 := (iff #591 #1388)
  3.1178 -#1384 := (iff #208 #1383)
  3.1179 -#1387 := [rewrite]: #1384
  3.1180 -#1381 := (iff #211 #1380)
  3.1181 -#1382 := [monotonicity #1244]: #1381
  3.1182 -#1390 := [monotonicity #1382 #1387]: #1389
  3.1183 -#1393 := [quant-intro #1390]: #1392
  3.1184 -#1396 := [monotonicity #1393]: #1395
  3.1185 -#1430 := [monotonicity #1396 #1427]: #1429
  3.1186 -#1433 := [monotonicity #1430]: #1432
  3.1187 -#1408 := (iff #787 #1407)
  3.1188 -#1405 := (iff #588 #1404)
  3.1189 -#1402 := (iff #585 #1401)
  3.1190 -#1399 := (iff #192 #1397)
  3.1191 -#1400 := [rewrite]: #1399
  3.1192 -#1403 := [monotonicity #1400]: #1402
  3.1193 -#1406 := [quant-intro #1403]: #1405
  3.1194 -#1409 := [monotonicity #1406]: #1408
  3.1195 -#1436 := [monotonicity #1409 #1433]: #1435
  3.1196 -#1420 := (iff #796 #1411)
  3.1197 -#1412 := (not #1411)
  3.1198 -#1415 := (not #1412)
  3.1199 -#1418 := (iff #1415 #1411)
  3.1200 -#1419 := [rewrite]: #1418
  3.1201 -#1416 := (iff #796 #1415)
  3.1202 -#1413 := (iff #191 #1412)
  3.1203 -#1414 := [rewrite]: #1413
  3.1204 -#1417 := [monotonicity #1414]: #1416
  3.1205 -#1421 := [trans #1417 #1419]: #1420
  3.1206 -#1439 := [monotonicity #1421 #1436]: #1438
  3.1207 -#1442 := [monotonicity #1439]: #1441
  3.1208 -#1423 := (iff #142 #1422)
  3.1209 -#1207 := (iff #141 #1206)
  3.1210 -#1204 := (iff #140 #1203)
  3.1211 -#1095 := (iff #131 #1094)
  3.1212 -#1096 := [rewrite]: #1095
  3.1213 -#1205 := [monotonicity #1096]: #1204
  3.1214 -#1208 := [quant-intro #1205]: #1207
  3.1215 -#1424 := [monotonicity #1208]: #1423
  3.1216 -#1445 := [monotonicity #1424 #1442]: #1444
  3.1217 -#1450 := [trans #1445 #1448]: #1449
  3.1218 -#1227 := (iff #569 #1224)
  3.1219 -#1209 := (or #522 #1200)
  3.1220 -#1212 := (or #531 #1209)
  3.1221 -#1215 := (or #540 #1212)
  3.1222 -#1218 := (or #549 #1215)
  3.1223 -#1221 := (or #1206 #1218)
  3.1224 -#1225 := (iff #1221 #1224)
  3.1225 -#1226 := [rewrite]: #1225
  3.1226 -#1222 := (iff #569 #1221)
  3.1227 -#1219 := (iff #550 #1218)
  3.1228 -#1216 := (iff #541 #1215)
  3.1229 -#1213 := (iff #532 #1212)
  3.1230 -#1210 := (iff #523 #1209)
  3.1231 -#1201 := (iff #509 #1200)
  3.1232 -#1198 := (iff #504 #1197)
  3.1233 -#1195 := (iff #497 #1194)
  3.1234 -#1192 := (iff #492 #1191)
  3.1235 -#1189 := (iff #491 #1188)
  3.1236 -#1186 := (iff #476 #1185)
  3.1237 -#1183 := (iff #471 #1182)
  3.1238 -#1180 := (iff #464 #1179)
  3.1239 -#1181 := [rewrite]: #1180
  3.1240 -#1177 := (iff #470 #1176)
  3.1241 -#1174 := (iff #164 #1173)
  3.1242 -#1140 := (iff #154 #1139)
  3.1243 -#1141 := [rewrite]: #1140
  3.1244 -#1175 := [monotonicity #1141 #1032]: #1174
  3.1245 -#1178 := [monotonicity #1175]: #1177
  3.1246 -#1184 := [monotonicity #1178 #1181]: #1183
  3.1247 -#1187 := [quant-intro #1184]: #1186
  3.1248 -#1190 := [monotonicity #1187]: #1189
  3.1249 -#1193 := [monotonicity #1190]: #1192
  3.1250 -#1196 := [monotonicity #1187 #1193]: #1195
  3.1251 -#1171 := (iff #503 #1170)
  3.1252 -#1168 := (iff #461 #1167)
  3.1253 -#1165 := (iff #456 #1164)
  3.1254 -#1162 := (iff #449 #1161)
  3.1255 -#1159 := (iff #446 #1158)
  3.1256 -#1155 := (iff #443 #1154)
  3.1257 -#1157 := [rewrite]: #1155
  3.1258 -#1152 := (iff #157 #1151)
  3.1259 -#1153 := [rewrite]: #1152
  3.1260 -#1160 := [monotonicity #1153 #1157]: #1159
  3.1261 -#1163 := [quant-intro #1160]: #1162
  3.1262 -#1146 := (iff #455 #1145)
  3.1263 -#1143 := (iff #155 #1142)
  3.1264 -#1144 := [monotonicity #1141]: #1143
  3.1265 -#1147 := [monotonicity #1144]: #1146
  3.1266 -#1166 := [monotonicity #1147 #1163]: #1165
  3.1267 -#1169 := [quant-intro #1166]: #1168
  3.1268 -#1172 := [monotonicity #1169]: #1171
  3.1269 -#1199 := [monotonicity #1172 #1196]: #1198
  3.1270 -#1202 := [monotonicity #1169 #1199]: #1201
  3.1271 -#1211 := [monotonicity #1202]: #1210
  3.1272 -#1214 := [monotonicity #1211]: #1213
  3.1273 -#1217 := [monotonicity #1214]: #1216
  3.1274 -#1220 := [monotonicity #1217]: #1219
  3.1275 -#1223 := [monotonicity #1208 #1220]: #1222
  3.1276 -#1228 := [trans #1223 #1226]: #1227
  3.1277 -#1453 := [monotonicity #1228 #1450]: #1452
  3.1278 -#1134 := (iff #842 #1133)
  3.1279 -#1131 := (iff #437 #1130)
  3.1280 -#1128 := (iff #432 #1127)
  3.1281 -#1125 := (iff #425 #1124)
  3.1282 -#1122 := (iff #422 #1119)
  3.1283 -#1113 := (and #117 #1103)
  3.1284 -#1116 := (and #1110 #1113)
  3.1285 -#1120 := (iff #1116 #1119)
  3.1286 -#1121 := [rewrite]: #1120
  3.1287 -#1117 := (iff #422 #1116)
  3.1288 -#1114 := (iff #419 #1113)
  3.1289 -#1104 := (iff #416 #1103)
  3.1290 -#1108 := [rewrite]: #1104
  3.1291 -#1115 := [monotonicity #1108]: #1114
  3.1292 -#1111 := (iff #133 #1110)
  3.1293 -#1112 := [rewrite]: #1111
  3.1294 -#1118 := [monotonicity #1112 #1115]: #1117
  3.1295 -#1123 := [trans #1118 #1121]: #1122
  3.1296 -#1126 := [quant-intro #1123]: #1125
  3.1297 -#1101 := (iff #431 #1100)
  3.1298 -#1098 := (iff #132 #1097)
  3.1299 -#1099 := [monotonicity #1096]: #1098
  3.1300 -#1102 := [monotonicity #1099]: #1101
  3.1301 -#1129 := [monotonicity #1102 #1126]: #1128
  3.1302 -#1132 := [quant-intro #1129]: #1131
  3.1303 -#1135 := [monotonicity #1132]: #1134
  3.1304 -#1497 := [monotonicity #1135 #1453]: #1496
  3.1305 -#1470 := (iff #851 #1469)
  3.1306 -#1467 := (iff #413 #1466)
  3.1307 -#1464 := (iff #408 #1463)
  3.1308 -#1461 := (iff #401 #1460)
  3.1309 -#1462 := [rewrite]: #1461
  3.1310 -#1458 := (iff #407 #1457)
  3.1311 -#1455 := (iff #126 #1454)
  3.1312 -#1456 := [monotonicity #1032]: #1455
  3.1313 -#1459 := [monotonicity #1456]: #1458
  3.1314 -#1465 := [monotonicity #1459 #1462]: #1464
  3.1315 -#1468 := [quant-intro #1465]: #1467
  3.1316 -#1471 := [monotonicity #1468]: #1470
  3.1317 -#1500 := [monotonicity #1471 #1497]: #1499
  3.1318 -#1481 := (iff #860 #1480)
  3.1319 -#1478 := (iff #395 #1477)
  3.1320 -#1475 := (iff #392 #1474)
  3.1321 -#1472 := (iff #123 #1109)
  3.1322 -#1473 := [rewrite]: #1472
  3.1323 -#1476 := [monotonicity #1473]: #1475
  3.1324 -#1479 := [quant-intro #1476]: #1478
  3.1325 -#1482 := [monotonicity #1479]: #1481
  3.1326 -#1503 := [monotonicity #1482 #1500]: #1502
  3.1327 -#1490 := (iff #869 #1489)
  3.1328 -#1487 := (iff #114 #1486)
  3.1329 -#1484 := (iff #113 #1483)
  3.1330 -#1485 := [rewrite]: #1484
  3.1331 -#1488 := [quant-intro #1485]: #1487
  3.1332 -#1491 := [monotonicity #1488]: #1490
  3.1333 -#1506 := [monotonicity #1491 #1503]: #1505
  3.1334 -#1509 := [monotonicity #1506]: #1508
  3.1335 -#1493 := (iff #898 #1492)
  3.1336 -#1089 := (iff #388 #1088)
  3.1337 -#1086 := (iff #385 #1085)
  3.1338 -#1083 := (iff #106 #1082)
  3.1339 -#1080 := (iff #105 #1077)
  3.1340 -#1071 := (and #77 #1065)
  3.1341 -#1074 := (and #1068 #1071)
  3.1342 -#1078 := (iff #1074 #1077)
  3.1343 -#1079 := [rewrite]: #1078
  3.1344 -#1075 := (iff #105 #1074)
  3.1345 -#1072 := (iff #104 #1071)
  3.1346 -#1066 := (iff #103 #1065)
  3.1347 -#1067 := [rewrite]: #1066
  3.1348 -#1073 := [monotonicity #1067]: #1072
  3.1349 -#1069 := (iff #102 #1068)
  3.1350 -#1070 := [rewrite]: #1069
  3.1351 -#1076 := [monotonicity #1070 #1073]: #1075
  3.1352 -#1081 := [trans #1076 #1079]: #1080
  3.1353 -#1084 := [quant-intro #1081]: #1083
  3.1354 -#1063 := (iff #384 #1062)
  3.1355 -#1060 := (iff #101 #1059)
  3.1356 -#1057 := (iff #100 #1056)
  3.1357 -#1058 := [rewrite]: #1057
  3.1358 -#1061 := [monotonicity #1058]: #1060
  3.1359 -#1064 := [monotonicity #1061]: #1063
  3.1360 -#1087 := [monotonicity #1064 #1084]: #1086
  3.1361 -#1090 := [quant-intro #1087]: #1089
  3.1362 -#1494 := [monotonicity #1090]: #1493
  3.1363 -#1512 := [monotonicity #1494 #1509]: #1511
  3.1364 -#1517 := [trans #1512 #1515]: #1516
  3.1365 -#1520 := [monotonicity #1090 #1517]: #1519
  3.1366 -#1051 := (iff #910 #1050)
  3.1367 -#1048 := (iff #381 #1047)
  3.1368 -#1045 := (iff #378 #1044)
  3.1369 -#1039 := (iff #97 #1040)
  3.1370 -#1041 := [rewrite]: #1039
  3.1371 -#1037 := (iff #377 #1036)
  3.1372 -#1034 := (iff #95 #1033)
  3.1373 -#1035 := [monotonicity #1032]: #1034
  3.1374 -#1038 := [monotonicity #1035]: #1037
  3.1375 -#1046 := [monotonicity #1038 #1041]: #1045
  3.1376 -#1049 := [quant-intro #1046]: #1048
  3.1377 -#1052 := [monotonicity #1049]: #1051
  3.1378 -#1523 := [monotonicity #1052 #1520]: #1522
  3.1379 -#1526 := [monotonicity #1049 #1523]: #1525
  3.1380 -#1025 := (iff #922 #1024)
  3.1381 -#1022 := (iff #374 #1021)
  3.1382 -#1019 := (iff #371 #1018)
  3.1383 -#1013 := (iff #88 #1014)
  3.1384 -#1017 := [rewrite]: #1013
  3.1385 -#1020 := [monotonicity #1017]: #1019
  3.1386 -#1023 := [quant-intro #1020]: #1022
  3.1387 -#1026 := [monotonicity #1023]: #1025
  3.1388 -#1529 := [monotonicity #1026 #1526]: #1528
  3.1389 -#1532 := [monotonicity #1023 #1529]: #1531
  3.1390 -#1010 := (iff #934 #1009)
  3.1391 -#1007 := (iff #83 #1006)
  3.1392 -#1003 := (iff #82 #1005)
  3.1393 -#1004 := [rewrite]: #1003
  3.1394 -#1008 := [quant-intro #1004]: #1007
  3.1395 -#1011 := [monotonicity #1008]: #1010
  3.1396 -#1535 := [monotonicity #1011 #1532]: #1534
  3.1397 -#1538 := [monotonicity #1008 #1535]: #1537
  3.1398 -#1541 := [monotonicity #1538]: #1540
  3.1399 -#1544 := [monotonicity #1541]: #1543
  3.1400 -#1547 := [monotonicity #1544]: #1546
  3.1401 -#1550 := [monotonicity #1547]: #1549
  3.1402 -#1553 := [monotonicity #1550]: #1552
  3.1403 -#1558 := [trans #1553 #1556]: #1557
  3.1404 -#1561 := [monotonicity #1558]: #1560
  3.1405 -#1001 := (iff #298 #1000)
  3.1406 -#998 := (iff #297 #984)
  3.1407 -#989 := (implies true #984)
  3.1408 -#992 := (iff #989 #984)
  3.1409 -#993 := [rewrite]: #992
  3.1410 -#996 := (iff #297 #989)
  3.1411 -#994 := (iff #296 #984)
  3.1412 -#990 := (iff #296 #989)
  3.1413 -#987 := (iff #295 #984)
  3.1414 -#980 := (implies #361 #975)
  3.1415 -#985 := (iff #980 #984)
  3.1416 -#986 := [rewrite]: #985
  3.1417 -#981 := (iff #295 #980)
  3.1418 -#978 := (iff #294 #975)
  3.1419 -#971 := (implies #367 #966)
  3.1420 -#976 := (iff #971 #975)
  3.1421 -#977 := [rewrite]: #976
  3.1422 -#972 := (iff #294 #971)
  3.1423 -#969 := (iff #293 #966)
  3.1424 -#962 := (implies #79 #952)
  3.1425 -#967 := (iff #962 #966)
  3.1426 -#968 := [rewrite]: #967
  3.1427 -#963 := (iff #293 #962)
  3.1428 -#960 := (iff #292 #952)
  3.1429 -#955 := (implies true #952)
  3.1430 -#958 := (iff #955 #952)
  3.1431 -#959 := [rewrite]: #958
  3.1432 -#956 := (iff #292 #955)
  3.1433 -#953 := (iff #291 #952)
  3.1434 -#950 := (iff #290 #947)
  3.1435 -#943 := (implies #81 #940)
  3.1436 -#948 := (iff #943 #947)
  3.1437 -#949 := [rewrite]: #948
  3.1438 -#944 := (iff #290 #943)
  3.1439 -#941 := (iff #289 #940)
  3.1440 -#938 := (iff #288 #935)
  3.1441 -#931 := (implies #83 #928)
  3.1442 -#936 := (iff #931 #935)
  3.1443 -#937 := [rewrite]: #936
  3.1444 -#932 := (iff #288 #931)
  3.1445 -#929 := (iff #287 #928)
  3.1446 -#926 := (iff #286 #923)
  3.1447 -#919 := (implies #374 #916)
  3.1448 -#924 := (iff #919 #923)
  3.1449 -#925 := [rewrite]: #924
  3.1450 -#920 := (iff #286 #919)
  3.1451 -#917 := (iff #285 #916)
  3.1452 -#914 := (iff #284 #911)
  3.1453 -#907 := (implies #381 #904)
  3.1454 -#912 := (iff #907 #911)
  3.1455 -#913 := [rewrite]: #912
  3.1456 -#908 := (iff #284 #907)
  3.1457 -#905 := (iff #283 #904)
  3.1458 -#902 := (iff #282 #899)
  3.1459 -#895 := (implies #388 #879)
  3.1460 -#900 := (iff #895 #899)
  3.1461 -#901 := [rewrite]: #900
  3.1462 -#896 := (iff #282 #895)
  3.1463 -#893 := (iff #281 #879)
  3.1464 -#884 := (implies true #879)
  3.1465 -#887 := (iff #884 #879)
  3.1466 -#888 := [rewrite]: #887
  3.1467 -#891 := (iff #281 #884)
  3.1468 -#889 := (iff #280 #879)
  3.1469 -#885 := (iff #280 #884)
  3.1470 -#882 := (iff #279 #879)
  3.1471 -#875 := (implies #111 #870)
  3.1472 -#880 := (iff #875 #879)
  3.1473 -#881 := [rewrite]: #880
  3.1474 -#876 := (iff #279 #875)
  3.1475 -#873 := (iff #278 #870)
  3.1476 -#866 := (implies #114 #861)
  3.1477 -#871 := (iff #866 #870)
  3.1478 -#872 := [rewrite]: #871
  3.1479 -#867 := (iff #278 #866)
  3.1480 -#864 := (iff #277 #861)
  3.1481 -#857 := (implies #395 #852)
  3.1482 -#862 := (iff #857 #861)
  3.1483 -#863 := [rewrite]: #862
  3.1484 -#858 := (iff #277 #857)
  3.1485 -#855 := (iff #276 #852)
  3.1486 -#848 := (implies #413 #843)
  3.1487 -#853 := (iff #848 #852)
  3.1488 -#854 := [rewrite]: #853
  3.1489 -#849 := (iff #276 #848)
  3.1490 -#846 := (iff #275 #843)
  3.1491 -#839 := (implies #437 #829)
  3.1492 -#844 := (iff #839 #843)
  3.1493 -#845 := [rewrite]: #844
  3.1494 -#840 := (iff #275 #839)
  3.1495 -#837 := (iff #274 #829)
  3.1496 -#832 := (implies true #829)
  3.1497 -#835 := (iff #832 #829)
  3.1498 -#836 := [rewrite]: #835
  3.1499 -#833 := (iff #274 #832)
  3.1500 -#830 := (iff #273 #829)
  3.1501 -#827 := (iff #272 #813)
  3.1502 -#818 := (implies true #813)
  3.1503 -#821 := (iff #818 #813)
  3.1504 -#822 := [rewrite]: #821
  3.1505 -#825 := (iff #272 #818)
  3.1506 -#823 := (iff #271 #813)
  3.1507 -#819 := (iff #271 #818)
  3.1508 -#816 := (iff #270 #813)
  3.1509 -#810 := (implies #141 #805)
  3.1510 -#814 := (iff #810 #813)
  3.1511 -#815 := [rewrite]: #814
  3.1512 -#811 := (iff #270 #810)
  3.1513 -#808 := (iff #269 #805)
  3.1514 -#802 := (implies #189 #797)
  3.1515 -#806 := (iff #802 #805)
  3.1516 -#807 := [rewrite]: #806
  3.1517 -#803 := (iff #269 #802)
  3.1518 -#800 := (iff #268 #797)
  3.1519 -#793 := (implies #191 #788)
  3.1520 -#798 := (iff #793 #797)
  3.1521 -#799 := [rewrite]: #798
  3.1522 -#794 := (iff #268 #793)
  3.1523 -#791 := (iff #267 #788)
  3.1524 -#784 := (implies #588 #779)
  3.1525 -#789 := (iff #784 #788)
  3.1526 -#790 := [rewrite]: #789
  3.1527 -#785 := (iff #267 #784)
  3.1528 -#782 := (iff #266 #779)
  3.1529 -#775 := (implies #199 #770)
  3.1530 -#780 := (iff #775 #779)
  3.1531 -#781 := [rewrite]: #780
  3.1532 -#776 := (iff #266 #775)
  3.1533 -#773 := (iff #265 #770)
  3.1534 -#766 := (implies #594 #761)
  3.1535 -#771 := (iff #766 #770)
  3.1536 -#772 := [rewrite]: #771
  3.1537 -#767 := (iff #265 #766)
  3.1538 -#764 := (iff #264 #761)
  3.1539 -#757 := (implies #600 #754)
  3.1540 -#762 := (iff #757 #761)
  3.1541 -#763 := [rewrite]: #762
  3.1542 -#758 := (iff #264 #757)
  3.1543 -#755 := (iff #263 #754)
  3.1544 -#752 := (iff #262 #749)
  3.1545 -#745 := (implies #216 #742)
  3.1546 -#750 := (iff #745 #749)
  3.1547 -#751 := [rewrite]: #750
  3.1548 -#746 := (iff #262 #745)
  3.1549 -#743 := (iff #261 #742)
  3.1550 -#740 := (iff #260 #737)
  3.1551 -#733 := (implies #606 #719)
  3.1552 -#738 := (iff #733 #737)
  3.1553 -#739 := [rewrite]: #738
  3.1554 -#734 := (iff #260 #733)
  3.1555 -#731 := (iff #259 #719)
  3.1556 -#722 := (implies true #719)
  3.1557 -#725 := (iff #722 #719)
  3.1558 -#726 := [rewrite]: #725
  3.1559 -#729 := (iff #259 #722)
  3.1560 -#727 := (iff #258 #719)
  3.1561 -#723 := (iff #258 #722)
  3.1562 -#720 := (iff #257 #719)
  3.1563 -#717 := (iff #256 #714)
  3.1564 -#710 := (implies #222 #707)
  3.1565 -#715 := (iff #710 #714)
  3.1566 -#716 := [rewrite]: #715
  3.1567 -#711 := (iff #256 #710)
  3.1568 -#708 := (iff #255 #707)
  3.1569 -#705 := (iff #254 #702)
  3.1570 -#698 := (implies #224 #695)
  3.1571 -#703 := (iff #698 #702)
  3.1572 -#704 := [rewrite]: #703
  3.1573 -#699 := (iff #254 #698)
  3.1574 -#696 := (iff #253 #695)
  3.1575 -#693 := (iff #252 #690)
  3.1576 -#686 := (implies #613 #683)
  3.1577 -#691 := (iff #686 #690)
  3.1578 -#692 := [rewrite]: #691
  3.1579 -#687 := (iff #252 #686)
  3.1580 -#684 := (iff #251 #683)
  3.1581 -#681 := (iff #250 #678)
  3.1582 -#674 := (implies #631 #655)
  3.1583 -#679 := (iff #674 #678)
  3.1584 -#680 := [rewrite]: #679
  3.1585 -#675 := (iff #250 #674)
  3.1586 -#672 := (iff #249 #655)
  3.1587 -#667 := (and #655 true)
  3.1588 -#670 := (iff #667 #655)
  3.1589 -#671 := [rewrite]: #670
  3.1590 -#668 := (iff #249 #667)
  3.1591 -#665 := (iff #248 true)
  3.1592 -#660 := (implies #655 true)
  3.1593 -#663 := (iff #660 true)
  3.1594 -#664 := [rewrite]: #663
  3.1595 -#661 := (iff #248 #660)
  3.1596 -#658 := (iff #247 true)
  3.1597 -#659 := [rewrite]: #658
  3.1598 -#656 := (iff #246 #655)
  3.1599 -#653 := (iff #245 #650)
  3.1600 -#646 := (implies #239 #643)
  3.1601 -#651 := (iff #646 #650)
  3.1602 -#652 := [rewrite]: #651
  3.1603 -#647 := (iff #245 #646)
  3.1604 -#644 := (iff #244 #643)
  3.1605 -#641 := (iff #243 #640)
  3.1606 -#638 := (iff #242 #637)
  3.1607 -#635 := (iff #241 #634)
  3.1608 -#617 := (= #234 #616)
  3.1609 -#618 := [rewrite]: #617
  3.1610 -#636 := [monotonicity #618]: #635
  3.1611 -#639 := [monotonicity #636]: #638
  3.1612 -#642 := [monotonicity #639]: #641
  3.1613 -#645 := [quant-intro #642]: #644
  3.1614 -#648 := [monotonicity #645]: #647
  3.1615 -#654 := [trans #648 #652]: #653
  3.1616 -#657 := [quant-intro #654]: #656
  3.1617 -#662 := [monotonicity #657 #659]: #661
  3.1618 -#666 := [trans #662 #664]: #665
  3.1619 -#669 := [monotonicity #657 #666]: #668
  3.1620 -#673 := [trans #669 #671]: #672
  3.1621 -#632 := (iff #237 #631)
  3.1622 -#629 := (iff #236 #626)
  3.1623 -#622 := (implies #233 #619)
  3.1624 -#627 := (iff #622 #626)
  3.1625 -#628 := [rewrite]: #627
  3.1626 -#623 := (iff #236 #622)
  3.1627 -#620 := (iff #235 #619)
  3.1628 -#621 := [monotonicity #618]: #620
  3.1629 -#624 := [monotonicity #621]: #623
  3.1630 -#630 := [trans #624 #628]: #629
  3.1631 -#633 := [quant-intro #630]: #632
  3.1632 -#676 := [monotonicity #633 #673]: #675
  3.1633 -#682 := [trans #676 #680]: #681
  3.1634 -#685 := [monotonicity #633 #682]: #684
  3.1635 -#614 := (iff #232 #613)
  3.1636 -#611 := (iff #231 #610)
  3.1637 -#612 := [rewrite]: #611
  3.1638 -#615 := [quant-intro #612]: #614
  3.1639 -#688 := [monotonicity #615 #685]: #687
  3.1640 -#694 := [trans #688 #692]: #693
  3.1641 -#697 := [monotonicity #615 #694]: #696
  3.1642 -#700 := [monotonicity #697]: #699
  3.1643 -#706 := [trans #700 #704]: #705
  3.1644 -#709 := [monotonicity #706]: #708
  3.1645 -#712 := [monotonicity #709]: #711
  3.1646 -#718 := [trans #712 #716]: #717
  3.1647 -#721 := [monotonicity #718]: #720
  3.1648 -#724 := [monotonicity #721]: #723
  3.1649 -#728 := [trans #724 #726]: #727
  3.1650 -#730 := [monotonicity #728]: #729
  3.1651 -#732 := [trans #730 #726]: #731
  3.1652 -#607 := (iff #220 #606)
  3.1653 -#604 := (iff #219 #603)
  3.1654 -#605 := [rewrite]: #604
  3.1655 -#608 := [quant-intro #605]: #607
  3.1656 -#735 := [monotonicity #608 #732]: #734
  3.1657 -#741 := [trans #735 #739]: #740
  3.1658 -#744 := [monotonicity #608 #741]: #743
  3.1659 -#747 := [monotonicity #744]: #746
  3.1660 -#753 := [trans #747 #751]: #752
  3.1661 -#756 := [monotonicity #753]: #755
  3.1662 -#601 := (iff #214 #600)
  3.1663 -#598 := (iff #213 #597)
  3.1664 -#599 := [rewrite]: #598
  3.1665 -#602 := [quant-intro #599]: #601
  3.1666 -#759 := [monotonicity #602 #756]: #758
  3.1667 -#765 := [trans #759 #763]: #764
  3.1668 -#595 := (iff #210 #594)
  3.1669 -#592 := (iff #209 #591)
  3.1670 -#593 := [rewrite]: #592
  3.1671 -#596 := [quant-intro #593]: #595
  3.1672 -#768 := [monotonicity #596 #765]: #767
  3.1673 -#774 := [trans #768 #772]: #773
  3.1674 -#777 := [monotonicity #774]: #776
  3.1675 -#783 := [trans #777 #781]: #782
  3.1676 -#589 := (iff #194 #588)
  3.1677 -#586 := (iff #193 #585)
  3.1678 -#587 := [rewrite]: #586
  3.1679 -#590 := [quant-intro #587]: #589
  3.1680 -#786 := [monotonicity #590 #783]: #785
  3.1681 -#792 := [trans #786 #790]: #791
  3.1682 -#795 := [monotonicity #792]: #794
  3.1683 -#801 := [trans #795 #799]: #800
  3.1684 -#804 := [monotonicity #801]: #803
  3.1685 -#809 := [trans #804 #807]: #808
  3.1686 -#812 := [monotonicity #809]: #811
  3.1687 -#817 := [trans #812 #815]: #816
  3.1688 -#820 := [monotonicity #817]: #819
  3.1689 -#824 := [trans #820 #822]: #823
  3.1690 -#826 := [monotonicity #824]: #825
  3.1691 -#828 := [trans #826 #822]: #827
  3.1692 -#583 := (iff #185 #569)
  3.1693 -#574 := (implies true #569)
  3.1694 -#577 := (iff #574 #569)
  3.1695 -#578 := [rewrite]: #577
  3.1696 -#581 := (iff #185 #574)
  3.1697 -#579 := (iff #184 #569)
  3.1698 -#575 := (iff #184 #574)
  3.1699 -#572 := (iff #183 #569)
  3.1700 -#566 := (implies #142 #550)
  3.1701 -#570 := (iff #566 #569)
  3.1702 -#571 := [rewrite]: #570
  3.1703 -#567 := (iff #183 #566)
  3.1704 -#564 := (iff #182 #550)
  3.1705 -#555 := (implies true #550)
  3.1706 -#558 := (iff #555 #550)
  3.1707 -#559 := [rewrite]: #558
  3.1708 -#562 := (iff #182 #555)
  3.1709 -#560 := (iff #181 #550)
  3.1710 -#556 := (iff #181 #555)
  3.1711 -#553 := (iff #180 #550)
  3.1712 -#546 := (implies #144 #541)
  3.1713 -#551 := (iff #546 #550)
  3.1714 -#552 := [rewrite]: #551
  3.1715 -#547 := (iff #180 #546)
  3.1716 -#544 := (iff #179 #541)
  3.1717 -#537 := (implies #147 #532)
  3.1718 -#542 := (iff #537 #541)
  3.1719 -#543 := [rewrite]: #542
  3.1720 -#538 := (iff #179 #537)
  3.1721 -#535 := (iff #178 #532)
  3.1722 -#528 := (implies #149 #523)
  3.1723 -#533 := (iff #528 #532)
  3.1724 -#534 := [rewrite]: #533
  3.1725 -#529 := (iff #178 #528)
  3.1726 -#526 := (iff #177 #523)
  3.1727 -#519 := (implies #152 #509)
  3.1728 -#524 := (iff #519 #523)
  3.1729 -#525 := [rewrite]: #524
  3.1730 -#520 := (iff #177 #519)
  3.1731 -#517 := (iff #176 #509)
  3.1732 -#512 := (implies true #509)
  3.1733 -#515 := (iff #512 #509)
  3.1734 -#516 := [rewrite]: #515
  3.1735 -#513 := (iff #176 #512)
  3.1736 -#510 := (iff #175 #509)
  3.1737 -#507 := (iff #174 #504)
  3.1738 -#500 := (implies #461 #497)
  3.1739 -#505 := (iff #500 #504)
  3.1740 -#506 := [rewrite]: #505
  3.1741 -#501 := (iff #174 #500)
  3.1742 -#498 := (iff #173 #497)
  3.1743 -#495 := (iff #172 #492)
  3.1744 -#488 := (implies #476 #169)
  3.1745 -#493 := (iff #488 #492)
  3.1746 -#494 := [rewrite]: #493
  3.1747 -#489 := (iff #172 #488)
  3.1748 -#486 := (iff #171 #169)
  3.1749 -#481 := (and #169 true)
  3.1750 -#484 := (iff #481 #169)
  3.1751 -#485 := [rewrite]: #484
  3.1752 -#482 := (iff #171 #481)
  3.1753 -#479 := (iff #170 true)
  3.1754 -#480 := [rewrite]: #479
  3.1755 -#483 := [monotonicity #480]: #482
  3.1756 -#487 := [trans #483 #485]: #486
  3.1757 -#477 := (iff #167 #476)
  3.1758 -#474 := (iff #166 #471)
  3.1759 -#467 := (implies #164 #464)
  3.1760 -#472 := (iff #467 #471)
  3.1761 -#473 := [rewrite]: #472
  3.1762 -#468 := (iff #166 #467)
  3.1763 -#465 := (iff #165 #464)
  3.1764 -#441 := (= #158 #440)
  3.1765 -#442 := [rewrite]: #441
  3.1766 -#466 := [monotonicity #442]: #465
  3.1767 -#469 := [monotonicity #466]: #468
  3.1768 -#475 := [trans #469 #473]: #474
  3.1769 -#478 := [quant-intro #475]: #477
  3.1770 -#490 := [monotonicity #478 #487]: #489
  3.1771 -#496 := [trans #490 #494]: #495
  3.1772 -#499 := [monotonicity #478 #496]: #498
  3.1773 -#462 := (iff #163 #461)
  3.1774 -#459 := (iff #162 #456)
  3.1775 -#452 := (implies #155 #449)
  3.1776 -#457 := (iff #452 #456)
  3.1777 -#458 := [rewrite]: #457
  3.1778 -#453 := (iff #162 #452)
  3.1779 -#450 := (iff #161 #449)
  3.1780 -#447 := (iff #160 #446)
  3.1781 -#444 := (iff #159 #443)
  3.1782 -#445 := [monotonicity #442]: #444
  3.1783 -#448 := [monotonicity #445]: #447
  3.1784 -#451 := [quant-intro #448]: #450
  3.1785 -#454 := [monotonicity #451]: #453
  3.1786 -#460 := [trans #454 #458]: #459
  3.1787 -#463 := [quant-intro #460]: #462
  3.1788 -#502 := [monotonicity #463 #499]: #501
  3.1789 -#508 := [trans #502 #506]: #507
  3.1790 -#511 := [monotonicity #463 #508]: #510
  3.1791 -#514 := [monotonicity #511]: #513
  3.1792 -#518 := [trans #514 #516]: #517
  3.1793 -#521 := [monotonicity #518]: #520
  3.1794 -#527 := [trans #521 #525]: #526
  3.1795 -#530 := [monotonicity #527]: #529
  3.1796 -#536 := [trans #530 #534]: #535
  3.1797 -#539 := [monotonicity #536]: #538
  3.1798 -#545 := [trans #539 #543]: #544
  3.1799 -#548 := [monotonicity #545]: #547
  3.1800 -#554 := [trans #548 #552]: #553
  3.1801 -#557 := [monotonicity #554]: #556
  3.1802 -#561 := [trans #557 #559]: #560
  3.1803 -#563 := [monotonicity #561]: #562
  3.1804 -#565 := [trans #563 #559]: #564
  3.1805 -#568 := [monotonicity #565]: #567
  3.1806 -#573 := [trans #568 #571]: #572
  3.1807 -#576 := [monotonicity #573]: #575
  3.1808 -#580 := [trans #576 #578]: #579
  3.1809 -#582 := [monotonicity #580]: #581
  3.1810 -#584 := [trans #582 #578]: #583
  3.1811 -#831 := [monotonicity #584 #828]: #830
  3.1812 -#834 := [monotonicity #831]: #833
  3.1813 -#838 := [trans #834 #836]: #837
  3.1814 -#438 := (iff #139 #437)
  3.1815 -#435 := (iff #138 #432)
  3.1816 -#428 := (implies #132 #425)
  3.1817 -#433 := (iff #428 #432)
  3.1818 -#434 := [rewrite]: #433
  3.1819 -#429 := (iff #138 #428)
  3.1820 -#426 := (iff #137 #425)
  3.1821 -#423 := (iff #136 #422)
  3.1822 -#420 := (iff #135 #419)
  3.1823 -#417 := (iff #134 #416)
  3.1824 -#399 := (= #127 #398)
  3.1825 -#400 := [rewrite]: #399
  3.1826 -#418 := [monotonicity #400]: #417
  3.1827 -#421 := [monotonicity #418]: #420
  3.1828 -#424 := [monotonicity #421]: #423
  3.1829 -#427 := [quant-intro #424]: #426
  3.1830 -#430 := [monotonicity #427]: #429
  3.1831 -#436 := [trans #430 #434]: #435
  3.1832 -#439 := [quant-intro #436]: #438
  3.1833 -#841 := [monotonicity #439 #838]: #840
  3.1834 -#847 := [trans #841 #845]: #846
  3.1835 -#414 := (iff #130 #413)
  3.1836 -#411 := (iff #129 #408)
  3.1837 -#404 := (implies #126 #401)
  3.1838 -#409 := (iff #404 #408)
  3.1839 -#410 := [rewrite]: #409
  3.1840 -#405 := (iff #129 #404)
  3.1841 -#402 := (iff #128 #401)
  3.1842 -#403 := [monotonicity #400]: #402
  3.1843 -#406 := [monotonicity #403]: #405
  3.1844 -#412 := [trans #406 #410]: #411
  3.1845 -#415 := [quant-intro #412]: #414
  3.1846 -#850 := [monotonicity #415 #847]: #849
  3.1847 -#856 := [trans #850 #854]: #855
  3.1848 -#396 := (iff #125 #395)
  3.1849 -#393 := (iff #124 #392)
  3.1850 -#394 := [rewrite]: #393
  3.1851 -#397 := [quant-intro #394]: #396
  3.1852 -#859 := [monotonicity #397 #856]: #858
  3.1853 -#865 := [trans #859 #863]: #864
  3.1854 -#868 := [monotonicity #865]: #867
  3.1855 -#874 := [trans #868 #872]: #873
  3.1856 -#877 := [monotonicity #874]: #876
  3.1857 -#883 := [trans #877 #881]: #882
  3.1858 -#886 := [monotonicity #883]: #885
  3.1859 -#890 := [trans #886 #888]: #889
  3.1860 -#892 := [monotonicity #890]: #891
  3.1861 -#894 := [trans #892 #888]: #893
  3.1862 -#389 := (iff #108 #388)
  3.1863 -#386 := (iff #107 #385)
  3.1864 -#387 := [rewrite]: #386
  3.1865 -#390 := [quant-intro #387]: #389
  3.1866 -#897 := [monotonicity #390 #894]: #896
  3.1867 -#903 := [trans #897 #901]: #902
  3.1868 -#906 := [monotonicity #390 #903]: #905
  3.1869 -#382 := (iff #99 #381)
  3.1870 -#379 := (iff #98 #378)
  3.1871 -#380 := [rewrite]: #379
  3.1872 -#383 := [quant-intro #380]: #382
  3.1873 -#909 := [monotonicity #383 #906]: #908
  3.1874 -#915 := [trans #909 #913]: #914
  3.1875 -#918 := [monotonicity #383 #915]: #917
  3.1876 -#375 := (iff #90 #374)
  3.1877 -#372 := (iff #89 #371)
  3.1878 -#373 := [rewrite]: #372
  3.1879 -#376 := [quant-intro #373]: #375
  3.1880 -#921 := [monotonicity #376 #918]: #920
  3.1881 -#927 := [trans #921 #925]: #926
  3.1882 -#930 := [monotonicity #376 #927]: #929
  3.1883 -#933 := [monotonicity #930]: #932
  3.1884 -#939 := [trans #933 #937]: #938
  3.1885 -#942 := [monotonicity #939]: #941
  3.1886 -#945 := [monotonicity #942]: #944
  3.1887 -#951 := [trans #945 #949]: #950
  3.1888 -#954 := [monotonicity #951]: #953
  3.1889 -#957 := [monotonicity #954]: #956
  3.1890 -#961 := [trans #957 #959]: #960
  3.1891 -#964 := [monotonicity #961]: #963
  3.1892 -#970 := [trans #964 #968]: #969
  3.1893 -#368 := (iff #74 #367)
  3.1894 -#365 := (iff #73 #364)
  3.1895 -#366 := [rewrite]: #365
  3.1896 -#369 := [quant-intro #366]: #368
  3.1897 -#973 := [monotonicity #369 #970]: #972
  3.1898 -#979 := [trans #973 #977]: #978
  3.1899 -#362 := (iff #70 #361)
  3.1900 -#359 := (iff #69 #358)
  3.1901 -#360 := [rewrite]: #359
  3.1902 -#363 := [quant-intro #360]: #362
  3.1903 -#982 := [monotonicity #363 #979]: #981
  3.1904 -#988 := [trans #982 #986]: #987
  3.1905 -#991 := [monotonicity #988]: #990
  3.1906 -#995 := [trans #991 #993]: #994
  3.1907 -#997 := [monotonicity #995]: #996
  3.1908 -#999 := [trans #997 #993]: #998
  3.1909 -#1002 := [monotonicity #999]: #1001
  3.1910 -#1563 := [trans #1002 #1561]: #1562
  3.1911 -#357 := [asserted]: #298
  3.1912 -#1564 := [mp #357 #1563]: #1559
  3.1913 -#1566 := [not-or-elim #1564]: #367
  3.1914 -#1621 := [mp~ #1566 #1590]: #367
  3.1915 -#3748 := [mp #1621 #3747]: #3743
  3.1916 -#3348 := (not #3743)
  3.1917 -#6198 := (or #3348 #1703 #6178)
  3.1918 -#6194 := (or #1703 #6178)
  3.1919 -#6199 := (or #3348 #6194)
  3.1920 -#6202 := (iff #6199 #6198)
  3.1921 -#6174 := [rewrite]: #6202
  3.1922 -#6200 := [quant-inst #1702]: #6199
  3.1923 -#6180 := [mp #6200 #6174]: #6198
  3.1924 -#6206 := [unit-resolution #6180 #3748 #6201]: #6178
  3.1925 -#6208 := [mp #6206 #6185]: #6181
  3.1926 -#6219 := (not #6181)
  3.1927 -#1709 := (not #1708)
  3.1928 -#3684 := (or #3791 #1709)
  3.1929 -#3685 := [def-axiom]: #3684
  3.1930 -#6197 := [unit-resolution #3685 #6196]: #1709
  3.1931 -#6214 := (or #6219 #1708)
  3.1932 -#6220 := [th-lemma arith triangle-eq]: #6214
  3.1933 -#6221 := [unit-resolution #6220 #6197]: #6219
  3.1934 -#6209 := [unit-resolution #6221 #6208]: false
  3.1935 -#6210 := [lemma #6209]: #3791
  3.1936 -#4075 := (or #3794 #4072)
  3.1937 -#4078 := (not #4075)
  3.1938 -#2629 := (or #78 #1029 #1040)
  3.1939 -#3774 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3773) #2629)
  3.1940 -#3779 := (not #3774)
  3.1941 -#4081 := (or #3779 #4078)
  3.1942 -#4084 := (not #4081)
  3.1943 -decl ?v0!4 :: S2
  3.1944 -#1671 := ?v0!4
  3.1945 -#1684 := (f17 ?v0!4)
  3.1946 -#1685 := (* -1::Int #1684)
  3.1947 -decl ?v1!3 :: S2
  3.1948 -#1670 := ?v1!3
  3.1949 -#1683 := (f17 ?v1!3)
  3.1950 -#2262 := (+ #1683 #1685)
  3.1951 -#1674 := (f6 f7 ?v1!3)
  3.1952 -#1675 := (f5 #1674 ?v0!4)
  3.1953 -#1676 := (f15 #1675)
  3.1954 -#2263 := (+ #1676 #2262)
  3.1955 -#2266 := (>= #2263 0::Int)
  3.1956 -#1677 := (* -1::Int #1676)
  3.1957 -#1678 := (+ f14 #1677)
  3.1958 -#1679 := (<= #1678 0::Int)
  3.1959 -#1672 := (f9 f18 ?v1!3)
  3.1960 -#1673 := (= #1672 f1)
  3.1961 -#2592 := (not #1673)
  3.1962 -#2607 := (or #2592 #1679 #2266)
  3.1963 -#2612 := (not #2607)
  3.1964 -#4087 := (or #2612 #4084)
  3.1965 -#4090 := (not #4087)
  3.1966 -#3764 := (pattern #67 #87)
  3.1967 -#1760 := (not #85)
  3.1968 -#2584 := (or #77 #1760 #1014)
  3.1969 -#3765 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3764) #2584)
  3.1970 -#3770 := (not #3765)
  3.1971 -#4093 := (or #3770 #4090)
  3.1972 -#4096 := (not #4093)
  3.1973 -decl ?v0!2 :: S2
  3.1974 -#1644 := ?v0!2
  3.1975 -#1653 := (f17 ?v0!2)
  3.1976 -#1654 := (* -1::Int #1653)
  3.1977 -decl ?v1!1 :: S2
  3.1978 -#1643 := ?v1!1
  3.1979 -#1652 := (f17 ?v1!1)
  3.1980 -#1655 := (+ #1652 #1654)
  3.1981 -#1656 := (>= #1655 0::Int)
  3.1982 -#1648 := (f9 f18 ?v0!2)
  3.1983 -#1649 := (= #1648 f1)
  3.1984 -#2035 := (not #1649)
  3.1985 -#1645 := (f9 f18 ?v1!1)
  3.1986 -#1646 := (= #1645 f1)
  3.1987 -#2083 := (or #1646 #2035 #1656)
  3.1988 -#5518 := [hypothesis]: #1649
  3.1989 -#3750 := (forall (vars (?v0 S2)) (:pat #3749) #78)
  3.1990 -#3753 := (iff #79 #3750)
  3.1991 -#3751 := (iff #78 #78)
  3.1992 -#3752 := [refl]: #3751
  3.1993 -#3754 := [quant-intro #3752]: #3753
  3.1994 -#1591 := (~ #79 #79)
  3.1995 -#1622 := (~ #78 #78)
  3.1996 -#1623 := [refl]: #1622
  3.1997 -#1592 := [nnf-pos #1623]: #1591
  3.1998 -#1567 := [not-or-elim #1564]: #79
  3.1999 -#1624 := [mp~ #1567 #1592]: #79
  3.2000 -#3755 := [mp #1624 #3754]: #3750
  3.2001 -#7029 := (not #3750)
  3.2002 -#4457 := (or #7029 #2035)
  3.2003 -#4481 := [quant-inst #1644]: #4457
  3.2004 -#5558 := [unit-resolution #4481 #3755 #5518]: false
  3.2005 -#6078 := [lemma #5558]: #2035
  3.2006 -#3275 := (or #2083 #1649)
  3.2007 -#3361 := [def-axiom]: #3275
  3.2008 -#7086 := [unit-resolution #3361 #6078]: #2083
  3.2009 -#1634 := (not #2083)
  3.2010 -#4099 := (or #1634 #4096)
  3.2011 -#4102 := (not #4099)
  3.2012 -#3756 := (forall (vars (?v0 S2)) (:pat #3736) #1005)
  3.2013 -#3761 := (not #3756)
  3.2014 -#4105 := (or #3761 #4102)
  3.2015 -#4108 := (not #4105)
  3.2016 -decl ?v0!0 :: S2
  3.2017 -#1628 := ?v0!0
  3.2018 -#1629 := (f17 ?v0!0)
  3.2019 -#1630 := (>= #1629 0::Int)
  3.2020 -#1631 := (not #1630)
  3.2021 -#3358 := [hypothesis]: #1631
  3.2022 -#3357 := (<= #1629 0::Int)
  3.2023 -#4162 := (or #3357 #1630)
  3.2024 -#4163 := [th-lemma arith farkas 1 1]: #4162
  3.2025 -#4164 := [unit-resolution #4163 #3358]: #3357
  3.2026 -#4139 := (not #3357)
  3.2027 -#4158 := (or #4139 #1630)
  3.2028 -#3325 := (= f14 #1629)
  3.2029 -#3384 := (= #1629 f14)
  3.2030 -#4135 := (iff #3384 #3325)
  3.2031 -#3302 := (iff #3325 #3384)
  3.2032 -#4134 := [commutativity]: #3302
  3.2033 -#4136 := [symm #4134]: #4135
  3.2034 -#3398 := (= ?v0!0 f16)
  3.2035 -#3392 := (not #3398)
  3.2036 -#3393 := (= #1629 0::Int)
  3.2037 -#3356 := (not #3393)
  3.2038 -#3312 := (or #3356 #1630)
  3.2039 -#3311 := [th-lemma arith triangle-eq]: #3312
  3.2040 -#3317 := [unit-resolution #3311 #3358]: #3356
  3.2041 -#3737 := (forall (vars (?v0 S2)) (:pat #3736) #358)
  3.2042 -#3740 := (iff #361 #3737)
  3.2043 -#3738 := (iff #358 #358)
  3.2044 -#3739 := [refl]: #3738
  3.2045 -#3741 := [quant-intro #3739]: #3740
  3.2046 -#1587 := (~ #361 #361)
  3.2047 -#1616 := (~ #358 #358)
  3.2048 -#1617 := [refl]: #1616
  3.2049 -#1588 := [nnf-pos #1617]: #1587
  3.2050 -#1565 := [not-or-elim #1564]: #361
  3.2051 -#1618 := [mp~ #1565 #1588]: #361
  3.2052 -#3742 := [mp #1618 #3741]: #3737
  3.2053 -#3375 := (not #3737)
  3.2054 -#3379 := (or #3375 #3392 #3393)
  3.2055 -#3383 := (or #3392 #3393)
  3.2056 -#3370 := (or #3375 #3383)
  3.2057 -#3380 := (iff #3370 #3379)
  3.2058 -#3347 := [rewrite]: #3380
  3.2059 -#3378 := [quant-inst #1628]: #3370
  3.2060 -#3349 := [mp #3378 #3347]: #3379
  3.2061 -#3292 := [unit-resolution #3349 #3742 #3317]: #3392
  3.2062 -#3359 := (or #3348 #3398 #3384)
  3.2063 -#3394 := (or #3398 #3384)
  3.2064 -#3342 := (or #3348 #3394)
  3.2065 -#3335 := (iff #3342 #3359)
  3.2066 -#3333 := [rewrite]: #3335
  3.2067 -#3334 := [quant-inst #1628]: #3342
  3.2068 -#3336 := [mp #3334 #3333]: #3359
  3.2069 -#3297 := [unit-resolution #3336 #3748 #3292]: #3384
  3.2070 -#4137 := [mp #3297 #4136]: #3325
  3.2071 -#3405 := (* -1::Int #1629)
  3.2072 -#3337 := (+ f14 #3405)
  3.2073 -#3313 := (<= #3337 0::Int)
  3.2074 -#4133 := (not #3313)
  3.2075 -#326 := (<= f14 0::Int)
  3.2076 -#327 := (not #326)
  3.2077 -#55 := (< 0::Int f14)
  3.2078 -#328 := (iff #55 #327)
  3.2079 -#329 := [rewrite]: #328
  3.2080 -#323 := [asserted]: #55
  3.2081 -#330 := [mp #323 #329]: #327
  3.2082 -#4138 := [hypothesis]: #3357
  3.2083 -#4140 := (or #4133 #326 #4139)
  3.2084 -#4141 := [th-lemma arith assign-bounds 1 1]: #4140
  3.2085 -#4142 := [unit-resolution #4141 #4138 #330]: #4133
  3.2086 -#4143 := (not #3325)
  3.2087 -#4157 := (or #4143 #3313)
  3.2088 -#4159 := [th-lemma arith triangle-eq]: #4157
  3.2089 -#4160 := [unit-resolution #4159 #4142 #4137]: false
  3.2090 -#4161 := [lemma #4160]: #4158
  3.2091 -#4165 := [unit-resolution #4161 #4164 #3358]: false
  3.2092 -#4166 := [lemma #4165]: #1630
  3.2093 -#4111 := (or #1631 #4108)
  3.2094 -#4114 := (not #4111)
  3.2095 -#4117 := (or #946 #4114)
  3.2096 -#4120 := (not #4117)
  3.2097 -#4240 := [hypothesis]: #946
  3.2098 -#4232 := (or #3375 #81)
  3.2099 -#6915 := (= f16 f16)
  3.2100 -#6988 := (not #6915)
  3.2101 -#4242 := (or #6988 #81)
  3.2102 -#4233 := (or #3375 #4242)
  3.2103 -#4235 := (iff #4233 #4232)
  3.2104 -#4234 := (iff #4232 #4232)
  3.2105 -#4237 := [rewrite]: #4234
  3.2106 -#4248 := (iff #4242 #81)
  3.2107 -#4214 := (or false #81)
  3.2108 -#4243 := (iff #4214 #81)
  3.2109 -#4247 := [rewrite]: #4243
  3.2110 -#4244 := (iff #4242 #4214)
  3.2111 -#6996 := (iff #6988 false)
  3.2112 -#6991 := (not true)
  3.2113 -#6994 := (iff #6991 false)
  3.2114 -#6995 := [rewrite]: #6994
  3.2115 -#6992 := (iff #6988 #6991)
  3.2116 -#6918 := (iff #6915 true)
  3.2117 -#6919 := [rewrite]: #6918
  3.2118 -#6993 := [monotonicity #6919]: #6992
  3.2119 -#6997 := [trans #6993 #6995]: #6996
  3.2120 -#4245 := [monotonicity #6997]: #4244
  3.2121 -#4246 := [trans #4245 #4247]: #4248
  3.2122 -#4236 := [monotonicity #4246]: #4235
  3.2123 -#4238 := [trans #4236 #4237]: #4235
  3.2124 -#4249 := [quant-inst #65]: #4233
  3.2125 -#4231 := [mp #4249 #4238]: #4232
  3.2126 -#4241 := [unit-resolution #4231 #3742 #4240]: false
  3.2127 -#4239 := [lemma #4241]: #81
  3.2128 -#4123 := (or #946 #4120)
  3.2129 -#3042 := (forall (vars (?v1 S2)) #3031)
  3.2130 -#3049 := (not #3042)
  3.2131 -#3027 := (forall (vars (?v0 S2) (?v1 S2)) #3022)
  3.2132 -#3048 := (not #3027)
  3.2133 -#3050 := (or #3048 #2124 #2129 #3049)
  3.2134 -#3051 := (not #3050)
  3.2135 -#3056 := (or #3005 #3051)
  3.2136 -#3063 := (not #3056)
  3.2137 -#2982 := (forall (vars (?v0 S2) (?v1 S2)) #2977)
  3.2138 -#3062 := (not #2982)
  3.2139 -#3064 := (or #3062 #3063)
  3.2140 -#3065 := (not #3064)
  3.2141 -#3070 := (or #2959 #3065)
  3.2142 -#3076 := (not #3070)
  3.2143 -#3077 := (or #1271 #3076)
  3.2144 -#3078 := (not #3077)
  3.2145 -#3083 := (or #2052 #3078)
  3.2146 -#3089 := (not #3083)
  3.2147 -#3090 := (or #713 #3089)
  3.2148 -#3091 := (not #3090)
  3.2149 -#3096 := (or #713 #3091)
  3.2150 -#3102 := (not #3096)
  3.2151 -#3103 := (or #736 #3102)
  3.2152 -#3104 := (not #3103)
  3.2153 -#3109 := (or #2032 #3104)
  3.2154 -#3115 := (not #3109)
  3.2155 -#3116 := (or #1262 #3115)
  3.2156 -#3117 := (not #3116)
  3.2157 -#3122 := (or #2012 #3117)
  3.2158 -#3130 := (not #3122)
  3.2159 -#2936 := (forall (vars (?v0 S2)) #2933)
  3.2160 -#3129 := (not #2936)
  3.2161 -#2930 := (forall (vars (?v0 S2)) #2925)
  3.2162 -#3128 := (not #2930)
  3.2163 -#3131 := (or #1963 #1968 #188 #1411 #1407 #778 #3128 #3129 #3130)
  3.2164 -#3132 := (not #3131)
  3.2165 -#2870 := (forall (vars (?v0 S2) (?v1 S2)) #2865)
  3.2166 -#2876 := (not #2870)
  3.2167 -#2877 := (or #2876 #169)
  3.2168 -#2878 := (not #2877)
  3.2169 -#2883 := (or #2848 #2878)
  3.2170 -#2890 := (not #2883)
  3.2171 -#2826 := (forall (vars (?v0 S2)) #2821)
  3.2172 -#2889 := (not #2826)
  3.2173 -#2891 := (or #2889 #2890)
  3.2174 -#2892 := (not #2891)
  3.2175 -#2789 := (forall (vars (?v1 S2)) #2778)
  3.2176 -#2795 := (not #2789)
  3.2177 -#2796 := (or #1841 #1846 #2795)
  3.2178 -#2797 := (not #2796)
  3.2179 -#2897 := (or #2797 #2892)
  3.2180 -#2904 := (not #2897)
  3.2181 -#2774 := (forall (vars (?v0 S2)) #2763)
  3.2182 -#2903 := (not #2774)
  3.2183 -#2905 := (or #2903 #549 #540 #531 #522 #2904)
  3.2184 -#2906 := (not #2905)
  3.2185 -#3137 := (or #2906 #3132)
  3.2186 -#3147 := (not #3137)
  3.2187 -#2760 := (forall (vars (?v0 S2)) #2755)
  3.2188 -#3146 := (not #2760)
  3.2189 -#2732 := (forall (vars (?v0 S2) (?v1 S2)) #2727)
  3.2190 -#3145 := (not #2732)
  3.2191 -#2710 := (forall (vars (?v0 S2) (?v1 S2)) #2705)
  3.2192 -#3144 := (not #2710)
  3.2193 -#2687 := (forall (vars (?v0 S2)) #2682)
  3.2194 -#3143 := (not #2687)
  3.2195 -#3148 := (or #3143 #878 #1489 #3144 #3145 #3146 #3147)
  3.2196 -#3149 := (not #3148)
  3.2197 -#2649 := (forall (vars (?v1 S2)) #2638)
  3.2198 -#2655 := (not #2649)
  3.2199 -#2656 := (or #1703 #1708 #2655)
  3.2200 -#2657 := (not #2656)
  3.2201 -#3154 := (or #2657 #3149)
  3.2202 -#3161 := (not #3154)
  3.2203 -#2634 := (forall (vars (?v0 S2) (?v1 S2)) #2629)
  3.2204 -#3160 := (not #2634)
  3.2205 -#3162 := (or #3160 #3161)
  3.2206 -#3163 := (not #3162)
  3.2207 -#3168 := (or #2612 #3163)
  3.2208 -#3175 := (not #3168)
  3.2209 -#2589 := (forall (vars (?v0 S2) (?v1 S2)) #2584)
  3.2210 -#3174 := (not #2589)
  3.2211 -#3176 := (or #3174 #3175)
  3.2212 -#3177 := (not #3176)
  3.2213 -#3182 := (or #1634 #3177)
  3.2214 -#3188 := (not #3182)
  3.2215 -#3189 := (or #1009 #3188)
  3.2216 -#3190 := (not #3189)
  3.2217 -#3195 := (or #1631 #3190)
  3.2218 -#3201 := (not #3195)
  3.2219 -#3202 := (or #946 #3201)
  3.2220 -#3203 := (not #3202)
  3.2221 -#3208 := (or #946 #3203)
  3.2222 -#4124 := (iff #3208 #4123)
  3.2223 -#4121 := (iff #3203 #4120)
  3.2224 -#4118 := (iff #3202 #4117)
  3.2225 -#4115 := (iff #3201 #4114)
  3.2226 -#4112 := (iff #3195 #4111)
  3.2227 -#4109 := (iff #3190 #4108)
  3.2228 -#4106 := (iff #3189 #4105)
  3.2229 -#4103 := (iff #3188 #4102)
  3.2230 -#4100 := (iff #3182 #4099)
  3.2231 -#4097 := (iff #3177 #4096)
  3.2232 -#4094 := (iff #3176 #4093)
  3.2233 -#4091 := (iff #3175 #4090)
  3.2234 -#4088 := (iff #3168 #4087)
  3.2235 -#4085 := (iff #3163 #4084)
  3.2236 -#4082 := (iff #3162 #4081)
  3.2237 -#4079 := (iff #3161 #4078)
  3.2238 -#4076 := (iff #3154 #4075)
  3.2239 -#4073 := (iff #3149 #4072)
  3.2240 -#4070 := (iff #3148 #4069)
  3.2241 -#4067 := (iff #3147 #4066)
  3.2242 -#4064 := (iff #3137 #4063)
  3.2243 -#4061 := (iff #3132 #4060)
  3.2244 -#4058 := (iff #3131 #4057)
  3.2245 -#4055 := (iff #3130 #4054)
  3.2246 -#4052 := (iff #3122 #4051)
  3.2247 -#4049 := (iff #3117 #4048)
  3.2248 -#4046 := (iff #3116 #4045)
  3.2249 -#4043 := (iff #3115 #4042)
  3.2250 -#4040 := (iff #3109 #4039)
  3.2251 -#4037 := (iff #3104 #4036)
  3.2252 -#4034 := (iff #3103 #4033)
  3.2253 -#4031 := (iff #3102 #4030)
  3.2254 -#4028 := (iff #3096 #4027)
  3.2255 -#4025 := (iff #3091 #4024)
  3.2256 -#4022 := (iff #3090 #4021)
  3.2257 -#4019 := (iff #3089 #4018)
  3.2258 -#4016 := (iff #3083 #4015)
  3.2259 -#4013 := (iff #3078 #4012)
  3.2260 -#4010 := (iff #3077 #4009)
  3.2261 -#4007 := (iff #3076 #4006)
  3.2262 -#4004 := (iff #3070 #4003)
  3.2263 -#4001 := (iff #3065 #4000)
  3.2264 -#3998 := (iff #3064 #3997)
  3.2265 -#3995 := (iff #3063 #3994)
  3.2266 -#3992 := (iff #3056 #3991)
  3.2267 -#3989 := (iff #3051 #3988)
  3.2268 -#3986 := (iff #3050 #3985)
  3.2269 -#3983 := (iff #3049 #3982)
  3.2270 -#3980 := (iff #3042 #3977)
  3.2271 -#3978 := (iff #3031 #3031)
  3.2272 -#3979 := [refl]: #3978
  3.2273 -#3981 := [quant-intro #3979]: #3980
  3.2274 -#3984 := [monotonicity #3981]: #3983
  3.2275 -#3975 := (iff #3048 #3974)
  3.2276 -#3972 := (iff #3027 #3969)
  3.2277 -#3970 := (iff #3022 #3022)
  3.2278 -#3971 := [refl]: #3970
  3.2279 -#3973 := [quant-intro #3971]: #3972
  3.2280 -#3976 := [monotonicity #3973]: #3975
  3.2281 -#3987 := [monotonicity #3976 #3984]: #3986
  3.2282 -#3990 := [monotonicity #3987]: #3989
  3.2283 -#3993 := [monotonicity #3990]: #3992
  3.2284 -#3996 := [monotonicity #3993]: #3995
  3.2285 -#3967 := (iff #3062 #3966)
  3.2286 -#3964 := (iff #2982 #3961)
  3.2287 -#3962 := (iff #2977 #2977)
  3.2288 -#3963 := [refl]: #3962
  3.2289 -#3965 := [quant-intro #3963]: #3964
  3.2290 -#3968 := [monotonicity #3965]: #3967
  3.2291 -#3999 := [monotonicity #3968 #3996]: #3998
  3.2292 -#4002 := [monotonicity #3999]: #4001
  3.2293 -#4005 := [monotonicity #4002]: #4004
  3.2294 -#4008 := [monotonicity #4005]: #4007
  3.2295 -#3958 := (iff #1271 #3957)
  3.2296 -#3955 := (iff #1268 #3952)
  3.2297 -#3953 := (iff #1265 #1265)
  3.2298 -#3954 := [refl]: #3953
  3.2299 -#3956 := [quant-intro #3954]: #3955
  3.2300 -#3959 := [monotonicity #3956]: #3958
  3.2301 -#4011 := [monotonicity #3959 #4008]: #4010
  3.2302 -#4014 := [monotonicity #4011]: #4013
  3.2303 -#4017 := [monotonicity #4014]: #4016
  3.2304 -#4020 := [monotonicity #4017]: #4019
  3.2305 -#4023 := [monotonicity #4020]: #4022
  3.2306 -#4026 := [monotonicity #4023]: #4025
  3.2307 -#4029 := [monotonicity #4026]: #4028
  3.2308 -#4032 := [monotonicity #4029]: #4031
  3.2309 -#3950 := (iff #736 #3949)
  3.2310 -#3947 := (iff #606 #3944)
  3.2311 -#3945 := (iff #603 #603)
  3.2312 -#3946 := [refl]: #3945
  3.2313 -#3948 := [quant-intro #3946]: #3947
  3.2314 -#3951 := [monotonicity #3948]: #3950
  3.2315 -#4035 := [monotonicity #3951 #4032]: #4034
  3.2316 -#4038 := [monotonicity #4035]: #4037
  3.2317 -#4041 := [monotonicity #4038]: #4040
  3.2318 -#4044 := [monotonicity #4041]: #4043
  3.2319 -#3941 := (iff #1262 #3940)
  3.2320 -#3938 := (iff #1259 #3935)
  3.2321 -#3936 := (iff #1254 #1254)
  3.2322 -#3937 := [refl]: #3936
  3.2323 -#3939 := [quant-intro #3937]: #3938
  3.2324 -#3942 := [monotonicity #3939]: #3941
  3.2325 -#4047 := [monotonicity #3942 #4044]: #4046
  3.2326 -#4050 := [monotonicity #4047]: #4049
  3.2327 -#4053 := [monotonicity #4050]: #4052
  3.2328 -#4056 := [monotonicity #4053]: #4055
  3.2329 -#3933 := (iff #3129 #3932)
  3.2330 -#3930 := (iff #2936 #3927)
  3.2331 -#3928 := (iff #2933 #2933)
  3.2332 -#3929 := [refl]: #3928
  3.2333 -#3931 := [quant-intro #3929]: #3930
  3.2334 -#3934 := [monotonicity #3931]: #3933
  3.2335 -#3925 := (iff #3128 #3924)
  3.2336 -#3922 := (iff #2930 #3919)
  3.2337 -#3920 := (iff #2925 #2925)
  3.2338 -#3921 := [refl]: #3920
  3.2339 -#3923 := [quant-intro #3921]: #3922
  3.2340 -#3926 := [monotonicity #3923]: #3925
  3.2341 -#3915 := (iff #1407 #3914)
  3.2342 -#3912 := (iff #1404 #3909)
  3.2343 -#3910 := (iff #1401 #1401)
  3.2344 -#3911 := [refl]: #3910
  3.2345 -#3913 := [quant-intro #3911]: #3912
  3.2346 -#3916 := [monotonicity #3913]: #3915
  3.2347 -#4059 := [monotonicity #3916 #3926 #3934 #4056]: #4058
  3.2348 -#4062 := [monotonicity #4059]: #4061
  3.2349 -#3907 := (iff #2906 #3906)
  3.2350 -#3904 := (iff #2905 #3903)
  3.2351 -#3901 := (iff #2904 #3900)
  3.2352 -#3898 := (iff #2897 #3897)
  3.2353 -#3895 := (iff #2892 #3894)
  3.2354 -#3892 := (iff #2891 #3891)
  3.2355 -#3889 := (iff #2890 #3888)
  3.2356 -#3886 := (iff #2883 #3885)
  3.2357 -#3883 := (iff #2878 #3882)
  3.2358 -#3880 := (iff #2877 #3879)
  3.2359 -#3877 := (iff #2876 #3876)
  3.2360 -#3874 := (iff #2870 #3871)
  3.2361 -#3872 := (iff #2865 #2865)
  3.2362 -#3873 := [refl]: #3872
  3.2363 -#3875 := [quant-intro #3873]: #3874
  3.2364 -#3878 := [monotonicity #3875]: #3877
  3.2365 -#3881 := [monotonicity #3878]: #3880
  3.2366 -#3884 := [monotonicity #3881]: #3883
  3.2367 -#3887 := [monotonicity #3884]: #3886
  3.2368 -#3890 := [monotonicity #3887]: #3889
  3.2369 -#3869 := (iff #2889 #3868)
  3.2370 -#3866 := (iff #2826 #3863)
  3.2371 -#3864 := (iff #2821 #2821)
  3.2372 -#3865 := [refl]: #3864
  3.2373 -#3867 := [quant-intro #3865]: #3866
  3.2374 -#3870 := [monotonicity #3867]: #3869
  3.2375 -#3893 := [monotonicity #3870 #3890]: #3892
  3.2376 -#3896 := [monotonicity #3893]: #3895
  3.2377 -#3861 := (iff #2797 #3860)
  3.2378 -#3858 := (iff #2796 #3857)
  3.2379 -#3855 := (iff #2795 #3854)
  3.2380 -#3852 := (iff #2789 #3849)
  3.2381 -#3850 := (iff #2778 #2778)
  3.2382 -#3851 := [refl]: #3850
  3.2383 -#3853 := [quant-intro #3851]: #3852
  3.2384 -#3856 := [monotonicity #3853]: #3855
  3.2385 -#3859 := [monotonicity #3856]: #3858
  3.2386 -#3862 := [monotonicity #3859]: #3861
  3.2387 -#3899 := [monotonicity #3862 #3896]: #3898
  3.2388 -#3902 := [monotonicity #3899]: #3901
  3.2389 -#3846 := (iff #2903 #3845)
  3.2390 -#3843 := (iff #2774 #3840)
  3.2391 -#3841 := (iff #2763 #2763)
  3.2392 -#3842 := [refl]: #3841
  3.2393 -#3844 := [quant-intro #3842]: #3843
  3.2394 -#3847 := [monotonicity #3844]: #3846
  3.2395 -#3905 := [monotonicity #3847 #3902]: #3904
  3.2396 -#3908 := [monotonicity #3905]: #3907
  3.2397 -#4065 := [monotonicity #3908 #4062]: #4064
  3.2398 -#4068 := [monotonicity #4065]: #4067
  3.2399 -#3837 := (iff #3146 #3836)
  3.2400 -#3834 := (iff #2760 #3831)
  3.2401 -#3832 := (iff #2755 #2755)
  3.2402 -#3833 := [refl]: #3832
  3.2403 -#3835 := [quant-intro #3833]: #3834
  3.2404 -#3838 := [monotonicity #3835]: #3837
  3.2405 -#3829 := (iff #3145 #3828)
  3.2406 -#3826 := (iff #2732 #3823)
  3.2407 -#3824 := (iff #2727 #2727)
  3.2408 -#3825 := [refl]: #3824
  3.2409 -#3827 := [quant-intro #3825]: #3826
  3.2410 -#3830 := [monotonicity #3827]: #3829
  3.2411 -#3821 := (iff #3144 #3820)
  3.2412 -#3818 := (iff #2710 #3815)
  3.2413 -#3816 := (iff #2705 #2705)
  3.2414 -#3817 := [refl]: #3816
  3.2415 -#3819 := [quant-intro #3817]: #3818
  3.2416 -#3822 := [monotonicity #3819]: #3821
  3.2417 -#3812 := (iff #1489 #3811)
  3.2418 -#3809 := (iff #1486 #3806)
  3.2419 -#3807 := (iff #1483 #1483)
  3.2420 -#3808 := [refl]: #3807
  3.2421 -#3810 := [quant-intro #3808]: #3809
  3.2422 -#3813 := [monotonicity #3810]: #3812
  3.2423 -#3803 := (iff #3143 #3802)
  3.2424 -#3800 := (iff #2687 #3797)
  3.2425 -#3798 := (iff #2682 #2682)
  3.2426 -#3799 := [refl]: #3798
  3.2427 -#3801 := [quant-intro #3799]: #3800
  3.2428 -#3804 := [monotonicity #3801]: #3803
  3.2429 -#4071 := [monotonicity #3804 #3813 #3822 #3830 #3838 #4068]: #4070
  3.2430 -#4074 := [monotonicity #4071]: #4073
  3.2431 -#3795 := (iff #2657 #3794)
  3.2432 -#3792 := (iff #2656 #3791)
  3.2433 -#3789 := (iff #2655 #3788)
  3.2434 -#3786 := (iff #2649 #3783)
  3.2435 -#3784 := (iff #2638 #2638)
  3.2436 -#3785 := [refl]: #3784
  3.2437 -#3787 := [quant-intro #3785]: #3786
  3.2438 -#3790 := [monotonicity #3787]: #3789
  3.2439 -#3793 := [monotonicity #3790]: #3792
  3.2440 -#3796 := [monotonicity #3793]: #3795
  3.2441 -#4077 := [monotonicity #3796 #4074]: #4076
  3.2442 -#4080 := [monotonicity #4077]: #4079
  3.2443 -#3780 := (iff #3160 #3779)
  3.2444 -#3777 := (iff #2634 #3774)
  3.2445 -#3775 := (iff #2629 #2629)
  3.2446 -#3776 := [refl]: #3775
  3.2447 -#3778 := [quant-intro #3776]: #3777
  3.2448 -#3781 := [monotonicity #3778]: #3780
  3.2449 -#4083 := [monotonicity #3781 #4080]: #4082
  3.2450 -#4086 := [monotonicity #4083]: #4085
  3.2451 -#4089 := [monotonicity #4086]: #4088
  3.2452 -#4092 := [monotonicity #4089]: #4091
  3.2453 -#3771 := (iff #3174 #3770)
  3.2454 -#3768 := (iff #2589 #3765)
  3.2455 -#3766 := (iff #2584 #2584)
  3.2456 -#3767 := [refl]: #3766
  3.2457 -#3769 := [quant-intro #3767]: #3768
  3.2458 -#3772 := [monotonicity #3769]: #3771
  3.2459 -#4095 := [monotonicity #3772 #4092]: #4094
  3.2460 -#4098 := [monotonicity #4095]: #4097
  3.2461 -#4101 := [monotonicity #4098]: #4100
  3.2462 -#4104 := [monotonicity #4101]: #4103
  3.2463 -#3762 := (iff #1009 #3761)
  3.2464 -#3759 := (iff #1006 #3756)
  3.2465 -#3757 := (iff #1005 #1005)
  3.2466 -#3758 := [refl]: #3757
  3.2467 -#3760 := [quant-intro #3758]: #3759
  3.2468 -#3763 := [monotonicity #3760]: #3762
  3.2469 -#4107 := [monotonicity #3763 #4104]: #4106
  3.2470 -#4110 := [monotonicity #4107]: #4109
  3.2471 -#4113 := [monotonicity #4110]: #4112
  3.2472 -#4116 := [monotonicity #4113]: #4115
  3.2473 -#4119 := [monotonicity #4116]: #4118
  3.2474 -#4122 := [monotonicity #4119]: #4121
  3.2475 -#4125 := [monotonicity #4122]: #4124
  3.2476 -#2135 := (not #2134)
  3.2477 -#2479 := (and #2135 #218 #2476)
  3.2478 -#2482 := (not #2479)
  3.2479 -#2485 := (forall (vars (?v1 S2)) #2482)
  3.2480 -#2130 := (not #2129)
  3.2481 -#2125 := (not #2124)
  3.2482 -#2494 := (and #1301 #2125 #2130 #2485)
  3.2483 -#2101 := (not #2100)
  3.2484 -#2102 := (and #2094 #2101)
  3.2485 -#2103 := (not #2102)
  3.2486 -#2110 := (or #2103 #2109)
  3.2487 -#2111 := (not #2110)
  3.2488 -#2499 := (or #2111 #2494)
  3.2489 -#2502 := (and #1282 #2499)
  3.2490 -#2068 := (not #2067)
  3.2491 -#2071 := (and #2068 #2070)
  3.2492 -#2072 := (not #2071)
  3.2493 -#2078 := (or #2072 #2077)
  3.2494 -#2079 := (not #2078)
  3.2495 -#2505 := (or #2079 #2502)
  3.2496 -#2508 := (and #1268 #2505)
  3.2497 -#2511 := (or #2052 #2508)
  3.2498 -#2514 := (and #222 #2511)
  3.2499 -#2517 := (or #713 #2514)
  3.2500 -#2520 := (and #606 #2517)
  3.2501 -#2523 := (or #2032 #2520)
  3.2502 -#2526 := (and #1259 #2523)
  3.2503 -#2529 := (or #2012 #2526)
  3.2504 -#1969 := (not #1968)
  3.2505 -#1964 := (not #1963)
  3.2506 -#2535 := (and #1964 #1969 #189 #1412 #1404 #199 #1391 #1248 #2529)
  3.2507 -#1938 := (not #169)
  3.2508 -#1941 := (and #1185 #1938)
  3.2509 -#1917 := (not #1916)
  3.2510 -#1910 := (not #1909)
  3.2511 -#1918 := (and #1910 #1917)
  3.2512 -#1919 := (not #1918)
  3.2513 -#2448 := (or #1919 #2445)
  3.2514 -#2451 := (not #2448)
  3.2515 -#2454 := (or #2451 #1941)
  3.2516 -#2414 := (not #2409)
  3.2517 -#2432 := (and #2414 #2427)
  3.2518 -#2435 := (or #1145 #2432)
  3.2519 -#2438 := (forall (vars (?v0 S2)) #2435)
  3.2520 -#2457 := (and #2438 #2454)
  3.2521 -#1852 := (not #1851)
  3.2522 -#2384 := (and #1852 #2381)
  3.2523 -#2387 := (not #2384)
  3.2524 -#2390 := (forall (vars (?v1 S2)) #2387)
  3.2525 -#1847 := (not #1846)
  3.2526 -#1842 := (not #1841)
  3.2527 -#2396 := (and #1842 #1847 #2390)
  3.2528 -#2460 := (or #2396 #2457)
  3.2529 -#1822 := (not #1203)
  3.2530 -#1825 := (forall (vars (?v0 S2)) #1822)
  3.2531 -#2463 := (and #1825 #144 #147 #149 #152 #2460)
  3.2532 -#2540 := (or #2463 #2535)
  3.2533 -#2340 := (not #2335)
  3.2534 -#2358 := (and #2340 #1802 #2353)
  3.2535 -#2361 := (or #1100 #2358)
  3.2536 -#2364 := (forall (vars (?v0 S2)) #2361)
  3.2537 -#2298 := (not #2293)
  3.2538 -#2316 := (and #2298 #1749 #2311)
  3.2539 -#2319 := (or #1062 #2316)
  3.2540 -#2322 := (forall (vars (?v0 S2)) #2319)
  3.2541 -#2543 := (and #2322 #111 #1486 #1477 #1466 #2364 #2540)
  3.2542 -#1714 := (not #1713)
  3.2543 -#1720 := (and #1714 #77 #1719)
  3.2544 -#1729 := (not #1720)
  3.2545 -#1732 := (forall (vars (?v1 S2)) #1729)
  3.2546 -#2280 := (and #1704 #1709 #1732)
  3.2547 -#2546 := (or #2280 #2543)
  3.2548 -#2549 := (and #1047 #2546)
  3.2549 -#1680 := (not #1679)
  3.2550 -#1681 := (and #1673 #1680)
  3.2551 -#1682 := (not #1681)
  3.2552 -#2269 := (or #1682 #2266)
  3.2553 -#2272 := (not #2269)
  3.2554 -#2552 := (or #2272 #2549)
  3.2555 -#2555 := (and #1021 #2552)
  3.2556 -#1647 := (not #1646)
  3.2557 -#1650 := (and #1647 #1649)
  3.2558 -#1651 := (not #1650)
  3.2559 -#1657 := (or #1651 #1656)
  3.2560 -#1658 := (not #1657)
  3.2561 -#2558 := (or #1658 #2555)
  3.2562 -#2561 := (and #1006 #2558)
  3.2563 -#2564 := (or #1631 #2561)
  3.2564 -#2567 := (and #81 #2564)
  3.2565 -#2570 := (or #946 #2567)
  3.2566 -#3209 := (iff #2570 #3208)
  3.2567 -#3206 := (iff #2567 #3203)
  3.2568 -#3198 := (and #81 #3195)
  3.2569 -#3204 := (iff #3198 #3203)
  3.2570 -#3205 := [rewrite]: #3204
  3.2571 -#3199 := (iff #2567 #3198)
  3.2572 -#3196 := (iff #2564 #3195)
  3.2573 -#3193 := (iff #2561 #3190)
  3.2574 -#3185 := (and #1006 #3182)
  3.2575 -#3191 := (iff #3185 #3190)
  3.2576 -#3192 := [rewrite]: #3191
  3.2577 -#3186 := (iff #2561 #3185)
  3.2578 -#3183 := (iff #2558 #3182)
  3.2579 -#3180 := (iff #2555 #3177)
  3.2580 -#3171 := (and #2589 #3168)
  3.2581 -#3178 := (iff #3171 #3177)
  3.2582 -#3179 := [rewrite]: #3178
  3.2583 -#3172 := (iff #2555 #3171)
  3.2584 -#3169 := (iff #2552 #3168)
  3.2585 -#3166 := (iff #2549 #3163)
  3.2586 -#3157 := (and #2634 #3154)
  3.2587 -#3164 := (iff #3157 #3163)
  3.2588 -#3165 := [rewrite]: #3164
  3.2589 -#3158 := (iff #2549 #3157)
  3.2590 -#3155 := (iff #2546 #3154)
  3.2591 -#3152 := (iff #2543 #3149)
  3.2592 -#3140 := (and #2687 #111 #1486 #2710 #2732 #2760 #3137)
  3.2593 -#3150 := (iff #3140 #3149)
  3.2594 -#3151 := [rewrite]: #3150
  3.2595 -#3141 := (iff #2543 #3140)
  3.2596 -#3138 := (iff #2540 #3137)
  3.2597 -#3135 := (iff #2535 #3132)
  3.2598 -#3125 := (and #1964 #1969 #189 #1412 #1404 #199 #2930 #2936 #3122)
  3.2599 -#3133 := (iff #3125 #3132)
  3.2600 -#3134 := [rewrite]: #3133
  3.2601 -#3126 := (iff #2535 #3125)
  3.2602 -#3123 := (iff #2529 #3122)
  3.2603 -#3120 := (iff #2526 #3117)
  3.2604 -#3112 := (and #1259 #3109)
  3.2605 -#3118 := (iff #3112 #3117)
  3.2606 -#3119 := [rewrite]: #3118
  3.2607 -#3113 := (iff #2526 #3112)
  3.2608 -#3110 := (iff #2523 #3109)
  3.2609 -#3107 := (iff #2520 #3104)
  3.2610 -#3099 := (and #606 #3096)
  3.2611 -#3105 := (iff #3099 #3104)
  3.2612 -#3106 := [rewrite]: #3105
  3.2613 -#3100 := (iff #2520 #3099)
  3.2614 -#3097 := (iff #2517 #3096)
  3.2615 -#3094 := (iff #2514 #3091)
  3.2616 -#3086 := (and #222 #3083)
  3.2617 -#3092 := (iff #3086 #3091)
  3.2618 -#3093 := [rewrite]: #3092
  3.2619 -#3087 := (iff #2514 #3086)
  3.2620 -#3084 := (iff #2511 #3083)
  3.2621 -#3081 := (iff #2508 #3078)
  3.2622 -#3073 := (and #1268 #3070)
  3.2623 -#3079 := (iff #3073 #3078)
  3.2624 -#3080 := [rewrite]: #3079
  3.2625 -#3074 := (iff #2508 #3073)
  3.2626 -#3071 := (iff #2505 #3070)
  3.2627 -#3068 := (iff #2502 #3065)
  3.2628 -#3059 := (and #2982 #3056)
  3.2629 -#3066 := (iff #3059 #3065)
  3.2630 -#3067 := [rewrite]: #3066
  3.2631 -#3060 := (iff #2502 #3059)
  3.2632 -#3057 := (iff #2499 #3056)
  3.2633 -#3054 := (iff #2494 #3051)
  3.2634 -#3045 := (and #3027 #2125 #2130 #3042)
  3.2635 -#3052 := (iff #3045 #3051)
  3.2636 -#3053 := [rewrite]: #3052
  3.2637 -#3046 := (iff #2494 #3045)
  3.2638 -#3043 := (iff #2485 #3042)
  3.2639 -#3040 := (iff #2482 #3031)
  3.2640 -#3032 := (not #3031)
  3.2641 -#3035 := (not #3032)
  3.2642 -#3038 := (iff #3035 #3031)
  3.2643 -#3039 := [rewrite]: #3038
  3.2644 -#3036 := (iff #2482 #3035)
  3.2645 -#3033 := (iff #2479 #3032)
  3.2646 -#3034 := [rewrite]: #3033
  3.2647 -#3037 := [monotonicity #3034]: #3036
  3.2648 -#3041 := [trans #3037 #3039]: #3040
  3.2649 -#3044 := [quant-intro #3041]: #3043
  3.2650 -#3028 := (iff #1301 #3027)
  3.2651 -#3025 := (iff #1298 #3022)
  3.2652 -#3008 := (or #225 #1029)
  3.2653 -#3019 := (or #3008 #1294)
  3.2654 -#3023 := (iff #3019 #3022)
  3.2655 -#3024 := [rewrite]: #3023
  3.2656 -#3020 := (iff #1298 #3019)
  3.2657 -#3017 := (iff #1291 #3008)
  3.2658 -#3009 := (not #3008)
  3.2659 -#3012 := (not #3009)
  3.2660 -#3015 := (iff #3012 #3008)
  3.2661 -#3016 := [rewrite]: #3015
  3.2662 -#3013 := (iff #1291 #3012)
  3.2663 -#3010 := (iff #1288 #3009)
  3.2664 -#3011 := [rewrite]: #3010
  3.2665 -#3014 := [monotonicity #3011]: #3013
  3.2666 -#3018 := [trans #3014 #3016]: #3017
  3.2667 -#3021 := [monotonicity #3018]: #3020
  3.2668 -#3026 := [trans #3021 #3024]: #3025
  3.2669 -#3029 := [quant-intro #3026]: #3028
  3.2670 -#3047 := [monotonicity #3029 #3044]: #3046
  3.2671 -#3055 := [trans #3047 #3053]: #3054
  3.2672 -#3006 := (iff #2111 #3005)
  3.2673 -#3003 := (iff #2110 #3000)
  3.2674 -#2986 := (or #2985 #2100)
  3.2675 -#2997 := (or #2986 #2109)
  3.2676 -#3001 := (iff #2997 #3000)
  3.2677 -#3002 := [rewrite]: #3001
  3.2678 -#2998 := (iff #2110 #2997)
  3.2679 -#2995 := (iff #2103 #2986)
  3.2680 -#2987 := (not #2986)
  3.2681 -#2990 := (not #2987)
  3.2682 -#2993 := (iff #2990 #2986)
  3.2683 -#2994 := [rewrite]: #2993
  3.2684 -#2991 := (iff #2103 #2990)
  3.2685 -#2988 := (iff #2102 #2987)
  3.2686 -#2989 := [rewrite]: #2988
  3.2687 -#2992 := [monotonicity #2989]: #2991
  3.2688 -#2996 := [trans #2992 #2994]: #2995
  3.2689 -#2999 := [monotonicity #2996]: #2998
  3.2690 -#3004 := [trans #2999 #3002]: #3003
  3.2691 -#3007 := [monotonicity #3004]: #3006
  3.2692 -#3058 := [monotonicity #3007 #3055]: #3057
  3.2693 -#2983 := (iff #1282 #2982)
  3.2694 -#2980 := (iff #1279 #2977)
  3.2695 -#2963 := (or #218 #2962)
  3.2696 -#2974 := (or #2963 #1274)
  3.2697 -#2978 := (iff #2974 #2977)
  3.2698 -#2979 := [rewrite]: #2978
  3.2699 -#2975 := (iff #1279 #2974)
  3.2700 -#2972 := (iff #609 #2963)
  3.2701 -#2964 := (not #2963)
  3.2702 -#2967 := (not #2964)
  3.2703 -#2970 := (iff #2967 #2963)
  3.2704 -#2971 := [rewrite]: #2970
  3.2705 -#2968 := (iff #609 #2967)
  3.2706 -#2965 := (iff #228 #2964)
  3.2707 -#2966 := [rewrite]: #2965
  3.2708 -#2969 := [monotonicity #2966]: #2968
  3.2709 -#2973 := [trans #2969 #2971]: #2972
  3.2710 -#2976 := [monotonicity #2973]: #2975
  3.2711 -#2981 := [trans #2976 #2979]: #2980
  3.2712 -#2984 := [quant-intro #2981]: #2983
  3.2713 -#3061 := [monotonicity #2984 #3058]: #3060
  3.2714 -#3069 := [trans #3061 #3067]: #3068
  3.2715 -#2960 := (iff #2079 #2959)
  3.2716 -#2957 := (iff #2078 #2954)
  3.2717 -#2940 := (or #2067 #2939)
  3.2718 -#2951 := (or #2940 #2077)
  3.2719 -#2955 := (iff #2951 #2954)
  3.2720 -#2956 := [rewrite]: #2955
  3.2721 -#2952 := (iff #2078 #2951)
  3.2722 -#2949 := (iff #2072 #2940)
  3.2723 -#2941 := (not #2940)
  3.2724 -#2944 := (not #2941)
  3.2725 -#2947 := (iff #2944 #2940)
  3.2726 -#2948 := [rewrite]: #2947
  3.2727 -#2945 := (iff #2072 #2944)
  3.2728 -#2942 := (iff #2071 #2941)
  3.2729 -#2943 := [rewrite]: #2942
  3.2730 -#2946 := [monotonicity #2943]: #2945
  3.2731 -#2950 := [trans #2946 #2948]: #2949
  3.2732 -#2953 := [monotonicity #2950]: #2952
  3.2733 -#2958 := [trans #2953 #2956]: #2957
  3.2734 -#2961 := [monotonicity #2958]: #2960
  3.2735 -#3072 := [monotonicity #2961 #3069]: #3071
  3.2736 -#3075 := [monotonicity #3072]: #3074
  3.2737 -#3082 := [trans #3075 #3080]: #3081
  3.2738 -#3085 := [monotonicity #3082]: #3084
  3.2739 -#3088 := [monotonicity #3085]: #3087
  3.2740 -#3095 := [trans #3088 #3093]: #3094
  3.2741 -#3098 := [monotonicity #3095]: #3097
  3.2742 -#3101 := [monotonicity #3098]: #3100
  3.2743 -#3108 := [trans #3101 #3106]: #3107
  3.2744 -#3111 := [monotonicity #3108]: #3110
  3.2745 -#3114 := [monotonicity #3111]: #3113
  3.2746 -#3121 := [trans #3114 #3119]: #3120
  3.2747 -#3124 := [monotonicity #3121]: #3123
  3.2748 -#2937 := (iff #1248 #2936)
  3.2749 -#2934 := (iff #1245 #2933)
  3.2750 -#2913 := (iff #1242 #2912)
  3.2751 -#2914 := [rewrite]: #2913
  3.2752 -#2935 := [monotonicity #2914]: #2934
  3.2753 -#2938 := [quant-intro #2935]: #2937
  3.2754 -#2931 := (iff #1391 #2930)
  3.2755 -#2928 := (iff #1388 #2925)
  3.2756 -#2922 := (or #2911 #1383)
  3.2757 -#2926 := (iff #2922 #2925)
  3.2758 -#2927 := [rewrite]: #2926
  3.2759 -#2923 := (iff #1388 #2922)
  3.2760 -#2920 := (iff #1380 #2911)
  3.2761 -#2915 := (not #2912)
  3.2762 -#2918 := (iff #2915 #2911)
  3.2763 -#2919 := [rewrite]: #2918
  3.2764 -#2916 := (iff #1380 #2915)
  3.2765 -#2917 := [monotonicity #2914]: #2916
  3.2766 -#2921 := [trans #2917 #2919]: #2920
  3.2767 -#2924 := [monotonicity #2921]: #2923
  3.2768 -#2929 := [trans #2924 #2927]: #2928
  3.2769 -#2932 := [quant-intro #2929]: #2931
  3.2770 -#3127 := [monotonicity #2932 #2938 #3124]: #3126
  3.2771 -#3136 := [trans #3127 #3134]: #3135
  3.2772 -#2909 := (iff #2463 #2906)
  3.2773 -#2900 := (and #2774 #144 #147 #149 #152 #2897)
  3.2774 -#2907 := (iff #2900 #2906)
  3.2775 -#2908 := [rewrite]: #2907
  3.2776 -#2901 := (iff #2463 #2900)
  3.2777 -#2898 := (iff #2460 #2897)
  3.2778 -#2895 := (iff #2457 #2892)
  3.2779 -#2886 := (and #2826 #2883)
  3.2780 -#2893 := (iff #2886 #2892)
  3.2781 -#2894 := [rewrite]: #2893
  3.2782 -#2887 := (iff #2457 #2886)
  3.2783 -#2884 := (iff #2454 #2883)
  3.2784 -#2881 := (iff #1941 #2878)
  3.2785 -#2873 := (and #2870 #1938)
  3.2786 -#2879 := (iff #2873 #2878)
  3.2787 -#2880 := [rewrite]: #2879
  3.2788 -#2874 := (iff #1941 #2873)
  3.2789 -#2871 := (iff #1185 #2870)
  3.2790 -#2868 := (iff #1182 #2865)
  3.2791 -#2851 := (or #1138 #1029)
  3.2792 -#2862 := (or #2851 #1179)
  3.2793 -#2866 := (iff #2862 #2865)
  3.2794 -#2867 := [rewrite]: #2866
  3.2795 -#2863 := (iff #1182 #2862)
  3.2796 -#2860 := (iff #1176 #2851)
  3.2797 -#2852 := (not #2851)
  3.2798 -#2855 := (not #2852)
  3.2799 -#2858 := (iff #2855 #2851)
  3.2800 -#2859 := [rewrite]: #2858
  3.2801 -#2856 := (iff #1176 #2855)
  3.2802 -#2853 := (iff #1173 #2852)
  3.2803 -#2854 := [rewrite]: #2853
  3.2804 -#2857 := [monotonicity #2854]: #2856
  3.2805 -#2861 := [trans #2857 #2859]: #2860
  3.2806 -#2864 := [monotonicity #2861]: #2863
  3.2807 -#2869 := [trans #2864 #2867]: #2868
  3.2808 -#2872 := [quant-intro #2869]: #2871
  3.2809 -#2875 := [monotonicity #2872]: #2874
  3.2810 -#2882 := [trans #2875 #2880]: #2881
  3.2811 -#2849 := (iff #2451 #2848)
  3.2812 -#2846 := (iff #2448 #2843)
  3.2813 -#2829 := (or #1909 #1916)
  3.2814 -#2840 := (or #2829 #2445)
  3.2815 -#2844 := (iff #2840 #2843)
  3.2816 -#2845 := [rewrite]: #2844
  3.2817 -#2841 := (iff #2448 #2840)
  3.2818 -#2838 := (iff #1919 #2829)
  3.2819 -#2830 := (not #2829)
  3.2820 -#2833 := (not #2830)
  3.2821 -#2836 := (iff #2833 #2829)
  3.2822 -#2837 := [rewrite]: #2836
  3.2823 -#2834 := (iff #1919 #2833)
  3.2824 -#2831 := (iff #1918 #2830)
  3.2825 -#2832 := [rewrite]: #2831
  3.2826 -#2835 := [monotonicity #2832]: #2834
  3.2827 -#2839 := [trans #2835 #2837]: #2838
  3.2828 -#2842 := [monotonicity #2839]: #2841
  3.2829 -#2847 := [trans #2842 #2845]: #2846
  3.2830 -#2850 := [monotonicity #2847]: #2849
  3.2831 -#2885 := [monotonicity #2850 #2882]: #2884
  3.2832 -#2827 := (iff #2438 #2826)
  3.2833 -#2824 := (iff #2435 #2821)
  3.2834 -#2802 := (or #66 #1138)
  3.2835 -#2818 := (or #2802 #2815)
  3.2836 -#2822 := (iff #2818 #2821)
  3.2837 -#2823 := [rewrite]: #2822
  3.2838 -#2819 := (iff #2435 #2818)
  3.2839 -#2816 := (iff #2432 #2815)
  3.2840 -#2817 := [rewrite]: #2816
  3.2841 -#2811 := (iff #1145 #2802)
  3.2842 -#2803 := (not #2802)
  3.2843 -#2806 := (not #2803)
  3.2844 -#2809 := (iff #2806 #2802)
  3.2845 -#2810 := [rewrite]: #2809
  3.2846 -#2807 := (iff #1145 #2806)
  3.2847 -#2804 := (iff #1142 #2803)
  3.2848 -#2805 := [rewrite]: #2804
  3.2849 -#2808 := [monotonicity #2805]: #2807
  3.2850 -#2812 := [trans #2808 #2810]: #2811
  3.2851 -#2820 := [monotonicity #2812 #2817]: #2819
  3.2852 -#2825 := [trans #2820 #2823]: #2824
  3.2853 -#2828 := [quant-intro #2825]: #2827
  3.2854 -#2888 := [monotonicity #2828 #2885]: #2887
  3.2855 -#2896 := [trans #2888 #2894]: #2895
  3.2856 -#2800 := (iff #2396 #2797)
  3.2857 -#2792 := (and #1842 #1847 #2789)
  3.2858 -#2798 := (iff #2792 #2797)
  3.2859 -#2799 := [rewrite]: #2798
  3.2860 -#2793 := (iff #2396 #2792)
  3.2861 -#2790 := (iff #2390 #2789)
  3.2862 -#2787 := (iff #2387 #2778)
  3.2863 -#2779 := (not #2778)
  3.2864 -#2782 := (not #2779)
  3.2865 -#2785 := (iff #2782 #2778)
  3.2866 -#2786 := [rewrite]: #2785
  3.2867 -#2783 := (iff #2387 #2782)
  3.2868 -#2780 := (iff #2384 #2779)
  3.2869 -#2781 := [rewrite]: #2780
  3.2870 -#2784 := [monotonicity #2781]: #2783
  3.2871 -#2788 := [trans #2784 #2786]: #2787
  3.2872 -#2791 := [quant-intro #2788]: #2790
  3.2873 -#2794 := [monotonicity #2791]: #2793
  3.2874 -#2801 := [trans #2794 #2799]: #2800
  3.2875 -#2899 := [monotonicity #2801 #2896]: #2898
  3.2876 -#2775 := (iff #1825 #2774)
  3.2877 -#2772 := (iff #1822 #2763)
  3.2878 -#2764 := (not #2763)
  3.2879 -#2767 := (not #2764)
  3.2880 -#2770 := (iff #2767 #2763)
  3.2881 -#2771 := [rewrite]: #2770
  3.2882 -#2768 := (iff #1822 #2767)
  3.2883 -#2765 := (iff #1203 #2764)
  3.2884 -#2766 := [rewrite]: #2765
  3.2885 -#2769 := [monotonicity #2766]: #2768
  3.2886 -#2773 := [trans #2769 #2771]: #2772
  3.2887 -#2776 := [quant-intro #2773]: #2775
  3.2888 -#2902 := [monotonicity #2776 #2899]: #2901
  3.2889 -#2910 := [trans #2902 #2908]: #2909
  3.2890 -#3139 := [monotonicity #2910 #3136]: #3138
  3.2891 -#2761 := (iff #2364 #2760)
  3.2892 -#2758 := (iff #2361 #2755)
  3.2893 -#2735 := (or #66 #1093)
  3.2894 -#2752 := (or #2735 #2749)
  3.2895 -#2756 := (iff #2752 #2755)
  3.2896 -#2757 := [rewrite]: #2756
  3.2897 -#2753 := (iff #2361 #2752)
  3.2898 -#2750 := (iff #2358 #2749)
  3.2899 -#2751 := [rewrite]: #2750
  3.2900 -#2744 := (iff #1100 #2735)
  3.2901 -#2736 := (not #2735)
  3.2902 -#2739 := (not #2736)
  3.2903 -#2742 := (iff #2739 #2735)
  3.2904 -#2743 := [rewrite]: #2742
  3.2905 -#2740 := (iff #1100 #2739)
  3.2906 -#2737 := (iff #1097 #2736)
  3.2907 -#2738 := [rewrite]: #2737
  3.2908 -#2741 := [monotonicity #2738]: #2740
  3.2909 -#2745 := [trans #2741 #2743]: #2744
  3.2910 -#2754 := [monotonicity #2745 #2751]: #2753
  3.2911 -#2759 := [trans #2754 #2757]: #2758
  3.2912 -#2762 := [quant-intro #2759]: #2761
  3.2913 -#2733 := (iff #1466 #2732)
  3.2914 -#2730 := (iff #1463 #2727)
  3.2915 -#2713 := (or #118 #1029)
  3.2916 -#2724 := (or #2713 #1460)
  3.2917 -#2728 := (iff #2724 #2727)
  3.2918 -#2729 := [rewrite]: #2728
  3.2919 -#2725 := (iff #1463 #2724)
  3.2920 -#2722 := (iff #1457 #2713)
  3.2921 -#2714 := (not #2713)
  3.2922 -#2717 := (not #2714)
  3.2923 -#2720 := (iff #2717 #2713)
  3.2924 -#2721 := [rewrite]: #2720
  3.2925 -#2718 := (iff #1457 #2717)
  3.2926 -#2715 := (iff #1454 #2714)
  3.2927 -#2716 := [rewrite]: #2715
  3.2928 -#2719 := [monotonicity #2716]: #2718
  3.2929 -#2723 := [trans #2719 #2721]: #2722
  3.2930 -#2726 := [monotonicity #2723]: #2725
  3.2931 -#2731 := [trans #2726 #2729]: #2730
  3.2932 -#2734 := [quant-intro #2731]: #2733
  3.2933 -#2711 := (iff #1477 #2710)
  3.2934 -#2708 := (iff #1474 #2705)
  3.2935 -#2691 := (or #117 #2690)
  3.2936 -#2702 := (or #2691 #1109)
  3.2937 -#2706 := (iff #2702 #2705)
  3.2938 -#2707 := [rewrite]: #2706
  3.2939 -#2703 := (iff #1474 #2702)
  3.2940 -#2700 := (iff #391 #2691)
  3.2941 -#2692 := (not #2691)
  3.2942 -#2695 := (not #2692)
  3.2943 -#2698 := (iff #2695 #2691)
  3.2944 -#2699 := [rewrite]: #2698
  3.2945 -#2696 := (iff #391 #2695)
  3.2946 -#2693 := (iff #121 #2692)
  3.2947 -#2694 := [rewrite]: #2693
  3.2948 -#2697 := [monotonicity #2694]: #2696
  3.2949 -#2701 := [trans #2697 #2699]: #2700
  3.2950 -#2704 := [monotonicity #2701]: #2703
  3.2951 -#2709 := [trans #2704 #2707]: #2708
  3.2952 -#2712 := [quant-intro #2709]: #2711
  3.2953 -#2688 := (iff #2322 #2687)
  3.2954 -#2685 := (iff #2319 #2682)
  3.2955 -#2662 := (or #66 #1055)
  3.2956 -#2679 := (or #2662 #2676)
  3.2957 -#2683 := (iff #2679 #2682)
  3.2958 -#2684 := [rewrite]: #2683
  3.2959 -#2680 := (iff #2319 #2679)
  3.2960 -#2677 := (iff #2316 #2676)
  3.2961 -#2678 := [rewrite]: #2677
  3.2962 -#2671 := (iff #1062 #2662)
  3.2963 -#2663 := (not #2662)
  3.2964 -#2666 := (not #2663)
  3.2965 -#2669 := (iff #2666 #2662)
  3.2966 -#2670 := [rewrite]: #2669
  3.2967 -#2667 := (iff #1062 #2666)
  3.2968 -#2664 := (iff #1059 #2663)
  3.2969 -#2665 := [rewrite]: #2664
  3.2970 -#2668 := [monotonicity #2665]: #2667
  3.2971 -#2672 := [trans #2668 #2670]: #2671
  3.2972 -#2681 := [monotonicity #2672 #2678]: #2680
  3.2973 -#2686 := [trans #2681 #2684]: #2685
  3.2974 -#2689 := [quant-intro #2686]: #2688
  3.2975 -#3142 := [monotonicity #2689 #2712 #2734 #2762 #3139]: #3141
  3.2976 -#3153 := [trans #3142 #3151]: #3152
  3.2977 -#2660 := (iff #2280 #2657)
  3.2978 -#2652 := (and #1704 #1709 #2649)
  3.2979 -#2658 := (iff #2652 #2657)
  3.2980 -#2659 := [rewrite]: #2658
  3.2981 -#2653 := (iff #2280 #2652)
  3.2982 -#2650 := (iff #1732 #2649)
  3.2983 -#2647 := (iff #1729 #2638)
  3.2984 -#2639 := (not #2638)
  3.2985 -#2642 := (not #2639)
  3.2986 -#2645 := (iff #2642 #2638)
  3.2987 -#2646 := [rewrite]: #2645
  3.2988 -#2643 := (iff #1729 #2642)
  3.2989 -#2640 := (iff #1720 #2639)
  3.2990 -#2641 := [rewrite]: #2640
  3.2991 -#2644 := [monotonicity #2641]: #2643
  3.2992 -#2648 := [trans #2644 #2646]: #2647
  3.2993 -#2651 := [quant-intro #2648]: #2650
  3.2994 -#2654 := [monotonicity #2651]: #2653
  3.2995 -#2661 := [trans #2654 #2659]: #2660
  3.2996 -#3156 := [monotonicity #2661 #3153]: #3155
  3.2997 -#2635 := (iff #1047 #2634)
  3.2998 -#2632 := (iff #1044 #2629)
  3.2999 -#2615 := (or #78 #1029)
  3.3000 -#2626 := (or #2615 #1040)
  3.3001 -#2630 := (iff #2626 #2629)
  3.3002 -#2631 := [rewrite]: #2630
  3.3003 -#2627 := (iff #1044 #2626)
  3.3004 -#2624 := (iff #1036 #2615)
  3.3005 -#2616 := (not #2615)
  3.3006 -#2619 := (not #2616)
  3.3007 -#2622 := (iff #2619 #2615)
  3.3008 -#2623 := [rewrite]: #2622
  3.3009 -#2620 := (iff #1036 #2619)
  3.3010 -#2617 := (iff #1033 #2616)
  3.3011 -#2618 := [rewrite]: #2617
  3.3012 -#2621 := [monotonicity #2618]: #2620
  3.3013 -#2625 := [trans #2621 #2623]: #2624
  3.3014 -#2628 := [monotonicity #2625]: #2627
  3.3015 -#2633 := [trans #2628 #2631]: #2632
  3.3016 -#2636 := [quant-intro #2633]: #2635
  3.3017 -#3159 := [monotonicity #2636 #3156]: #3158
  3.3018 -#3167 := [trans #3159 #3165]: #3166
  3.3019 -#2613 := (iff #2272 #2612)
  3.3020 -#2610 := (iff #2269 #2607)
  3.3021 -#2593 := (or #2592 #1679)
  3.3022 -#2604 := (or #2593 #2266)
  3.3023 -#2608 := (iff #2604 #2607)
  3.3024 -#2609 := [rewrite]: #2608
  3.3025 -#2605 := (iff #2269 #2604)
  3.3026 -#2602 := (iff #1682 #2593)
  3.3027 -#2594 := (not #2593)
  3.3028 -#2597 := (not #2594)
  3.3029 -#2600 := (iff #2597 #2593)
  3.3030 -#2601 := [rewrite]: #2600
  3.3031 -#2598 := (iff #1682 #2597)
  3.3032 -#2595 := (iff #1681 #2594)
  3.3033 -#2596 := [rewrite]: #2595
  3.3034 -#2599 := [monotonicity #2596]: #2598
  3.3035 -#2603 := [trans #2599 #2601]: #2602
  3.3036 -#2606 := [monotonicity #2603]: #2605
  3.3037 -#2611 := [trans #2606 #2609]: #2610
  3.3038 -#2614 := [monotonicity #2611]: #2613
  3.3039 -#3170 := [monotonicity #2614 #3167]: #3169
  3.3040 -#2590 := (iff #1021 #2589)
  3.3041 -#2587 := (iff #1018 #2584)
  3.3042 -#1661 := (or #77 #1760)
  3.3043 -#2581 := (or #1661 #1014)
  3.3044 -#2585 := (iff #2581 #2584)
  3.3045 -#2586 := [rewrite]: #2585
  3.3046 -#2582 := (iff #1018 #2581)
  3.3047 -#2579 := (iff #370 #1661)
  3.3048 -#1662 := (not #1661)
  3.3049 -#2574 := (not #1662)
  3.3050 -#2577 := (iff #2574 #1661)
  3.3051 -#2578 := [rewrite]: #2577
  3.3052 -#2575 := (iff #370 #2574)
  3.3053 -#2259 := (iff #86 #1662)
  3.3054 -#2573 := [rewrite]: #2259
  3.3055 -#2576 := [monotonicity #2573]: #2575
  3.3056 -#2580 := [trans #2576 #2578]: #2579
  3.3057 -#2583 := [monotonicity #2580]: #2582
  3.3058 -#2588 := [trans #2583 #2586]: #2587
  3.3059 -#2591 := [quant-intro #2588]: #2590
  3.3060 -#3173 := [monotonicity #2591 #3170]: #3172
  3.3061 -#3181 := [trans #3173 #3179]: #3180
  3.3062 -#1635 := (iff #1658 #1634)
  3.3063 -#1973 := (iff #1657 #2083)
  3.3064 -#2036 := (or #1646 #2035)
  3.3065 -#2114 := (or #2036 #1656)
  3.3066 -#2015 := (iff #2114 #2083)
  3.3067 -#2016 := [rewrite]: #2015
  3.3068 -#2115 := (iff #1657 #2114)
  3.3069 -#1811 := (iff #1651 #2036)
  3.3070 -#1893 := (not #2036)
  3.3071 -#1694 := (not #1893)
  3.3072 -#1929 := (iff #1694 #2036)
  3.3073 -#1930 := [rewrite]: #1929
  3.3074 -#2055 := (iff #1651 #1694)
  3.3075 -#1894 := (iff #1650 #1893)
  3.3076 -#1693 := [rewrite]: #1894
  3.3077 -#2056 := [monotonicity #1693]: #2055
  3.3078 -#1812 := [trans #2056 #1930]: #1811
  3.3079 -#2082 := [monotonicity #1812]: #2115
  3.3080 -#1974 := [trans #2082 #2016]: #1973
  3.3081 -#1759 := [monotonicity #1974]: #1635
  3.3082 -#3184 := [monotonicity #1759 #3181]: #3183
  3.3083 -#3187 := [monotonicity #3184]: #3186
  3.3084 -#3194 := [trans #3187 #3192]: #3193
  3.3085 -#3197 := [monotonicity #3194]: #3196
  3.3086 -#3200 := [monotonicity #3197]: #3199
  3.3087 -#3207 := [trans #3200 #3205]: #3206
  3.3088 -#3210 := [monotonicity #3207]: #3209
  3.3089 -#2138 := (+ #2137 #2133)
  3.3090 -#2139 := (= #2138 0::Int)
  3.3091 -#2140 := (and #2135 #218 #2139)
  3.3092 -#2150 := (not #2140)
  3.3093 -#2153 := (forall (vars (?v1 S2)) #2150)
  3.3094 -#2131 := (and #2125 #2130)
  3.3095 -#2132 := (not #2131)
  3.3096 -#2147 := (not #2132)
  3.3097 -#2157 := (and #2147 #2153)
  3.3098 -#2162 := (and #1301 #2157)
  3.3099 -#2166 := (or #2111 #2162)
  3.3100 -#2170 := (and #1282 #2166)
  3.3101 -#2174 := (or #2079 #2170)
  3.3102 -#2178 := (and #1268 #2174)
  3.3103 -#2182 := (or #2052 #2178)
  3.3104 -#2046 := (not #713)
  3.3105 -#2186 := (and #2046 #2182)
  3.3106 -#2190 := (or #713 #2186)
  3.3107 -#2194 := (and #606 #2190)
  3.3108 -#2198 := (or #2032 #2194)
  3.3109 -#2202 := (and #1259 #2198)
  3.3110 -#2206 := (or #2012 #2202)
  3.3111 -#1989 := (not #778)
  3.3112 -#1970 := (and #1964 #1969)
  3.3113 -#2210 := (and #1970 #189 #1412 #1404 #1989 #1391 #1248 #2206)
  3.3114 -#1922 := (+ #1906 #1921)
  3.3115 -#1923 := (+ #1913 #1922)
  3.3116 -#1924 := (>= #1923 0::Int)
  3.3117 -#1925 := (or #1919 #1924)
  3.3118 -#1926 := (not #1925)
  3.3119 -#1945 := (or #1926 #1941)
  3.3120 -#1882 := (+ #1881 #1136)
  3.3121 -#1888 := (+ #1887 #1882)
  3.3122 -#1889 := (= #1888 0::Int)
  3.3123 -#1883 := (>= #1882 0::Int)
  3.3124 -#1884 := (not #1883)
  3.3125 -#1890 := (and #1884 #1889)
  3.3126 -#1895 := (or #1145 #1890)
  3.3127 -#1898 := (forall (vars (?v0 S2)) #1895)
  3.3128 -#1949 := (and #1898 #1945)
  3.3129 -#1855 := (+ #1854 #1850)
  3.3130 -#1856 := (= #1855 0::Int)
  3.3131 -#1857 := (and #1852 #1856)
  3.3132 -#1866 := (not #1857)
  3.3133 -#1869 := (forall (vars (?v1 S2)) #1866)
  3.3134 -#1848 := (and #1842 #1847)
  3.3135 -#1849 := (not #1848)
  3.3136 -#1863 := (not #1849)
  3.3137 -#1873 := (and #1863 #1869)
  3.3138 -#1953 := (or #1873 #1949)
  3.3139 -#1837 := (not #522)
  3.3140 -#1834 := (not #531)
  3.3141 -#1831 := (not #540)
  3.3142 -#1828 := (not #549)
  3.3143 -#1957 := (and #1825 #1828 #1831 #1834 #1837 #1953)
  3.3144 -#2214 := (or #1957 #2210)
  3.3145 -#1798 := (+ #1797 #1091)
  3.3146 -#1806 := (+ #1805 #1798)
  3.3147 -#1807 := (= #1806 0::Int)
  3.3148 -#1799 := (>= #1798 0::Int)
  3.3149 -#1800 := (not #1799)
  3.3150 -#1808 := (and #1800 #1802 #1807)
  3.3151 -#1813 := (or #1100 #1808)
  3.3152 -#1816 := (forall (vars (?v0 S2)) #1813)
  3.3153 -#1770 := (not #878)
  3.3154 -#1753 := (+ #1053 #1752)
  3.3155 -#1754 := (+ #1744 #1753)
  3.3156 -#1755 := (= #1754 0::Int)
  3.3157 -#1745 := (+ #1744 #1053)
  3.3158 -#1746 := (>= #1745 0::Int)
  3.3159 -#1747 := (not #1746)
  3.3160 -#1756 := (and #1747 #1749 #1755)
  3.3161 -#1761 := (or #1062 #1756)
  3.3162 -#1764 := (forall (vars (?v0 S2)) #1761)
  3.3163 -#2218 := (and #1764 #1770 #1486 #1477 #1466 #1816 #2214)
  3.3164 -#1710 := (and #1704 #1709)
  3.3165 -#1711 := (not #1710)
  3.3166 -#1726 := (not #1711)
  3.3167 -#1736 := (and #1726 #1732)
  3.3168 -#2222 := (or #1736 #2218)
  3.3169 -#2226 := (and #1047 #2222)
  3.3170 -#1686 := (+ #1685 #1676)
  3.3171 -#1687 := (+ #1683 #1686)
  3.3172 -#1688 := (>= #1687 0::Int)
  3.3173 -#1689 := (or #1682 #1688)
  3.3174 -#1690 := (not #1689)
  3.3175 -#2230 := (or #1690 #2226)
  3.3176 -#2234 := (and #1021 #2230)
  3.3177 -#2238 := (or #1658 #2234)
  3.3178 -#2242 := (and #1006 #2238)
  3.3179 -#2246 := (or #1631 #2242)
  3.3180 -#1593 := (not #946)
  3.3181 -#2250 := (and #1593 #2246)
  3.3182 -#2254 := (or #946 #2250)
  3.3183 -#2571 := (iff #2254 #2570)
  3.3184 -#2568 := (iff #2250 #2567)
  3.3185 -#2565 := (iff #2246 #2564)
  3.3186 -#2562 := (iff #2242 #2561)
  3.3187 -#2559 := (iff #2238 #2558)
  3.3188 -#2556 := (iff #2234 #2555)
  3.3189 -#2553 := (iff #2230 #2552)
  3.3190 -#2550 := (iff #2226 #2549)
  3.3191 -#2547 := (iff #2222 #2546)
  3.3192 -#2544 := (iff #2218 #2543)
  3.3193 -#2541 := (iff #2214 #2540)
  3.3194 -#2538 := (iff #2210 #2535)
  3.3195 -#2532 := (and #1970 #189 #1412 #1404 #199 #1391 #1248 #2529)
  3.3196 -#2536 := (iff #2532 #2535)
  3.3197 -#2537 := [rewrite]: #2536
  3.3198 -#2533 := (iff #2210 #2532)
  3.3199 -#2530 := (iff #2206 #2529)
  3.3200 -#2527 := (iff #2202 #2526)
  3.3201 -#2524 := (iff #2198 #2523)
  3.3202 -#2521 := (iff #2194 #2520)
  3.3203 -#2518 := (iff #2190 #2517)
  3.3204 -#2515 := (iff #2186 #2514)
  3.3205 -#2512 := (iff #2182 #2511)
  3.3206 -#2509 := (iff #2178 #2508)
  3.3207 -#2506 := (iff #2174 #2505)
  3.3208 -#2503 := (iff #2170 #2502)
  3.3209 -#2500 := (iff #2166 #2499)
  3.3210 -#2497 := (iff #2162 #2494)
  3.3211 -#2488 := (and #2131 #2485)
  3.3212 -#2491 := (and #1301 #2488)
  3.3213 -#2495 := (iff #2491 #2494)
  3.3214 -#2496 := [rewrite]: #2495
  3.3215 -#2492 := (iff #2162 #2491)
  3.3216 -#2489 := (iff #2157 #2488)
  3.3217 -#2486 := (iff #2153 #2485)
  3.3218 -#2483 := (iff #2150 #2482)
  3.3219 -#2480 := (iff #2140 #2479)
  3.3220 -#2477 := (iff #2139 #2476)
  3.3221 -#2474 := (= #2138 #2473)
  3.3222 -#2475 := [rewrite]: #2474
  3.3223 -#2478 := [monotonicity #2475]: #2477
  3.3224 -#2481 := [monotonicity #2478]: #2480
  3.3225 -#2484 := [monotonicity #2481]: #2483
  3.3226 -#2487 := [quant-intro #2484]: #2486
  3.3227 -#2470 := (iff #2147 #2131)
  3.3228 -#2471 := [rewrite]: #2470
  3.3229 -#2490 := [monotonicity #2471 #2487]: #2489
  3.3230 -#2493 := [monotonicity #2490]: #2492
  3.3231 -#2498 := [trans #2493 #2496]: #2497
  3.3232 -#2501 := [monotonicity #2498]: #2500
  3.3233 -#2504 := [monotonicity #2501]: #2503
  3.3234 -#2507 := [monotonicity #2504]: #2506
  3.3235 -#2510 := [monotonicity #2507]: #2509
  3.3236 -#2513 := [monotonicity #2510]: #2512
  3.3237 -#2468 := (iff #2046 #222)
  3.3238 -#2469 := [rewrite]: #2468
  3.3239 -#2516 := [monotonicity #2469 #2513]: #2515
  3.3240 -#2519 := [monotonicity #2516]: #2518
  3.3241 -#2522 := [monotonicity #2519]: #2521
  3.3242 -#2525 := [monotonicity #2522]: #2524
  3.3243 -#2528 := [monotonicity #2525]: #2527
  3.3244 -#2531 := [monotonicity #2528]: #2530
  3.3245 -#2466 := (iff #1989 #199)
  3.3246 -#2467 := [rewrite]: #2466
  3.3247 -#2534 := [monotonicity #2467 #2531]: #2533
  3.3248 -#2539 := [trans #2534 #2537]: #2538
  3.3249 -#2464 := (iff #1957 #2463)
  3.3250 -#2461 := (iff #1953 #2460)
  3.3251 -#2458 := (iff #1949 #2457)
  3.3252 -#2455 := (iff #1945 #2454)
  3.3253 -#2452 := (iff #1926 #2451)
  3.3254 -#2449 := (iff #1925 #2448)
  3.3255 -#2446 := (iff #1924 #2445)
  3.3256 -#2443 := (= #1923 #2442)
  3.3257 -#2444 := [rewrite]: #2443
  3.3258 -#2447 := [monotonicity #2444]: #2446
  3.3259 -#2450 := [monotonicity #2447]: #2449
  3.3260 -#2453 := [monotonicity #2450]: #2452
  3.3261 -#2456 := [monotonicity #2453]: #2455
  3.3262 -#2439 := (iff #1898 #2438)
  3.3263 -#2436 := (iff #1895 #2435)
  3.3264 -#2433 := (iff #1890 #2432)
  3.3265 -#2430 := (iff #1889 #2427)
  3.3266 -#2417 := (+ #1881 #1887)
  3.3267 -#2418 := (+ #1136 #2417)
  3.3268 -#2421 := (= #2418 0::Int)
  3.3269 -#2428 := (iff #2421 #2427)
  3.3270 -#2429 := [rewrite]: #2428
  3.3271 -#2422 := (iff #1889 #2421)
  3.3272 -#2419 := (= #1888 #2418)
  3.3273 -#2420 := [rewrite]: #2419
  3.3274 -#2423 := [monotonicity #2420]: #2422
  3.3275 -#2431 := [trans #2423 #2429]: #2430
  3.3276 -#2415 := (iff #1884 #2414)
  3.3277 -#2412 := (iff #1883 #2409)
  3.3278 -#2401 := (+ #1136 #1881)
  3.3279 -#2404 := (>= #2401 0::Int)
  3.3280 -#2410 := (iff #2404 #2409)
  3.3281 -#2411 := [rewrite]: #2410
  3.3282 -#2405 := (iff #1883 #2404)
  3.3283 -#2402 := (= #1882 #2401)
  3.3284 -#2403 := [rewrite]: #2402
  3.3285 -#2406 := [monotonicity #2403]: #2405
  3.3286 -#2413 := [trans #2406 #2411]: #2412
  3.3287 -#2416 := [monotonicity #2413]: #2415
  3.3288 -#2434 := [monotonicity #2416 #2431]: #2433
  3.3289 -#2437 := [monotonicity #2434]: #2436
  3.3290 -#2440 := [quant-intro #2437]: #2439
  3.3291 -#2459 := [monotonicity #2440 #2456]: #2458
  3.3292 -#2399 := (iff #1873 #2396)
  3.3293 -#2393 := (and #1848 #2390)
  3.3294 -#2397 := (iff #2393 #2396)
  3.3295 -#2398 := [rewrite]: #2397
  3.3296 -#2394 := (iff #1873 #2393)
  3.3297 -#2391 := (iff #1869 #2390)
  3.3298 -#2388 := (iff #1866 #2387)
  3.3299 -#2385 := (iff #1857 #2384)
  3.3300 -#2382 := (iff #1856 #2381)
  3.3301 -#2379 := (= #1855 #2378)
  3.3302 -#2380 := [rewrite]: #2379
  3.3303 -#2383 := [monotonicity #2380]: #2382
  3.3304 -#2386 := [monotonicity #2383]: #2385
  3.3305 -#2389 := [monotonicity #2386]: #2388
  3.3306 -#2392 := [quant-intro #2389]: #2391
  3.3307 -#2375 := (iff #1863 #1848)
  3.3308 -#2376 := [rewrite]: #2375
  3.3309 -#2395 := [monotonicity #2376 #2392]: #2394
  3.3310 -#2400 := [trans #2395 #2398]: #2399
  3.3311 -#2462 := [monotonicity #2400 #2459]: #2461
  3.3312 -#2373 := (iff #1837 #152)
  3.3313 -#2374 := [rewrite]: #2373
  3.3314 -#2371 := (iff #1834 #149)
  3.3315 -#2372 := [rewrite]: #2371
  3.3316 -#2369 := (iff #1831 #147)
  3.3317 -#2370 := [rewrite]: #2369
  3.3318 -#2367 := (iff #1828 #144)
  3.3319 -#2368 := [rewrite]: #2367
  3.3320 -#2465 := [monotonicity #2368 #2370 #2372 #2374 #2462]: #2464
  3.3321 -#2542 := [monotonicity #2465 #2539]: #2541
  3.3322 -#2365 := (iff #1816 #2364)
  3.3323 -#2362 := (iff #1813 #2361)
  3.3324 -#2359 := (iff #1808 #2358)
  3.3325 -#2356 := (iff #1807 #2353)
  3.3326 -#2343 := (+ #1797 #1805)
  3.3327 -#2344 := (+ #1091 #2343)
  3.3328 -#2347 := (= #2344 0::Int)
  3.3329 -#2354 := (iff #2347 #2353)
  3.3330 -#2355 := [rewrite]: #2354
  3.3331 -#2348 := (iff #1807 #2347)
  3.3332 -#2345 := (= #1806 #2344)
  3.3333 -#2346 := [rewrite]: #2345
  3.3334 -#2349 := [monotonicity #2346]: #2348
  3.3335 -#2357 := [trans #2349 #2355]: #2356
  3.3336 -#2341 := (iff #1800 #2340)
  3.3337 -#2338 := (iff #1799 #2335)
  3.3338 -#2327 := (+ #1091 #1797)
  3.3339 -#2330 := (>= #2327 0::Int)
  3.3340 -#2336 := (iff #2330 #2335)
  3.3341 -#2337 := [rewrite]: #2336
  3.3342 -#2331 := (iff #1799 #2330)
  3.3343 -#2328 := (= #1798 #2327)
  3.3344 -#2329 := [rewrite]: #2328
  3.3345 -#2332 := [monotonicity #2329]: #2331
  3.3346 -#2339 := [trans #2332 #2337]: #2338
  3.3347 -#2342 := [monotonicity #2339]: #2341
  3.3348 -#2360 := [monotonicity #2342 #2357]: #2359
  3.3349 -#2363 := [monotonicity #2360]: #2362
  3.3350 -#2366 := [quant-intro #2363]: #2365
  3.3351 -#2325 := (iff #1770 #111)
  3.3352 -#2326 := [rewrite]: #2325
  3.3353 -#2323 := (iff #1764 #2322)
  3.3354 -#2320 := (iff #1761 #2319)
  3.3355 -#2317 := (iff #1756 #2316)
  3.3356 -#2314 := (iff #1755 #2311)
  3.3357 -#2301 := (+ #1744 #1752)
  3.3358 -#2302 := (+ #1053 #2301)
  3.3359 -#2305 := (= #2302 0::Int)
  3.3360 -#2312 := (iff #2305 #2311)
  3.3361 -#2313 := [rewrite]: #2312
  3.3362 -#2306 := (iff #1755 #2305)
  3.3363 -#2303 := (= #1754 #2302)
  3.3364 -#2304 := [rewrite]: #2303
  3.3365 -#2307 := [monotonicity #2304]: #2306
  3.3366 -#2315 := [trans #2307 #2313]: #2314
  3.3367 -#2299 := (iff #1747 #2298)
  3.3368 -#2296 := (iff #1746 #2293)
  3.3369 -#2285 := (+ #1053 #1744)
  3.3370 -#2288 := (>= #2285 0::Int)
  3.3371 -#2294 := (iff #2288 #2293)
  3.3372 -#2295 := [rewrite]: #2294
  3.3373 -#2289 := (iff #1746 #2288)
  3.3374 -#2286 := (= #1745 #2285)
  3.3375 -#2287 := [rewrite]: #2286
  3.3376 -#2290 := [monotonicity #2287]: #2289
  3.3377 -#2297 := [trans #2290 #2295]: #2296
  3.3378 -#2300 := [monotonicity #2297]: #2299
  3.3379 -#2318 := [monotonicity #2300 #2315]: #2317
  3.3380 -#2321 := [monotonicity #2318]: #2320
  3.3381 -#2324 := [quant-intro #2321]: #2323
  3.3382 -#2545 := [monotonicity #2324 #2326 #2366 #2542]: #2544
  3.3383 -#2283 := (iff #1736 #2280)
  3.3384 -#2277 := (and #1710 #1732)
  3.3385 -#2281 := (iff #2277 #2280)
  3.3386 -#2282 := [rewrite]: #2281
  3.3387 -#2278 := (iff #1736 #2277)
  3.3388 -#2275 := (iff #1726 #1710)
  3.3389 -#2276 := [rewrite]: #2275
  3.3390 -#2279 := [monotonicity #2276]: #2278
  3.3391 -#2284 := [trans #2279 #2282]: #2283
  3.3392 -#2548 := [monotonicity #2284 #2545]: #2547
  3.3393 -#2551 := [monotonicity #2548]: #2550
  3.3394 -#2273 := (iff #1690 #2272)
  3.3395 -#2270 := (iff #1689 #2269)
  3.3396 -#2267 := (iff #1688 #2266)
  3.3397 -#2264 := (= #1687 #2263)
  3.3398 -#2265 := [rewrite]: #2264
  3.3399 -#2268 := [monotonicity #2265]: #2267
  3.3400 -#2271 := [monotonicity #2268]: #2270
  3.3401 -#2274 := [monotonicity #2271]: #2273
  3.3402 -#2554 := [monotonicity #2274 #2551]: #2553
  3.3403 -#2557 := [monotonicity #2554]: #2556
  3.3404 -#2560 := [monotonicity #2557]: #2559
  3.3405 -#2563 := [monotonicity #2560]: #2562
  3.3406 -#2566 := [monotonicity #2563]: #2565
  3.3407 -#2260 := (iff #1593 #81)
  3.3408 -#2261 := [rewrite]: #2260
  3.3409 -#2569 := [monotonicity #2261 #2566]: #2568
  3.3410 -#2572 := [monotonicity #2569]: #2571
  3.3411 -#1568 := (not #1542)
  3.3412 -#2255 := (~ #1568 #2254)
  3.3413 -#2251 := (not #1539)
  3.3414 -#2252 := (~ #2251 #2250)
  3.3415 -#2247 := (not #1536)
  3.3416 -#2248 := (~ #2247 #2246)
  3.3417 -#2243 := (not #1533)
  3.3418 -#2244 := (~ #2243 #2242)
  3.3419 -#2239 := (not #1530)
  3.3420 -#2240 := (~ #2239 #2238)
  3.3421 -#2235 := (not #1527)
  3.3422 -#2236 := (~ #2235 #2234)
  3.3423 -#2231 := (not #1524)
  3.3424 -#2232 := (~ #2231 #2230)
  3.3425 -#2227 := (not #1521)
  3.3426 -#2228 := (~ #2227 #2226)
  3.3427 -#2223 := (not #1518)
  3.3428 -#2224 := (~ #2223 #2222)
  3.3429 -#2219 := (not #1513)
  3.3430 -#2220 := (~ #2219 #2218)
  3.3431 -#2215 := (not #1451)
  3.3432 -#2216 := (~ #2215 #2214)
  3.3433 -#2211 := (not #1446)
  3.3434 -#2212 := (~ #2211 #2210)
  3.3435 -#2207 := (not #1377)
  3.3436 -#2208 := (~ #2207 #2206)
  3.3437 -#2203 := (not #1374)
  3.3438 -#2204 := (~ #2203 #2202)
  3.3439 -#2199 := (not #1371)
  3.3440 -#2200 := (~ #2199 #2198)
  3.3441 -#2195 := (not #1368)
  3.3442 -#2196 := (~ #2195 #2194)
  3.3443 -#2191 := (not #1365)
  3.3444 -#2192 := (~ #2191 #2190)
  3.3445 -#2187 := (not #1362)
  3.3446 -#2188 := (~ #2187 #2186)
  3.3447 -#2183 := (not #1359)
  3.3448 -#2184 := (~ #2183 #2182)
  3.3449 -#2179 := (not #1356)
  3.3450 -#2180 := (~ #2179 #2178)
  3.3451 -#2175 := (not #1353)
  3.3452 -#2176 := (~ #2175 #2174)
  3.3453 -#2171 := (not #1350)
  3.3454 -#2172 := (~ #2171 #2170)
  3.3455 -#2167 := (not #1347)
  3.3456 -#2168 := (~ #2167 #2166)
  3.3457 -#2163 := (not #1344)
  3.3458 -#2164 := (~ #2163 #2162)
  3.3459 -#2144 := (not #1341)
  3.3460 -#2160 := (~ #2144 #2157)
  3.3461 -#2141 := (exists (vars (?v1 S2)) #2140)
  3.3462 -#2142 := (or #2132 #2141)
  3.3463 -#2143 := (not #2142)
  3.3464 -#2158 := (~ #2143 #2157)
  3.3465 -#2154 := (not #2141)
  3.3466 -#2155 := (~ #2154 #2153)
  3.3467 -#2151 := (~ #2150 #2150)
  3.3468 -#2152 := [refl]: #2151
  3.3469 -#2156 := [nnf-neg #2152]: #2155
  3.3470 -#2148 := (~ #2147 #2147)
  3.3471 -#2149 := [refl]: #2148
  3.3472 -#2159 := [nnf-neg #2149 #2156]: #2158
  3.3473 -#2145 := (~ #2144 #2143)
  3.3474 -#2146 := [sk]: #2145
  3.3475 -#2161 := [trans #2146 #2159]: #2160
  3.3476 -#2120 := (not #1304)
  3.3477 -#2121 := (~ #2120 #1301)
  3.3478 -#2118 := (~ #1301 #1301)
  3.3479 -#2116 := (~ #1298 #1298)
  3.3480 -#2117 := [refl]: #2116
  3.3481 -#2119 := [nnf-pos #2117]: #2118
  3.3482 -#2122 := [nnf-neg #2119]: #2121
  3.3483 -#2165 := [nnf-neg #2122 #2161]: #2164
  3.3484 -#2112 := (~ #1304 #2111)
  3.3485 -#2113 := [sk]: #2112
  3.3486 -#2169 := [nnf-neg #2113 #2165]: #2168
  3.3487 -#2088 := (not #1285)
  3.3488 -#2089 := (~ #2088 #1282)
  3.3489 -#2086 := (~ #1282 #1282)
  3.3490 -#2084 := (~ #1279 #1279)
  3.3491 -#2085 := [refl]: #2084
  3.3492 -#2087 := [nnf-pos #2085]: #2086
  3.3493 -#2090 := [nnf-neg #2087]: #2089
  3.3494 -#2173 := [nnf-neg #2090 #2169]: #2172
  3.3495 -#2080 := (~ #1285 #2079)
  3.3496 -#2081 := [sk]: #2080
  3.3497 -#2177 := [nnf-neg #2081 #2173]: #2176
  3.3498 -#2061 := (not #1271)
  3.3499 -#2062 := (~ #2061 #1268)
  3.3500 -#2059 := (~ #1268 #1268)
  3.3501 -#2057 := (~ #1265 #1265)
  3.3502 -#2058 := [refl]: #2057
  3.3503 -#2060 := [nnf-pos #2058]: #2059
  3.3504 -#2063 := [nnf-neg #2060]: #2062
  3.3505 -#2181 := [nnf-neg #2063 #2177]: #2180
  3.3506 -#2053 := (~ #1271 #2052)
  3.3507 -#2054 := [sk]: #2053
  3.3508 -#2185 := [nnf-neg #2054 #2181]: #2184
  3.3509 -#2047 := (~ #2046 #2046)
  3.3510 -#2048 := [refl]: #2047
  3.3511 -#2189 := [nnf-neg #2048 #2185]: #2188
  3.3512 -#2044 := (~ #713 #713)
  3.3513 -#2045 := [refl]: #2044
  3.3514 -#2193 := [nnf-neg #2045 #2189]: #2192
  3.3515 -#2041 := (not #736)
  3.3516 -#2042 := (~ #2041 #606)
  3.3517 -#2039 := (~ #606 #606)
  3.3518 -#2037 := (~ #603 #603)
  3.3519 -#2038 := [refl]: #2037
  3.3520 -#2040 := [nnf-pos #2038]: #2039
  3.3521 -#2043 := [nnf-neg #2040]: #2042
  3.3522 -#2197 := [nnf-neg #2043 #2193]: #2196
  3.3523 -#2033 := (~ #736 #2032)
  3.3524 -#2034 := [sk]: #2033
  3.3525 -#2201 := [nnf-neg #2034 #2197]: #2200
  3.3526 -#2021 := (not #1262)
  3.3527 -#2022 := (~ #2021 #1259)
  3.3528 -#2019 := (~ #1259 #1259)
  3.3529 -#2017 := (~ #1254 #1254)
  3.3530 -#2018 := [refl]: #2017
  3.3531 -#2020 := [nnf-pos #2018]: #2019
  3.3532 -#2023 := [nnf-neg #2020]: #2022
  3.3533 -#2205 := [nnf-neg #2023 #2201]: #2204
  3.3534 -#2013 := (~ #1262 #2012)
  3.3535 -#2014 := [sk]: #2013
  3.3536 -#2209 := [nnf-neg #2014 #2205]: #2208
  3.3537 -#2003 := (not #1251)
  3.3538 -#2004 := (~ #2003 #1248)
  3.3539 -#2001 := (~ #1248 #1248)
  3.3540 -#1999 := (~ #1245 #1245)
  3.3541 -#2000 := [refl]: #1999
  3.3542 -#2002 := [nnf-pos #2000]: #2001
  3.3543 -#2005 := [nnf-neg #2002]: #2004
  3.3544 -#1996 := (not #1394)
  3.3545 -#1997 := (~ #1996 #1391)
  3.3546 -#1994 := (~ #1391 #1391)
  3.3547 -#1992 := (~ #1388 #1388)
  3.3548 -#1993 := [refl]: #1992
  3.3549 -#1995 := [nnf-pos #1993]: #1994
  3.3550 -#1998 := [nnf-neg #1995]: #1997
  3.3551 -#1990 := (~ #1989 #1989)
  3.3552 -#1991 := [refl]: #1990
  3.3553 -#1986 := (not #1407)
  3.3554 -#1987 := (~ #1986 #1404)
  3.3555 -#1984 := (~ #1404 #1404)
  3.3556 -#1982 := (~ #1401 #1401)
  3.3557 -#1983 := [refl]: #1982
  3.3558 -#1985 := [nnf-pos #1983]: #1984
  3.3559 -#1988 := [nnf-neg #1985]: #1987
  3.3560 -#1980 := (~ #1412 #1412)
  3.3561 -#1981 := [refl]: #1980
  3.3562 -#1978 := (~ #189 #189)
  3.3563 -#1979 := [refl]: #1978
  3.3564 -#1975 := (not #1422)
  3.3565 -#1976 := (~ #1975 #1970)
  3.3566 -#1971 := (~ #1206 #1970)
  3.3567 -#1972 := [sk]: #1971
  3.3568 -#1977 := [nnf-neg #1972]: #1976
  3.3569 -#2213 := [nnf-neg #1977 #1979 #1981 #1988 #1991 #1998 #2005 #2209]: #2212
  3.3570 -#1958 := (not #1224)
  3.3571 -#1959 := (~ #1958 #1957)
  3.3572 -#1954 := (not #1200)
  3.3573 -#1955 := (~ #1954 #1953)
  3.3574 -#1950 := (not #1197)
  3.3575 -#1951 := (~ #1950 #1949)
  3.3576 -#1946 := (not #1194)
  3.3577 -#1947 := (~ #1946 #1945)
  3.3578 -#1942 := (not #1191)
  3.3579 -#1943 := (~ #1942 #1941)
  3.3580 -#1939 := (~ #1938 #1938)
  3.3581 -#1940 := [refl]: #1939
  3.3582 -#1935 := (not #1188)
  3.3583 -#1936 := (~ #1935 #1185)
  3.3584 -#1933 := (~ #1185 #1185)
  3.3585 -#1931 := (~ #1182 #1182)
  3.3586 -#1932 := [refl]: #1931
  3.3587 -#1934 := [nnf-pos #1932]: #1933
  3.3588 -#1937 := [nnf-neg #1934]: #1936
  3.3589 -#1944 := [nnf-neg #1937 #1940]: #1943
  3.3590 -#1927 := (~ #1188 #1926)
  3.3591 -#1928 := [sk]: #1927
  3.3592 -#1948 := [nnf-neg #1928 #1944]: #1947
  3.3593 -#1901 := (not #1170)
  3.3594 -#1902 := (~ #1901 #1898)
  3.3595 -#1899 := (~ #1167 #1898)
  3.3596 -#1896 := (~ #1164 #1895)
  3.3597 -#1891 := (~ #1161 #1890)
  3.3598 -#1892 := [sk]: #1891
  3.3599 -#1878 := (~ #1145 #1145)
  3.3600 -#1879 := [refl]: #1878
  3.3601 -#1897 := [monotonicity #1879 #1892]: #1896
  3.3602 -#1900 := [nnf-pos #1897]: #1899
  3.3603 -#1903 := [nnf-neg #1900]: #1902
  3.3604 -#1952 := [nnf-neg #1903 #1948]: #1951
  3.3605 -#1876 := (~ #1170 #1873)
  3.3606 -#1858 := (exists (vars (?v1 S2)) #1857)
  3.3607 -#1859 := (or #1849 #1858)
  3.3608 -#1860 := (not #1859)
  3.3609 -#1874 := (~ #1860 #1873)
  3.3610 -#1870 := (not #1858)
  3.3611 -#1871 := (~ #1870 #1869)
  3.3612 -#1867 := (~ #1866 #1866)
  3.3613 -#1868 := [refl]: #1867
  3.3614 -#1872 := [nnf-neg #1868]: #1871
  3.3615 -#1864 := (~ #1863 #1863)
  3.3616 -#1865 := [refl]: #1864
  3.3617 -#1875 := [nnf-neg #1865 #1872]: #1874
  3.3618 -#1861 := (~ #1170 #1860)
  3.3619 -#1862 := [sk]: #1861
  3.3620 -#1877 := [trans #1862 #1875]: #1876
  3.3621 -#1956 := [nnf-neg #1877 #1952]: #1955
  3.3622 -#1838 := (~ #1837 #1837)
  3.3623 -#1839 := [refl]: #1838
  3.3624 -#1835 := (~ #1834 #1834)
  3.3625 -#1836 := [refl]: #1835
  3.3626 -#1832 := (~ #1831 #1831)
  3.3627 -#1833 := [refl]: #1832
  3.3628 -#1829 := (~ #1828 #1828)
  3.3629 -#1830 := [refl]: #1829
  3.3630 -#1826 := (~ #1422 #1825)
  3.3631 -#1823 := (~ #1822 #1822)
  3.3632 -#1824 := [refl]: #1823
  3.3633 -#1827 := [nnf-neg #1824]: #1826
  3.3634 -#1960 := [nnf-neg #1827 #1830 #1833 #1836 #1839 #1956]: #1959
  3.3635 -#2217 := [nnf-neg #1960 #2213]: #2216
  3.3636 -#1819 := (not #1133)
  3.3637 -#1820 := (~ #1819 #1816)
  3.3638 -#1817 := (~ #1130 #1816)
  3.3639 -#1814 := (~ #1127 #1813)
  3.3640 -#1809 := (~ #1124 #1808)
  3.3641 -#1810 := [sk]: #1809
  3.3642 -#1794 := (~ #1100 #1100)
  3.3643 -#1795 := [refl]: #1794
  3.3644 -#1815 := [monotonicity #1795 #1810]: #1814
  3.3645 -#1818 := [nnf-pos #1815]: #1817
  3.3646 -#1821 := [nnf-neg #1818]: #1820
  3.3647 -#1791 := (not #1469)
  3.3648 -#1792 := (~ #1791 #1466)
  3.3649 -#1789 := (~ #1466 #1466)
  3.3650 -#1787 := (~ #1463 #1463)
  3.3651 -#1788 := [refl]: #1787
  3.3652 -#1790 := [nnf-pos #1788]: #1789
  3.3653 -#1793 := [nnf-neg #1790]: #1792
  3.3654 -#1784 := (not #1480)
  3.3655 -#1785 := (~ #1784 #1477)
  3.3656 -#1782 := (~ #1477 #1477)
  3.3657 -#1780 := (~ #1474 #1474)
  3.3658 -#1781 := [refl]: #1780
  3.3659 -#1783 := [nnf-pos #1781]: #1782
  3.3660 -#1786 := [nnf-neg #1783]: #1785
  3.3661 -#1777 := (not #1489)
  3.3662 -#1778 := (~ #1777 #1486)
  3.3663 -#1775 := (~ #1486 #1486)
  3.3664 -#1773 := (~ #1483 #1483)
  3.3665 -#1774 := [refl]: #1773
  3.3666 -#1776 := [nnf-pos #1774]: #1775
  3.3667 -#1779 := [nnf-neg #1776]: #1778
  3.3668 -#1771 := (~ #1770 #1770)
  3.3669 -#1772 := [refl]: #1771
  3.3670 -#1767 := (not #1492)
  3.3671 -#1768 := (~ #1767 #1764)
  3.3672 -#1765 := (~ #1088 #1764)
  3.3673 -#1762 := (~ #1085 #1761)
  3.3674 -#1757 := (~ #1082 #1756)
  3.3675 -#1758 := [sk]: #1757
  3.3676 -#1741 := (~ #1062 #1062)
  3.3677 -#1742 := [refl]: #1741
  3.3678 -#1763 := [monotonicity #1742 #1758]: #1762
  3.3679 -#1766 := [nnf-pos #1763]: #1765
  3.3680 -#1769 := [nnf-neg #1766]: #1768
  3.3681 -#2221 := [nnf-neg #1769 #1772 #1779 #1786 #1793 #1821 #2217]: #2220
  3.3682 -#1739 := (~ #1492 #1736)
  3.3683 -#1721 := (exists (vars (?v1 S2)) #1720)
  3.3684 -#1722 := (or #1711 #1721)
  3.3685 -#1723 := (not #1722)
  3.3686 -#1737 := (~ #1723 #1736)
  3.3687 -#1733 := (not #1721)
  3.3688 -#1734 := (~ #1733 #1732)
  3.3689 -#1730 := (~ #1729 #1729)
  3.3690 -#1731 := [refl]: #1730
  3.3691 -#1735 := [nnf-neg #1731]: #1734
  3.3692 -#1727 := (~ #1726 #1726)
  3.3693 -#1728 := [refl]: #1727
  3.3694 -#1738 := [nnf-neg #1728 #1735]: #1737
  3.3695 -#1724 := (~ #1492 #1723)
  3.3696 -#1725 := [sk]: #1724
  3.3697 -#1740 := [trans #1725 #1738]: #1739
  3.3698 -#2225 := [nnf-neg #1740 #2221]: #2224
  3.3699 -#1699 := (not #1050)
  3.3700 -#1700 := (~ #1699 #1047)
  3.3701 -#1697 := (~ #1047 #1047)
  3.3702 -#1695 := (~ #1044 #1044)
  3.3703 -#1696 := [refl]: #1695
  3.3704 -#1698 := [nnf-pos #1696]: #1697
  3.3705 -#1701 := [nnf-neg #1698]: #1700
  3.3706 -#2229 := [nnf-neg #1701 #2225]: #2228
  3.3707 -#1691 := (~ #1050 #1690)
  3.3708 -#1692 := [sk]: #1691
  3.3709 -#2233 := [nnf-neg #1692 #2229]: #2232
  3.3710 -#1667 := (not #1024)
  3.3711 -#1668 := (~ #1667 #1021)
  3.3712 -#1665 := (~ #1021 #1021)
  3.3713 -#1663 := (~ #1018 #1018)
  3.3714 -#1664 := [refl]: #1663
  3.3715 -#1666 := [nnf-pos #1664]: #1665
  3.3716 -#1669 := [nnf-neg #1666]: #1668
  3.3717 -#2237 := [nnf-neg #1669 #2233]: #2236
  3.3718 -#1659 := (~ #1024 #1658)
  3.3719 -#1660 := [sk]: #1659
  3.3720 -#2241 := [nnf-neg #1660 #2237]: #2240
  3.3721 -#1640 := (not #1009)
  3.3722 -#1641 := (~ #1640 #1006)
  3.3723 -#1638 := (~ #1006 #1006)
  3.3724 -#1636 := (~ #1005 #1005)
  3.3725 -#1637 := [refl]: #1636
  3.3726 -#1639 := [nnf-pos #1637]: #1638
  3.3727 -#1642 := [nnf-neg #1639]: #1641
  3.3728 -#2245 := [nnf-neg #1642 #2241]: #2244
  3.3729 -#1632 := (~ #1009 #1631)
  3.3730 -#1633 := [sk]: #1632
  3.3731 -#2249 := [nnf-neg #1633 #2245]: #2248
  3.3732 -#1594 := (~ #1593 #1593)
  3.3733 -#1627 := [refl]: #1594
  3.3734 -#2253 := [nnf-neg #1627 #2249]: #2252
  3.3735 -#1625 := (~ #946 #946)
  3.3736 -#1626 := [refl]: #1625
  3.3737 -#2256 := [nnf-neg #1626 #2253]: #2255
  3.3738 -#1569 := [not-or-elim #1564]: #1568
  3.3739 -#2257 := [mp~ #1569 #2256]: #2254
  3.3740 -#2258 := [mp #2257 #2572]: #2570
  3.3741 -#3211 := [mp #2258 #3210]: #3208
  3.3742 -#4126 := [mp #3211 #4125]: #4123
  3.3743 -#7087 := [unit-resolution #4126 #4239]: #4120
  3.3744 -#3450 := (or #4117 #4111)
  3.3745 -#3440 := [def-axiom]: #3450
  3.3746 -#7088 := [unit-resolution #3440 #7087]: #4111
  3.3747 -#3446 := (or #4114 #1631 #4108)
  3.3748 -#3448 := [def-axiom]: #3446
  3.3749 -#7089 := [unit-resolution #3448 #7088 #4166]: #4108
  3.3750 -#3444 := (or #4105 #4099)
  3.3751 -#3447 := [def-axiom]: #3444
  3.3752 -#7090 := [unit-resolution #3447 #7089]: #4099
  3.3753 -#3306 := (or #4102 #1634 #4096)
  3.3754 -#3464 := [def-axiom]: #3306
  3.3755 -#7091 := [unit-resolution #3464 #7090]: #4099
  3.3756 -#7092 := [unit-resolution #7091 #7086]: #4096
  3.3757 -#3486 := (or #4093 #4087)
  3.3758 -#3456 := [def-axiom]: #3486
  3.3759 -#7093 := [unit-resolution #3456 #7092]: #4087
  3.3760 -#7095 := (or #4090 #4084)
  3.3761 -#6151 := [hypothesis]: #1673
  3.3762 -#4285 := (or #7029 #2592)
  3.3763 -#4289 := [quant-inst #1670]: #4285
  3.3764 -#6152 := [unit-resolution #4289 #3755 #6151]: false
  3.3765 -#6170 := [lemma #6152]: #2592
  3.3766 -#3366 := (or #2607 #1673)
  3.3767 -#3363 := [def-axiom]: #3366
  3.3768 -#7094 := [unit-resolution #3363 #6170]: #2607
  3.3769 -#3483 := (or #4090 #2612 #4084)
  3.3770 -#3484 := [def-axiom]: #3483
  3.3771 -#7096 := [unit-resolution #3484 #7094]: #7095
  3.3772 -#7097 := [unit-resolution #7096 #7093]: #4084
  3.3773 -#3467 := (or #4081 #4075)
  3.3774 -#3474 := [def-axiom]: #3467
  3.3775 -#7098 := [unit-resolution #3474 #7097]: #4075
  3.3776 -#3504 := (or #4078 #3794 #4072)
  3.3777 -#3489 := [def-axiom]: #3504
  3.3778 -#7099 := [unit-resolution #3489 #7098 #6210]: #4072
  3.3779 -#3496 := (or #4069 #4063)
  3.3780 -#3497 := [def-axiom]: #3496
  3.3781 -#8263 := [unit-resolution #3497 #7099]: #4063
  3.3782 -#6420 := (f19 f20 ?v0!8)
  3.3783 -#6418 := (* -1::Int #6420)
  3.3784 -#6421 := (+ f14 #6418)
  3.3785 -#6440 := (<= #6421 0::Int)
  3.3786 -#6559 := (?v1!7 ?v0!8)
  3.3787 -#6669 := (f6 f7 #6559)
  3.3788 -#6677 := (f5 #6669 ?v0!8)
  3.3789 -#6678 := (f15 #6677)
  3.3790 -#6676 := (* -1::Int #6678)
  3.3791 -#6561 := (f19 f20 #6559)
  3.3792 -#6563 := (* -1::Int #6561)
  3.3793 -#6673 := (+ #6563 #6676)
  3.3794 -#6661 := (+ #6420 #6673)
  3.3795 -#6662 := (= #6661 0::Int)
  3.3796 -#6715 := (not #6662)
  3.3797 -#6565 := (f9 f21 #6559)
  3.3798 -#6571 := (= #6565 f1)
  3.3799 -#6660 := (not #6571)
  3.3800 -#6564 := (+ #6420 #6563)
  3.3801 -#6562 := (<= #6564 0::Int)
  3.3802 -#6716 := (or #6562 #6660 #6715)
  3.3803 -#7070 := [hypothesis]: #3906
  3.3804 -#3648 := (or #3903 #149)
  3.3805 -#3643 := [def-axiom]: #3648
  3.3806 -#7106 := [unit-resolution #3643 #7070]: #149
  3.3807 -#3491 := (or #3903 #3897)
  3.3808 -#3492 := [def-axiom]: #3491
  3.3809 -#7107 := [unit-resolution #3492 #7070]: #3897
  3.3810 -#3520 := (or #4069 #111)
  3.3811 -#3521 := [def-axiom]: #3520
  3.3812 -#7324 := [unit-resolution #3521 #7099]: #111
  3.3813 -#4279 := (or #531 #169 #878)
  3.3814 -#4208 := [hypothesis]: #111
  3.3815 -#4276 := (= #168 #110)
  3.3816 -#4275 := [hypothesis]: #149
  3.3817 -#4274 := [monotonicity #4275]: #4276
  3.3818 -#4277 := [trans #4274 #4208]: #169
  3.3819 -#4174 := [hypothesis]: #1938
  3.3820 -#4278 := [unit-resolution #4174 #4277]: false
  3.3821 -#4292 := [lemma #4278]: #4279
  3.3822 -#7108 := [unit-resolution #4292 #7106 #7324]: #169
  3.3823 -#3387 := (or #3879 #1938)
  3.3824 -#3388 := [def-axiom]: #3387
  3.3825 -#7066 := [unit-resolution #3388 #7108]: #3879
  3.3826 -#3644 := (or #3903 #3840)
  3.3827 -#3645 := [def-axiom]: #3644
  3.3828 -#7069 := [unit-resolution #3645 #7070]: #3840
  3.3829 -#7013 := (or #2843 #3845 #531)
  3.3830 -#6412 := (f19 f20 ?v0!11)
  3.3831 -#6414 := (* -1::Int #6412)
  3.3832 -#6787 := (+ #1920 #6414)
  3.3833 -#6788 := (<= #6787 0::Int)
  3.3834 -#6785 := (= #1920 #6412)
  3.3835 -#6862 := (= #6412 #1920)
  3.3836 -#6860 := (= f20 f25)
  3.3837 -#6861 := [symm #4275]: #6860
  3.3838 -#6895 := [monotonicity #6861]: #6862
  3.3839 -#6896 := [symm #6895]: #6785
  3.3840 -#6897 := (not #6785)
  3.3841 -#6898 := (or #6897 #6788)
  3.3842 -#6854 := [th-lemma arith triangle-eq]: #6898
  3.3843 -#6855 := [unit-resolution #6854 #6896]: #6788
  3.3844 -#6195 := (f19 f20 ?v1!10)
  3.3845 -#6193 := (* -1::Int #6195)
  3.3846 -#6285 := (+ #1906 #6193)
  3.3847 -#6781 := (>= #6285 0::Int)
  3.3848 -#6295 := (= #1906 #6195)
  3.3849 -#6853 := (= #6195 #1906)
  3.3850 -#6856 := [monotonicity #6861]: #6853
  3.3851 -#6857 := [symm #6856]: #6295
  3.3852 -#6852 := (not #6295)
  3.3853 -#4251 := (or #6852 #6781)
  3.3854 -#4280 := [th-lemma arith triangle-eq]: #4251
  3.3855 -#4281 := [unit-resolution #4280 #6857]: #6781
  3.3856 -#3675 := (not #2445)
  3.3857 -#4345 := [hypothesis]: #2848
  3.3858 -#3673 := (or #2843 #3675)
  3.3859 -#3676 := [def-axiom]: #3673
  3.3860 -#4346 := [unit-resolution #3676 #4345]: #3675
  3.3861 -#7082 := [hypothesis]: #3840
  3.3862 -#3314 := (or #2843 #1917)
  3.3863 -#3315 := [def-axiom]: #3314
  3.3864 -#4379 := [unit-resolution #3315 #4345]: #1917
  3.3865 -#6179 := (+ f14 #6193)
  3.3866 -#6184 := (<= #6179 0::Int)
  3.3867 -#7080 := (not #6184)
  3.3868 -#3672 := (or #2843 #1910)
  3.3869 -#3674 := [def-axiom]: #3672
  3.3870 -#4380 := [unit-resolution #3674 #4345]: #1910
  3.3871 -#7076 := (not #6781)
  3.3872 -#4409 := (or #7080 #1909 #7076)
  3.3873 -#4410 := [th-lemma arith assign-bounds -1 -1]: #4409
  3.3874 -#7011 := [unit-resolution #4410 #4380 #4281]: #7080
  3.3875 -#7075 := (not #6788)
  3.3876 -#7104 := (or #6184 #1916 #3845 #2445 #7076 #7075)
  3.3877 -#6667 := (+ #6195 #6414)
  3.3878 -#6670 := (+ #1913 #6667)
  3.3879 -#6694 := (>= #6670 0::Int)
  3.3880 -#7074 := (not #6694)
  3.3881 -#7071 := [hypothesis]: #6788
  3.3882 -#7072 := [hypothesis]: #6781
  3.3883 -#7073 := [hypothesis]: #3675
  3.3884 -#7077 := (or #7074 #7075 #2445 #7076)
  3.3885 -#7078 := [th-lemma arith assign-bounds -1 -1 1]: #7077
  3.3886 -#7079 := [unit-resolution #7078 #7073 #7072 #7071]: #7074
  3.3887 -#6164 := (f9 f21 ?v1!10)
  3.3888 -#4586 := (= #6164 f1)
  3.3889 -#7081 := [hypothesis]: #7080
  3.3890 -#6183 := (or #4586 #6184)
  3.3891 -#6211 := (or #3845 #4586 #6184)
  3.3892 -#6212 := (or #3845 #6183)
  3.3893 -#6286 := (iff #6212 #6211)
  3.3894 -#6287 := [rewrite]: #6286
  3.3895 -#6280 := [quant-inst #1904]: #6212
  3.3896 -#6288 := [mp #6280 #6287]: #6211
  3.3897 -#7083 := [unit-resolution #6288 #7082]: #6183
  3.3898 -#7084 := [unit-resolution #7083 #7081]: #4586
  3.3899 -#6476 := (not #4586)
  3.3900 -#7101 := (or #6476 #6694)
  3.3901 -#7085 := [hypothesis]: #1917
  3.3902 -#3488 := (or #4069 #3823)
  3.3903 -#3493 := [def-axiom]: #3488
  3.3904 -#7100 := [unit-resolution #3493 #7099]: #3823
  3.3905 -#6719 := (or #3828 #6476 #1916 #6694)
  3.3906 -#6695 := (or #6476 #1916 #6694)
  3.3907 -#6714 := (or #3828 #6695)
  3.3908 -#6721 := (iff #6714 #6719)
  3.3909 -#6722 := [rewrite]: #6721
  3.3910 -#6720 := [quant-inst #1905 #1904]: #6714
  3.3911 -#6723 := [mp #6720 #6722]: #6719
  3.3912 -#7102 := [unit-resolution #6723 #7100 #7085]: #7101
  3.3913 -#7103 := [unit-resolution #7102 #7084 #7079]: false
  3.3914 -#7105 := [lemma #7103]: #7104
  3.3915 -#7012 := [unit-resolution #7105 #7011 #4379 #7082 #4346 #4281 #6855]: false
  3.3916 -#7019 := [lemma #7012]: #7013
  3.3917 -#7109 := [unit-resolution #7019 #7069 #7106]: #2843
  3.3918 -#3660 := (or #3888 #2848 #3882)
  3.3919 -#3657 := [def-axiom]: #3660
  3.3920 -#7110 := [unit-resolution #3657 #7109 #7066]: #3888
  3.3921 -#3372 := (or #3891 #3885)
  3.3922 -#3373 := [def-axiom]: #3372
  3.3923 -#7111 := [unit-resolution #3373 #7110]: #3891
  3.3924 -#3651 := (or #3900 #3860 #3894)
  3.3925 -#3655 := [def-axiom]: #3651
  3.3926 -#7112 := [unit-resolution #3655 #7111 #7107]: #3860
  3.3927 -#3323 := (or #3857 #3849)
  3.3928 -#3664 := [def-axiom]: #3323
  3.3929 -#7113 := [unit-resolution #3664 #7112]: #3849
  3.3930 -#7512 := (or #6716 #3854 #531)
  3.3931 -#6821 := (f19 f25 #6559)
  3.3932 -#7034 := (* -1::Int #6821)
  3.3933 -#7035 := (+ #1843 #7034)
  3.3934 -#7036 := (<= #7035 0::Int)
  3.3935 -#7057 := (+ #6676 #7034)
  3.3936 -#7058 := (+ #1843 #7057)
  3.3937 -#7059 := (= #7058 0::Int)
  3.3938 -#7307 := (+ #6561 #7034)
  3.3939 -#7253 := (>= #7307 0::Int)
  3.3940 -#7306 := (= #6561 #6821)
  3.3941 -#7446 := (= #6821 #6561)
  3.3942 -#7447 := [monotonicity #4275]: #7446
  3.3943 -#7448 := [symm #7447]: #7306
  3.3944 -#7449 := (not #7306)
  3.3945 -#7450 := (or #7449 #7253)
  3.3946 -#7451 := [th-lemma arith triangle-eq]: #7450
  3.3947 -#7452 := [unit-resolution #7451 #7448]: #7253
  3.3948 -#6279 := (+ #1843 #6418)
  3.3949 -#6798 := (>= #6279 0::Int)
  3.3950 -#5095 := (= #1843 #6420)
  3.3951 -#7453 := (= #6420 #1843)
  3.3952 -#7438 := [monotonicity #6861]: #7453
  3.3953 -#7439 := [symm #7438]: #5095
  3.3954 -#7437 := (not #5095)
  3.3955 -#7440 := (or #7437 #6798)
  3.3956 -#7441 := [th-lemma arith triangle-eq]: #7440
  3.3957 -#7442 := [unit-resolution #7441 #7439]: #6798
  3.3958 -#6767 := (>= #6661 0::Int)
  3.3959 -#6490 := (not #6716)
  3.3960 -#7455 := [hypothesis]: #6490
  3.3961 -#6120 := (or #6716 #6662)
  3.3962 -#6113 := [def-axiom]: #6120
  3.3963 -#7456 := [unit-resolution #6113 #7455]: #6662
  3.3964 -#7476 := (or #6715 #6767)
  3.3965 -#7477 := [th-lemma arith triangle-eq]: #7476
  3.3966 -#7478 := [unit-resolution #7477 #7456]: #6767
  3.3967 -#7252 := (<= #7307 0::Int)
  3.3968 -#7479 := (or #7449 #7252)
  3.3969 -#7480 := [th-lemma arith triangle-eq]: #7479
  3.3970 -#7475 := [unit-resolution #7480 #7448]: #7252
  3.3971 -#6792 := (<= #6279 0::Int)
  3.3972 -#7481 := (or #7437 #6792)
  3.3973 -#7482 := [th-lemma arith triangle-eq]: #7481
  3.3974 -#7483 := [unit-resolution #7482 #7439]: #6792
  3.3975 -#6766 := (<= #6661 0::Int)
  3.3976 -#7484 := (or #6715 #6766)
  3.3977 -#7485 := [th-lemma arith triangle-eq]: #7484
  3.3978 -#7506 := [unit-resolution #7485 #7456]: #6766
  3.3979 -#7400 := (not #7253)
  3.3980 -#7405 := (not #6798)
  3.3981 -#7404 := (not #6767)
  3.3982 -#7553 := (not #7252)
  3.3983 -#7337 := (not #6792)
  3.3984 -#7552 := (not #6766)
  3.3985 -#7410 := (or #7059 #7552 #7337 #7553 #7404 #7405 #7400)
  3.3986 -#7550 := [hypothesis]: #7252
  3.3987 -#7330 := [hypothesis]: #6792
  3.3988 -#7551 := [hypothesis]: #6766
  3.3989 -#6858 := (not #7059)
  3.3990 -#7548 := [hypothesis]: #6858
  3.3991 -#7185 := (>= #7058 0::Int)
  3.3992 -#7401 := [hypothesis]: #7253
  3.3993 -#7402 := [hypothesis]: #6798
  3.3994 -#7403 := [hypothesis]: #6767
  3.3995 -#7406 := (or #7185 #7404 #7405 #7400)
  3.3996 -#7407 := [th-lemma arith assign-bounds -1 -1 -1]: #7406
  3.3997 -#7408 := [unit-resolution #7407 #7403 #7402 #7401]: #7185
  3.3998 -#7558 := (not #7185)
  3.3999 -#7562 := (or #7558 #7059 #7552 #7337 #7553)
  3.4000 -#7549 := [hypothesis]: #7185
  3.4001 -#7184 := (<= #7058 0::Int)
  3.4002 -#7554 := (or #7184 #7552 #7337 #7553)
  3.4003 -#7555 := [th-lemma arith assign-bounds -1 -1 -1]: #7554
  3.4004 -#7556 := [unit-resolution #7555 #7551 #7330 #7550]: #7184
  3.4005 -#7557 := (not #7184)
  3.4006 -#7559 := (or #7059 #7557 #7558)
  3.4007 -#7560 := [th-lemma arith triangle-eq]: #7559
  3.4008 -#7561 := [unit-resolution #7560 #7556 #7549 #7548]: false
  3.4009 -#7563 := [lemma #7561]: #7562
  3.4010 -#7409 := [unit-resolution #7563 #7408 #7548 #7551 #7330 #7550]: false
  3.4011 -#7445 := [lemma #7409]: #7410
  3.4012 -#7507 := [unit-resolution #7445 #7506 #7483 #7475 #7478 #7442 #7452]: #7059
  3.4013 -#4250 := (or #7036 #6858)
  3.4014 -#7508 := [hypothesis]: #3849
  3.4015 -#7148 := (or #3854 #7036 #6858)
  3.4016 -#6893 := (+ #1844 #6678)
  3.4017 -#6894 := (+ #6821 #6893)
  3.4018 -#6886 := (= #6894 0::Int)
  3.4019 -#6904 := (not #6886)
  3.4020 -#6822 := (+ #6821 #1844)
  3.4021 -#6278 := (>= #6822 0::Int)
  3.4022 -#6907 := (or #6278 #6904)
  3.4023 -#7149 := (or #3854 #6907)
  3.4024 -#7182 := (iff #7149 #7148)
  3.4025 -#7158 := (or #3854 #4250)
  3.4026 -#7180 := (iff #7158 #7148)
  3.4027 -#7181 := [rewrite]: #7180
  3.4028 -#7159 := (iff #7149 #7158)
  3.4029 -#7060 := (iff #6907 #4250)
  3.4030 -#6859 := (iff #6904 #6858)
  3.4031 -#7067 := (iff #6886 #7059)
  3.4032 -#7045 := (+ #6678 #6821)
  3.4033 -#7048 := (+ #1844 #7045)
  3.4034 -#7055 := (= #7048 0::Int)
  3.4035 -#7063 := (iff #7055 #7059)
  3.4036 -#7064 := [rewrite]: #7063
  3.4037 -#7056 := (iff #6886 #7055)
  3.4038 -#7049 := (= #6894 #7048)
  3.4039 -#7050 := [rewrite]: #7049
  3.4040 -#7054 := [monotonicity #7050]: #7056
  3.4041 -#7068 := [trans #7054 #7064]: #7067
  3.4042 -#4217 := [monotonicity #7068]: #6859
  3.4043 -#7046 := (iff #6278 #7036)
  3.4044 -#7021 := (+ #1844 #6821)
  3.4045 -#7026 := (>= #7021 0::Int)
  3.4046 -#7037 := (iff #7026 #7036)
  3.4047 -#7038 := [rewrite]: #7037
  3.4048 -#7033 := (iff #6278 #7026)
  3.4049 -#7022 := (= #6822 #7021)
  3.4050 -#7025 := [rewrite]: #7022
  3.4051 -#6959 := [monotonicity #7025]: #7033
  3.4052 -#7047 := [trans #6959 #7038]: #7046
  3.4053 -#7065 := [monotonicity #7047 #4217]: #7060
  3.4054 -#7179 := [monotonicity #7065]: #7159
  3.4055 -#7183 := [trans #7179 #7181]: #7182
  3.4056 -#7145 := [quant-inst #6559]: #7149
  3.4057 -#7178 := [mp #7145 #7183]: #7148
  3.4058 -#7509 := [unit-resolution #7178 #7508]: #4250
  3.4059 -#7510 := [unit-resolution #7509 #7507]: #7036
  3.4060 -#6768 := (not #6562)
  3.4061 -#6392 := (or #6716 #6768)
  3.4062 -#6778 := [def-axiom]: #6392
  3.4063 -#7505 := [unit-resolution #6778 #7455]: #6768
  3.4064 -#7511 := [th-lemma arith farkas -1 -1 -1 1 #7442 #7505 #7452 #7510]: false
  3.4065 -#7513 := [lemma #7511]: #7512
  3.4066 -#7151 := [unit-resolution #7513 #7113 #7106]: #6716
  3.4067 -#7153 := (or #6440 #6490)
  3.4068 -#3678 := (or #3857 #1842)
  3.4069 -#3343 := [def-axiom]: #3678
  3.4070 -#7152 := [unit-resolution #3343 #7112]: #1842
  3.4071 -#3494 := (or #4069 #3831)
  3.4072 -#3495 := [def-axiom]: #3494
  3.4073 -#7150 := [unit-resolution #3495 #7099]: #3831
  3.4074 -#6491 := (or #3836 #1841 #6440 #6490)
  3.4075 -#6489 := (or #1841 #6440 #6490)
  3.4076 -#6492 := (or #3836 #6489)
  3.4077 -#6718 := (iff #6492 #6491)
  3.4078 -#6381 := [rewrite]: #6718
  3.4079 -#6717 := [quant-inst #1840]: #6492
  3.4080 -#6724 := [mp #6717 #6381]: #6491
  3.4081 -#7154 := [unit-resolution #6724 #7150 #7152]: #7153
  3.4082 -#7155 := [unit-resolution #7154 #7151]: #6440
  3.4083 -#3338 := (or #3857 #1847)
  3.4084 -#3680 := [def-axiom]: #3338
  3.4085 -#7156 := [unit-resolution #3680 #7112]: #1847
  3.4086 -#7141 := [symm #7106]: #6860
  3.4087 -#7142 := [monotonicity #7141]: #7453
  3.4088 -#7140 := [symm #7142]: #5095
  3.4089 -#7143 := [unit-resolution #7441 #7140]: #6798
  3.4090 -#7144 := [th-lemma arith farkas -1 -1 1 #7143 #7156 #7155]: false
  3.4091 -#7216 := [lemma #7144]: #3903
  3.4092 -#3508 := (or #4066 #3906 #4060)
  3.4093 -#3510 := [def-axiom]: #3508
  3.4094 -#8264 := [unit-resolution #3510 #7216 #8263]: #4060
  3.4095 -#3548 := (or #4057 #199)
  3.4096 -#3553 := [def-axiom]: #3548
  3.4097 -#9701 := [unit-resolution #3553 #8264]: #199
  3.4098 -#9297 := [symm #9701]: #9268
  3.4099 -#16690 := [monotonicity #9297]: #16482
  3.4100 -#16476 := [monotonicity #16690]: #16582
  3.4101 -#16737 := [symm #16476]: #15124
  3.4102 -#15539 := [monotonicity #16737]: #15122
  3.4103 -#19098 := (not #5176)
  3.4104 -#15519 := [hypothesis]: #19098
  3.4105 -#5179 := (or #4630 #5176)
  3.4106 -#7694 := (f5 #200 ?v0!14)
  3.4107 -#7695 := (f15 #7694)
  3.4108 -#7647 := (* -1::Int #2029)
  3.4109 -#7713 := (+ #7647 #7695)
  3.4110 -#7714 := (+ #190 #7713)
  3.4111 -#7715 := (>= #7714 0::Int)
  3.4112 -#8867 := (not #7715)
  3.4113 -#7696 := (* -1::Int #7695)
  3.4114 -#7697 := (+ f14 #7696)
  3.4115 -#7698 := (<= #7697 0::Int)
  3.4116 -#7746 := (or #7698 #7715)
  3.4117 -#7749 := (not #7746)
  3.4118 -#3637 := (not #2030)
  3.4119 -#10219 := [hypothesis]: #2032
  3.4120 -#3631 := (or #2031 #3637)
  3.4121 -#3638 := [def-axiom]: #3631
  3.4122 -#10218 := [unit-resolution #3638 #10219]: #3637
  3.4123 -#7752 := (or #7749 #2030)
  3.4124 -#7911 := [hypothesis]: #7746
  3.4125 -#8011 := [hypothesis]: #3637
  3.4126 -#3534 := (or #4057 #3927)
  3.4127 -#3515 := [def-axiom]: #3534
  3.4128 -#8861 := [unit-resolution #3515 #8264]: #3927
  3.4129 -#7814 := (or #3932 #7749 #2030)
  3.4130 -#7699 := (+ #1235 #7696)
  3.4131 -#7700 := (+ #2029 #7699)
  3.4132 -#7701 := (<= #7700 0::Int)
  3.4133 -#7743 := (or #7698 #7701)
  3.4134 -#7744 := (not #7743)
  3.4135 -#7745 := (or #7744 #2030)
  3.4136 -#7816 := (or #3932 #7745)
  3.4137 -#7852 := (iff #7816 #7814)
  3.4138 -#7842 := (or #3932 #7752)
  3.4139 -#7846 := (iff #7842 #7814)
  3.4140 -#7850 := [rewrite]: #7846
  3.4141 -#7813 := (iff #7816 #7842)
  3.4142 -#7753 := (iff #7745 #7752)
  3.4143 -#7750 := (iff #7744 #7749)
  3.4144 -#7747 := (iff #7743 #7746)
  3.4145 -#7718 := (iff #7701 #7715)
  3.4146 -#7706 := (+ #2029 #7696)
  3.4147 -#7707 := (+ #1235 #7706)
  3.4148 -#7710 := (<= #7707 0::Int)
  3.4149 -#7716 := (iff #7710 #7715)
  3.4150 -#7717 := [rewrite]: #7716
  3.4151 -#7711 := (iff #7701 #7710)
  3.4152 -#7708 := (= #7700 #7707)
  3.4153 -#7709 := [rewrite]: #7708
  3.4154 -#7712 := [monotonicity #7709]: #7711
  3.4155 -#7719 := [trans #7712 #7717]: #7718
  3.4156 -#7748 := [monotonicity #7719]: #7747
  3.4157 -#7751 := [monotonicity #7748]: #7750
  3.4158 -#7754 := [monotonicity #7751]: #7753
  3.4159 -#7843 := [monotonicity #7754]: #7813
  3.4160 -#7853 := [trans #7843 #7850]: #7852
  3.4161 -#7817 := [quant-inst #2024]: #7816
  3.4162 -#7881 := [mp #7817 #7853]: #7814
  3.4163 -#7907 := [unit-resolution #7881 #8861 #8011 #7911]: false
  3.4164 -#7918 := [lemma #7907]: #7752
  3.4165 -#10226 := [unit-resolution #7918 #10218]: #7749
  3.4166 -#7767 := (or #7746 #8867)
  3.4167 -#7768 := [def-axiom]: #7767
  3.4168 -#10265 := [unit-resolution #7768 #10226]: #8867
  3.4169 -#7674 := (+ #190 #7647)
  3.4170 -#7981 := (>= #7674 0::Int)
  3.4171 -#7663 := (f9 f21 ?v0!14)
  3.4172 -#7664 := (= #7663 f1)
  3.4173 -#7818 := (= ?v0!14 f28)
  3.4174 -#7841 := (not #7818)
  3.4175 -#9402 := (or #7841 #2030)
  3.4176 -#8045 := (= #190 #2029)
  3.4177 -#8033 := (= #2029 #190)
  3.4178 -#8023 := [hypothesis]: #7818
  3.4179 -#9294 := [monotonicity #8023]: #8033
  3.4180 -#9295 := [symm #9294]: #8045
  3.4181 -#8124 := (= #2028 #190)
  3.4182 -#4167 := (f30 f28)
  3.4183 -#4220 := (= #4167 #190)
  3.4184 -#4171 := (f5 #200 f28)
  3.4185 -#4172 := (f15 #4171)
  3.4186 -#4190 := (>= #4172 0::Int)
  3.4187 -#4175 := (* -1::Int #4172)
  3.4188 -#4176 := (+ f14 #4175)
  3.4189 -#4177 := (<= #4176 0::Int)
  3.4190 -#4222 := (or #4177 #4190)
  3.4191 -#7990 := (= #4172 0::Int)
  3.4192 -#8751 := (not #7990)
  3.4193 -#8752 := [hypothesis]: #8751
  3.4194 -#10 := (f6 f7 #9)
  3.4195 -#12 := (f5 #10 #11)
  3.4196 -#3689 := (pattern #12)
  3.4197 -#57 := (f15 #12)
  3.4198 -#58 := (= #57 0::Int)
  3.4199 -#56 := (= #9 #11)
  3.4200 -#61 := (not #56)
  3.4201 -#325 := (or #61 #58)
  3.4202 -#3724 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3689) #325)
  3.4203 -#333 := (forall (vars (?v0 S2) (?v1 S2)) #325)
  3.4204 -#3727 := (iff #333 #3724)
  3.4205 -#3725 := (iff #325 #325)
  3.4206 -#3726 := [refl]: #3725
  3.4207 -#3728 := [quant-intro #3726]: #3727
  3.4208 -#1581 := (~ #333 #333)
  3.4209 -#1612 := (~ #325 #325)
  3.4210 -#1613 := [refl]: #1612
  3.4211 -#1582 := [nnf-pos #1613]: #1581
  3.4212 -#59 := (implies #56 #58)
  3.4213 -#60 := (forall (vars (?v0 S2) (?v1 S2)) #59)
  3.4214 -#334 := (iff #60 #333)
  3.4215 -#331 := (iff #59 #325)
  3.4216 -#332 := [rewrite]: #331
  3.4217 -#335 := [quant-intro #332]: #334
  3.4218 -#324 := [asserted]: #60
  3.4219 -#338 := [mp #324 #335]: #333
  3.4220 -#1583 := [mp~ #338 #1582]: #333
  3.4221 -#3729 := [mp #1583 #3728]: #3724
  3.4222 -#6738 := (not #3724)
  3.4223 -#8741 := (or #6738 #7990)
  3.4224 -#4492 := (= f28 f28)
  3.4225 -#7989 := (not #4492)
  3.4226 -#7997 := (or #7989 #7990)
  3.4227 -#8742 := (or #6738 #7997)
  3.4228 -#8744 := (iff #8742 #8741)
  3.4229 -#8746 := (iff #8741 #8741)
  3.4230 -#8747 := [rewrite]: #8746
  3.4231 -#8007 := (iff #7997 #7990)
  3.4232 -#8002 := (or false #7990)
  3.4233 -#8005 := (iff #8002 #7990)
  3.4234 -#8006 := [rewrite]: #8005
  3.4235 -#8003 := (iff #7997 #8002)
  3.4236 -#8000 := (iff #7989 false)
  3.4237 -#7998 := (iff #7989 #6991)
  3.4238 -#4495 := (iff #4492 true)
  3.4239 -#4496 := [rewrite]: #4495
  3.4240 -#7999 := [monotonicity #4496]: #7998
  3.4241 -#8001 := [trans #7999 #6995]: #8000
  3.4242 -#8004 := [monotonicity #8001]: #8003
  3.4243 -#8008 := [trans #8004 #8006]: #8007
  3.4244 -#8745 := [monotonicity #8008]: #8744
  3.4245 -#8748 := [trans #8745 #8747]: #8744
  3.4246 -#8743 := [quant-inst #186 #186]: #8742
  3.4247 -#8749 := [mp #8743 #8748]: #8741
  3.4248 -#8757 := [unit-resolution #8749 #3729 #8752]: false
  3.4249 -#8758 := [lemma #8757]: #7990
  3.4250 -#9347 := (or #8751 #4190)
  3.4251 -#9298 := [th-lemma arith triangle-eq]: #9347
  3.4252 -#8814 := [unit-resolution #9298 #8758]: #4190
  3.4253 -#7298 := (not #4190)
  3.4254 -#7299 := (or #4222 #7298)
  3.4255 -#7300 := [def-axiom]: #7299
  3.4256 -#8812 := [unit-resolution #7300 #8814]: #4222
  3.4257 -#4225 := (not #4222)
  3.4258 -#4228 := (or #4225 #4220)
  3.4259 -#7231 := (or #3932 #4225 #4220)
  3.4260 -#4178 := (+ #1235 #4175)
  3.4261 -#4179 := (+ #190 #4178)
  3.4262 -#4180 := (<= #4179 0::Int)
  3.4263 -#4218 := (or #4177 #4180)
  3.4264 -#4219 := (not #4218)
  3.4265 -#4221 := (or #4219 #4220)
  3.4266 -#7236 := (or #3932 #4221)
  3.4267 -#7240 := (iff #7236 #7231)
  3.4268 -#7237 := (or #3932 #4228)
  3.4269 -#7239 := (iff #7237 #7231)
  3.4270 -#7186 := [rewrite]: #7239
  3.4271 -#7235 := (iff #7236 #7237)
  3.4272 -#4229 := (iff #4221 #4228)
  3.4273 -#4226 := (iff #4219 #4225)
  3.4274 -#4223 := (iff #4218 #4222)
  3.4275 -#4193 := (iff #4180 #4190)
  3.4276 -#4187 := (<= #4175 0::Int)
  3.4277 -#4191 := (iff #4187 #4190)
  3.4278 -#4192 := [rewrite]: #4191
  3.4279 -#4188 := (iff #4180 #4187)
  3.4280 -#4185 := (= #4179 #4175)
  3.4281 -#4186 := [rewrite]: #4185
  3.4282 -#4189 := [monotonicity #4186]: #4188
  3.4283 -#4194 := [trans #4189 #4192]: #4193
  3.4284 -#4224 := [monotonicity #4194]: #4223
  3.4285 -#4227 := [monotonicity #4224]: #4226
  3.4286 -#4230 := [monotonicity #4227]: #4229
  3.4287 -#7238 := [monotonicity #4230]: #7235
  3.4288 -#7244 := [trans #7238 #7186]: #7240
  3.4289 -#7187 := [quant-inst #186]: #7236
  3.4290 -#7245 := [mp #7187 #7244]: #7231
  3.4291 -#8876 := [unit-resolution #7245 #8861]: #4228
  3.4292 -#9179 := [unit-resolution #8876 #8812]: #4220
  3.4293 -#8016 := (= #2028 #4167)
  3.4294 -#9174 := [monotonicity #8023]: #8016
  3.4295 -#9263 := [trans #9174 #9179]: #8124
  3.4296 -#9301 := [trans #9263 #9295]: #2030
  3.4297 -#9380 := [unit-resolution #8011 #9301]: false
  3.4298 -#9334 := [lemma #9380]: #9402
  3.4299 -#10264 := [unit-resolution #9334 #10218]: #7841
  3.4300 -#7824 := (or #7818 #7664)
  3.4301 -#3636 := (or #2031 #2026)
  3.4302 -#3632 := [def-axiom]: #3636
  3.4303 -#10266 := [unit-resolution #3632 #10219]: #2026
  3.4304 -#8848 := (or #2027 #7824)
  3.4305 -#7797 := (f9 #198 ?v0!14)
  3.4306 -#7815 := (= #7797 f1)
  3.4307 -#9264 := [hypothesis]: #2026
  3.4308 -#7840 := (= #7797 #2025)
  3.4309 -#7882 := [monotonicity #9297]: #7840
  3.4310 -#8403 := [trans #7882 #9264]: #7815
  3.4311 -#9164 := (not #7815)
  3.4312 -#7829 := (iff #7815 #7824)
  3.4313 -#8915 := (or #7628 #7829)
  3.4314 -#7819 := (if #7818 #4146 #7664)
  3.4315 -#7820 := (iff #7815 #7819)
  3.4316 -#8856 := (or #7628 #7820)
  3.4317 -#9309 := (iff #8856 #8915)
  3.4318 -#9313 := (iff #8915 #8915)
  3.4319 -#9314 := [rewrite]: #9313
  3.4320 -#7830 := (iff #7820 #7829)
  3.4321 -#7827 := (iff #7819 #7824)
  3.4322 -#7821 := (if #7818 true #7664)
  3.4323 -#7825 := (iff #7821 #7824)
  3.4324 -#7826 := [rewrite]: #7825
  3.4325 -#7822 := (iff #7819 #7821)
  3.4326 -#7823 := [monotonicity #4149]: #7822
  3.4327 -#7828 := [trans #7823 #7826]: #7827
  3.4328 -#7831 := [monotonicity #7828]: #7830
  3.4329 -#9244 := [monotonicity #7831]: #9309
  3.4330 -#8881 := [trans #9244 #9314]: #9309
  3.4331 -#9311 := [quant-inst #115 #186 #3 #2024]: #8856
  3.4332 -#8878 := [mp #9311 #8881]: #8915
  3.4333 -#9183 := [unit-resolution #8878 #3723]: #7829
  3.4334 -#8883 := (not #7829)
  3.4335 -#9266 := (or #8883 #9164)
  3.4336 -#7847 := (not #7824)
  3.4337 -#9239 := [hypothesis]: #7847
  3.4338 -#8857 := (or #8883 #9164 #7824)
  3.4339 -#8858 := [def-axiom]: #8857
  3.4340 -#9241 := [unit-resolution #8858 #9239]: #9266
  3.4341 -#9302 := [unit-resolution #9241 #9183]: #9164
  3.4342 -#8636 := [unit-resolution #9302 #8403]: false
  3.4343 -#8809 := [lemma #8636]: #8848
  3.4344 -#10473 := [unit-resolution #8809 #10266]: #7824
  3.4345 -#7848 := (or #7847 #7818 #7664)
  3.4346 -#7849 := [def-axiom]: #7848
  3.4347 -#10408 := [unit-resolution #7849 #10473 #10264]: #7664
  3.4348 -#7844 := (not #7664)
  3.4349 -#9165 := (or #7844 #7981)
  3.4350 -#8853 := [hypothesis]: #7664
  3.4351 -#8272 := (not #7981)
  3.4352 -#8886 := [hypothesis]: #8272
  3.4353 -#3545 := (or #4057 #189)
  3.4354 -#3546 := [def-axiom]: #3545
  3.4355 -#8131 := [unit-resolution #3546 #8264]: #189
  3.4356 -#3532 := (or #4069 #3815)
  3.4357 -#3487 := [def-axiom]: #3532
  3.4358 -#8132 := [unit-resolution #3487 #7099]: #3815
  3.4359 -#7991 := (or #3820 #188 #7844 #7981)
  3.4360 -#7982 := (or #188 #7844 #7981)
  3.4361 -#7996 := (or #3820 #7982)
  3.4362 -#8203 := (iff #7996 #7991)
  3.4363 -#8204 := [rewrite]: #8203
  3.4364 -#8202 := [quant-inst #2024 #186]: #7996
  3.4365 -#8205 := [mp #8202 #8204]: #7991
  3.4366 -#8936 := [unit-resolution #8205 #8132 #8131 #8886 #8853]: false
  3.4367 -#9170 := [lemma #8936]: #9165
  3.4368 -#10474 := [unit-resolution #9170 #10408]: #7981
  3.4369 -#10516 := (or #7715 #8272)
  3.4370 -#8693 := (>= #7695 0::Int)
  3.4371 -#7897 := (= #7695 0::Int)
  3.4372 -#9389 := (not #7897)
  3.4373 -#9660 := (not #8693)
  3.4374 -#9386 := [hypothesis]: #9660
  3.4375 -#9403 := (or #9389 #8693)
  3.4376 -#9379 := [th-lemma arith triangle-eq]: #9403
  3.4377 -#9404 := [unit-resolution #9379 #9386]: #9389
  3.4378 -#7892 := (= f28 ?v0!14)
  3.4379 -#7893 := (<= #7695 0::Int)
  3.4380 -#9385 := (or #8693 #7893)
  3.4381 -#9405 := [th-lemma arith farkas 1 1]: #9385
  3.4382 -#9406 := [unit-resolution #9405 #9386]: #7893
  3.4383 -#7894 := (not #7893)
  3.4384 -#7895 := (or #7892 #7894)
  3.4385 -#344 := (<= #57 0::Int)
  3.4386 -#345 := (not #344)
  3.4387 -#348 := (or #56 #345)
  3.4388 -#3730 := (forall (vars (?v0 S2) (?v1 S2)) (:pat #3689) #348)
  3.4389 -#351 := (forall (vars (?v0 S2) (?v1 S2)) #348)
  3.4390 -#3733 := (iff #351 #3730)
  3.4391 -#3731 := (iff #348 #348)
  3.4392 -#3732 := [refl]: #3731
  3.4393 -#3734 := [quant-intro #3732]: #3733
  3.4394 -#1585 := (~ #351 #351)
  3.4395 -#1584 := (~ #348 #348)
  3.4396 -#1614 := [refl]: #1584
  3.4397 -#1586 := [nnf-pos #1614]: #1585
  3.4398 -#62 := (< 0::Int #57)
  3.4399 -#63 := (implies #61 #62)
  3.4400 -#64 := (forall (vars (?v0 S2) (?v1 S2)) #63)
  3.4401 -#354 := (iff #64 #351)
  3.4402 -#337 := (or #56 #62)
  3.4403 -#341 := (forall (vars (?v0 S2) (?v1 S2)) #337)
  3.4404 -#352 := (iff #341 #351)
  3.4405 -#349 := (iff #337 #348)
  3.4406 -#346 := (iff #62 #345)
  3.4407 -#347 := [rewrite]: #346
  3.4408 -#350 := [monotonicity #347]: #349
  3.4409 -#353 := [quant-intro #350]: #352
  3.4410 -#342 := (iff #64 #341)
  3.4411 -#339 := (iff #63 #337)
  3.4412 -#340 := [rewrite]: #339
  3.4413 -#343 := [quant-intro #340]: #342
  3.4414 -#355 := [trans #343 #353]: #354
  3.4415 -#336 := [asserted]: #64
  3.4416 -#356 := [mp #336 #355]: #351
  3.4417 -#1615 := [mp~ #356 #1586]: #351
  3.4418 -#3735 := [mp #1615 #3734]: #3730
  3.4419 -#6342 := (not #3730)
  3.4420 -#8933 := (or #6342 #7892 #7894)
  3.4421 -#8931 := (or #6342 #7895)
  3.4422 -#8940 := (iff #8931 #8933)
  3.4423 -#8941 := [rewrite]: #8940
  3.4424 -#8926 := [quant-inst #186 #2024]: #8931
  3.4425 -#8934 := [mp #8926 #8941]: #8933
  3.4426 -#9408 := [unit-resolution #8934 #3735]: #7895
  3.4427 -#9410 := [unit-resolution #9408 #9406]: #7892
  3.4428 -#7896 := (not #7892)
  3.4429 -#7904 := (or #7896 #7897)
  3.4430 -#8960 := (or #6738 #7896 #7897)
  3.4431 -#8945 := (or #6738 #7904)
  3.4432 -#8665 := (iff #8945 #8960)
  3.4433 -#8668 := [rewrite]: #8665
  3.4434 -#8954 := [quant-inst #186 #2024]: #8945
  3.4435 -#8958 := [mp #8954 #8668]: #8960
  3.4436 -#9411 := [unit-resolution #8958 #3729]: #7904
  3.4437 -#9400 := [unit-resolution #9411 #9410 #9404]: false
  3.4438 -#9401 := [lemma #9400]: #8693
  3.4439 -#9661 := (or #9660 #7715 #8272)
  3.4440 -#8269 := [hypothesis]: #7981
  3.4441 -#9623 := [hypothesis]: #8867
  3.4442 -#9624 := [hypothesis]: #8693
  3.4443 -#9659 := [th-lemma arith farkas 1 -1 1 #9624 #9623 #8269]: false
  3.4444 -#9662 := [lemma #9659]: #9661
  3.4445 -#10513 := [unit-resolution #9662 #9401]: #10516
  3.4446 -#10254 := [unit-resolution #10513 #10474 #10265]: false
  3.4447 -#10267 := [lemma #10254]: #2031
  3.4448 -#3539 := (or #4057 #4051)
  3.4449 -#3540 := [def-axiom]: #3539
  3.4450 -#9888 := [unit-resolution #3540 #8264]: #4051
  3.4451 -#3533 := (or #4057 #3919)
  3.4452 -#3479 := [def-axiom]: #3533
  3.4453 -#8832 := [unit-resolution #3479 #8264]: #3919
  3.4454 -#4211 := (or #2011 #3932 #3924)
  3.4455 -#5422 := [hypothesis]: #3919
  3.4456 -#5349 := [hypothesis]: #3927
  3.4457 -#5149 := [hypothesis]: #2012
  3.4458 -#4951 := (<= #2010 0::Int)
  3.4459 -#4210 := (or #4951 #2011)
  3.4460 -#4205 := [th-lemma arith farkas 1 1]: #4210
  3.4461 -#4212 := [unit-resolution #4205 #5149]: #4951
  3.4462 -#5428 := (not #4951)
  3.4463 -#5460 := (or #5428 #3924 #3932 #2011)
  3.4464 -#4742 := (f5 #200 ?v0!13)
  3.4465 -#4743 := (f15 #4742)
  3.4466 -#4824 := (+ #2009 #4743)
  3.4467 -#4825 := (+ #190 #4824)
  3.4468 -#4953 := (>= #4825 0::Int)
  3.4469 -#4826 := (= #4825 0::Int)
  3.4470 -#4764 := (* -1::Int #4743)
  3.4471 -#4765 := (+ f14 #4764)
  3.4472 -#4766 := (<= #4765 0::Int)
  3.4473 -#4886 := (not #4766)
  3.4474 -#4685 := (* -1::Int #2007)
  3.4475 -#4797 := (+ #4685 #4743)
  3.4476 -#4798 := (+ #190 #4797)
  3.4477 -#4799 := (>= #4798 0::Int)
  3.4478 -#4959 := (or #4766 #4799)
  3.4479 -#4964 := (not #4959)
  3.4480 -#4960 := (= #2008 #2007)
  3.4481 -#5304 := (not #4960)
  3.4482 -#4946 := (= #2007 #2008)
  3.4483 -#5150 := (not #4946)
  3.4484 -#5348 := (iff #5150 #5304)
  3.4485 -#5128 := (iff #4946 #4960)
  3.4486 -#5347 := [commutativity]: #5128
  3.4487 -#5343 := [monotonicity #5347]: #5348
  3.4488 -#5151 := (or #5150 #2011)
  3.4489 -#5345 := [th-lemma arith triangle-eq]: #5151
  3.4490 -#5346 := [unit-resolution #5345 #5149]: #5150
  3.4491 -#5127 := [mp #5346 #5343]: #5304
  3.4492 -#4968 := (or #4964 #4960)
  3.4493 -#4973 := (or #3932 #4964 #4960)
  3.4494 -#4767 := (+ #1235 #4764)
  3.4495 -#4762 := (+ #2007 #4767)
  3.4496 -#4763 := (<= #4762 0::Int)
  3.4497 -#4954 := (or #4766 #4763)
  3.4498 -#4955 := (not #4954)
  3.4499 -#4961 := (or #4955 #4960)
  3.4500 -#4978 := (or #3932 #4961)
  3.4501 -#4878 := (iff #4978 #4973)
  3.4502 -#4880 := (or #3932 #4968)
  3.4503 -#4882 := (iff #4880 #4973)
  3.4504 -#4883 := [rewrite]: #4882
  3.4505 -#4881 := (iff #4978 #4880)
  3.4506 -#4971 := (iff #4961 #4968)
  3.4507 -#4969 := (iff #4955 #4964)
  3.4508 -#4962 := (iff #4954 #4959)
  3.4509 -#4822 := (iff #4763 #4799)
  3.4510 -#4772 := (+ #2007 #4764)
  3.4511 -#4793 := (+ #1235 #4772)
  3.4512 -#4796 := (<= #4793 0::Int)
  3.4513 -#4800 := (iff #4796 #4799)
  3.4514 -#4801 := [rewrite]: #4800
  3.4515 -#4791 := (iff #4763 #4796)
  3.4516 -#4794 := (= #4762 #4793)
  3.4517 -#4795 := [rewrite]: #4794
  3.4518 -#4792 := [monotonicity #4795]: #4791
  3.4519 -#4823 := [trans #4792 #4801]: #4822
  3.4520 -#4963 := [monotonicity #4823]: #4962
  3.4521 -#4970 := [monotonicity #4963]: #4969
  3.4522 -#4972 := [monotonicity #4970]: #4971
  3.4523 -#4879 := [monotonicity #4972]: #4881
  3.4524 -#4884 := [trans #4879 #4883]: #4878
  3.4525 -#4979 := [quant-inst #2006]: #4978
  3.4526 -#4885 := [mp #4979 #4884]: #4973
  3.4527 -#5350 := [unit-resolution #4885 #5349]: #4968
  3.4528 -#5351 := [unit-resolution #5350 #5127]: #4964
  3.4529 -#4980 := (or #4959 #4886)
  3.4530 -#4943 := [def-axiom]: #4980
  3.4531 -#5420 := [unit-resolution #4943 #5351]: #4886
  3.4532 -#4941 := (not #4799)
  3.4533 -#4942 := (or #4959 #4941)
  3.4534 -#4944 := [def-axiom]: #4942
  3.4535 -#5421 := [unit-resolution #4944 #5351]: #4941
  3.4536 -#4829 := (or #4766 #4799 #4826)
  3.4537 -#4852 := (or #3924 #4766 #4799 #4826)
  3.4538 -#4768 := (+ #4743 #2009)
  3.4539 -#4769 := (+ #190 #4768)
  3.4540 -#4770 := (= #4769 0::Int)
  3.4541 -#4771 := (or #4766 #4763 #4770)
  3.4542 -#4853 := (or #3924 #4771)
  3.4543 -#4858 := (iff #4853 #4852)
  3.4544 -#4849 := (or #3924 #4829)
  3.4545 -#4856 := (iff #4849 #4852)
  3.4546 -#4857 := [rewrite]: #4856
  3.4547 -#4850 := (iff #4853 #4849)
  3.4548 -#4830 := (iff #4771 #4829)
  3.4549 -#4827 := (iff #4770 #4826)
  3.4550 -#4820 := (= #4769 #4825)
  3.4551 -#4821 := [rewrite]: #4820
  3.4552 -#4828 := [monotonicity #4821]: #4827
  3.4553 -#4851 := [monotonicity #4823 #4828]: #4830
  3.4554 -#4855 := [monotonicity #4851]: #4850
  3.4555 -#4859 := [trans #4855 #4857]: #4858
  3.4556 -#4854 := [quant-inst #2006]: #4853
  3.4557 -#4887 := [mp #4854 #4859]: #4852
  3.4558 -#5423 := [unit-resolution #4887 #5422]: #4829
  3.4559 -#5418 := [unit-resolution #5423 #5421 #5420]: #4826
  3.4560 -#5424 := (not #4826)
  3.4561 -#5395 := (or #5424 #4953)
  3.4562 -#5419 := [th-lemma arith triangle-eq]: #5395
  3.4563 -#5425 := [unit-resolution #5419 #5418]: #4953
  3.4564 -#5426 := [hypothesis]: #4951
  3.4565 -#5427 := [th-lemma arith farkas 1 -1 1 #5426 #5421 #5425]: false
  3.4566 -#5480 := [lemma #5427]: #5460
  3.4567 -#4213 := [unit-resolution #5480 #4212 #5149 #5349 #5422]: false
  3.4568 -#4215 := [lemma #4213]: #4211
  3.4569 -#9889 := [unit-resolution #4215 #8861 #8832]: #2011
  3.4570 -#3538 := (or #4054 #2012 #4048)
  3.4571 -#3431 := [def-axiom]: #3538
  3.4572 -#9893 := [unit-resolution #3431 #9889 #9888]: #4048
  3.4573 -#3559 := (or #4045 #4039)
  3.4574 -#3560 := [def-axiom]: #3559
  3.4575 -#18769 := [unit-resolution #3560 #9893]: #4039
  3.4576 -#3558 := (or #4042 #2032 #4036)
  3.4577 -#3554 := [def-axiom]: #3558
  3.4578 -#18770 := [unit-resolution #3554 #18769]: #4039
  3.4579 -#18771 := [unit-resolution #18770 #10267]: #4036
  3.4580 -#3586 := (or #4033 #3944)
  3.4581 -#3564 := [def-axiom]: #3586
  3.4582 -#18772 := [unit-resolution #3564 #18771]: #3944
  3.4583 -#11863 := (or #3949 #4630 #5176)
  3.4584 -#11888 := (or #3949 #5179)
  3.4585 -#11865 := (iff #11888 #11863)
  3.4586 -#11884 := [rewrite]: #11865
  3.4587 -#11905 := [quant-inst #2123]: #11888
  3.4588 -#11867 := [mp #11905 #11884]: #11863
  3.4589 -#10037 := [unit-resolution #11867 #18772]: #5179
  3.4590 -#15919 := [unit-resolution #10037 #15519]: #4630
  3.4591 -#15588 := [mp #15919 #15539]: #15284
  3.4592 -#15473 := (not #14478)
  3.4593 -#15461 := (or #15473 #14450 #15350)
  3.4594 -#15360 := [def-axiom]: #15461
  3.4595 -#15572 := [unit-resolution #15360 #15588 #16371]: #15350
  3.4596 -#15307 := (or #14460 #15274)
  3.4597 -#15417 := [def-axiom]: #15307
  3.4598 -#15639 := [unit-resolution #15417 #15572]: #15274
  3.4599 -#15258 := [mp #15639 #14829]: #19613
  3.4600 -#5210 := (f5 #200 ?v0!20)
  3.4601 -#5211 := (f15 #5210)
  3.4602 -#19610 := (<= #5211 0::Int)
  3.4603 -#19614 := (= #5211 0::Int)
  3.4604 -#5267 := (+ #2127 #5211)
  3.4605 -#5268 := (+ #190 #5267)
  3.4606 -#14690 := (<= #5268 0::Int)
  3.4607 -#5271 := (= #5268 0::Int)
  3.4608 -#5228 := (+ #5194 #5211)
  3.4609 -#5229 := (+ #190 #5228)
  3.4610 -#5230 := (>= #5229 0::Int)
  3.4611 -#5212 := (* -1::Int #5211)
  3.4612 -#5213 := (+ f14 #5212)
  3.4613 -#5214 := (<= #5213 0::Int)
  3.4614 -#5235 := (or #5214 #5230)
  3.4615 -#5238 := (not #5235)
  3.4616 -#5241 := (or #5238 #5176)
  3.4617 -#11930 := (or #3932 #5238 #5176)
  3.4618 -#5215 := (+ #1235 #5212)
  3.4619 -#5216 := (+ #5169 #5215)
  3.4620 -#5217 := (<= #5216 0::Int)
  3.4621 -#5218 := (or #5214 #5217)
  3.4622 -#5219 := (not #5218)
  3.4623 -#5220 := (or #5219 #5176)
  3.4624 -#11948 := (or #3932 #5220)
  3.4625 -#11916 := (iff #11948 #11930)
  3.4626 -#11956 := (or #3932 #5241)
  3.4627 -#11947 := (iff #11956 #11930)
  3.4628 -#11957 := [rewrite]: #11947
  3.4629 -#11952 := (iff #11948 #11956)
  3.4630 -#5242 := (iff #5220 #5241)
  3.4631 -#5239 := (iff #5219 #5238)
  3.4632 -#5236 := (iff #5218 #5235)
  3.4633 -#5233 := (iff #5217 #5230)
  3.4634 -#5221 := (+ #5169 #5212)
  3.4635 -#5222 := (+ #1235 #5221)
  3.4636 -#5225 := (<= #5222 0::Int)
  3.4637 -#5231 := (iff #5225 #5230)
  3.4638 -#5232 := [rewrite]: #5231
  3.4639 -#5226 := (iff #5217 #5225)
  3.4640 -#5223 := (= #5216 #5222)
  3.4641 -#5224 := [rewrite]: #5223
  3.4642 -#5227 := [monotonicity #5224]: #5226
  3.4643 -#5234 := [trans #5227 #5232]: #5233
  3.4644 -#5237 := [monotonicity #5234]: #5236
  3.4645 -#5240 := [monotonicity #5237]: #5239
  3.4646 -#5243 := [monotonicity #5240]: #5242
  3.4647 -#11958 := [monotonicity #5243]: #11952
  3.4648 -#11917 := [trans #11958 #11957]: #11916
  3.4649 -#11951 := [quant-inst #2123]: #11948
  3.4650 -#11918 := [mp #11951 #11917]: #11930
  3.4651 -#14638 := [unit-resolution #11918 #8861]: #5241
  3.4652 -#15554 := [unit-resolution #14638 #15519]: #5238
  3.4653 -#19224 := (or #5235 #5271)
  3.4654 -#19170 := (not #5271)
  3.4655 -#19168 := [hypothesis]: #19170
  3.4656 -#11915 := (not #5214)
  3.4657 -#19162 := [hypothesis]: #5238
  3.4658 -#11961 := (or #5235 #11915)
  3.4659 -#11877 := [def-axiom]: #11961
  3.4660 -#19173 := [unit-resolution #11877 #19162]: #11915
  3.4661 -#11896 := (not #5230)
  3.4662 -#11943 := (or #5235 #11896)
  3.4663 -#11880 := [def-axiom]: #11943
  3.4664 -#19184 := [unit-resolution #11880 #19162]: #11896
  3.4665 -#5274 := (or #5214 #5230 #5271)
  3.4666 -#11968 := (or #3924 #5214 #5230 #5271)
  3.4667 -#5263 := (+ #5211 #2127)
  3.4668 -#5264 := (+ #190 #5263)
  3.4669 -#5265 := (= #5264 0::Int)
  3.4670 -#5266 := (or #5214 #5217 #5265)
  3.4671 -#11881 := (or #3924 #5266)
  3.4672 -#11987 := (iff #11881 #11968)
  3.4673 -#11986 := (or #3924 #5274)
  3.4674 -#11985 := (iff #11986 #11968)
  3.4675 -#11984 := [rewrite]: #11985
  3.4676 -#11929 := (iff #11881 #11986)
  3.4677 -#5275 := (iff #5266 #5274)
  3.4678 -#5272 := (iff #5265 #5271)
  3.4679 -#5269 := (= #5264 #5268)
  3.4680 -#5270 := [rewrite]: #5269
  3.4681 -#5273 := [monotonicity #5270]: #5272
  3.4682 -#5276 := [monotonicity #5234 #5273]: #5275
  3.4683 -#11965 := [monotonicity #5276]: #11929
  3.4684 -#11971 := [trans #11965 #11984]: #11987
  3.4685 -#11962 := [quant-inst #2123]: #11881
  3.4686 -#11989 := [mp #11962 #11971]: #11968
  3.4687 -#19203 := [unit-resolution #11989 #8832]: #5274
  3.4688 -#19204 := [unit-resolution #19203 #19184 #19173 #19168]: false
  3.4689 -#19220 := [lemma #19204]: #19224
  3.4690 -#15563 := [unit-resolution #19220 #15554]: #5271
  3.4691 -#14689 := (or #19170 #14690)
  3.4692 -#14714 := [th-lemma arith triangle-eq]: #14689
  3.4693 -#15571 := [unit-resolution #14714 #15563]: #14690
  3.4694 -#14679 := (>= #5268 0::Int)
  3.4695 -#14688 := (or #19170 #14679)
  3.4696 -#12799 := [th-lemma arith triangle-eq]: #14688
  3.4697 -#15545 := [unit-resolution #12799 #15563]: #14679
  3.4698 -#4168 := (* -1::Int #4167)
  3.4699 -#4169 := (+ #190 #4168)
  3.4700 -#7297 := (<= #4169 0::Int)
  3.4701 -#7302 := (= #190 #4167)
  3.4702 -#18257 := (iff #4220 #7302)
  3.4703 -#18255 := (iff #7302 #4220)
  3.4704 -#18256 := [commutativity]: #18255
  3.4705 -#18258 := [symm #18256]: #18257
  3.4706 -#18259 := [mp #9179 #18258]: #7302
  3.4707 -#18260 := (not #7302)
  3.4708 -#18261 := (or #18260 #7297)
  3.4709 -#18262 := [th-lemma arith triangle-eq]: #18261
  3.4710 -#18263 := [unit-resolution #18262 #18259]: #7297
  3.4711 -#4170 := (>= #4169 0::Int)
  3.4712 -#3555 := (or #4045 #3935)
  3.4713 -#3556 := [def-axiom]: #3555
  3.4714 -#9894 := [unit-resolution #3556 #9893]: #3935
  3.4715 -#7218 := (or #3940 #4170)
  3.4716 -#7219 := [quant-inst #186]: #7218
  3.4717 -#10752 := [unit-resolution #7219 #9894]: #4170
  3.4718 -#5157 := (+ #2126 #4168)
  3.4719 -#5318 := (<= #5157 0::Int)
  3.4720 -#5330 := (+ #4168 #5212)
  3.4721 -#5331 := (+ #2126 #5330)
  3.4722 -#5332 := (= #5331 0::Int)
  3.4723 -#14652 := (>= #5331 0::Int)
  3.4724 -#14681 := (not #14690)
  3.4725 -#15108 := (or #14681 #14652)
  3.4726 -#10393 := (not #4170)
  3.4727 -#15550 := (or #14681 #10393 #14652)
  3.4728 -#15472 := [th-lemma arith assign-bounds -1 1]: #15550
  3.4729 -#15621 := [unit-resolution #15472 #10752]: #15108
  3.4730 -#15637 := [unit-resolution #15621 #15571]: #14652
  3.4731 -#14720 := (<= #5331 0::Int)
  3.4732 -#12661 := (not #7297)
  3.4733 -#14678 := (not #14679)
  3.4734 -#15123 := (or #14720 #14678 #12661)
  3.4735 -#15620 := [th-lemma arith assign-bounds 1 -1]: #15123
  3.4736 -#13505 := [unit-resolution #15620 #15545 #18263]: #14720
  3.4737 -#19121 := (not #14652)
  3.4738 -#12624 := (not #14720)
  3.4739 -#15596 := (or #5332 #12624 #19121)
  3.4740 -#15676 := [th-lemma arith triangle-eq]: #15596
  3.4741 -#15984 := [unit-resolution #15676 #13505 #15637]: #5332
  3.4742 -#5337 := (not #5332)
  3.4743 -#15716 := (or #5318 #5337)
  3.4744 -#4518 := (f9 f29 f28)
  3.4745 -#4519 := (= #4518 f1)
  3.4746 -#4144 := (f9 #198 f28)
  3.4747 -#4145 := (= #4144 f1)
  3.4748 -#31 := (:var 0 S1)
  3.4749 -#28 := (:var 2 S7)
  3.4750 -#29 := (f12 f13 #28)
  3.4751 -#30 := (f11 #29 #9)
  3.4752 -#32 := (f10 #30 #31)
  3.4753 -#3710 := (pattern #32)
  3.4754 -#35 := (= #31 f1)
  3.4755 -#33 := (f9 #32 #9)
  3.4756 -#34 := (= #33 f1)
  3.4757 -#36 := (iff #34 #35)
  3.4758 -#3711 := (forall (vars (?v0 S7) (?v1 S2) (?v2 S1)) (:pat #3710) #36)
  3.4759 -#37 := (forall (vars (?v0 S7) (?v1 S2) (?v2 S1)) #36)
  3.4760 -#3714 := (iff #37 #3711)
  3.4761 -#3712 := (iff #36 #36)
  3.4762 -#3713 := [refl]: #3712
  3.4763 -#3715 := [quant-intro #3713]: #3714
  3.4764 -#1577 := (~ #37 #37)
  3.4765 -#1606 := (~ #36 #36)
  3.4766 -#1607 := [refl]: #1606
  3.4767 -#1578 := [nnf-pos #1607]: #1577
  3.4768 -#321 := [asserted]: #37
  3.4769 -#1608 := [mp~ #321 #1578]: #37
  3.4770 -#3716 := [mp #1608 #3715]: #3711
  3.4771 -#6379 := (not #3711)
  3.4772 -#6555 := (or #6379 #4145)
  3.4773 -#4147 := (iff #4145 #4146)
  3.4774 -#6775 := (or #6379 #4147)
  3.4775 -#7023 := (iff #6775 #6555)
  3.4776 -#7024 := (iff #6555 #6555)
  3.4777 -#3437 := [rewrite]: #7024
  3.4778 -#4155 := (iff #4147 #4145)
  3.4779 -#4150 := (iff #4145 true)
  3.4780 -#4153 := (iff #4150 #4145)
  3.4781 -#4154 := [rewrite]: #4153
  3.4782 -#4151 := (iff #4147 #4150)
  3.4783 -#4152 := [monotonicity #4149]: #4151
  3.4784 -#4156 := [trans #4152 #4154]: #4155
  3.4785 -#7020 := [monotonicity #4156]: #7023
  3.4786 -#3310 := [trans #7020 #3437]: #7023
  3.4787 -#7010 := [quant-inst #115 #186 #3]: #6775
  3.4788 -#6101 := [mp #7010 #3310]: #6555
  3.4789 -#12643 := [unit-resolution #6101 #3716]: #4145
  3.4790 -#12662 := (= #4518 #4144)
  3.4791 -#12669 := [monotonicity #9701]: #12662
  3.4792 -#12665 := [trans #12669 #12643]: #4519
  3.4793 -#4447 := (= #221 #110)
  3.4794 -#8042 := (= #190 #110)
  3.4795 -#7927 := (= #110 #190)
  3.4796 -#4428 := (+ #110 #1235)
  3.4797 -#4429 := (>= #4428 0::Int)
  3.4798 -#4424 := (f9 f21 f16)
  3.4799 -#4425 := (= #4424 f1)
  3.4800 -#7254 := (not #4425)
  3.4801 -#4381 := (= ?v0!12 f16)
  3.4802 -#4382 := (?v1!7 ?v0!12)
  3.4803 -#4390 := (f6 f7 #4382)
  3.4804 -#4391 := (f5 #4390 ?v0!12)
  3.4805 -#4392 := (f15 #4391)
  3.4806 -#4393 := (* -1::Int #4392)
  3.4807 -#4383 := (f19 f20 #4382)
  3.4808 -#4384 := (* -1::Int #4383)
  3.4809 -#4394 := (+ #4384 #4393)
  3.4810 -#4395 := (+ #1965 #4394)
  3.4811 -#4396 := (= #4395 0::Int)
  3.4812 -#4397 := (not #4396)
  3.4813 -#4387 := (f9 f21 #4382)
  3.4814 -#4388 := (= #4387 f1)
  3.4815 -#4389 := (not #4388)
  3.4816 -#4385 := (+ #1965 #4384)
  3.4817 -#4386 := (<= #4385 0::Int)
  3.4818 -#4398 := (or #4386 #4389 #4397)
  3.4819 -#4252 := (= f28 f16)
  3.4820 -#4431 := (f5 #200 f16)
  3.4821 -#4432 := (f15 #4431)
  3.4822 -#4439 := (* -1::Int #4432)
  3.4823 -#4442 := (+ #1235 #4439)
  3.4824 -#4443 := (+ #110 #4442)
  3.4825 -#4444 := (<= #4443 0::Int)
  3.4826 -#7610 := (not #4444)
  3.4827 -#4440 := (+ f14 #4439)
  3.4828 -#4441 := (<= #4440 0::Int)
  3.4829 -#4445 := (or #4441 #4444)
  3.4830 -#4446 := (not #4445)
  3.4831 -#9205 := (not #4447)
  3.4832 -#5924 := (iff #713 #9205)
  3.4833 -#5922 := (iff #222 #4447)
  3.4834 -#5921 := (iff #4447 #222)
  3.4835 -#5919 := [monotonicity #7324]: #5921
  3.4836 -#5923 := [symm #5919]: #5922
  3.4837 -#6064 := [monotonicity #5923]: #5924
  3.4838 -#5920 := [hypothesis]: #713
  3.4839 -#6065 := [mp #5920 #6064]: #9205
  3.4840 -#4448 := (or #4446 #4447)
  3.4841 -#7601 := (or #3932 #4446 #4447)
  3.4842 -#7602 := (or #3932 #4448)
  3.4843 -#7604 := (iff #7602 #7601)
  3.4844 -#7605 := [rewrite]: #7604
  3.4845 -#7603 := [quant-inst #65]: #7602
  3.4846 -#7606 := [mp #7603 #7605]: #7601
  3.4847 -#6066 := [unit-resolution #7606 #8861]: #4448
  3.4848 -#9900 := [unit-resolution #6066 #6065]: #4446
  3.4849 -#7611 := (or #4445 #7610)
  3.4850 -#7612 := [def-axiom]: #7611
  3.4851 -#9807 := [unit-resolution #7612 #9900]: #7610
  3.4852 -#8599 := (or #4444 #4252)
  3.4853 -#8514 := (<= #4432 0::Int)
  3.4854 -#8515 := (not #8514)
  3.4855 -#8195 := (not #4252)
  3.4856 -#8549 := [hypothesis]: #8195
  3.4857 -#8513 := (or #6342 #4252 #8515)
  3.4858 -#8516 := (or #4252 #8515)
  3.4859 -#8519 := (or #6342 #8516)
  3.4860 -#8521 := (iff #8519 #8513)
  3.4861 -#8522 := [rewrite]: #8521
  3.4862 -#8520 := [quant-inst #186 #65]: #8519
  3.4863 -#8523 := [mp #8520 #8522]: #8513
  3.4864 -#8552 := [unit-resolution #8523 #3735 #8549]: #8515
  3.4865 -#4483 := (<= #110 0::Int)
  3.4866 -#7325 := (or #878 #4483)
  3.4867 -#7328 := [th-lemma arith triangle-eq]: #7325
  3.4868 -#7329 := [unit-resolution #7328 #7324]: #4483
  3.4869 -#4253 := (?v1!7 f28)
  3.4870 -#4254 := (f19 f20 #4253)
  3.4871 -#4255 := (* -1::Int #4254)
  3.4872 -#4256 := (+ #190 #4255)
  3.4873 -#7963 := (>= #4256 0::Int)
  3.4874 -#4257 := (<= #4256 0::Int)
  3.4875 -#7326 := (not #4257)
  3.4876 -#4261 := (f6 f7 #4253)
  3.4877 -#4262 := (f5 #4261 f28)
  3.4878 -#4263 := (f15 #4262)
  3.4879 -#4264 := (* -1::Int #4263)
  3.4880 -#4265 := (+ #4255 #4264)
  3.4881 -#4266 := (+ #190 #4265)
  3.4882 -#4267 := (= #4266 0::Int)
  3.4883 -#4268 := (not #4267)
  3.4884 -#4258 := (f9 f21 #4253)
  3.4885 -#4259 := (= #4258 f1)
  3.4886 -#4260 := (not #4259)
  3.4887 -#4269 := (or #4257 #4260 #4268)
  3.4888 -#4270 := (not #4269)
  3.4889 -#8572 := (or #4252 #4270)
  3.4890 -#3547 := (or #4057 #1412)
  3.4891 -#3550 := [def-axiom]: #3547
  3.4892 -#8267 := [unit-resolution #3550 #8264]: #1412
  3.4893 -#7305 := (or #3836 #4252 #1411 #4270)
  3.4894 -#4271 := (or #4252 #1411 #4270)
  3.4895 -#7316 := (or #3836 #4271)
  3.4896 -#7315 := (iff #7316 #7305)
  3.4897 -#7317 := [rewrite]: #7315
  3.4898 -#7314 := [quant-inst #186]: #7316
  3.4899 -#7318 := [mp #7314 #7317]: #7305
  3.4900 -#8573 := [unit-resolution #7318 #7150 #8267]: #8572
  3.4901 -#8574 := [unit-resolution #8573 #8549]: #4270
  3.4902 -#7322 := (or #4269 #7326)
  3.4903 -#7327 := [def-axiom]: #7322
  3.4904 -#8575 := [unit-resolution #7327 #8574]: #7326
  3.4905 -#8570 := (or #7963 #4257)
  3.4906 -#8576 := [th-lemma arith farkas 1 1]: #8570
  3.4907 -#8577 := [unit-resolution #8576 #8575]: #7963
  3.4908 -#8444 := (>= #4254 0::Int)
  3.4909 -#3531 := (or #4069 #3806)
  3.4910 -#3511 := [def-axiom]: #3531
  3.4911 -#8408 := [unit-resolution #3511 #7099]: #3806
  3.4912 -#7889 := (or #3811 #8444)
  3.4913 -#7890 := [quant-inst #4253]: #7889
  3.4914 -#8578 := [unit-resolution #7890 #8408]: #8444
  3.4915 -#8579 := [hypothesis]: #7610
  3.4916 -#8580 := [th-lemma arith farkas 1 1 1 1 1 #8579 #8578 #8577 #7329 #8552]: false
  3.4917 -#8600 := [lemma #8580]: #8599
  3.4918 -#9903 := [unit-resolution #8600 #9807]: #4252
  3.4919 -#11140 := (or #4398 #8195)
  3.4920 -#4399 := (not #4398)
  3.4921 -#11053 := [hypothesis]: #4399
  3.4922 -#7585 := (or #4398 #4388)
  3.4923 -#7586 := [def-axiom]: #7585
  3.4924 -#11054 := [unit-resolution #7586 #11053]: #4388
  3.4925 -#11117 := (= #187 #4387)
  3.4926 -#8916 := (= f28 #4382)
  3.4927 -#10478 := (= f16 #4382)
  3.4928 -#8133 := (= #4382 f16)
  3.4929 -#8136 := (?v1!7 #4382)
  3.4930 -#8144 := (f6 f7 #8136)
  3.4931 -#8145 := (f5 #8144 #4382)
  3.4932 -#8146 := (f15 #8145)
  3.4933 -#8147 := (* -1::Int #8146)
  3.4934 -#8137 := (f19 f20 #8136)
  3.4935 -#8138 := (* -1::Int #8137)
  3.4936 -#8148 := (+ #8138 #8147)
  3.4937 -#8149 := (+ #4383 #8148)
  3.4938 -#8150 := (= #8149 0::Int)
  3.4939 -#8151 := (not #8150)
  3.4940 -#8141 := (f9 f21 #8136)
  3.4941 -#8142 := (= #8141 f1)
  3.4942 -#8143 := (not #8142)
  3.4943 -#8139 := (+ #4383 #8138)
  3.4944 -#8140 := (<= #8139 0::Int)
  3.4945 -#8152 := (or #8140 #8143 #8151)
  3.4946 -#9559 := (+ #110 #4384)
  3.4947 -#9591 := (>= #9559 0::Int)
  3.4948 -#8009 := [hypothesis]: #4252
  3.4949 -#8040 := [monotonicity #8009]: #8042
  3.4950 -#8044 := [symm #8040]: #7927
  3.4951 -#7986 := (not #7927)
  3.4952 -#7987 := (or #7986 #4429)
  3.4953 -#7985 := [th-lemma arith triangle-eq]: #7987
  3.4954 -#8266 := [unit-resolution #7985 #8044]: #4429
  3.4955 -#8029 := (+ #190 #4384)
  3.4956 -#8030 := (>= #8029 0::Int)
  3.4957 -#9838 := (or #3820 #188 #4389 #8030)
  3.4958 -#8037 := (or #188 #4389 #8030)
  3.4959 -#9839 := (or #3820 #8037)
  3.4960 -#9884 := (iff #9839 #9838)
  3.4961 -#9885 := [rewrite]: #9884
  3.4962 -#9597 := [quant-inst #4382 #186]: #9839
  3.4963 -#9897 := [mp #9597 #9885]: #9838
  3.4964 -#11049 := [unit-resolution #9897 #8132 #8131 #11054]: #8030
  3.4965 -#8411 := (not #4429)
  3.4966 -#11055 := (not #8030)
  3.4967 -#11056 := (or #9591 #11055 #8411)
  3.4968 -#11057 := [th-lemma arith assign-bounds -1 -1]: #11056
  3.4969 -#11058 := [unit-resolution #11057 #11049 #8266]: #9591
  3.4970 -#10720 := (not #9591)
  3.4971 -#11080 := (or #10720 #8140)
  3.4972 -#9223 := (>= #8137 0::Int)
  3.4973 -#10115 := (not #9223)
  3.4974 -#10116 := [hypothesis]: #10115
  3.4975 -#10093 := (or #3811 #9223)
  3.4976 -#10094 := [quant-inst #8136]: #10093
  3.4977 -#10134 := [unit-resolution #10094 #8408 #10116]: false
  3.4978 -#10135 := [lemma #10134]: #9223
  3.4979 -#7335 := (not #4483)
  3.4980 -#11059 := (or #10720 #7335 #10115 #8140)
  3.4981 -#11079 := [th-lemma arith assign-bounds -1 1 1]: #11059
  3.4982 -#11081 := [unit-resolution #11079 #10135 #7329]: #11080
  3.4983 -#11082 := [unit-resolution #11081 #11058]: #8140
  3.4984 -#10256 := (not #8140)
  3.4985 -#10257 := (or #8152 #10256)
  3.4986 -#10263 := [def-axiom]: #10257
  3.4987 -#11083 := [unit-resolution #10263 #11082]: #8152
  3.4988 -#8153 := (not #8152)
  3.4989 -#11107 := (or #8133 #8153)
  3.4990 -#8134 := (+ f14 #4384)
  3.4991 -#8135 := (<= #8134 0::Int)
  3.4992 -#11087 := (not #8135)
  3.4993 -#8025 := (>= #4385 0::Int)
  3.4994 -#7582 := (not #4386)
  3.4995 -#7583 := (or #4398 #7582)
  3.4996 -#7584 := [def-axiom]: #7583
  3.4997 -#11078 := [unit-resolution #7584 #11053]: #7582
  3.4998 -#11084 := (or #8025 #4386)
  3.4999 -#11085 := [th-lemma arith farkas 1 1]: #11084
  3.5000 -#11086 := [unit-resolution #11085 #11078]: #8025
  3.5001 -#11088 := (not #8025)
  3.5002 -#11110 := (or #11087 #11088)
  3.5003 -#3544 := (or #4057 #1969)
  3.5004 -#3549 := [def-axiom]: #3544
  3.5005 -#9691 := [unit-resolution #3549 #8264]: #1969
  3.5006 -#11108 := (or #11087 #1968 #11088)
  3.5007 -#11109 := [th-lemma arith assign-bounds 1 1]: #11108
  3.5008 -#11111 := [unit-resolution #11109 #9691]: #11110
  3.5009 -#11112 := [unit-resolution #11111 #11086]: #11087
  3.5010 -#10255 := (or #3836 #8133 #8135 #8153)
  3.5011 -#8154 := (or #8133 #8135 #8153)
  3.5012 -#10258 := (or #3836 #8154)
  3.5013 -#10260 := (iff #10258 #10255)
  3.5014 -#10261 := [rewrite]: #10260
  3.5015 -#10259 := [quant-inst #4382]: #10258
  3.5016 -#10262 := [mp #10259 #10261]: #10255
  3.5017 -#11113 := [unit-resolution #10262 #7150 #11112]: #11107
  3.5018 -#11114 := [unit-resolution #11113 #11083]: #8133
  3.5019 -#11115 := [symm #11114]: #10478
  3.5020 -#11116 := [trans #8009 #11115]: #8916
  3.5021 -#11137 := [monotonicity #11116]: #11117
  3.5022 -#11138 := [trans #11137 #11054]: #188
  3.5023 -#11139 := [unit-resolution #8131 #11138]: false
  3.5024 -#11141 := [lemma #11139]: #11140
  3.5025 -#9883 := [unit-resolution #11141 #9903]: #4398
  3.5026 -#8305 := (or #4381 #4399)
  3.5027 -#7574 := (or #3836 #4381 #1968 #4399)
  3.5028 -#4400 := (or #4381 #1968 #4399)
  3.5029 -#7575 := (or #3836 #4400)
  3.5030 -#7577 := (iff #7575 #7574)
  3.5031 -#7578 := [rewrite]: #7577
  3.5032 -#7576 := [quant-inst #1961]: #7575
  3.5033 -#7579 := [mp #7576 #7578]: #7574
  3.5034 -#8780 := [unit-resolution #7579 #7150 #9691]: #8305
  3.5035 -#18251 := [unit-resolution #8780 #9883]: #4381
  3.5036 -#9007 := (not #4381)
  3.5037 -#9005 := (or #9007 #7254)
  3.5038 -#7350 := [hypothesis]: #4425
  3.5039 -#8961 := (= #1962 #4424)
  3.5040 -#8959 := [hypothesis]: #4381
  3.5041 -#8962 := [monotonicity #8959]: #8961
  3.5042 -#9006 := [trans #8962 #7350]: #1963
  3.5043 -#3542 := (or #4057 #1964)
  3.5044 -#3543 := [def-axiom]: #3542
  3.5045 -#8944 := [unit-resolution #3543 #8264]: #1964
  3.5046 -#8888 := [unit-resolution #8944 #9006]: false
  3.5047 -#9008 := [lemma #8888]: #9005
  3.5048 -#9652 := [unit-resolution #9008 #18251]: #7254
  3.5049 -#4430 := (or #4425 #4429)
  3.5050 -#3551 := (or #4057 #3909)
  3.5051 -#3552 := [def-axiom]: #3551
  3.5052 -#8603 := [unit-resolution #3552 #8264]: #3909
  3.5053 -#7595 := (or #3914 #4425 #4429)
  3.5054 -#7596 := (or #3914 #4430)
  3.5055 -#7598 := (iff #7596 #7595)
  3.5056 -#7599 := [rewrite]: #7598
  3.5057 -#7597 := [quant-inst #65]: #7596
  3.5058 -#7600 := [mp #7597 #7599]: #7595
  3.5059 -#9803 := [unit-resolution #7600 #8603]: #4430
  3.5060 -#9901 := [unit-resolution #9803 #9652]: #4429
  3.5061 -#9733 := (or #7927 #8411)
  3.5062 -#8590 := (<= #4428 0::Int)
  3.5063 -#4272 := (>= #190 0::Int)
  3.5064 -#7146 := (or #3811 #4272)
  3.5065 -#7514 := [quant-inst #186]: #7146
  3.5066 -#7845 := [unit-resolution #7514 #8408]: #4272
  3.5067 -#8544 := (not #8590)
  3.5068 -#7810 := [hypothesis]: #8544
  3.5069 -#7888 := [th-lemma arith farkas 1 -1 1 #7810 #7329 #7845]: false
  3.5070 -#7759 := [lemma #7888]: #8590
  3.5071 -#9935 := (or #7927 #8544 #8411)
  3.5072 -#9936 := [th-lemma arith triangle-eq]: #9935
  3.5073 -#9606 := [unit-resolution #9936 #7759]: #9733
  3.5074 -#9645 := [unit-resolution #9606 #9901]: #7927
  3.5075 -#9892 := [symm #9645]: #8042
  3.5076 -#9902 := (= #221 #190)
  3.5077 -#8871 := (= #221 #4167)
  3.5078 -#8010 := (= f16 f28)
  3.5079 -#9669 := [symm #9903]: #8010
  3.5080 -#9549 := [monotonicity #9669]: #8871
  3.5081 -#9612 := [trans #9549 #9179]: #9902
  3.5082 -#9668 := [trans #9612 #9892]: #4447
  3.5083 -#9570 := [trans #9668 #7324]: #222
  3.5084 -#9595 := [unit-resolution #5920 #9570]: false
  3.5085 -#9632 := [lemma #9595]: #222
  3.5086 -#3565 := (or #4033 #4027)
  3.5087 -#3567 := [def-axiom]: #3565
  3.5088 -#14028 := [unit-resolution #3567 #18771]: #4027
  3.5089 -#3585 := (or #4030 #713 #4024)
  3.5090 -#3575 := [def-axiom]: #3585
  3.5091 -#14128 := [unit-resolution #3575 #14028]: #4027
  3.5092 -#14105 := [unit-resolution #14128 #9632]: #4024
  3.5093 -#3577 := (or #4021 #4015)
  3.5094 -#3578 := [def-axiom]: #3577
  3.5095 -#14080 := [unit-resolution #3578 #14105]: #4015
  3.5096 -#14243 := (or #4018 #4012)
  3.5097 -#8617 := (or #8544 #2051)
  3.5098 -#6626 := (f5 #200 ?v0!15)
  3.5099 -#6627 := (f15 #6626)
  3.5100 -#9520 := (= #6627 0::Int)
  3.5101 -#8602 := (not #9520)
  3.5102 -#9750 := (>= #6627 0::Int)
  3.5103 -#8541 := (not #9750)
  3.5104 -#8393 := [hypothesis]: #8590
  3.5105 -#6707 := [hypothesis]: #2052
  3.5106 -#3322 := (>= #110 0::Int)
  3.5107 -#6072 := (or #3811 #3322)
  3.5108 -#6127 := [quant-inst #65]: #6072
  3.5109 -#8487 := [unit-resolution #6127 #8408]: #3322
  3.5110 -#4577 := (* -1::Int #2050)
  3.5111 -#6683 := (+ #4577 #6627)
  3.5112 -#6684 := (+ #190 #6683)
  3.5113 -#9543 := (<= #6684 0::Int)
  3.5114 -#6687 := (= #6684 0::Int)
  3.5115 -#6628 := (* -1::Int #6627)
  3.5116 -#6629 := (+ f14 #6628)
  3.5117 -#6630 := (<= #6629 0::Int)
  3.5118 -#9343 := (not #6630)
  3.5119 -#6585 := (f19 f20 ?v0!15)
  3.5120 -#6610 := (* -1::Int #6585)
  3.5121 -#6644 := (+ #6610 #6627)
  3.5122 -#6645 := (+ #190 #6644)
  3.5123 -#6646 := (>= #6645 0::Int)
  3.5124 -#6651 := (or #6630 #6646)
  3.5125 -#6654 := (not #6651)
  3.5126 -#6586 := (= #2050 #6585)
  3.5127 -#9841 := (not #6586)
  3.5128 -#6611 := (+ #2050 #6610)
  3.5129 -#9310 := (>= #6611 0::Int)
  3.5130 -#9745 := (not #9310)
  3.5131 -#9746 := (or #9745 #2051)
  3.5132 -#9740 := [hypothesis]: #9310
  3.5133 -#9233 := (>= #6585 0::Int)
  3.5134 -#9593 := (or #3811 #9233)
  3.5135 -#9579 := [quant-inst #2049]: #9593
  3.5136 -#9741 := [unit-resolution #9579 #8408]: #9233
  3.5137 -#9744 := [th-lemma arith farkas -1 1 1 #6707 #9741 #9740]: false
  3.5138 -#9747 := [lemma #9744]: #9746
  3.5139 -#9587 := [unit-resolution #9747 #6707]: #9745
  3.5140 -#9589 := (or #9841 #9310)
  3.5141 -#9611 := [th-lemma arith triangle-eq]: #9589
  3.5142 -#8492 := [unit-resolution #9611 #9587]: #9841
  3.5143 -#9172 := (or #3932 #6654 #6586)
  3.5144 -#6631 := (+ #1235 #6628)
  3.5145 -#6632 := (+ #6585 #6631)
  3.5146 -#6633 := (<= #6632 0::Int)
  3.5147 -#6634 := (or #6630 #6633)
  3.5148 -#6635 := (not #6634)
  3.5149 -#6636 := (or #6635 #6586)
  3.5150 -#9240 := (or #3932 #6636)
  3.5151 -#9341 := (iff #9240 #9172)
  3.5152 -#6657 := (or #6654 #6586)
  3.5153 -#8908 := (or #3932 #6657)
  3.5154 -#9265 := (iff #8908 #9172)
  3.5155 -#9339 := [rewrite]: #9265
  3.5156 -#8877 := (iff #9240 #8908)
  3.5157 -#6658 := (iff #6636 #6657)
  3.5158 -#6655 := (iff #6635 #6654)
  3.5159 -#6652 := (iff #6634 #6651)
  3.5160 -#6649 := (iff #6633 #6646)
  3.5161 -#6637 := (+ #6585 #6628)
  3.5162 -#6638 := (+ #1235 #6637)
  3.5163 -#6641 := (<= #6638 0::Int)
  3.5164 -#6647 := (iff #6641 #6646)
  3.5165 -#6648 := [rewrite]: #6647
  3.5166 -#6642 := (iff #6633 #6641)
  3.5167 -#6639 := (= #6632 #6638)
  3.5168 -#6640 := [rewrite]: #6639
  3.5169 -#6643 := [monotonicity #6640]: #6642
  3.5170 -#6650 := [trans #6643 #6648]: #6649
  3.5171 -#6653 := [monotonicity #6650]: #6652
  3.5172 -#6656 := [monotonicity #6653]: #6655
  3.5173 -#6659 := [monotonicity #6656]: #6658
  3.5174 -#8889 := [monotonicity #6659]: #8877
  3.5175 -#9337 := [trans #8889 #9339]: #9341
  3.5176 -#8828 := [quant-inst #2049]: #9240
  3.5177 -#9342 := [mp #8828 #9337]: #9172
  3.5178 -#8493 := [unit-resolution #9342 #8861 #8492]: #6654
  3.5179 -#9344 := (or #6651 #9343)
  3.5180 -#9299 := [def-axiom]: #9344
  3.5181 -#8494 := [unit-resolution #9299 #8493]: #9343
  3.5182 -#9330 := (not #6646)
  3.5183 -#8854 := (or #6651 #9330)
  3.5184 -#8855 := [def-axiom]: #8854
  3.5185 -#8307 := [unit-resolution #8855 #8493]: #9330
  3.5186 -#6690 := (or #6630 #6646 #6687)
  3.5187 -#9368 := (or #3924 #6630 #6646 #6687)
  3.5188 -#6679 := (+ #6627 #4577)
  3.5189 -#6680 := (+ #190 #6679)
  3.5190 -#6681 := (= #6680 0::Int)
  3.5191 -#6682 := (or #6630 #6633 #6681)
  3.5192 -#8704 := (or #3924 #6682)
  3.5193 -#9540 := (iff #8704 #9368)
  3.5194 -#9390 := (or #3924 #6690)
  3.5195 -#9425 := (iff #9390 #9368)
  3.5196 -#9539 := [rewrite]: #9425
  3.5197 -#9413 := (iff #8704 #9390)
  3.5198 -#6691 := (iff #6682 #6690)
  3.5199 -#6688 := (iff #6681 #6687)
  3.5200 -#6685 := (= #6680 #6684)
  3.5201 -#6686 := [rewrite]: #6685
  3.5202 -#6689 := [monotonicity #6686]: #6688
  3.5203 -#6692 := [monotonicity #6650 #6689]: #6691
  3.5204 -#9423 := [monotonicity #6692]: #9413
  3.5205 -#9536 := [trans #9423 #9539]: #9540
  3.5206 -#9412 := [quant-inst #2049]: #8704
  3.5207 -#9541 := [mp #9412 #9536]: #9368
  3.5208 -#9868 := [unit-resolution #9541 #8832]: #6690
  3.5209 -#8535 := [unit-resolution #9868 #8307 #8494]: #6687
  3.5210 -#9870 := (not #6687)
  3.5211 -#9871 := (or #9870 #9543)
  3.5212 -#9872 := [th-lemma arith triangle-eq]: #9871
  3.5213 -#8540 := [unit-resolution #9872 #8535]: #9543
  3.5214 -#8548 := (not #3322)
  3.5215 -#9874 := (not #9543)
  3.5216 -#8539 := (or #8541 #2051 #9874 #8544 #8548)
  3.5217 -#8530 := [th-lemma arith assign-bounds -1 -1 -1 1]: #8539
  3.5218 -#8601 := [unit-resolution #8530 #8540 #8487 #6707 #8393]: #8541
  3.5219 -#8604 := (or #8602 #9750)
  3.5220 -#8571 := [th-lemma arith triangle-eq]: #8604
  3.5221 -#8605 := [unit-resolution #8571 #8601]: #8602
  3.5222 -#9672 := (= f28 ?v0!15)
  3.5223 -#9673 := (<= #6627 0::Int)
  3.5224 -#8598 := (or #9673 #2051 #9874 #8544 #8548)
  3.5225 -#8613 := [th-lemma arith assign-bounds 1 1 1 1]: #8598
  3.5226 -#8611 := [unit-resolution #8613 #8540 #8487 #6707 #8393]: #9673
  3.5227 -#9674 := (not #9673)
  3.5228 -#9609 := (or #6342 #9672 #9674)
  3.5229 -#9675 := (or #9672 #9674)
  3.5230 -#9610 := (or #6342 #9675)
  3.5231 -#9622 := (iff #9610 #9609)
  3.5232 -#9618 := [rewrite]: #9622
  3.5233 -#9604 := [quant-inst #186 #2049]: #9610
  3.5234 -#9619 := [mp #9604 #9618]: #9609
  3.5235 -#8607 := [unit-resolution #9619 #3735 #8611]: #9672
  3.5236 -#9676 := (not #9672)
  3.5237 -#8402 := (or #6738 #9676 #9520)
  3.5238 -#9726 := (or #9676 #9520)
  3.5239 -#8488 := (or #6738 #9726)
  3.5240 -#8484 := (iff #8488 #8402)
  3.5241 -#8485 := [rewrite]: #8484
  3.5242 -#8489 := [quant-inst #186 #2049]: #8488
  3.5243 -#8486 := [mp #8489 #8485]: #8402
  3.5244 -#8619 := [unit-resolution #8486 #3729 #8607 #8605]: false
  3.5245 -#8618 := [lemma #8619]: #8617
  3.5246 -#14242 := [unit-resolution #8618 #7759]: #2051
  3.5247 -#3593 := (or #4018 #2052 #4012)
  3.5248 -#3573 := [def-axiom]: #3593
  3.5249 -#14109 := [unit-resolution #3573 #14242]: #14243
  3.5250 -#14124 := [unit-resolution #14109 #14080]: #4012
  3.5251 -#3596 := (or #4009 #4003)
  3.5252 -#3601 := [def-axiom]: #3596
  3.5253 -#14006 := [unit-resolution #3601 #14124]: #4003
  3.5254 -#14245 := (or #4006 #4000)
  3.5255 -#6060 := [hypothesis]: #2959
  3.5256 -#3627 := (not #2077)
  3.5257 -#3630 := (or #2954 #3627)
  3.5258 -#3514 := [def-axiom]: #3630
  3.5259 -#6061 := [unit-resolution #3514 #6060]: #3627
  3.5260 -#10344 := (or #2954 #2077)
  3.5261 -#5944 := (f19 f20 ?v1!16)
  3.5262 -#5961 := (* -1::Int #5944)
  3.5263 -#5013 := (+ #190 #5961)
  3.5264 -#5014 := (<= #5013 0::Int)
  3.5265 -#5817 := (f9 f21 ?v1!16)
  3.5266 -#5818 := (= #5817 f1)
  3.5267 -#10018 := (not #5818)
  3.5268 -#5816 := (= ?v1!16 f28)
  3.5269 -#5824 := (or #5816 #5818)
  3.5270 -#10022 := (not #5824)
  3.5271 -#5814 := (f9 #198 ?v1!16)
  3.5272 -#5815 := (= #5814 f1)
  3.5273 -#5829 := (iff #5815 #5824)
  3.5274 -#9980 := (or #7628 #5829)
  3.5275 -#5819 := (if #5816 #4146 #5818)
  3.5276 -#5820 := (iff #5815 #5819)
  3.5277 -#9981 := (or #7628 #5820)
  3.5278 -#10002 := (iff #9981 #9980)
  3.5279 -#10009 := (iff #9980 #9980)
  3.5280 -#10010 := [rewrite]: #10009
  3.5281 -#5830 := (iff #5820 #5829)
  3.5282 -#5827 := (iff #5819 #5824)
  3.5283 -#5821 := (if #5816 true #5818)
  3.5284 -#5825 := (iff #5821 #5824)
  3.5285 -#5826 := [rewrite]: #5825
  3.5286 -#5822 := (iff #5819 #5821)
  3.5287 -#5823 := [monotonicity #4149]: #5822
  3.5288 -#5828 := [trans #5823 #5826]: #5827
  3.5289 -#5831 := [monotonicity #5828]: #5830
  3.5290 -#10008 := [monotonicity #5831]: #10002
  3.5291 -#10011 := [trans #10008 #10010]: #10002
  3.5292 -#10007 := [quant-inst #115 #186 #3 #2064]: #9981
  3.5293 -#10012 := [mp #10007 #10011]: #9980
  3.5294 -#10496 := [unit-resolution #10012 #3723]: #5829
  3.5295 -#10031 := (not #5815)
  3.5296 -#10269 := (iff #2068 #10031)
  3.5297 -#10268 := (iff #2067 #5815)
  3.5298 -#10548 := (iff #5815 #2067)
  3.5299 -#10495 := (= #5814 #2066)
  3.5300 -#10497 := [monotonicity #9297]: #10495
  3.5301 -#10549 := [monotonicity #10497]: #10548
  3.5302 -#10526 := [symm #10549]: #10268
  3.5303 -#10270 := [monotonicity #10526]: #10269
  3.5304 -#3625 := (or #2954 #2068)
  3.5305 -#3628 := [def-axiom]: #3625
  3.5306 -#6063 := [unit-resolution #3628 #6060]: #2068
  3.5307 -#10271 := [mp #6063 #10270]: #10031
  3.5308 -#10024 := (not #5829)
  3.5309 -#10025 := (or #10024 #5815 #10022)
  3.5310 -#10026 := [def-axiom]: #10025
  3.5311 -#10272 := [unit-resolution #10026 #10271 #10496]: #10022
  3.5312 -#10019 := (or #5824 #10018)
  3.5313 -#10020 := [def-axiom]: #10019
  3.5314 -#10273 := [unit-resolution #10020 #10272]: #10018
  3.5315 -#5037 := (or #5818 #5014)
  3.5316 -#10145 := (or #3914 #5818 #5014)
  3.5317 -#4981 := (+ #5944 #1235)
  3.5318 -#4982 := (>= #4981 0::Int)
  3.5319 -#5007 := (or #5818 #4982)
  3.5320 -#10146 := (or #3914 #5007)
  3.5321 -#10172 := (iff #10146 #10145)
  3.5322 -#10167 := (or #3914 #5037)
  3.5323 -#10170 := (iff #10167 #10145)
  3.5324 -#10171 := [rewrite]: #10170
  3.5325 -#10168 := (iff #10146 #10167)
  3.5326 -#5038 := (iff #5007 #5037)
  3.5327 -#5035 := (iff #4982 #5014)
  3.5328 -#5008 := (+ #1235 #5944)
  3.5329 -#5011 := (>= #5008 0::Int)
  3.5330 -#5015 := (iff #5011 #5014)
  3.5331 -#5016 := [rewrite]: #5015
  3.5332 -#5006 := (iff #4982 #5011)
  3.5333 -#5009 := (= #4981 #5008)
  3.5334 -#5010 := [rewrite]: #5009
  3.5335 -#5012 := [monotonicity #5010]: #5006
  3.5336 -#5036 := [trans #5012 #5016]: #5035
  3.5337 -#5039 := [monotonicity #5036]: #5038
  3.5338 -#10169 := [monotonicity #5039]: #10168
  3.5339 -#10173 := [trans #10169 #10171]: #10172
  3.5340 -#10166 := [quant-inst #2064]: #10146
  3.5341 -#10174 := [mp #10166 #10173]: #10145
  3.5342 -#10537 := [unit-resolution #10174 #8603]: #5037
  3.5343 -#10535 := [unit-resolution #10537 #10273]: #5014
  3.5344 -#5741 := (f19 f20 ?v0!17)
  3.5345 -#5634 := (* -1::Int #5741)
  3.5346 -#5694 := (+ #2074 #5634)
  3.5347 -#5699 := (<= #5694 0::Int)
  3.5348 -#10122 := (or #3940 #5699)
  3.5349 -#5671 := (+ #5741 #2075)
  3.5350 -#5684 := (>= #5671 0::Int)
  3.5351 -#10124 := (or #3940 #5684)
  3.5352 -#10127 := (iff #10124 #10122)
  3.5353 -#10130 := (iff #10122 #10122)
  3.5354 -#10131 := [rewrite]: #10130
  3.5355 -#5701 := (iff #5684 #5699)
  3.5356 -#5685 := (+ #2075 #5741)
  3.5357 -#5689 := (>= #5685 0::Int)
  3.5358 -#5700 := (iff #5689 #5699)
  3.5359 -#5698 := [rewrite]: #5700
  3.5360 -#5692 := (iff #5684 #5689)
  3.5361 -#5690 := (= #5671 #5685)
  3.5362 -#5691 := [rewrite]: #5690
  3.5363 -#5693 := [monotonicity #5691]: #5692
  3.5364 -#5702 := [trans #5693 #5698]: #5701
  3.5365 -#10128 := [monotonicity #5702]: #10127
  3.5366 -#10132 := [trans #10128 #10131]: #10127
  3.5367 -#10126 := [quant-inst #2065]: #10124
  3.5368 -#10133 := [mp #10126 #10132]: #10122
  3.5369 -#10770 := [unit-resolution #10133 #9894]: #5699
  3.5370 -#10716 := [hypothesis]: #3627
  3.5371 -#5629 := (+ #190 #5634)
  3.5372 -#10727 := (>= #5629 0::Int)
  3.5373 -#5771 := (f9 f21 ?v0!17)
  3.5374 -#5772 := (= #5771 f1)
  3.5375 -#5770 := (= ?v0!17 f28)
  3.5376 -#5778 := (or #5770 #5772)
  3.5377 -#5760 := (f9 #198 ?v0!17)
  3.5378 -#5761 := (= #5760 f1)
  3.5379 -#5783 := (iff #5761 #5778)
  3.5380 -#10038 := (or #7628 #5783)
  3.5381 -#5773 := (if #5770 #4146 #5772)
  3.5382 -#5774 := (iff #5761 #5773)
  3.5383 -#10036 := (or #7628 #5774)
  3.5384 -#10046 := (iff #10036 #10038)
  3.5385 -#10028 := (iff #10038 #10038)
  3.5386 -#10048 := [rewrite]: #10028
  3.5387 -#5784 := (iff #5774 #5783)
  3.5388 -#5781 := (iff #5773 #5778)
  3.5389 -#5775 := (if #5770 true #5772)
  3.5390 -#5779 := (iff #5775 #5778)
  3.5391 -#5780 := [rewrite]: #5779
  3.5392 -#5776 := (iff #5773 #5775)
  3.5393 -#5777 := [monotonicity #4149]: #5776
  3.5394 -#5782 := [trans #5777 #5780]: #5781
  3.5395 -#5785 := [monotonicity #5782]: #5784
  3.5396 -#10047 := [monotonicity #5785]: #10046
  3.5397 -#10049 := [trans #10047 #10048]: #10046
  3.5398 -#10045 := [quant-inst #115 #186 #3 #2065]: #10036
  3.5399 -#10050 := [mp #10045 #10049]: #10038
  3.5400 -#10530 := [unit-resolution #10050 #3723]: #5783
  3.5401 -#3626 := (or #2954 #2070)
  3.5402 -#3629 := [def-axiom]: #3626
  3.5403 -#6062 := [unit-resolution #3629 #6060]: #2070
  3.5404 -#10538 := (= #5760 #2069)
  3.5405 -#10540 := [monotonicity #9297]: #10538
  3.5406 -#10544 := [trans #10540 #6062]: #5761
  3.5407 -#10058 := (not #5761)
  3.5408 -#10073 := (not #5783)
  3.5409 -#10059 := (or #10073 #10058 #5778)
  3.5410 -#10060 := [def-axiom]: #10059
  3.5411 -#10536 := [unit-resolution #10060 #10544 #10530]: #5778
  3.5412 -#10051 := (not #5770)
  3.5413 -#10683 := (= #2074 #4167)
  3.5414 -#10731 := (not #10683)
  3.5415 -#6074 := (+ #2074 #4168)
  3.5416 -#10684 := (<= #6074 0::Int)
  3.5417 -#10570 := (not #10684)
  3.5418 -#5977 := (f5 #200 ?v1!16)
  3.5419 -#5978 := (f15 #5977)
  3.5420 -#10503 := (<= #5978 0::Int)
  3.5421 -#10504 := (not #10503)
  3.5422 -#10502 := (= f28 ?v1!16)
  3.5423 -#10419 := (not #10502)
  3.5424 -#10016 := (not #5816)
  3.5425 -#10017 := (or #5824 #10016)
  3.5426 -#10015 := [def-axiom]: #10017
  3.5427 -#10374 := [unit-resolution #10015 #10272]: #10016
  3.5428 -#10357 := (or #10419 #5816)
  3.5429 -#10399 := [hypothesis]: #10502
  3.5430 -#10410 := [symm #10399]: #5816
  3.5431 -#10367 := [hypothesis]: #10016
  3.5432 -#10417 := [unit-resolution #10367 #10410]: false
  3.5433 -#10416 := [lemma #10417]: #10357
  3.5434 -#10418 := [unit-resolution #10416 #10374]: #10419
  3.5435 -#10343 := (or #10504 #10502)
  3.5436 -#10409 := [hypothesis]: #10419
  3.5437 -#10318 := [hypothesis]: #10503
  3.5438 -#10322 := (or #6342 #10502 #10504)
  3.5439 -#10505 := (or #10502 #10504)
  3.5440 -#10338 := (or #6342 #10505)
  3.5441 -#10339 := (iff #10338 #10322)
  3.5442 -#10340 := [rewrite]: #10339
  3.5443 -#10295 := [quant-inst #186 #2064]: #10338
  3.5444 -#10341 := [mp #10295 #10340]: #10322
  3.5445 -#10422 := [unit-resolution #10341 #3735 #10318 #10409]: false
  3.5446 -#10472 := [lemma #10422]: #10343
  3.5447 -#10405 := [unit-resolution #10472 #10418]: #10504
  3.5448 -#10571 := (not #5014)
  3.5449 -#10467 := (or #10570 #10503 #2077 #10571)
  3.5450 -#4581 := (* -1::Int #2073)
  3.5451 -#6036 := (+ #4581 #5978)
  3.5452 -#6037 := (+ #190 #6036)
  3.5453 -#6040 := (= #6037 0::Int)
  3.5454 -#10441 := (not #6040)
  3.5455 -#10120 := (<= #6037 0::Int)
  3.5456 -#10719 := (not #10120)
  3.5457 -#10714 := [hypothesis]: #10504
  3.5458 -#10567 := [hypothesis]: #10684
  3.5459 -#10406 := (or #10503 #2077 #10719 #10570 #10393)
  3.5460 -#10337 := [th-lemma arith assign-bounds 1 1 1 1]: #10406
  3.5461 -#10342 := [unit-resolution #10337 #10567 #10714 #10752 #10716]: #10719
  3.5462 -#10420 := (or #10441 #10120)
  3.5463 -#10421 := [th-lemma arith triangle-eq]: #10420
  3.5464 -#10378 := [unit-resolution #10421 #10342]: #10441
  3.5465 -#5996 := (+ #5961 #5978)
  3.5466 -#5997 := (+ #190 #5996)
  3.5467 -#5998 := (>= #5997 0::Int)
  3.5468 -#5979 := (* -1::Int #5978)
  3.5469 -#5980 := (+ f14 #5979)
  3.5470 -#5981 := (<= #5980 0::Int)
  3.5471 -#6003 := (or #5981 #5998)
  3.5472 -#6006 := (not #6003)
  3.5473 -#5987 := (= #2073 #5944)
  3.5474 -#10379 := (not #5987)
  3.5475 -#5962 := (+ #2073 #5961)
  3.5476 -#10107 := (>= #5962 0::Int)
  3.5477 -#10569 := (not #10107)
  3.5478 -#10566 := [hypothesis]: #5014
  3.5479 -#10572 := (or #10569 #2077 #10570 #10571)
  3.5480 -#10562 := [hypothesis]: #10107
  3.5481 -#10568 := [th-lemma arith farkas -1 1 1 -1 1 #10562 #10716 #10567 #10752 #10566]: false
  3.5482 -#10576 := [lemma #10568]: #10572
  3.5483 -#10358 := [unit-resolution #10576 #10567 #10716 #10566]: #10569
  3.5484 -#10380 := (or #10379 #10107)
  3.5485 -#10381 := [th-lemma arith triangle-eq]: #10380
  3.5486 -#10359 := [unit-resolution #10381 #10358]: #10379
  3.5487 -#6009 := (or #6006 #5987)
  3.5488 -#10077 := (or #3932 #6006 #5987)
  3.5489 -#5982 := (+ #1235 #5979)
  3.5490 -#5983 := (+ #5944 #5982)
  3.5491 -#5984 := (<= #5983 0::Int)
  3.5492 -#5985 := (or #5981 #5984)
  3.5493 -#5986 := (not #5985)
  3.5494 -#5988 := (or #5986 #5987)
  3.5495 -#10078 := (or #3932 #5988)
  3.5496 -#10096 := (iff #10078 #10077)
  3.5497 -#10079 := (or #3932 #6009)
  3.5498 -#10075 := (iff #10079 #10077)
  3.5499 -#10095 := [rewrite]: #10075
  3.5500 -#10080 := (iff #10078 #10079)
  3.5501 -#6010 := (iff #5988 #6009)
  3.5502 -#6007 := (iff #5986 #6006)
  3.5503 -#6004 := (iff #5985 #6003)
  3.5504 -#6001 := (iff #5984 #5998)
  3.5505 -#5989 := (+ #5944 #5979)
  3.5506 -#5990 := (+ #1235 #5989)
  3.5507 -#5993 := (<= #5990 0::Int)
  3.5508 -#5999 := (iff #5993 #5998)
  3.5509 -#6000 := [rewrite]: #5999
  3.5510 -#5994 := (iff #5984 #5993)
  3.5511 -#5991 := (= #5983 #5990)
  3.5512 -#5992 := [rewrite]: #5991
  3.5513 -#5995 := [monotonicity #5992]: #5994
  3.5514 -#6002 := [trans #5995 #6000]: #6001
  3.5515 -#6005 := [monotonicity #6002]: #6004
  3.5516 -#6008 := [monotonicity #6005]: #6007
  3.5517 -#6011 := [monotonicity #6008]: #6010
  3.5518 -#10081 := [monotonicity #6011]: #10080
  3.5519 -#10097 := [trans #10081 #10095]: #10096
  3.5520 -#10076 := [quant-inst #2064]: #10078
  3.5521 -#10098 := [mp #10076 #10097]: #10077
  3.5522 -#10377 := [unit-resolution #10098 #8861]: #6009
  3.5523 -#10383 := [unit-resolution #10377 #10359]: #6006
  3.5524 -#10564 := (or #6003 #6040)
  3.5525 -#10442 := [hypothesis]: #10441
  3.5526 -#10074 := (not #5981)
  3.5527 -#10558 := [hypothesis]: #6006
  3.5528 -#10099 := (or #6003 #10074)
  3.5529 -#10100 := [def-axiom]: #10099
  3.5530 -#10559 := [unit-resolution #10100 #10558]: #10074
  3.5531 -#10101 := (not #5998)
  3.5532 -#10102 := (or #6003 #10101)
  3.5533 -#10103 := [def-axiom]: #10102
  3.5534 -#10560 := [unit-resolution #10103 #10558]: #10101
  3.5535 -#6043 := (or #5981 #5998 #6040)
  3.5536 -#10108 := (or #3924 #5981 #5998 #6040)
  3.5537 -#6032 := (+ #5978 #4581)
  3.5538 -#6033 := (+ #190 #6032)
  3.5539 -#6034 := (= #6033 0::Int)
  3.5540 -#6035 := (or #5981 #5984 #6034)
  3.5541 -#10109 := (or #3924 #6035)
  3.5542 -#10118 := (iff #10109 #10108)
  3.5543 -#10110 := (or #3924 #6043)
  3.5544 -#10113 := (iff #10110 #10108)
  3.5545 -#10114 := [rewrite]: #10113
  3.5546 -#10111 := (iff #10109 #10110)
  3.5547 -#6044 := (iff #6035 #6043)
  3.5548 -#6041 := (iff #6034 #6040)
  3.5549 -#6038 := (= #6033 #6037)
  3.5550 -#6039 := [rewrite]: #6038
  3.5551 -#6042 := [monotonicity #6039]: #6041
  3.5552 -#6045 := [monotonicity #6002 #6042]: #6044
  3.5553 -#10112 := [monotonicity #6045]: #10111
  3.5554 -#10119 := [trans #10112 #10114]: #10118
  3.5555 -#10104 := [quant-inst #2064]: #10109
  3.5556 -#10117 := [mp #10104 #10119]: #10108
  3.5557 -#10561 := [unit-resolution #10117 #8832]: #6043
  3.5558 -#10563 := [unit-resolution #10561 #10560 #10559 #10442]: false
  3.5559 -#10565 := [lemma #10563]: #10564
  3.5560 -#10382 := [unit-resolution #10565 #10383 #10378]: false
  3.5561 -#10471 := [lemma #10382]: #10467
  3.5562 -#10423 := [unit-resolution #10471 #10405 #10716 #10535]: #10570
  3.5563 -#10738 := (or #10731 #10684)
  3.5564 -#10737 := [th-lemma arith triangle-eq]: #10738
  3.5565 -#10531 := [unit-resolution #10737 #10423]: #10731
  3.5566 -#10368 := (or #10051 #10683)
  3.5567 -#10401 := [hypothesis]: #5770
  3.5568 -#10400 := [monotonicity #10401]: #10683
  3.5569 -#10370 := [hypothesis]: #10731
  3.5570 -#10402 := [unit-resolution #10370 #10400]: false
  3.5571 -#10369 := [lemma #10402]: #10368
  3.5572 -#10426 := [unit-resolution #10369 #10531]: #10051
  3.5573 -#10070 := (not #5778)
  3.5574 -#10071 := (or #10070 #5770 #5772)
  3.5575 -#10072 := [def-axiom]: #10071
  3.5576 -#10427 := [unit-resolution #10072 #10426 #10536]: #5772
  3.5577 -#10067 := (not #5772)
  3.5578 -#10803 := (or #10067 #10727)
  3.5579 -#10782 := (not #10727)
  3.5580 -#10800 := [hypothesis]: #10782
  3.5581 -#10801 := [hypothesis]: #5772
  3.5582 -#10785 := (or #3820 #188 #10067 #10727)
  3.5583 -#10728 := (or #188 #10067 #10727)
  3.5584 -#10786 := (or #3820 #10728)
  3.5585 -#10788 := (iff #10786 #10785)
  3.5586 -#10789 := [rewrite]: #10788
  3.5587 -#10787 := [quant-inst #2065 #186]: #10786
  3.5588 -#10790 := [mp #10787 #10789]: #10785
  3.5589 -#10802 := [unit-resolution #10790 #8132 #8131 #10801 #10800]: false
  3.5590 -#10804 := [lemma #10802]: #10803
  3.5591 -#10428 := [unit-resolution #10804 #10427]: #10727
  3.5592 -#10429 := (not #5699)
  3.5593 -#10276 := (or #10782 #2077 #10719 #10503 #10429)
  3.5594 -#10278 := [th-lemma arith assign-bounds 1 1 1 1]: #10276
  3.5595 -#10279 := [unit-resolution #10278 #10428 #10770 #10405 #10716]: #10719
  3.5596 -#10280 := [unit-resolution #10421 #10279]: #10441
  3.5597 -#10275 := [unit-resolution #10565 #10280]: #6003
  3.5598 -#10281 := [unit-resolution #10377 #10275]: #5987
  3.5599 -#10277 := [unit-resolution #10381 #10281]: #10107
  3.5600 -#10282 := [th-lemma arith farkas -1 -1 1 1 1 #10277 #10428 #10716 #10770 #10535]: false
  3.5601 -#10345 := [lemma #10282]: #10344
  3.5602 -#11340 := [unit-resolution #10345 #6061 #6060]: false
  3.5603 -#11363 := [lemma #11340]: #2954
  3.5604 -#3597 := (or #4006 #2959 #4000)
  3.5605 -#3598 := [def-axiom]: #3597
  3.5606 -#14089 := [unit-resolution #3598 #11363]: #14245
  3.5607 -#14298 := [unit-resolution #14089 #14006]: #4000
  3.5608 -#3606 := (or #3997 #3991)
  3.5609 -#3607 := [def-axiom]: #3606
  3.5610 -#17543 := [unit-resolution #3607 #14298]: #3991
  3.5611 -#16954 := [hypothesis]: #3005
  3.5612 -#3619 := (or #3000 #2101)
  3.5613 -#3622 := [def-axiom]: #3619
  3.5614 -#16970 := [unit-resolution #3622 #16954]: #2101
  3.5615 -#6572 := (f5 #200 ?v0!19)
  3.5616 -#6570 := (f15 #6572)
  3.5617 -#6573 := (* -1::Int #6570)
  3.5618 -#16948 := (+ #2097 #6573)
  3.5619 -#16952 := (>= #16948 0::Int)
  3.5620 -#16938 := (= #2097 #6570)
  3.5621 -#17002 := (= #2096 #6572)
  3.5622 -#16996 := (= #2095 #200)
  3.5623 -#5496 := (= ?v1!18 f28)
  3.5624 -#5497 := (f9 f21 ?v1!18)
  3.5625 -#5498 := (= #5497 f1)
  3.5626 -#6712 := (not #5498)
  3.5627 -#6463 := (f19 f20 ?v0!19)
  3.5628 -#6534 := (* -1::Int #6463)
  3.5629 -#5451 := (f19 f20 ?v1!18)
  3.5630 -#6728 := (+ #5451 #6534)
  3.5631 -#6729 := (+ #2097 #6728)
  3.5632 -#6730 := (>= #6729 0::Int)
  3.5633 -#16957 := (not #6730)
  3.5634 -#3507 := (not #2109)
  3.5635 -#3522 := (or #3000 #3507)
  3.5636 -#3524 := [def-axiom]: #3522
  3.5637 -#16955 := [unit-resolution #3524 #16954]: #3507
  3.5638 -#5548 := (* -1::Int #5451)
  3.5639 -#5549 := (+ #2104 #5548)
  3.5640 -#12637 := (>= #5549 0::Int)
  3.5641 -#5469 := (= #2104 #5451)
  3.5642 -#3523 := (or #3000 #2094)
  3.5643 -#3618 := [def-axiom]: #3523
  3.5644 -#16956 := [unit-resolution #3618 #16954]: #2094
  3.5645 -#16334 := (or #3949 #2985 #5469)
  3.5646 -#5472 := (or #2985 #5469)
  3.5647 -#16340 := (or #3949 #5472)
  3.5648 -#16341 := (iff #16340 #16334)
  3.5649 -#16068 := [rewrite]: #16341
  3.5650 -#16335 := [quant-inst #2091]: #16340
  3.5651 -#16150 := [mp #16335 #16068]: #16334
  3.5652 -#16959 := [unit-resolution #16150 #18772 #16956]: #5469
  3.5653 -#16963 := (not #5469)
  3.5654 -#16964 := (or #16963 #12637)
  3.5655 -#16966 := [th-lemma arith triangle-eq]: #16964
  3.5656 -#16967 := [unit-resolution #16966 #16959]: #12637
  3.5657 -#16961 := (not #12637)
  3.5658 -#12548 := (or #16957 #16961 #2109)
  3.5659 -#6535 := (+ #2105 #6534)
  3.5660 -#6536 := (<= #6535 0::Int)
  3.5661 -#18328 := (not #6536)
  3.5662 -#18338 := [hypothesis]: #18328
  3.5663 -#17088 := (or #3940 #6536)
  3.5664 -#6478 := (+ #6463 #2106)
  3.5665 -#6488 := (>= #6478 0::Int)
  3.5666 -#17089 := (or #3940 #6488)
  3.5667 -#18276 := (iff #17089 #17088)
  3.5668 -#18278 := (iff #17088 #17088)
  3.5669 -#18289 := [rewrite]: #18278
  3.5670 -#6557 := (iff #6488 #6536)
  3.5671 -#6529 := (+ #2106 #6463)
  3.5672 -#6532 := (>= #6529 0::Int)
  3.5673 -#6537 := (iff #6532 #6536)
  3.5674 -#6556 := [rewrite]: #6537
  3.5675 -#6527 := (iff #6488 #6532)
  3.5676 -#6530 := (= #6478 #6529)
  3.5677 -#6531 := [rewrite]: #6530
  3.5678 -#6533 := [monotonicity #6531]: #6527
  3.5679 -#6558 := [trans #6533 #6556]: #6557
  3.5680 -#18277 := [monotonicity #6558]: #18276
  3.5681 -#18290 := [trans #18277 #18289]: #18276
  3.5682 -#18275 := [quant-inst #2092]: #17089
  3.5683 -#18291 := [mp #18275 #18290]: #17088
  3.5684 -#18339 := [unit-resolution #18291 #9894 #18338]: false
  3.5685 -#18340 := [lemma #18339]: #6536
  3.5686 -#16962 := (or #16957 #16961 #18328 #2109)
  3.5687 -#16968 := [th-lemma arith assign-bounds 1 -1 -1]: #16962
  3.5688 -#12549 := [unit-resolution #16968 #18340]: #12548
  3.5689 -#12627 := [unit-resolution #12549 #16967 #16955]: #16957
  3.5690 -#16932 := (or #6712 #6730)
  3.5691 -#16777 := (or #3828 #6712 #2100 #6730)
  3.5692 -#6731 := (or #6712 #2100 #6730)
  3.5693 -#16782 := (or #3828 #6731)
  3.5694 -#16783 := (iff #16782 #16777)
  3.5695 -#16775 := [rewrite]: #16783
  3.5696 -#16780 := [quant-inst #2092 #2091]: #16782
  3.5697 -#16784 := [mp #16780 #16775]: #16777
  3.5698 -#16975 := [unit-resolution #16784 #7100 #16970]: #16932
  3.5699 -#12604 := [unit-resolution #16975 #12627]: #6712
  3.5700 -#5504 := (or #5496 #5498)
  3.5701 -#5486 := (f9 #198 ?v1!18)
  3.5702 -#5487 := (= #5486 f1)
  3.5703 -#5509 := (iff #5487 #5504)
  3.5704 -#16182 := (or #7628 #5509)
  3.5705 -#5499 := (if #5496 #4146 #5498)
  3.5706 -#5500 := (iff #5487 #5499)
  3.5707 -#16247 := (or #7628 #5500)
  3.5708 -#16275 := (iff #16247 #16182)
  3.5709 -#16296 := (iff #16182 #16182)
  3.5710 -#15136 := [rewrite]: #16296
  3.5711 -#5510 := (iff #5500 #5509)
  3.5712 -#5507 := (iff #5499 #5504)
  3.5713 -#5501 := (if #5496 true #5498)
  3.5714 -#5505 := (iff #5501 #5504)
  3.5715 -#5506 := [rewrite]: #5505
  3.5716 -#5502 := (iff #5499 #5501)
  3.5717 -#5503 := [monotonicity #4149]: #5502
  3.5718 -#5508 := [trans #5503 #5506]: #5507
  3.5719 -#5511 := [monotonicity #5508]: #5510
  3.5720 -#15135 := [monotonicity #5511]: #16275
  3.5721 -#15137 := [trans #15135 #15136]: #16275
  3.5722 -#16092 := [quant-inst #115 #186 #3 #2091]: #16247
  3.5723 -#16292 := [mp #16092 #15137]: #16182
  3.5724 -#16991 := [unit-resolution #16292 #3723]: #5509
  3.5725 -#16993 := (= #5486 #2093)
  3.5726 -#16994 := [monotonicity #9297]: #16993
  3.5727 -#16974 := [trans #16994 #16956]: #5487
  3.5728 -#16337 := (not #5487)
  3.5729 -#15281 := (not #5509)
  3.5730 -#16421 := (or #15281 #16337 #5504)
  3.5731 -#16336 := [def-axiom]: #16421
  3.5732 -#16992 := [unit-resolution #16336 #16974 #16991]: #5504
  3.5733 -#16342 := (not #5504)
  3.5734 -#16264 := (or #16342 #5496 #5498)
  3.5735 -#15134 := [def-axiom]: #16264
  3.5736 -#12567 := [unit-resolution #15134 #16992 #12604]: #5496
  3.5737 -#12652 := [monotonicity #12567]: #16996
  3.5738 -#12545 := [monotonicity #12652]: #17002
  3.5739 -#12613 := [monotonicity #12545]: #16938
  3.5740 -#16983 := (not #16938)
  3.5741 -#16973 := (or #16983 #16952)
  3.5742 -#16987 := [th-lemma arith triangle-eq]: #16973
  3.5743 -#12610 := [unit-resolution #16987 #12613]: #16952
  3.5744 -#6574 := (+ f14 #6573)
  3.5745 -#6575 := (<= #6574 0::Int)
  3.5746 -#6600 := (+ #6534 #6570)
  3.5747 -#6598 := (+ #190 #6600)
  3.5748 -#6601 := (>= #6598 0::Int)
  3.5749 -#12029 := (not #6601)
  3.5750 -#6452 := (+ #2104 #4168)
  3.5751 -#6453 := (>= #6452 0::Int)
  3.5752 -#5573 := (+ #190 #5548)
  3.5753 -#5574 := (<= #5573 0::Int)
  3.5754 -#16786 := (or #3914 #5498 #5574)
  3.5755 -#5564 := (+ #5451 #1235)
  3.5756 -#5565 := (>= #5564 0::Int)
  3.5757 -#5566 := (or #5498 #5565)
  3.5758 -#16796 := (or #3914 #5566)
  3.5759 -#16822 := (iff #16796 #16786)
  3.5760 -#5579 := (or #5498 #5574)
  3.5761 -#16815 := (or #3914 #5579)
  3.5762 -#16827 := (iff #16815 #16786)
  3.5763 -#16821 := [rewrite]: #16827
  3.5764 -#16825 := (iff #16796 #16815)
  3.5765 -#5580 := (iff #5566 #5579)
  3.5766 -#5577 := (iff #5565 #5574)
  3.5767 -#5567 := (+ #1235 #5451)
  3.5768 -#5570 := (>= #5567 0::Int)
  3.5769 -#5575 := (iff #5570 #5574)
  3.5770 -#5576 := [rewrite]: #5575
  3.5771 -#5571 := (iff #5565 #5570)
  3.5772 -#5568 := (= #5564 #5567)
  3.5773 -#5569 := [rewrite]: #5568
  3.5774 -#5572 := [monotonicity #5569]: #5571
  3.5775 -#5578 := [trans #5572 #5576]: #5577
  3.5776 -#5581 := [monotonicity #5578]: #5580
  3.5777 -#16826 := [monotonicity #5581]: #16825
  3.5778 -#16820 := [trans #16826 #16821]: #16822
  3.5779 -#16817 := [quant-inst #2091]: #16796
  3.5780 -#16823 := [mp #16817 #16820]: #16786
  3.5781 -#12620 := [unit-resolution #16823 #8603 #12604]: #5574
  3.5782 -#16986 := (not #5574)
  3.5783 -#12638 := (or #6453 #16986 #16961)
  3.5784 -#16989 := (or #6453 #16986 #16961 #10393)
  3.5785 -#16990 := [th-lemma arith assign-bounds 1 -1 -1]: #16989
  3.5786 -#12605 := [unit-resolution #16990 #10752]: #12638
  3.5787 -#12619 := [unit-resolution #12605 #12620 #16967]: #6453
  3.5788 -#12634 := (not #16952)
  3.5789 -#12636 := (not #6453)
  3.5790 -#12622 := (or #12029 #18328 #2109 #12636 #12661 #12634)
  3.5791 -#12656 := [th-lemma arith assign-bounds -1 -1 1 -1 1]: #12622
  3.5792 -#12623 := [unit-resolution #12656 #12619 #18340 #18263 #16955 #12610]: #12029
  3.5793 -#6617 := (or #6575 #6601)
  3.5794 -#6699 := (+ #2106 #6570)
  3.5795 -#6700 := (+ #190 #6699)
  3.5796 -#6703 := (= #6700 0::Int)
  3.5797 -#11657 := (not #6703)
  3.5798 -#12480 := (>= #6700 0::Int)
  3.5799 -#17015 := (not #12480)
  3.5800 -#17017 := (or #3000 #17015)
  3.5801 -#16969 := [unit-resolution #16968 #16967 #18340 #16955]: #16957
  3.5802 -#16976 := [unit-resolution #16975 #16969]: #6712
  3.5803 -#16995 := [unit-resolution #15134 #16992 #16976]: #5496
  3.5804 -#16997 := [monotonicity #16995]: #16996
  3.5805 -#16981 := [monotonicity #16997]: #17002
  3.5806 -#16982 := [monotonicity #16981]: #16938
  3.5807 -#16980 := [unit-resolution #16987 #16982]: #16952
  3.5808 -#16988 := [unit-resolution #16823 #8603 #16976]: #5574
  3.5809 -#17010 := [unit-resolution #16990 #16967 #10752 #16988]: #6453
  3.5810 -#17013 := [hypothesis]: #12480
  3.5811 -#17014 := [th-lemma arith farkas 1 -1 1 -1 1 #17013 #16955 #17010 #18263 #16980]: false
  3.5812 -#17018 := [lemma #17014]: #17017
  3.5813 -#12641 := [unit-resolution #17018 #16954]: #17015
  3.5814 -#11714 := (or #11657 #12480)
  3.5815 -#12635 := [th-lemma arith triangle-eq]: #11714
  3.5816 -#12017 := [unit-resolution #12635 #12641]: #11657
  3.5817 -#12092 := (or #3924 #6575 #6601 #6703)
  3.5818 -#6696 := (+ #6570 #2106)
  3.5819 -#6697 := (+ #190 #6696)
  3.5820 -#6698 := (= #6697 0::Int)
  3.5821 -#6580 := (+ #1235 #6573)
  3.5822 -#6581 := (+ #6463 #6580)
  3.5823 -#6579 := (<= #6581 0::Int)
  3.5824 -#6693 := (or #6575 #6579 #6698)
  3.5825 -#12098 := (or #3924 #6693)
  3.5826 -#12143 := (iff #12098 #12092)
  3.5827 -#5162 := (or #6575 #6601 #6703)
  3.5828 -#12058 := (or #3924 #5162)
  3.5829 -#12141 := (iff #12058 #12092)
  3.5830 -#12147 := [rewrite]: #12141
  3.5831 -#12060 := (iff #12098 #12058)
  3.5832 -#5352 := (iff #6693 #5162)
  3.5833 -#5122 := (iff #6698 #6703)
  3.5834 -#6701 := (= #6697 #6700)
  3.5835 -#6702 := [rewrite]: #6701
  3.5836 -#5123 := [monotonicity #6702]: #5122
  3.5837 -#6618 := (iff #6579 #6601)
  3.5838 -#6588 := (+ #6463 #6573)
  3.5839 -#6589 := (+ #1235 #6588)
  3.5840 -#6591 := (<= #6589 0::Int)
  3.5841 -#6602 := (iff #6591 #6601)
  3.5842 -#6603 := [rewrite]: #6602
  3.5843 -#6592 := (iff #6579 #6591)
  3.5844 -#6587 := (= #6581 #6589)
  3.5845 -#6590 := [rewrite]: #6587
  3.5846 -#6599 := [monotonicity #6590]: #6592
  3.5847 -#6619 := [trans #6599 #6603]: #6618
  3.5848 -#5353 := [monotonicity #6619 #5123]: #5352
  3.5849 -#12148 := [monotonicity #5353]: #12060
  3.5850 -#12142 := [trans #12148 #12147]: #12143
  3.5851 -#12130 := [quant-inst #2092]: #12098
  3.5852 -#12144 := [mp #12130 #12142]: #12092
  3.5853 -#12644 := [unit-resolution #12144 #8832 #12017]: #6617
  3.5854 -#11750 := [unit-resolution #12644 #12623]: #6575
  3.5855 -#12020 := [th-lemma arith farkas -1 1 1 #11750 #12610 #16970]: false
  3.5856 -#12047 := [lemma #12020]: #3000
  3.5857 -#3615 := (or #3994 #3005 #3988)
  3.5858 -#3616 := [def-axiom]: #3615
  3.5859 -#17550 := [unit-resolution #3616 #12047 #17543]: #3988
  3.5860 -#3620 := (or #3985 #3977)
  3.5861 -#3624 := [def-axiom]: #3620
  3.5862 -#14729 := [unit-resolution #3624 #17550]: #3977
  3.5863 -#4520 := (not #4519)
  3.5864 -#9879 := (or #3982 #5318 #4520 #5337)
  3.5865 -#5308 := (+ #4167 #5267)
  3.5866 -#5309 := (= #5308 0::Int)
  3.5867 -#5310 := (not #5309)
  3.5868 -#5298 := (+ #4167 #2127)
  3.5869 -#5299 := (>= #5298 0::Int)
  3.5870 -#5311 := (or #5299 #4520 #5310)
  3.5871 -#9846 := (or #3982 #5311)
  3.5872 -#3396 := (iff #9846 #9879)
  3.5873 -#5340 := (or #5318 #4520 #5337)
  3.5874 -#9859 := (or #3982 #5340)
  3.5875 -#8772 := (iff #9859 #9879)
  3.5876 -#8417 := [rewrite]: #8772
  3.5877 -#7921 := (iff #9846 #9859)
  3.5878 -#5341 := (iff #5311 #5340)
  3.5879 -#5338 := (iff #5310 #5337)
  3.5880 -#5335 := (iff #5309 #5332)
  3.5881 -#5323 := (+ #4167 #5211)
  3.5882 -#5324 := (+ #2127 #5323)
  3.5883 -#5327 := (= #5324 0::Int)
  3.5884 -#5333 := (iff #5327 #5332)
  3.5885 -#5334 := [rewrite]: #5333
  3.5886 -#5328 := (iff #5309 #5327)
  3.5887 -#5325 := (= #5308 #5324)
  3.5888 -#5326 := [rewrite]: #5325
  3.5889 -#5329 := [monotonicity #5326]: #5328
  3.5890 -#5336 := [trans #5329 #5334]: #5335
  3.5891 -#5339 := [monotonicity #5336]: #5338
  3.5892 -#5321 := (iff #5299 #5318)
  3.5893 -#5312 := (+ #2127 #4167)
  3.5894 -#5315 := (>= #5312 0::Int)
  3.5895 -#5319 := (iff #5315 #5318)
  3.5896 -#5320 := [rewrite]: #5319
  3.5897 -#5316 := (iff #5299 #5315)
  3.5898 -#5313 := (= #5298 #5312)
  3.5899 -#5314 := [rewrite]: #5313
  3.5900 -#5317 := [monotonicity #5314]: #5316
  3.5901 -#5322 := [trans #5317 #5320]: #5321
  3.5902 -#5342 := [monotonicity #5322 #5339]: #5341
  3.5903 -#7809 := [monotonicity #5342]: #7921
  3.5904 -#9848 := [trans #7809 #8417]: #3396
  3.5905 -#9851 := [quant-inst #186]: #9846
  3.5906 -#9882 := [mp #9851 #9848]: #9879
  3.5907 -#14657 := [unit-resolution #9882 #14729 #12665]: #15716
  3.5908 -#13744 := [unit-resolution #14657 #15984]: #5318
  3.5909 -#5158 := (>= #5157 0::Int)
  3.5910 -#15624 := (or #4623 #5158)
  3.5911 -#3612 := (or #3997 #3961)
  3.5912 -#3617 := [def-axiom]: #3612
  3.5913 -#14246 := [unit-resolution #3617 #14298]: #3961
  3.5914 -#11761 := (or #3966 #4623 #4520 #5158)
  3.5915 -#5159 := (or #4623 #4520 #5158)
  3.5916 -#10607 := (or #3966 #5159)
  3.5917 -#11378 := (iff #10607 #11761)
  3.5918 -#11392 := [rewrite]: #11378
  3.5919 -#10887 := [quant-inst #186 #2123]: #10607
  3.5920 -#11762 := [mp #10887 #11392]: #11761
  3.5921 -#15544 := [unit-resolution #11762 #14246 #12665]: #15624
  3.5922 -#13741 := [unit-resolution #15544 #15919]: #5158
  3.5923 -#13599 := [th-lemma arith eq-propagate 1 1 -1 -1 1 1 #13741 #13744 #10752 #18263 #15545 #15571]: #19614
  3.5924 -#13366 := (not #19614)
  3.5925 -#15910 := (or #13366 #19610)
  3.5926 -#15852 := [th-lemma arith triangle-eq]: #15910
  3.5927 -#12478 := [unit-resolution #15852 #13599]: #19610
  3.5928 -#19611 := (not #19610)
  3.5929 -#19612 := (or #19609 #19611)
  3.5930 -#12798 := (or #6342 #19609 #19611)
  3.5931 -#14603 := (or #6342 #19612)
  3.5932 -#14654 := (iff #14603 #12798)
  3.5933 -#14656 := [rewrite]: #14654
  3.5934 -#14666 := [quant-inst #186 #2123]: #14603
  3.5935 -#14616 := [mp #14666 #14656]: #12798
  3.5936 -#13305 := [unit-resolution #14616 #3735]: #19612
  3.5937 -#16503 := [unit-resolution #13305 #12478]: #19609
  3.5938 -#15534 := [unit-resolution #16503 #15258]: false
  3.5939 -#16669 := [lemma #15534]: #5176
  3.5940 -#19122 := (or #19098 #17503)
  3.5941 -#17519 := (not #17503)
  3.5942 -#19187 := [hypothesis]: #17519
  3.5943 -#19192 := [hypothesis]: #5176
  3.5944 -#19097 := [th-lemma arith triangle-eq]: #19122
  3.5945 -#19172 := [unit-resolution #19097 #19192 #19187]: false
  3.5946 -#19096 := [lemma #19172]: #19122
  3.5947 -#24633 := [unit-resolution #19096 #16669]: #17503
  3.5948 -#17541 := (or #17547 #17519)
  3.5949 -#3530 := (or #3985 #2130)
  3.5950 -#3623 := [def-axiom]: #3530
  3.5951 -#17522 := [unit-resolution #3623 #17550]: #2130
  3.5952 -#17561 := [hypothesis]: #17503
  3.5953 -#17545 := [hypothesis]: #5430
  3.5954 -#17548 := [th-lemma arith farkas -1 1 1 #17545 #17561 #17522]: false
  3.5955 -#17521 := [lemma #17548]: #17541
  3.5956 -#24634 := [unit-resolution #17521 #24633]: #17547
  3.5957 -#21003 := (or #5430 #5448)
  3.5958 -#3528 := (or #3985 #2125)
  3.5959 -#3529 := [def-axiom]: #3528
  3.5960 -#21002 := [unit-resolution #3529 #17550]: #2125
  3.5961 -#11823 := (or #3836 #2124 #5430 #5448)
  3.5962 -#5449 := (or #2124 #5430 #5448)
  3.5963 -#11543 := (or #3836 #5449)
  3.5964 -#11822 := (iff #11543 #11823)
  3.5965 -#11793 := [rewrite]: #11822
  3.5966 -#11827 := [quant-inst #2123]: #11543
  3.5967 -#11829 := [mp #11827 #11793]: #11823
  3.5968 -#21004 := [unit-resolution #11829 #7150 #21002]: #21003
  3.5969 -#24635 := [unit-resolution #21004 #24634]: #5448
  3.5970 -#10444 := (or #5447 #5445)
  3.5971 -#11271 := [def-axiom]: #10444
  3.5972 -#20098 := [unit-resolution #11271 #24635]: #5445
  3.5973 -#20099 := (or #5446 #11830)
  3.5974 -#20097 := [th-lemma arith triangle-eq]: #20099
  3.5975 -#20088 := [unit-resolution #20097 #20098]: #11830
  3.5976 -#18274 := (+ #5432 #17799)
  3.5977 -#18321 := (>= #18274 0::Int)
  3.5978 -#15420 := (or #3940 #18321)
  3.5979 -#15369 := [quant-inst #5431]: #15420
  3.5980 -#19872 := [unit-resolution #15369 #9894]: #18321
  3.5981 -#20100 := (not #18321)
  3.5982 -#19873 := (not #11830)
  3.5983 -#20101 := (or #15418 #19873 #17519 #20100)
  3.5984 -#20102 := [th-lemma arith assign-bounds -1 -1 -1]: #20101
  3.5985 -#20082 := [unit-resolution #20102 #24633 #19872 #20088]: #15418
  3.5986 -#18473 := (<= #18529 0::Int)
  3.5987 -#18450 := (+ f14 #5442)
  3.5988 -#18526 := (<= #18450 0::Int)
  3.5989 -#19955 := (not #18526)
  3.5990 -#18451 := (>= #5432 0::Int)
  3.5991 -#15358 := (or #3811 #18451)
  3.5992 -#15465 := [quant-inst #5431]: #15358
  3.5993 -#21016 := [unit-resolution #15465 #8408]: #18451
  3.5994 -#21023 := (not #18451)
  3.5995 -#19947 := (or #19955 #2129 #17519 #21023 #19873)
  3.5996 -#19948 := [th-lemma arith assign-bounds -1 -1 -1 -1]: #19947
  3.5997 -#19989 := [unit-resolution #19948 #21016 #24633 #20088 #17522]: #19955
  3.5998 -#18253 := (f9 f29 #5431)
  3.5999 -#17861 := (= #18253 f1)
  3.6000 -#24578 := (f9 #198 #5431)
  3.6001 -#24579 := (= #24578 f1)
  3.6002 -#24590 := (= #5431 f28)
  3.6003 -#24596 := (or #24590 #5437)
  3.6004 -#24601 := (iff #24579 #24596)
  3.6005 -#24604 := (or #7628 #24601)
  3.6006 -#24591 := (if #24590 #4146 #5437)
  3.6007 -#24592 := (iff #24579 #24591)
  3.6008 -#24605 := (or #7628 #24592)
  3.6009 -#24607 := (iff #24605 #24604)
  3.6010 -#24609 := (iff #24604 #24604)
  3.6011 -#24610 := [rewrite]: #24609
  3.6012 -#24602 := (iff #24592 #24601)
  3.6013 -#24599 := (iff #24591 #24596)
  3.6014 -#24593 := (if #24590 true #5437)
  3.6015 -#24597 := (iff #24593 #24596)
  3.6016 -#24598 := [rewrite]: #24597
  3.6017 -#24594 := (iff #24591 #24593)
  3.6018 -#24595 := [monotonicity #4149]: #24594
  3.6019 -#24600 := [trans #24595 #24598]: #24599
  3.6020 -#24603 := [monotonicity #24600]: #24602
  3.6021 -#24608 := [monotonicity #24603]: #24607
  3.6022 -#24611 := [trans #24608 #24610]: #24607
  3.6023 -#24606 := [quant-inst #115 #186 #3 #5431]: #24605
  3.6024 -#24612 := [mp #24606 #24611]: #24604
  3.6025 -#24632 := [unit-resolution #24612 #3723]: #24601
  3.6026 -#24621 := (not #24601)
  3.6027 -#24638 := (or #24621 #24579)
  3.6028 -#12006 := (or #5447 #5437)
  3.6029 -#12000 := [def-axiom]: #12006
  3.6030 -#24636 := [unit-resolution #12000 #24635]: #5437
  3.6031 -#24616 := (or #24596 #5438)
  3.6032 -#24617 := [def-axiom]: #24616
  3.6033 -#24637 := [unit-resolution #24617 #24636]: #24596
  3.6034 -#24618 := (not #24596)
  3.6035 -#24622 := (or #24621 #24579 #24618)
  3.6036 -#24623 := [def-axiom]: #24622
  3.6037 -#24639 := [unit-resolution #24623 #24637]: #24638
  3.6038 -#24640 := [unit-resolution #24639 #24632]: #24579
  3.6039 -#24641 := (= #18253 #24578)
  3.6040 -#24642 := [monotonicity #9701]: #24641
  3.6041 -#24643 := [trans #24642 #24640]: #17861
  3.6042 -#17862 := (not #17861)
  3.6043 -#24631 := [hypothesis]: #17862
  3.6044 -#24644 := [unit-resolution #24631 #24643]: false
  3.6045 -#24645 := [lemma #24644]: #17861
  3.6046 -#12615 := (or #17862 #18526 #18473)
  3.6047 -#3526 := (or #3985 #3969)
  3.6048 -#3527 := [def-axiom]: #3526
  3.6049 -#22006 := [unit-resolution #3527 #17550]: #3969
  3.6050 -#16736 := (or #3974 #17862 #18526 #18473)
  3.6051 -#18522 := (+ #18254 #2127)
  3.6052 -#18507 := (+ #5441 #18522)
  3.6053 -#18515 := (>= #18507 0::Int)
  3.6054 -#18516 := (or #17862 #18526 #18515)
  3.6055 -#16729 := (or #3974 #18516)
  3.6056 -#15322 := (iff #16729 #16736)
  3.6057 -#16781 := (or #3974 #12615)
  3.6058 -#16766 := (iff #16781 #16736)
  3.6059 -#16787 := [rewrite]: #16766
  3.6060 -#16771 := (iff #16729 #16781)
  3.6061 -#13633 := (iff #18516 #12615)
  3.6062 -#14647 := (iff #18515 #18473)
  3.6063 -#18513 := (+ #5441 #18254)
  3.6064 -#18523 := (+ #2127 #18513)
  3.6065 -#18470 := (>= #18523 0::Int)
  3.6066 -#18472 := (iff #18470 #18473)
  3.6067 -#18530 := [rewrite]: #18472
  3.6068 -#18514 := (iff #18515 #18470)
  3.6069 -#18525 := (= #18507 #18523)
  3.6070 -#18520 := [rewrite]: #18525
  3.6071 -#18527 := [monotonicity #18520]: #18514
  3.6072 -#12281 := [trans #18527 #18530]: #14647
  3.6073 -#14300 := [monotonicity #12281]: #13633
  3.6074 -#15106 := [monotonicity #14300]: #16771
  3.6075 -#16805 := [trans #15106 #16787]: #15322
  3.6076 -#16779 := [quant-inst #2123 #5431]: #16729
  3.6077 -#15127 := [mp #16779 #16805]: #16736
  3.6078 -#20083 := [unit-resolution #15127 #22006]: #12615
  3.6079 -#19946 := [unit-resolution #20083 #24645 #19989]: #18473
  3.6080 -#18690 := (= #18529 0::Int)
  3.6081 -#18704 := (not #18690)
  3.6082 -#18651 := (+ #2126 #17799)
  3.6083 -#18655 := (<= #18651 0::Int)
  3.6084 -#18872 := (not #18655)
  3.6085 -#11828 := (not #5435)
  3.6086 -#11949 := (or #5447 #11828)
  3.6087 -#11796 := [def-axiom]: #11949
  3.6088 -#19950 := [unit-resolution #11796 #24635]: #11828
  3.6089 -#18977 := (or #18872 #5435 #17519 #20100)
  3.6090 -#18978 := [th-lemma arith assign-bounds -1 -1 -1]: #18977
  3.6091 -#18953 := [unit-resolution #18978 #24633 #19872 #19950]: #18872
  3.6092 -#18707 := (or #18655 #17862 #18704)
  3.6093 -#16901 := (or #3982 #18655 #17862 #18704)
  3.6094 -#18650 := (+ #2127 #5441)
  3.6095 -#18592 := (+ #18254 #18650)
  3.6096 -#18638 := (= #18592 0::Int)
  3.6097 -#18644 := (not #18638)
  3.6098 -#18662 := (>= #18522 0::Int)
  3.6099 -#18615 := (or #18662 #17862 #18644)
  3.6100 -#16863 := (or #3982 #18615)
  3.6101 -#12904 := (iff #16863 #16901)
  3.6102 -#16890 := (or #3982 #18707)
  3.6103 -#16885 := (iff #16890 #16901)
  3.6104 -#15516 := [rewrite]: #16885
  3.6105 -#15161 := (iff #16863 #16890)
  3.6106 -#18708 := (iff #18615 #18707)
  3.6107 -#18692 := (iff #18644 #18704)
  3.6108 -#18691 := (iff #18638 #18690)
  3.6109 -#18658 := (= #18523 0::Int)
  3.6110 -#18654 := (iff #18658 #18690)
  3.6111 -#18693 := [rewrite]: #18654
  3.6112 -#18673 := (iff #18638 #18658)
  3.6113 -#18649 := (= #18592 #18523)
  3.6114 -#18653 := [rewrite]: #18649
  3.6115 -#18674 := [monotonicity #18653]: #18673
  3.6116 -#18694 := [trans #18674 #18693]: #18691
  3.6117 -#18689 := [monotonicity #18694]: #18692
  3.6118 -#18659 := (iff #18662 #18655)
  3.6119 -#18581 := (+ #2127 #18254)
  3.6120 -#18641 := (>= #18581 0::Int)
  3.6121 -#18666 := (iff #18641 #18655)
  3.6122 -#18665 := [rewrite]: #18666
  3.6123 -#18646 := (iff #18662 #18641)
  3.6124 -#18645 := (= #18522 #18581)
  3.6125 -#18596 := [rewrite]: #18645
  3.6126 -#18647 := [monotonicity #18596]: #18646
  3.6127 -#18664 := [trans #18647 #18665]: #18659
  3.6128 -#18709 := [monotonicity #18664 #18689]: #18708
  3.6129 -#15308 := [monotonicity #18709]: #15161
  3.6130 -#16914 := [trans #15308 #15516]: #12904
  3.6131 -#16811 := [quant-inst #5431]: #16863
  3.6132 -#15485 := [mp #16811 #16914]: #16901
  3.6133 -#19077 := [unit-resolution #15485 #14729]: #18707
  3.6134 -#19169 := [unit-resolution #19077 #24645 #18953]: #18704
  3.6135 -#19090 := (not #15418)
  3.6136 -#19243 := (not #18473)
  3.6137 -#19996 := (or #18690 #19243 #19090)
  3.6138 -#19953 := [th-lemma arith triangle-eq]: #19996
  3.6139 -[unit-resolution #19953 #19169 #19946 #20082]: false
  3.6140 -unsat
     4.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     4.2 +++ b/src/HOL/SMT_Examples/Boogie_Dijkstra.certs2	Thu May 01 22:57:38 2014 +0200
     4.3 @@ -0,0 +1,3139 @@
     4.4 +4130cc2c7db4aedd246ade86526a1512dc2d3ec1 3138 0
     4.5 +unsat
     4.6 +((set-logic AUFLIA)
     4.7 +(declare-fun ?v0!19 () B_Vertex$)
     4.8 +(declare-fun ?v1!18 () B_Vertex$)
     4.9 +(declare-fun ?v0!20 () B_Vertex$)
    4.10 +(declare-fun ?v0!17 () B_Vertex$)
    4.11 +(declare-fun ?v1!16 () B_Vertex$)
    4.12 +(declare-fun ?v0!15 () B_Vertex$)
    4.13 +(declare-fun ?v0!14 () B_Vertex$)
    4.14 +(declare-fun ?v0!13 () B_Vertex$)
    4.15 +(declare-fun ?v0!12 () B_Vertex$)
    4.16 +(declare-fun ?v0!11 () B_Vertex$)
    4.17 +(declare-fun ?v1!10 () B_Vertex$)
    4.18 +(declare-fun ?v1!9 (B_Vertex$) B_Vertex$)
    4.19 +(declare-fun ?v0!8 () B_Vertex$)
    4.20 +(declare-fun ?v1!7 (B_Vertex$) B_Vertex$)
    4.21 +(declare-fun ?v1!6 (B_Vertex$) B_Vertex$)
    4.22 +(declare-fun ?v0!5 () B_Vertex$)
    4.23 +(declare-fun ?v0!4 () B_Vertex$)
    4.24 +(declare-fun ?v1!3 () B_Vertex$)
    4.25 +(declare-fun ?v0!2 () B_Vertex$)
    4.26 +(declare-fun ?v1!1 () B_Vertex$)
    4.27 +(declare-fun ?v0!0 () B_Vertex$)
    4.28 +(proof
    4.29 +(let ((?x2200 (* (- 1) (v_b_SP_G_2$ ?v0!19))))
    4.30 +(let ((?x2198 (v_b_SP_G_2$ ?v1!18)))
    4.31 +(let ((?x2191 (b_G$ (pair$ ?v1!18 ?v0!19))))
    4.32 +(let (($x2202 (>= (+ ?x2191 ?x2198 ?x2200) 0)))
    4.33 +(let (($x2194 (<= (+ b_Infinity$ (* (- 1) ?x2191)) 0)))
    4.34 +(let (($x2189 (fun_app$ v_b_Visited_G_2$ ?v1!18)))
    4.35 +(let (($x3065 (not $x2189)))
    4.36 +(let (($x3080 (or $x3065 $x2194 $x2202)))
    4.37 +(let (($x3085 (not $x3080)))
    4.38 +(let (($x3977 (forall ((?v1 B_Vertex$) )(!(let ((?x2217 (v_b_SP_G_2$ ?v0!20)))
    4.39 +(let ((?x2218 (* (- 1) ?x2217)))
    4.40 +(let ((?x220 (v_b_SP_G_2$ ?v1)))
    4.41 +(let (($x2528 (= (+ ?x220 ?x2218 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
    4.42 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
    4.43 +(let (($x247 (not $x238)))
    4.44 +(or (>= (+ ?x220 ?x2218) 0) $x247 (not $x2528)))))))) :pattern ( (v_b_SP_G_2$ ?v1) ) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!20) )))
    4.45 +))
    4.46 +(let (($x3982 (not $x3977)))
    4.47 +(let (($x2220 (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0)))
    4.48 +(let (($x2215 (= ?v0!20 b_Source$)))
    4.49 +(let (($x3968 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x220 (v_b_SP_G_2$ ?v1)))
    4.50 +(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
    4.51 +(let (($x1621 (>= (+ ?x102 ?x220 (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
    4.52 +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
    4.53 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
    4.54 +(let (($x247 (not $x238)))
    4.55 +(or $x247 $x1303 $x1621))))))) :pattern ( (pair$ ?v1 ?v0) )))
    4.56 +))
    4.57 +(let (($x3973 (not $x3968)))
    4.58 +(let (($x3985 (or $x3973 $x2215 $x2220 $x3982)))
    4.59 +(let (($x3988 (not $x3985)))
    4.60 +(let (($x3991 (or $x3085 $x3988)))
    4.61 +(let (($x3994 (not $x3991)))
    4.62 +(let (($x3960 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x1601 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
    4.63 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
    4.64 +(or $x238 (not (fun_app$ v_b_Visited_G_2$ ?v0)) $x1601))) :pattern ( (v_b_SP_G_2$ ?v1) (v_b_SP_G_2$ ?v0) )))
    4.65 +))
    4.66 +(let (($x3997 (or (not $x3960) $x3994)))
    4.67 +(let (($x4000 (not $x3997)))
    4.68 +(let (($x2175 (>= (+ (v_b_SP_G_2$ ?v1!16) (* (- 1) (v_b_SP_G_2$ ?v0!17))) 0)))
    4.69 +(let (($x2168 (fun_app$ v_b_Visited_G_2$ ?v0!17)))
    4.70 +(let (($x3019 (not $x2168)))
    4.71 +(let (($x2166 (fun_app$ v_b_Visited_G_2$ ?v1!16)))
    4.72 +(let (($x3034 (or $x2166 $x3019 $x2175)))
    4.73 +(let (($x3943 (forall ((?v0 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
    4.74 +(let ((?x220 (v_b_SP_G_2$ ?v0)))
    4.75 +(let (($x225 (= ?x220 ?x121)))
    4.76 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v0)))
    4.77 +(let (($x247 (not $x238)))
    4.78 +(or $x247 $x225)))))) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
    4.79 +))
    4.80 +(let (($x3039 (not $x3034)))
    4.81 +(let (($x4003 (or $x3039 $x4000)))
    4.82 +(let (($x4006 (not $x4003)))
    4.83 +(let (($x3951 (forall ((?v0 B_Vertex$) )(!(let ((?x220 (v_b_SP_G_2$ ?v0)))
    4.84 +(>= ?x220 0)) :pattern ( (v_b_SP_G_2$ ?v0) )))
    4.85 +))
    4.86 +(let (($x4009 (or (not $x3951) $x4006)))
    4.87 +(let (($x4012 (not $x4009)))
    4.88 +(let ((?x2152 (v_b_SP_G_2$ ?v0!15)))
    4.89 +(let (($x2153 (>= ?x2152 0)))
    4.90 +(let (($x2154 (not $x2153)))
    4.91 +(let ((?x243 (v_b_SP_G_2$ b_Source$)))
    4.92 +(let (($x244 (= ?x243 0)))
    4.93 +(let (($x913 (not $x244)))
    4.94 +(let (($x4015 (or $x913 $x2154 $x4012)))
    4.95 +(let (($x4018 (not $x4015)))
    4.96 +(let (($x3948 (not $x3943)))
    4.97 +(let (($x4021 (or $x3948 $x4018)))
    4.98 +(let (($x4024 (not $x4021)))
    4.99 +(let ((?x2136 (fun_app$c v_b_SP_G_1$ ?v0!14)))
   4.100 +(let ((?x2135 (v_b_SP_G_2$ ?v0!14)))
   4.101 +(let (($x2137 (= ?x2135 ?x2136)))
   4.102 +(let (($x2133 (fun_app$ v_b_Visited_G_2$ ?v0!14)))
   4.103 +(let (($x2134 (not $x2133)))
   4.104 +(let (($x2138 (or $x2134 $x2137)))
   4.105 +(let ((@x8891 (unit-resolution (def-axiom (or $x2138 $x2133)) (hypothesis (not $x2138)) $x2133)))
   4.106 +(let (($x3646 (not $x2137)))
   4.107 +(let ((@x8820 (unit-resolution (def-axiom (or $x2138 $x3646)) (hypothesis (not $x2138)) $x3646)))
   4.108 +(let ((?x212 (fun_app$a (fun_app$b (fun_upd$ v_b_Visited_G_1$) v_b_v_G_1$) true)))
   4.109 +(let (($x213 (= v_b_Visited_G_2$ ?x212)))
   4.110 +(let (($x2139 (not $x2138)))
   4.111 +(let (($x4027 (or $x2139 $x4024)))
   4.112 +(let (($x4030 (not $x4027)))
   4.113 +(let (($x3934 (forall ((?v0 B_Vertex$) )(!(>= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) )))
   4.114 +))
   4.115 +(let (($x3939 (not $x3934)))
   4.116 +(let (($x4033 (or $x3939 $x4030)))
   4.117 +(let (($x4036 (not $x4033)))
   4.118 +(let (($x2121 (>= (+ (fun_app$c v_b_SP_G_1$ ?v0!13) (* (- 1) (v_b_SP_G_2$ ?v0!13))) 0)))
   4.119 +(let (($x2122 (not $x2121)))
   4.120 +(let (($x4039 (or $x2122 $x4036)))
   4.121 +(let (($x4042 (not $x4039)))
   4.122 +(let (($x3926 (forall ((?v0 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.123 +(let ((?x220 (v_b_SP_G_2$ ?v0)))
   4.124 +(let (($x225 (= ?x220 ?x121)))
   4.125 +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.126 +(let ((?x1520 (* (- 1) ?x204)))
   4.127 +(let (($x1547 (<= (+ ?x121 ?x1520 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
   4.128 +(let (($x1540 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
   4.129 +(let (($x2991 (or $x1540 $x1547)))
   4.130 +(let (($x2992 (not $x2991)))
   4.131 +(or $x2992 $x225)))))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) )))
   4.132 +))
   4.133 +(let (($x3931 (not $x3926)))
   4.134 +(let (($x3918 (forall ((?v0 B_Vertex$) )(!(let ((?x220 (v_b_SP_G_2$ ?v0)))
   4.135 +(let ((?x1560 (* (- 1) ?x220)))
   4.136 +(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   4.137 +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.138 +(let (($x1559 (= (+ ?x204 ?x215 ?x1560) 0)))
   4.139 +(let (($x1547 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x204) (* (- 1) ?x215)) 0)))
   4.140 +(let (($x1540 (<= (+ b_Infinity$ (* (- 1) ?x215)) 0)))
   4.141 +(or $x1540 $x1547 $x1559)))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) )))
   4.142 +))
   4.143 +(let (($x3923 (not $x3918)))
   4.144 +(let (($x3196 (not $x213)))
   4.145 +(let (($x3908 (forall ((?v0 B_Vertex$) )(!(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.146 +(let ((?x1520 (* (- 1) ?x204)))
   4.147 +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.148 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.149 +(or $x125 (>= (+ ?x121 ?x1520) 0)))))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   4.150 +))
   4.151 +(let (($x3913 (not $x3908)))
   4.152 +(let (($x1522 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ v_b_v_G_1$))) 0)))
   4.153 +(let (($x202 (fun_app$ v_b_Visited_G_1$ v_b_v_G_1$)))
   4.154 +(let (($x2087 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!12))) 0)))
   4.155 +(let (($x2082 (fun_app$ v_b_Visited_G_1$ ?v0!12)))
   4.156 +(let (($x4045 (or $x2082 $x2087 $x202 $x1522 $x3913 $x3196 $x3923 $x3931 $x4042)))
   4.157 +(let (($x4048 (not $x4045)))
   4.158 +(let (($x193 (= (fun_app$c v_b_SP_G_3$ b_Source$) 0)))
   4.159 +(let (($x3870 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
   4.160 +(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
   4.161 +(let (($x1493 (>= (+ ?x102 ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
   4.162 +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
   4.163 +(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0)))
   4.164 +(or $x1448 $x1303 $x1493)))))) :pattern ( (pair$ ?v1 ?v0) )))
   4.165 +))
   4.166 +(let (($x3878 (or (not $x3870) $x193)))
   4.167 +(let (($x3881 (not $x3878)))
   4.168 +(let ((?x2036 (b_G$ (pair$ ?v1!10 ?v0!11))))
   4.169 +(let ((?x2030 (fun_app$c v_b_SP_G_3$ ?v1!10)))
   4.170 +(let (($x2497 (>= (+ ?x2030 ?x2036 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!11))) 0)))
   4.171 +(let (($x2039 (<= (+ b_Infinity$ (* (- 1) ?x2036)) 0)))
   4.172 +(let (($x2033 (<= (+ b_Infinity$ (* (- 1) ?x2030)) 0)))
   4.173 +(let (($x2919 (or $x2033 $x2039 $x2497)))
   4.174 +(let (($x2924 (not $x2919)))
   4.175 +(let (($x3884 (or $x2924 $x3881)))
   4.176 +(let (($x3887 (not $x3884)))
   4.177 +(let (($x3862 (forall ((?v0 B_Vertex$) )(!(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v0)))
   4.178 +(let ((?x2479 (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
   4.179 +(let (($x2480 (= ?x2479 0)))
   4.180 +(let (($x2464 (<= (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
   4.181 +(let (($x2891 (not (or $x2464 (not $x2480)))))
   4.182 +(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0)))
   4.183 +(let (($x74 (= ?v0 b_Source$)))
   4.184 +(or $x74 $x1448 $x2891)))))))) :pattern ( (fun_app$c v_b_SP_G_3$ ?v0) )))
   4.185 +))
   4.186 +(let (($x3890 (or (not $x3862) $x3887)))
   4.187 +(let (($x3893 (not $x3890)))
   4.188 +(let (($x3848 (forall ((?v1 B_Vertex$) )(!(let ((?x1970 (fun_app$c v_b_SP_G_3$ ?v0!8)))
   4.189 +(let ((?x1971 (* (- 1) ?x1970)))
   4.190 +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
   4.191 +(let (($x2436 (= (+ ?x177 ?x1971 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
   4.192 +(or (>= (+ ?x177 ?x1971) 0) (not $x2436)))))) :pattern ( (fun_app$c v_b_SP_G_3$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!8) )))
   4.193 +))
   4.194 +(let (($x3853 (not $x3848)))
   4.195 +(let (($x1973 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!8))) 0)))
   4.196 +(let (($x1968 (= ?v0!8 b_Source$)))
   4.197 +(let (($x3856 (or $x1968 $x1973 $x3853)))
   4.198 +(let (($x3859 (not $x3856)))
   4.199 +(let (($x3896 (or $x3859 $x3893)))
   4.200 +(let (($x3899 (not $x3896)))
   4.201 +(let (($x164 (= v_b_SP_G_3$ v_b_SP_G_1$)))
   4.202 +(let (($x2982 (not $x164)))
   4.203 +(let (($x3838 (forall ((?v0 B_Vertex$) )(!(let (($x1395 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   4.204 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.205 +(or $x125 $x1395))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   4.206 +))
   4.207 +(let (($x3843 (not $x3838)))
   4.208 +(let (($x3902 (or $x3843 (not (= v_b_Visited_G_3$ v_b_Visited_G_1$)) (not (= v_b_v_G_2$ v_b_v_G_0$)) $x2982 (not (= v_b_oldSP_G_1$ v_b_oldSP_G_0$)) $x3899)))
   4.209 +(let (($x5759 (>= (+ ?x2030 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!10))) 0)))
   4.210 +(let ((?x4698 (fun_app$c v_b_SP_G_1$ ?v1!10)))
   4.211 +(let (($x6220 (= ?x2030 ?x4698)))
   4.212 +(let (($x3905 (not $x3902)))
   4.213 +(let ((@x5698 (hypothesis $x3905)))
   4.214 +(let ((@x5699 (unit-resolution (def-axiom (or $x3902 $x164)) @x5698 $x164)))
   4.215 +(let ((@x7384 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6220) $x5759)) (monotonicity @x5699 $x6220) $x5759)))
   4.216 +(let (($x3668 (not $x2497)))
   4.217 +(let (($x4677 (>= (+ ?x2036 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!11)) ?x4698) 0)))
   4.218 +(let (($x4697 (fun_app$ v_b_Visited_G_1$ ?v1!10)))
   4.219 +(let (($x4492 (<= (+ b_Infinity$ (* (- 1) ?x4698)) 0)))
   4.220 +(let (($x5659 (not $x4492)))
   4.221 +(let (($x2034 (not $x2033)))
   4.222 +(let ((?x119 (fun_app$c v_b_SP_G_1$ b_Source$)))
   4.223 +(let (($x120 (= ?x119 0)))
   4.224 +(let (($x4051 (or $x3905 $x4048)))
   4.225 +(let (($x4054 (not $x4051)))
   4.226 +(let (($x3829 (forall ((?v0 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.227 +(let ((?x2416 (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
   4.228 +(let (($x2417 (= ?x2416 0)))
   4.229 +(let (($x2401 (<= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0)))) 0)))
   4.230 +(let (($x2825 (not (or $x2401 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0))) (not $x2417)))))
   4.231 +(let (($x1395 (<= (+ b_Infinity$ (* (- 1) ?x121)) 0)))
   4.232 +(let (($x74 (= ?v0 b_Source$)))
   4.233 +(or $x74 $x1395 $x2825)))))))) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   4.234 +))
   4.235 +(let (($x3834 (not $x3829)))
   4.236 +(let (($x3821 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.237 +(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
   4.238 +(let (($x1384 (>= (+ ?x102 ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   4.239 +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
   4.240 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.241 +(let (($x126 (not $x125)))
   4.242 +(or $x126 $x1303 $x1384))))))) :pattern ( (pair$ ?v1 ?v0) )))
   4.243 +))
   4.244 +(let (($x3826 (not $x3821)))
   4.245 +(let (($x3813 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.246 +(let (($x1367 (>= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   4.247 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.248 +(or $x125 (not (fun_app$ v_b_Visited_G_1$ ?v0)) $x1367)))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v1) (fun_app$ v_b_Visited_G_1$ ?v0) )))
   4.249 +))
   4.250 +(let (($x3818 (not $x3813)))
   4.251 +(let (($x3804 (forall ((?v0 B_Vertex$) )(!(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.252 +(>= ?x121 0)) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   4.253 +))
   4.254 +(let (($x3809 (not $x3804)))
   4.255 +(let (($x3213 (not $x120)))
   4.256 +(let (($x3795 (forall ((?v0 B_Vertex$) )(!(let ((?x75 (v_b_SP_G_0$ ?v0)))
   4.257 +(let ((?x2378 (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
   4.258 +(let (($x2379 (= ?x2378 0)))
   4.259 +(let (($x2363 (<= (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0)))) 0)))
   4.260 +(let (($x2752 (not (or $x2363 (not (v_b_Visited_G_0$ (?v1!6 ?v0))) (not $x2379)))))
   4.261 +(let (($x1330 (<= (+ b_Infinity$ (* (- 1) ?x75)) 0)))
   4.262 +(let (($x74 (= ?v0 b_Source$)))
   4.263 +(or $x74 $x1330 $x2752)))))))) :pattern ( (v_b_SP_G_0$ ?v0) )))
   4.264 +))
   4.265 +(let (($x4057 (or (not $x3795) $x3213 $x3809 $x3818 $x3826 $x3834 $x4054)))
   4.266 +(let (($x4060 (not $x4057)))
   4.267 +(let (($x3781 (forall ((?v1 B_Vertex$) )(!(let ((?x1849 (v_b_SP_G_0$ ?v0!5)))
   4.268 +(let ((?x1850 (* (- 1) ?x1849)))
   4.269 +(let ((?x75 (v_b_SP_G_0$ ?v1)))
   4.270 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
   4.271 +(let (($x84 (not $x83)))
   4.272 +(or (>= (+ ?x75 ?x1850) 0) $x84 (not (= (+ ?x75 ?x1850 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))) :pattern ( (v_b_SP_G_0$ ?v1) ) :pattern ( (v_b_Visited_G_0$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!5) )))
   4.273 +))
   4.274 +(let (($x1852 (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?v0!5))) 0)))
   4.275 +(let (($x1847 (= ?v0!5 b_Source$)))
   4.276 +(let (($x3789 (or $x1847 $x1852 (not $x3781))))
   4.277 +(let (($x3792 (not $x3789)))
   4.278 +(let (($x4063 (or $x3792 $x4060)))
   4.279 +(let (($x4066 (not $x4063)))
   4.280 +(let (($x3772 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
   4.281 +(let ((?x75 (v_b_SP_G_0$ ?v1)))
   4.282 +(let (($x1316 (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x102) 0)))
   4.283 +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
   4.284 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
   4.285 +(let (($x84 (not $x83)))
   4.286 +(or $x84 $x1303 $x1316))))))) :pattern ( (pair$ ?v1 ?v0) )))
   4.287 +))
   4.288 +(let (($x4069 (or (not $x3772) $x4066)))
   4.289 +(let (($x4072 (not $x4069)))
   4.290 +(let ((?x1823 (b_G$ (pair$ ?v1!3 ?v0!4))))
   4.291 +(let (($x2336 (>= (+ ?x1823 (v_b_SP_G_0$ ?v1!3) (* (- 1) (v_b_SP_G_0$ ?v0!4))) 0)))
   4.292 +(let (($x1826 (<= (+ b_Infinity$ (* (- 1) ?x1823)) 0)))
   4.293 +(let (($x1821 (v_b_Visited_G_0$ ?v1!3)))
   4.294 +(let (($x2668 (not $x1821)))
   4.295 +(let (($x2683 (or $x2668 $x1826 $x2336)))
   4.296 +(let (($x3748 (forall ((?v0 B_Vertex$) )(!(let (($x83 (v_b_Visited_G_0$ ?v0)))
   4.297 +(not $x83)) :pattern ( (v_b_Visited_G_0$ ?v0) )))
   4.298 +))
   4.299 +(let (($x85 (forall ((?v0 B_Vertex$) )(let (($x83 (v_b_Visited_G_0$ ?v0)))
   4.300 +(not $x83)))
   4.301 +))
   4.302 +(let ((@x3752 (quant-intro (refl (= (not (v_b_Visited_G_0$ ?0)) (not (v_b_Visited_G_0$ ?0)))) (= $x85 $x3748))))
   4.303 +(let ((@x1779 (nnf-pos (refl (~ (not (v_b_Visited_G_0$ ?0)) (not (v_b_Visited_G_0$ ?0)))) (~ $x85 $x85))))
   4.304 +(let (($x343 (forall ((?v0 B_Vertex$) )(let (($x74 (= ?v0 b_Source$)))
   4.305 +(or $x74 (= (v_b_SP_G_0$ ?v0) b_Infinity$))))
   4.306 +))
   4.307 +(let (($x337 (forall ((?v0 B_Vertex$) )(let (($x74 (= ?v0 b_Source$)))
   4.308 +(let (($x79 (not $x74)))
   4.309 +(or $x79 (= (v_b_SP_G_0$ ?v0) 0)))))
   4.310 +))
   4.311 +(let (($x354 (and $x337 $x343 $x85)))
   4.312 +(let (($x850 (forall ((?v0 B_Vertex$) )(let (($x838 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
   4.313 +(let ((?x220 (v_b_SP_G_2$ ?v1)))
   4.314 +(let ((?x255 (+ ?x220 ?x102)))
   4.315 +(let ((?x250 (v_b_SP_G_2$ ?v0)))
   4.316 +(let (($x262 (= ?x250 ?x255)))
   4.317 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.318 +(let (($x251 (<= ?x250 ?x220)))
   4.319 +(let (($x827 (not $x251)))
   4.320 +(and $x827 $x238 $x262))))))))))
   4.321 +))
   4.322 +(let (($x821 (not (<= b_Infinity$ (v_b_SP_G_2$ ?v0)))))
   4.323 +(let (($x74 (= ?v0 b_Source$)))
   4.324 +(let (($x79 (not $x74)))
   4.325 +(let (($x824 (and $x79 $x821)))
   4.326 +(let (($x844 (not $x824)))
   4.327 +(or $x844 $x838))))))))
   4.328 +))
   4.329 +(let (($x817 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
   4.330 +(let ((?x220 (v_b_SP_G_2$ ?v1)))
   4.331 +(let ((?x255 (+ ?x220 ?x102)))
   4.332 +(let ((?x250 (v_b_SP_G_2$ ?v0)))
   4.333 +(let (($x256 (<= ?x250 ?x255)))
   4.334 +(let (($x378 (not (<= b_Infinity$ ?x102))))
   4.335 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.336 +(let (($x805 (and $x238 $x378)))
   4.337 +(let (($x811 (not $x805)))
   4.338 +(or $x811 $x256)))))))))))
   4.339 +))
   4.340 +(let (($x878 (or (not $x817) $x850)))
   4.341 +(let (($x883 (and $x817 $x878)))
   4.342 +(let (($x802 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1)))
   4.343 +(let ((?x250 (v_b_SP_G_2$ ?v0)))
   4.344 +(let (($x251 (<= ?x250 ?x220)))
   4.345 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.346 +(let (($x247 (not $x238)))
   4.347 +(let (($x249 (and $x247 (fun_app$ v_b_Visited_G_2$ ?v0))))
   4.348 +(let (($x798 (not $x249)))
   4.349 +(or $x798 $x251)))))))))
   4.350 +))
   4.351 +(let (($x889 (not $x802)))
   4.352 +(let (($x890 (or $x889 $x883)))
   4.353 +(let (($x895 (and $x802 $x890)))
   4.354 +(let (($x246 (forall ((?v0 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v0)))
   4.355 +(<= 0 ?x220)))
   4.356 +))
   4.357 +(let (($x901 (not $x246)))
   4.358 +(let (($x902 (or $x901 $x895)))
   4.359 +(let (($x907 (and $x246 $x902)))
   4.360 +(let (($x914 (or $x913 $x907)))
   4.361 +(let (($x919 (and $x244 $x914)))
   4.362 +(let (($x786 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.363 +(let ((?x220 (v_b_SP_G_2$ ?v0)))
   4.364 +(let (($x225 (= ?x220 ?x121)))
   4.365 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v0)))
   4.366 +(let (($x247 (not $x238)))
   4.367 +(or $x247 $x225)))))))
   4.368 +))
   4.369 +(let (($x925 (not $x786)))
   4.370 +(let (($x926 (or $x925 $x919)))
   4.371 +(let (($x931 (and $x786 $x926)))
   4.372 +(let (($x237 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.373 +(let ((?x220 (v_b_SP_G_2$ ?v0)))
   4.374 +(<= ?x220 ?x121))))
   4.375 +))
   4.376 +(let (($x937 (not $x237)))
   4.377 +(let (($x938 (or $x937 $x931)))
   4.378 +(let (($x943 (and $x237 $x938)))
   4.379 +(let (($x726 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.380 +(let ((?x220 (v_b_SP_G_2$ ?v0)))
   4.381 +(let (($x225 (= ?x220 ?x121)))
   4.382 +(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   4.383 +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.384 +(let ((?x217 (+ ?x204 ?x215)))
   4.385 +(let (($x698 (not (<= ?x121 ?x217))))
   4.386 +(let (($x694 (not (<= b_Infinity$ ?x215))))
   4.387 +(let (($x701 (and $x694 $x698)))
   4.388 +(or $x701 $x225)))))))))))
   4.389 +))
   4.390 +(let (($x713 (forall ((?v0 B_Vertex$) )(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   4.391 +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.392 +(let ((?x217 (+ ?x204 ?x215)))
   4.393 +(let ((?x220 (v_b_SP_G_2$ ?v0)))
   4.394 +(let (($x221 (= ?x220 ?x217)))
   4.395 +(let (($x698 (not (<= (fun_app$c v_b_SP_G_1$ ?v0) ?x217))))
   4.396 +(let (($x694 (not (<= b_Infinity$ ?x215))))
   4.397 +(let (($x701 (and $x694 $x698)))
   4.398 +(let (($x707 (not $x701)))
   4.399 +(or $x707 $x221)))))))))))
   4.400 +))
   4.401 +(let (($x690 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.402 +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.403 +(let (($x206 (<= ?x204 ?x121)))
   4.404 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.405 +(or $x125 $x206))))))
   4.406 +))
   4.407 +(let (($x684 (not (<= b_Infinity$ (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))))
   4.408 +(let (($x203 (not $x202)))
   4.409 +(let (($x540 (exists ((?v0 B_Vertex$) )(let (($x452 (not (<= b_Infinity$ (fun_app$c v_b_SP_G_1$ ?v0)))))
   4.410 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.411 +(let (($x126 (not $x125)))
   4.412 +(and $x126 $x452)))))
   4.413 +))
   4.414 +(let (($x767 (and $x540 $x203 $x684 $x690 $x213 $x713 $x726)))
   4.415 +(let (($x949 (not $x767)))
   4.416 +(let (($x950 (or $x949 $x943)))
   4.417 +(let (($x638 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
   4.418 +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
   4.419 +(let ((?x182 (+ ?x177 ?x102)))
   4.420 +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?v0)))
   4.421 +(let (($x189 (<= ?x180 ?x182)))
   4.422 +(let (($x378 (not (<= b_Infinity$ ?x102))))
   4.423 +(let (($x598 (not (<= b_Infinity$ ?x177))))
   4.424 +(let (($x626 (and $x598 $x378)))
   4.425 +(let (($x632 (not $x626)))
   4.426 +(or $x632 $x189)))))))))))
   4.427 +))
   4.428 +(let (($x654 (or (not $x638) $x193)))
   4.429 +(let (($x659 (and $x638 $x654)))
   4.430 +(let (($x623 (forall ((?v0 B_Vertex$) )(let (($x611 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
   4.431 +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
   4.432 +(let ((?x182 (+ ?x177 ?x102)))
   4.433 +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?v0)))
   4.434 +(let (($x183 (= ?x180 ?x182)))
   4.435 +(let (($x605 (not (<= ?x180 ?x177))))
   4.436 +(and $x605 $x183))))))))
   4.437 +))
   4.438 +(let (($x598 (not (<= b_Infinity$ (fun_app$c v_b_SP_G_3$ ?v0)))))
   4.439 +(let (($x74 (= ?v0 b_Source$)))
   4.440 +(let (($x79 (not $x74)))
   4.441 +(let (($x601 (and $x79 $x598)))
   4.442 +(let (($x617 (not $x601)))
   4.443 +(or $x617 $x611))))))))
   4.444 +))
   4.445 +(let (($x666 (or (not $x623) $x659)))
   4.446 +(let (($x671 (and $x623 $x666)))
   4.447 +(let (($x167 (= v_b_oldSP_G_1$ v_b_oldSP_G_0$)))
   4.448 +(let (($x162 (= v_b_v_G_2$ v_b_v_G_0$)))
   4.449 +(let (($x159 (= v_b_Visited_G_3$ v_b_Visited_G_1$)))
   4.450 +(let (($x543 (not $x540)))
   4.451 +(let (($x581 (and $x543 $x159 $x162 $x164 $x167)))
   4.452 +(let (($x677 (not $x581)))
   4.453 +(let (($x678 (or $x677 $x671)))
   4.454 +(let (($x955 (and $x678 $x950)))
   4.455 +(let (($x481 (forall ((?v0 B_Vertex$) )(let (($x469 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
   4.456 +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.457 +(let ((?x134 (+ ?x121 ?x102)))
   4.458 +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.459 +(let (($x141 (= ?x129 ?x134)))
   4.460 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.461 +(let (($x130 (<= ?x129 ?x121)))
   4.462 +(let (($x458 (not $x130)))
   4.463 +(and $x458 $x125 $x141))))))))))
   4.464 +))
   4.465 +(let (($x452 (not (<= b_Infinity$ (fun_app$c v_b_SP_G_1$ ?v0)))))
   4.466 +(let (($x74 (= ?v0 b_Source$)))
   4.467 +(let (($x79 (not $x74)))
   4.468 +(let (($x455 (and $x79 $x452)))
   4.469 +(let (($x475 (not $x455)))
   4.470 +(or $x475 $x469))))))))
   4.471 +))
   4.472 +(let (($x448 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
   4.473 +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.474 +(let ((?x134 (+ ?x121 ?x102)))
   4.475 +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.476 +(let (($x135 (<= ?x129 ?x134)))
   4.477 +(let (($x378 (not (<= b_Infinity$ ?x102))))
   4.478 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.479 +(let (($x436 (and $x125 $x378)))
   4.480 +(let (($x442 (not $x436)))
   4.481 +(or $x442 $x135)))))))))))
   4.482 +))
   4.483 +(let (($x433 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.484 +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.485 +(let (($x130 (<= ?x129 ?x121)))
   4.486 +(let (($x127 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.487 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.488 +(let (($x126 (not $x125)))
   4.489 +(let (($x128 (and $x126 $x127)))
   4.490 +(let (($x429 (not $x128)))
   4.491 +(or $x429 $x130))))))))))
   4.492 +))
   4.493 +(let (($x123 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.494 +(<= 0 ?x121)))
   4.495 +))
   4.496 +(let (($x426 (forall ((?v0 B_Vertex$) )(let (($x414 (exists ((?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?v0)))
   4.497 +(let (($x112 (= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))
   4.498 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
   4.499 +(let ((?x75 (v_b_SP_G_0$ ?v1)))
   4.500 +(let (($x98 (<= ?x97 ?x75)))
   4.501 +(let (($x403 (not $x98)))
   4.502 +(and $x403 $x83 $x112))))))))
   4.503 +))
   4.504 +(let (($x397 (not (<= b_Infinity$ (v_b_SP_G_0$ ?v0)))))
   4.505 +(let (($x74 (= ?v0 b_Source$)))
   4.506 +(let (($x79 (not $x74)))
   4.507 +(let (($x400 (and $x79 $x397)))
   4.508 +(or (not $x400) $x414)))))))
   4.509 +))
   4.510 +(let (($x532 (and $x426 $x120 $x123 $x433 $x448 $x481)))
   4.511 +(let (($x961 (not $x532)))
   4.512 +(let (($x962 (or $x961 $x955)))
   4.513 +(let (($x967 (and $x426 $x962)))
   4.514 +(let (($x393 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?v0)))
   4.515 +(let (($x106 (<= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))
   4.516 +(let (($x378 (not (<= b_Infinity$ (b_G$ (pair$ ?v1 ?v0))))))
   4.517 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
   4.518 +(let (($x381 (and $x83 $x378)))
   4.519 +(or (not $x381) $x106)))))))
   4.520 +))
   4.521 +(let (($x973 (not $x393)))
   4.522 +(let (($x974 (or $x973 $x967)))
   4.523 +(let (($x979 (and $x393 $x974)))
   4.524 +(let (($x374 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v1)))
   4.525 +(let ((?x97 (v_b_SP_G_0$ ?v0)))
   4.526 +(let (($x98 (<= ?x97 ?x75)))
   4.527 +(let (($x95 (v_b_Visited_G_0$ ?v0)))
   4.528 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
   4.529 +(let (($x84 (not $x83)))
   4.530 +(let (($x96 (and $x84 $x95)))
   4.531 +(let (($x370 (not $x96)))
   4.532 +(or $x370 $x98))))))))))
   4.533 +))
   4.534 +(let (($x985 (not $x374)))
   4.535 +(let (($x986 (or $x985 $x979)))
   4.536 +(let (($x991 (and $x374 $x986)))
   4.537 +(let (($x94 (forall ((?v0 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v0)))
   4.538 +(<= 0 ?x75)))
   4.539 +))
   4.540 +(let (($x997 (not $x94)))
   4.541 +(let (($x998 (or $x997 $x991)))
   4.542 +(let (($x1003 (and $x94 $x998)))
   4.543 +(let (($x92 (= (v_b_SP_G_0$ b_Source$) 0)))
   4.544 +(let (($x1009 (not $x92)))
   4.545 +(let (($x1010 (or $x1009 $x1003)))
   4.546 +(let (($x1015 (and $x92 $x1010)))
   4.547 +(let (($x1022 (or (not $x354) $x1015)))
   4.548 +(let (($x267 (forall ((?v0 B_Vertex$) )(let (($x265 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
   4.549 +(let ((?x220 (v_b_SP_G_2$ ?v1)))
   4.550 +(let ((?x255 (+ ?x220 ?x102)))
   4.551 +(let ((?x250 (v_b_SP_G_2$ ?v0)))
   4.552 +(let (($x262 (= ?x250 ?x255)))
   4.553 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.554 +(and (< ?x220 ?x250) (and $x238 $x262)))))))))
   4.555 +))
   4.556 +(=> (and (not (= ?v0 b_Source$)) (< (v_b_SP_G_2$ ?v0) b_Infinity$)) $x265)))
   4.557 +))
   4.558 +(let (($x268 (and $x267 false)))
   4.559 +(let (($x269 (=> $x268 true)))
   4.560 +(let (($x270 (and $x267 $x269)))
   4.561 +(let (($x258 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
   4.562 +(let ((?x220 (v_b_SP_G_2$ ?v1)))
   4.563 +(let ((?x255 (+ ?x220 ?x102)))
   4.564 +(let ((?x250 (v_b_SP_G_2$ ?v0)))
   4.565 +(let (($x256 (<= ?x250 ?x255)))
   4.566 +(=> (and (fun_app$ v_b_Visited_G_2$ ?v1) (< ?x102 b_Infinity$)) $x256)))))))
   4.567 +))
   4.568 +(let (($x271 (=> $x258 $x270)))
   4.569 +(let (($x253 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1)))
   4.570 +(let ((?x250 (v_b_SP_G_2$ ?v0)))
   4.571 +(let (($x251 (<= ?x250 ?x220)))
   4.572 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.573 +(let (($x247 (not $x238)))
   4.574 +(let (($x249 (and $x247 (fun_app$ v_b_Visited_G_2$ ?v0))))
   4.575 +(=> $x249 $x251))))))))
   4.576 +))
   4.577 +(let (($x273 (=> $x253 (and $x258 $x271))))
   4.578 +(let (($x275 (=> $x246 (and $x253 $x273))))
   4.579 +(let (($x277 (=> $x244 (and $x246 $x275))))
   4.580 +(let (($x240 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.581 +(let ((?x220 (v_b_SP_G_2$ ?v0)))
   4.582 +(let (($x225 (= ?x220 ?x121)))
   4.583 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v0)))
   4.584 +(=> $x238 $x225))))))
   4.585 +))
   4.586 +(let (($x242 (and $x240 (and true true))))
   4.587 +(let (($x279 (=> $x242 (and $x244 $x277))))
   4.588 +(let (($x281 (=> $x237 (and $x240 $x279))))
   4.589 +(let (($x227 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.590 +(let ((?x220 (v_b_SP_G_2$ ?v0)))
   4.591 +(let (($x225 (= ?x220 ?x121)))
   4.592 +(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   4.593 +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.594 +(let ((?x217 (+ ?x204 ?x215)))
   4.595 +(let (($x219 (and (< ?x215 b_Infinity$) (< ?x217 ?x121))))
   4.596 +(=> (not $x219) $x225)))))))))
   4.597 +))
   4.598 +(let (($x223 (forall ((?v0 B_Vertex$) )(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   4.599 +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.600 +(let ((?x217 (+ ?x204 ?x215)))
   4.601 +(let ((?x220 (v_b_SP_G_2$ ?v0)))
   4.602 +(let (($x221 (= ?x220 ?x217)))
   4.603 +(let (($x219 (and (< ?x215 b_Infinity$) (< ?x217 (fun_app$c v_b_SP_G_1$ ?v0)))))
   4.604 +(=> $x219 $x221))))))))
   4.605 +))
   4.606 +(let (($x229 (and $x213 (and $x223 $x227))))
   4.607 +(let (($x208 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.608 +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.609 +(let (($x206 (<= ?x204 ?x121)))
   4.610 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.611 +(let (($x126 (not $x125)))
   4.612 +(=> $x126 $x206)))))))
   4.613 +))
   4.614 +(let (($x230 (and $x208 $x229)))
   4.615 +(let (($x231 (and (< (fun_app$c v_b_SP_G_1$ v_b_v_G_1$) b_Infinity$) $x230)))
   4.616 +(let (($x232 (and $x203 $x231)))
   4.617 +(let (($x156 (exists ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.618 +(let (($x138 (< ?x121 b_Infinity$)))
   4.619 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.620 +(let (($x126 (not $x125)))
   4.621 +(and $x126 $x138))))))
   4.622 +))
   4.623 +(let (($x233 (and $x156 $x232)))
   4.624 +(let (($x234 (and true $x233)))
   4.625 +(let (($x235 (and true $x234)))
   4.626 +(let (($x283 (=> $x235 (and $x237 $x281))))
   4.627 +(let (($x195 (and $x193 (=> $x193 true))))
   4.628 +(let (($x191 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
   4.629 +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
   4.630 +(let ((?x182 (+ ?x177 ?x102)))
   4.631 +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?v0)))
   4.632 +(let (($x189 (<= ?x180 ?x182)))
   4.633 +(=> (and (< ?x177 b_Infinity$) (< ?x102 b_Infinity$)) $x189)))))))
   4.634 +))
   4.635 +(let (($x196 (=> $x191 $x195)))
   4.636 +(let (($x187 (forall ((?v0 B_Vertex$) )(let (($x185 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
   4.637 +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
   4.638 +(let ((?x182 (+ ?x177 ?x102)))
   4.639 +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?v0)))
   4.640 +(let (($x183 (= ?x180 ?x182)))
   4.641 +(and (< ?x177 ?x180) $x183)))))))
   4.642 +))
   4.643 +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v0)))
   4.644 +(let (($x178 (< ?x177 b_Infinity$)))
   4.645 +(let (($x74 (= ?v0 b_Source$)))
   4.646 +(let (($x79 (not $x74)))
   4.647 +(=> (and $x79 $x178) $x185)))))))
   4.648 +))
   4.649 +(let (($x198 (=> $x187 (and $x191 $x196))))
   4.650 +(let (($x170 (and $x162 (and $x164 (and $x167 true)))))
   4.651 +(let (($x171 (and $x159 $x170)))
   4.652 +(let (($x172 (and true $x171)))
   4.653 +(let (($x173 (and true $x172)))
   4.654 +(let (($x174 (and (not $x156) $x173)))
   4.655 +(let (($x175 (and true $x174)))
   4.656 +(let (($x176 (and true $x175)))
   4.657 +(let (($x200 (=> $x176 (and $x187 $x198))))
   4.658 +(let (($x146 (forall ((?v0 B_Vertex$) )(let (($x144 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
   4.659 +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.660 +(let ((?x134 (+ ?x121 ?x102)))
   4.661 +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.662 +(let (($x141 (= ?x129 ?x134)))
   4.663 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.664 +(and (< ?x121 ?x129) (and $x125 $x141)))))))))
   4.665 +))
   4.666 +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.667 +(let (($x138 (< ?x121 b_Infinity$)))
   4.668 +(let (($x74 (= ?v0 b_Source$)))
   4.669 +(let (($x79 (not $x74)))
   4.670 +(=> (and $x79 $x138) $x144)))))))
   4.671 +))
   4.672 +(let (($x147 (and $x146 true)))
   4.673 +(let (($x137 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
   4.674 +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.675 +(let ((?x134 (+ ?x121 ?x102)))
   4.676 +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.677 +(let (($x135 (<= ?x129 ?x134)))
   4.678 +(=> (and (fun_app$ v_b_Visited_G_1$ ?v1) (< ?x102 b_Infinity$)) $x135)))))))
   4.679 +))
   4.680 +(let (($x132 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.681 +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.682 +(let (($x130 (<= ?x129 ?x121)))
   4.683 +(let (($x127 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.684 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.685 +(let (($x126 (not $x125)))
   4.686 +(let (($x128 (and $x126 $x127)))
   4.687 +(=> $x128 $x130)))))))))
   4.688 +))
   4.689 +(let (($x149 (and $x132 (and $x137 $x147))))
   4.690 +(let (($x150 (and $x123 $x149)))
   4.691 +(let (($x151 (and $x120 $x150)))
   4.692 +(let (($x152 (and true $x151)))
   4.693 +(let (($x153 (and true $x152)))
   4.694 +(let (($x117 (forall ((?v0 B_Vertex$) )(let (($x115 (exists ((?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?v0)))
   4.695 +(let (($x112 (= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))
   4.696 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
   4.697 +(and (< (v_b_SP_G_0$ ?v1) ?x97) (and $x83 $x112))))))
   4.698 +))
   4.699 +(=> (and (not (= ?v0 b_Source$)) (< (v_b_SP_G_0$ ?v0) b_Infinity$)) $x115)))
   4.700 +))
   4.701 +(let (($x154 (and $x117 $x153)))
   4.702 +(let (($x285 (=> $x154 (and $x200 $x283))))
   4.703 +(let (($x108 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?v0)))
   4.704 +(let (($x106 (<= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))
   4.705 +(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
   4.706 +(let (($x103 (< ?x102 b_Infinity$)))
   4.707 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
   4.708 +(=> (and $x83 $x103) $x106)))))))
   4.709 +))
   4.710 +(let (($x287 (=> $x108 (and $x117 $x285))))
   4.711 +(let (($x100 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v1)))
   4.712 +(let ((?x97 (v_b_SP_G_0$ ?v0)))
   4.713 +(let (($x98 (<= ?x97 ?x75)))
   4.714 +(let (($x95 (v_b_Visited_G_0$ ?v0)))
   4.715 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
   4.716 +(let (($x84 (not $x83)))
   4.717 +(let (($x96 (and $x84 $x95)))
   4.718 +(=> $x96 $x98)))))))))
   4.719 +))
   4.720 +(let (($x289 (=> $x100 (and $x108 $x287))))
   4.721 +(let (($x291 (=> $x94 (and $x100 $x289))))
   4.722 +(let (($x293 (=> $x92 (and $x94 $x291))))
   4.723 +(let (($x82 (forall ((?v0 B_Vertex$) )(let (($x74 (= ?v0 b_Source$)))
   4.724 +(let (($x79 (not $x74)))
   4.725 +(=> $x79 (= (v_b_SP_G_0$ ?v0) b_Infinity$)))))
   4.726 +))
   4.727 +(let (($x78 (forall ((?v0 B_Vertex$) )(let (($x74 (= ?v0 b_Source$)))
   4.728 +(=> $x74 (= (v_b_SP_G_0$ ?v0) 0))))
   4.729 +))
   4.730 +(let (($x88 (and $x78 (and $x82 (and $x85 true)))))
   4.731 +(let (($x89 (and true $x88)))
   4.732 +(let (($x90 (and true $x89)))
   4.733 +(let (($x295 (=> $x90 (and $x92 $x293))))
   4.734 +(let (($x296 (not $x295)))
   4.735 +(let (($x838 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
   4.736 +(let ((?x220 (v_b_SP_G_2$ ?v1)))
   4.737 +(let ((?x255 (+ ?x220 ?x102)))
   4.738 +(let ((?x250 (v_b_SP_G_2$ ?0)))
   4.739 +(let (($x262 (= ?x250 ?x255)))
   4.740 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.741 +(let (($x251 (<= ?x250 ?x220)))
   4.742 +(let (($x827 (not $x251)))
   4.743 +(and $x827 $x238 $x262))))))))))
   4.744 +))
   4.745 +(let (($x821 (not (<= b_Infinity$ (v_b_SP_G_2$ ?0)))))
   4.746 +(let (($x74 (= ?0 b_Source$)))
   4.747 +(let (($x79 (not $x74)))
   4.748 +(let (($x824 (and $x79 $x821)))
   4.749 +(let (($x844 (not $x824)))
   4.750 +(let (($x845 (or $x844 $x838)))
   4.751 +(let (($x265 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
   4.752 +(let ((?x220 (v_b_SP_G_2$ ?v1)))
   4.753 +(let ((?x255 (+ ?x220 ?x102)))
   4.754 +(let ((?x250 (v_b_SP_G_2$ ?0)))
   4.755 +(let (($x262 (= ?x250 ?x255)))
   4.756 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.757 +(and (< ?x220 ?x250) (and $x238 $x262)))))))))
   4.758 +))
   4.759 +(let (($x266 (=> (and $x79 (< (v_b_SP_G_2$ ?0) b_Infinity$)) $x265)))
   4.760 +(let ((?x102 (b_G$ (pair$ ?0 ?1))))
   4.761 +(let ((?x220 (v_b_SP_G_2$ ?0)))
   4.762 +(let ((?x255 (+ ?x220 ?x102)))
   4.763 +(let ((?x250 (v_b_SP_G_2$ ?1)))
   4.764 +(let (($x262 (= ?x250 ?x255)))
   4.765 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?0)))
   4.766 +(let (($x251 (<= ?x250 ?x220)))
   4.767 +(let (($x827 (not $x251)))
   4.768 +(let (($x833 (and $x827 $x238 $x262)))
   4.769 +(let (($x264 (and (< ?x220 ?x250) (and $x238 $x262))))
   4.770 +(let ((@x832 (monotonicity (rewrite (= (< ?x220 ?x250) $x827)) (= $x264 (and $x827 (and $x238 $x262))))))
   4.771 +(let ((@x837 (trans @x832 (rewrite (= (and $x827 (and $x238 $x262)) $x833)) (= $x264 $x833))))
   4.772 +(let ((@x826 (monotonicity (rewrite (= (< ?x220 b_Infinity$) $x821)) (= (and $x79 (< ?x220 b_Infinity$)) $x824))))
   4.773 +(let ((@x843 (monotonicity @x826 (quant-intro @x837 (= $x265 $x838)) (= $x266 (=> $x824 $x838)))))
   4.774 +(let ((@x852 (quant-intro (trans @x843 (rewrite (= (=> $x824 $x838) $x845)) (= $x266 $x845)) (= $x267 $x850))))
   4.775 +(let ((@x859 (trans (monotonicity @x852 (= $x268 (and $x850 false))) (rewrite (= (and $x850 false) false)) (= $x268 false))))
   4.776 +(let ((@x866 (trans (monotonicity @x859 (= $x269 (=> false true))) (rewrite (= (=> false true) true)) (= $x269 true))))
   4.777 +(let ((@x873 (trans (monotonicity @x852 @x866 (= $x270 (and $x850 true))) (rewrite (= (and $x850 true) $x850)) (= $x270 $x850))))
   4.778 +(let (($x256 (<= ?x250 ?x255)))
   4.779 +(let (($x378 (not (<= b_Infinity$ ?x102))))
   4.780 +(let (($x805 (and $x238 $x378)))
   4.781 +(let (($x811 (not $x805)))
   4.782 +(let (($x812 (or $x811 $x256)))
   4.783 +(let (($x257 (=> (and $x238 (< ?x102 b_Infinity$)) $x256)))
   4.784 +(let ((@x380 (rewrite (= (< ?x102 b_Infinity$) $x378))))
   4.785 +(let ((@x810 (monotonicity (monotonicity @x380 (= (and $x238 (< ?x102 b_Infinity$)) $x805)) (= $x257 (=> $x805 $x256)))))
   4.786 +(let ((@x819 (quant-intro (trans @x810 (rewrite (= (=> $x805 $x256) $x812)) (= $x257 $x812)) (= $x258 $x817))))
   4.787 +(let ((@x882 (trans (monotonicity @x819 @x873 (= $x271 (=> $x817 $x850))) (rewrite (= (=> $x817 $x850) $x878)) (= $x271 $x878))))
   4.788 +(let (($x247 (not $x238)))
   4.789 +(let (($x249 (and $x247 (fun_app$ v_b_Visited_G_2$ ?1))))
   4.790 +(let (($x798 (not $x249)))
   4.791 +(let (($x799 (or $x798 $x251)))
   4.792 +(let ((@x888 (monotonicity (quant-intro (rewrite (= (=> $x249 $x251) $x799)) (= $x253 $x802)) (monotonicity @x819 @x882 (= (and $x258 $x271) $x883)) (= $x273 (=> $x802 $x883)))))
   4.793 +(let ((@x897 (monotonicity (quant-intro (rewrite (= (=> $x249 $x251) $x799)) (= $x253 $x802)) (trans @x888 (rewrite (= (=> $x802 $x883) $x890)) (= $x273 $x890)) (= (and $x253 $x273) $x895))))
   4.794 +(let ((@x906 (trans (monotonicity @x897 (= $x275 (=> $x246 $x895))) (rewrite (= (=> $x246 $x895) $x902)) (= $x275 $x902))))
   4.795 +(let ((@x912 (monotonicity (monotonicity @x906 (= (and $x246 $x275) $x907)) (= $x277 (=> $x244 $x907)))))
   4.796 +(let ((@x921 (monotonicity (trans @x912 (rewrite (= (=> $x244 $x907) $x914)) (= $x277 $x914)) (= (and $x244 $x277) $x919))))
   4.797 +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?0)))
   4.798 +(let (($x225 (= ?x220 ?x121)))
   4.799 +(let (($x783 (or $x247 $x225)))
   4.800 +(let ((@x793 (monotonicity (quant-intro (rewrite (= (=> $x238 $x225) $x783)) (= $x240 $x786)) (rewrite (= (and true true) true)) (= $x242 (and $x786 true)))))
   4.801 +(let ((@x924 (monotonicity (trans @x793 (rewrite (= (and $x786 true) $x786)) (= $x242 $x786)) @x921 (= $x279 (=> $x786 $x919)))))
   4.802 +(let ((@x933 (monotonicity (quant-intro (rewrite (= (=> $x238 $x225) $x783)) (= $x240 $x786)) (trans @x924 (rewrite (= (=> $x786 $x919) $x926)) (= $x279 $x926)) (= (and $x240 $x279) $x931))))
   4.803 +(let ((@x942 (trans (monotonicity @x933 (= $x281 (=> $x237 $x931))) (rewrite (= (=> $x237 $x931) $x938)) (= $x281 $x938))))
   4.804 +(let (($x759 (and $x203 $x684 $x690 $x213 $x713 $x726)))
   4.805 +(let (($x751 (and $x684 $x690 $x213 $x713 $x726)))
   4.806 +(let ((@x745 (rewrite (= (and $x690 (and $x213 $x713 $x726)) (and $x690 $x213 $x713 $x726)))))
   4.807 +(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?0))))
   4.808 +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.809 +(let ((?x217 (+ ?x204 ?x215)))
   4.810 +(let (($x698 (not (<= ?x121 ?x217))))
   4.811 +(let (($x694 (not (<= b_Infinity$ ?x215))))
   4.812 +(let (($x701 (and $x694 $x698)))
   4.813 +(let (($x721 (or $x701 $x225)))
   4.814 +(let (($x226 (=> (not (and (< ?x215 b_Infinity$) (< ?x217 ?x121))) $x225)))
   4.815 +(let ((@x703 (monotonicity (rewrite (= (< ?x215 b_Infinity$) $x694)) (rewrite (= (< ?x217 ?x121) $x698)) (= (and (< ?x215 b_Infinity$) (< ?x217 ?x121)) $x701))))
   4.816 +(let ((@x717 (monotonicity @x703 (= (not (and (< ?x215 b_Infinity$) (< ?x217 ?x121))) (not $x701)))))
   4.817 +(let ((@x725 (trans (monotonicity @x717 (= $x226 (=> (not $x701) $x225))) (rewrite (= (=> (not $x701) $x225) $x721)) (= $x226 $x721))))
   4.818 +(let (($x221 (= ?x220 ?x217)))
   4.819 +(let (($x707 (not $x701)))
   4.820 +(let (($x708 (or $x707 $x221)))
   4.821 +(let (($x219 (and (< ?x215 b_Infinity$) (< ?x217 ?x121))))
   4.822 +(let (($x222 (=> $x219 $x221)))
   4.823 +(let ((@x712 (trans (monotonicity @x703 (= $x222 (=> $x701 $x221))) (rewrite (= (=> $x701 $x221) $x708)) (= $x222 $x708))))
   4.824 +(let ((@x731 (monotonicity (quant-intro @x712 (= $x223 $x713)) (quant-intro @x725 (= $x227 $x726)) (= (and $x223 $x227) (and $x713 $x726)))))
   4.825 +(let ((@x739 (trans (monotonicity @x731 (= $x229 (and $x213 (and $x713 $x726)))) (rewrite (= (and $x213 (and $x713 $x726)) (and $x213 $x713 $x726))) (= $x229 (and $x213 $x713 $x726)))))
   4.826 +(let (($x206 (<= ?x204 ?x121)))
   4.827 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?0)))
   4.828 +(let (($x687 (or $x125 $x206)))
   4.829 +(let ((@x692 (quant-intro (rewrite (= (=> (not $x125) $x206) $x687)) (= $x208 $x690))))
   4.830 +(let ((@x747 (trans (monotonicity @x692 @x739 (= $x230 (and $x690 (and $x213 $x713 $x726)))) @x745 (= $x230 (and $x690 $x213 $x713 $x726)))))
   4.831 +(let ((@x750 (monotonicity (rewrite (= (< ?x204 b_Infinity$) $x684)) @x747 (= $x231 (and $x684 (and $x690 $x213 $x713 $x726))))))
   4.832 +(let ((@x755 (trans @x750 (rewrite (= (and $x684 (and $x690 $x213 $x713 $x726)) $x751)) (= $x231 $x751))))
   4.833 +(let ((@x763 (trans (monotonicity @x755 (= $x232 (and $x203 $x751))) (rewrite (= (and $x203 $x751) $x759)) (= $x232 $x759))))
   4.834 +(let (($x452 (not (<= b_Infinity$ ?x121))))
   4.835 +(let (($x126 (not $x125)))
   4.836 +(let (($x537 (and $x126 $x452)))
   4.837 +(let ((@x539 (monotonicity (rewrite (= (< ?x121 b_Infinity$) $x452)) (= (and $x126 (< ?x121 b_Infinity$)) $x537))))
   4.838 +(let ((@x766 (monotonicity (quant-intro @x539 (= $x156 $x540)) @x763 (= $x233 (and $x540 $x759)))))
   4.839 +(let ((@x774 (monotonicity (trans @x766 (rewrite (= (and $x540 $x759) $x767)) (= $x233 $x767)) (= $x234 (and true $x767)))))
   4.840 +(let ((@x780 (monotonicity (trans @x774 (rewrite (= (and true $x767) $x767)) (= $x234 $x767)) (= $x235 (and true $x767)))))
   4.841 +(let ((@x948 (monotonicity (trans @x780 (rewrite (= (and true $x767) $x767)) (= $x235 $x767)) (monotonicity @x942 (= (and $x237 $x281) $x943)) (= $x283 (=> $x767 $x943)))))
   4.842 +(let ((@x645 (monotonicity (rewrite (= (=> $x193 true) true)) (= $x195 (and $x193 true)))))
   4.843 +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?0)))
   4.844 +(let ((?x182 (+ ?x177 ?x102)))
   4.845 +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?1)))
   4.846 +(let (($x189 (<= ?x180 ?x182)))
   4.847 +(let (($x598 (not (<= b_Infinity$ ?x177))))
   4.848 +(let (($x626 (and $x598 $x378)))
   4.849 +(let (($x632 (not $x626)))
   4.850 +(let (($x633 (or $x632 $x189)))
   4.851 +(let (($x190 (=> (and (< ?x177 b_Infinity$) (< ?x102 b_Infinity$)) $x189)))
   4.852 +(let ((@x628 (monotonicity (rewrite (= (< ?x177 b_Infinity$) $x598)) @x380 (= (and (< ?x177 b_Infinity$) (< ?x102 b_Infinity$)) $x626))))
   4.853 +(let ((@x637 (trans (monotonicity @x628 (= $x190 (=> $x626 $x189))) (rewrite (= (=> $x626 $x189) $x633)) (= $x190 $x633))))
   4.854 +(let ((@x652 (monotonicity (quant-intro @x637 (= $x191 $x638)) (trans @x645 (rewrite (= (and $x193 true) $x193)) (= $x195 $x193)) (= $x196 (=> $x638 $x193)))))
   4.855 +(let ((@x661 (monotonicity (quant-intro @x637 (= $x191 $x638)) (trans @x652 (rewrite (= (=> $x638 $x193) $x654)) (= $x196 $x654)) (= (and $x191 $x196) $x659))))
   4.856 +(let (($x611 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
   4.857 +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
   4.858 +(let ((?x182 (+ ?x177 ?x102)))
   4.859 +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?0)))
   4.860 +(let (($x183 (= ?x180 ?x182)))
   4.861 +(let (($x605 (not (<= ?x180 ?x177))))
   4.862 +(and $x605 $x183))))))))
   4.863 +))
   4.864 +(let (($x601 (and $x79 $x598)))
   4.865 +(let (($x617 (not $x601)))
   4.866 +(let (($x618 (or $x617 $x611)))
   4.867 +(let (($x185 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
   4.868 +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
   4.869 +(let ((?x182 (+ ?x177 ?x102)))
   4.870 +(let ((?x180 (fun_app$c v_b_SP_G_3$ ?0)))
   4.871 +(let (($x183 (= ?x180 ?x182)))
   4.872 +(and (< ?x177 ?x180) $x183)))))))
   4.873 +))
   4.874 +(let (($x186 (=> (and $x79 (< ?x177 b_Infinity$)) $x185)))
   4.875 +(let (($x183 (= ?x180 ?x182)))
   4.876 +(let (($x605 (not (<= ?x180 ?x177))))
   4.877 +(let (($x608 (and $x605 $x183)))
   4.878 +(let ((@x610 (monotonicity (rewrite (= (< ?x177 ?x180) $x605)) (= (and (< ?x177 ?x180) $x183) $x608))))
   4.879 +(let ((@x603 (monotonicity (rewrite (= (< ?x177 b_Infinity$) $x598)) (= (and $x79 (< ?x177 b_Infinity$)) $x601))))
   4.880 +(let ((@x616 (monotonicity @x603 (quant-intro @x610 (= $x185 $x611)) (= $x186 (=> $x601 $x611)))))
   4.881 +(let ((@x625 (quant-intro (trans @x616 (rewrite (= (=> $x601 $x611) $x618)) (= $x186 $x618)) (= $x187 $x623))))
   4.882 +(let ((@x670 (trans (monotonicity @x625 @x661 (= $x198 (=> $x623 $x659))) (rewrite (= (=> $x623 $x659) $x666)) (= $x198 $x666))))
   4.883 +(let (($x562 (and $x159 $x162 $x164 $x167)))
   4.884 +(let (($x567 (and true $x562)))
   4.885 +(let ((@x550 (monotonicity (rewrite (= (and $x167 true) $x167)) (= (and $x164 (and $x167 true)) (and $x164 $x167)))))
   4.886 +(let ((@x558 (trans (monotonicity @x550 (= $x170 (and $x162 (and $x164 $x167)))) (rewrite (= (and $x162 (and $x164 $x167)) (and $x162 $x164 $x167))) (= $x170 (and $x162 $x164 $x167)))))
   4.887 +(let ((@x566 (trans (monotonicity @x558 (= $x171 (and $x159 (and $x162 $x164 $x167)))) (rewrite (= (and $x159 (and $x162 $x164 $x167)) $x562)) (= $x171 $x562))))
   4.888 +(let ((@x573 (trans (monotonicity @x566 (= $x172 $x567)) (rewrite (= $x567 $x562)) (= $x172 $x562))))
   4.889 +(let ((@x577 (trans (monotonicity @x573 (= $x173 $x567)) (rewrite (= $x567 $x562)) (= $x173 $x562))))
   4.890 +(let ((@x545 (monotonicity (quant-intro @x539 (= $x156 $x540)) (= (not $x156) $x543))))
   4.891 +(let ((@x585 (trans (monotonicity @x545 @x577 (= $x174 (and $x543 $x562))) (rewrite (= (and $x543 $x562) $x581)) (= $x174 $x581))))
   4.892 +(let ((@x592 (trans (monotonicity @x585 (= $x175 (and true $x581))) (rewrite (= (and true $x581) $x581)) (= $x175 $x581))))
   4.893 +(let ((@x596 (trans (monotonicity @x592 (= $x176 (and true $x581))) (rewrite (= (and true $x581) $x581)) (= $x176 $x581))))
   4.894 +(let ((@x676 (monotonicity @x596 (monotonicity @x625 @x670 (= (and $x187 $x198) $x671)) (= $x200 (=> $x581 $x671)))))
   4.895 +(let ((@x957 (monotonicity (trans @x676 (rewrite (= (=> $x581 $x671) $x678)) (= $x200 $x678)) (trans @x948 (rewrite (= (=> $x767 $x943) $x950)) (= $x283 $x950)) (= (and $x200 $x283) $x955))))
   4.896 +(let (($x513 (and $x120 $x123 $x433 $x448 $x481)))
   4.897 +(let (($x518 (and true $x513)))
   4.898 +(let ((@x507 (rewrite (= (and $x123 (and $x433 $x448 $x481)) (and $x123 $x433 $x448 $x481)))))
   4.899 +(let (($x469 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
   4.900 +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.901 +(let ((?x134 (+ ?x121 ?x102)))
   4.902 +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?0)))
   4.903 +(let (($x141 (= ?x129 ?x134)))
   4.904 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.905 +(let (($x130 (<= ?x129 ?x121)))
   4.906 +(let (($x458 (not $x130)))
   4.907 +(and $x458 $x125 $x141))))))))))
   4.908 +))
   4.909 +(let (($x455 (and $x79 $x452)))
   4.910 +(let (($x475 (not $x455)))
   4.911 +(let (($x476 (or $x475 $x469)))
   4.912 +(let (($x144 (exists ((?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?0))))
   4.913 +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.914 +(let ((?x134 (+ ?x121 ?x102)))
   4.915 +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?0)))
   4.916 +(let (($x141 (= ?x129 ?x134)))
   4.917 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.918 +(and (< ?x121 ?x129) (and $x125 $x141)))))))))
   4.919 +))
   4.920 +(let (($x145 (=> (and $x79 (< ?x121 b_Infinity$)) $x144)))
   4.921 +(let ((?x134 (+ ?x121 ?x102)))
   4.922 +(let ((?x129 (fun_app$c v_b_SP_G_1$ ?1)))
   4.923 +(let (($x141 (= ?x129 ?x134)))
   4.924 +(let (($x130 (<= ?x129 ?x121)))
   4.925 +(let (($x458 (not $x130)))
   4.926 +(let (($x464 (and $x458 $x125 $x141)))
   4.927 +(let (($x143 (and (< ?x121 ?x129) (and $x125 $x141))))
   4.928 +(let ((@x463 (monotonicity (rewrite (= (< ?x121 ?x129) $x458)) (= $x143 (and $x458 (and $x125 $x141))))))
   4.929 +(let ((@x468 (trans @x463 (rewrite (= (and $x458 (and $x125 $x141)) $x464)) (= $x143 $x464))))
   4.930 +(let ((@x457 (monotonicity (rewrite (= (< ?x121 b_Infinity$) $x452)) (= (and $x79 (< ?x121 b_Infinity$)) $x455))))
   4.931 +(let ((@x474 (monotonicity @x457 (quant-intro @x468 (= $x144 $x469)) (= $x145 (=> $x455 $x469)))))
   4.932 +(let ((@x483 (quant-intro (trans @x474 (rewrite (= (=> $x455 $x469) $x476)) (= $x145 $x476)) (= $x146 $x481))))
   4.933 +(let ((@x490 (trans (monotonicity @x483 (= $x147 (and $x481 true))) (rewrite (= (and $x481 true) $x481)) (= $x147 $x481))))
   4.934 +(let (($x135 (<= ?x129 ?x134)))
   4.935 +(let (($x436 (and $x125 $x378)))
   4.936 +(let (($x442 (not $x436)))
   4.937 +(let (($x443 (or $x442 $x135)))
   4.938 +(let (($x136 (=> (and $x125 (< ?x102 b_Infinity$)) $x135)))
   4.939 +(let ((@x441 (monotonicity (monotonicity @x380 (= (and $x125 (< ?x102 b_Infinity$)) $x436)) (= $x136 (=> $x436 $x135)))))
   4.940 +(let ((@x450 (quant-intro (trans @x441 (rewrite (= (=> $x436 $x135) $x443)) (= $x136 $x443)) (= $x137 $x448))))
   4.941 +(let (($x127 (fun_app$ v_b_Visited_G_1$ ?1)))
   4.942 +(let (($x128 (and $x126 $x127)))
   4.943 +(let (($x429 (not $x128)))
   4.944 +(let (($x430 (or $x429 $x130)))
   4.945 +(let ((@x496 (monotonicity (quant-intro (rewrite (= (=> $x128 $x130) $x430)) (= $x132 $x433)) (monotonicity @x450 @x490 (= (and $x137 $x147) (and $x448 $x481))) (= $x149 (and $x433 (and $x448 $x481))))))
   4.946 +(let ((@x501 (trans @x496 (rewrite (= (and $x433 (and $x448 $x481)) (and $x433 $x448 $x481))) (= $x149 (and $x433 $x448 $x481)))))
   4.947 +(let ((@x509 (trans (monotonicity @x501 (= $x150 (and $x123 (and $x433 $x448 $x481)))) @x507 (= $x150 (and $x123 $x433 $x448 $x481)))))
   4.948 +(let ((@x517 (trans (monotonicity @x509 (= $x151 (and $x120 (and $x123 $x433 $x448 $x481)))) (rewrite (= (and $x120 (and $x123 $x433 $x448 $x481)) $x513)) (= $x151 $x513))))
   4.949 +(let ((@x524 (trans (monotonicity @x517 (= $x152 $x518)) (rewrite (= $x518 $x513)) (= $x152 $x513))))
   4.950 +(let ((@x528 (trans (monotonicity @x524 (= $x153 $x518)) (rewrite (= $x518 $x513)) (= $x153 $x513))))
   4.951 +(let (($x414 (exists ((?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?0)))
   4.952 +(let (($x112 (= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?0))))))
   4.953 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
   4.954 +(let ((?x75 (v_b_SP_G_0$ ?v1)))
   4.955 +(let (($x98 (<= ?x97 ?x75)))
   4.956 +(let (($x403 (not $x98)))
   4.957 +(and $x403 $x83 $x112))))))))
   4.958 +))
   4.959 +(let (($x421 (or (not (and $x79 (not (<= b_Infinity$ (v_b_SP_G_0$ ?0))))) $x414)))
   4.960 +(let (($x115 (exists ((?v1 B_Vertex$) )(let ((?x97 (v_b_SP_G_0$ ?0)))
   4.961 +(let (($x112 (= ?x97 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?0))))))
   4.962 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
   4.963 +(and (< (v_b_SP_G_0$ ?v1) ?x97) (and $x83 $x112))))))
   4.964 +))
   4.965 +(let (($x116 (=> (and $x79 (< (v_b_SP_G_0$ ?0) b_Infinity$)) $x115)))
   4.966 +(let (($x422 (= (=> (and $x79 (not (<= b_Infinity$ (v_b_SP_G_0$ ?0)))) $x414) $x421)))
   4.967 +(let (($x418 (= $x116 (=> (and $x79 (not (<= b_Infinity$ (v_b_SP_G_0$ ?0)))) $x414))))
   4.968 +(let ((?x97 (v_b_SP_G_0$ ?1)))
   4.969 +(let (($x112 (= ?x97 (+ (v_b_SP_G_0$ ?0) ?x102))))
   4.970 +(let (($x83 (v_b_Visited_G_0$ ?0)))
   4.971 +(let ((?x75 (v_b_SP_G_0$ ?0)))
   4.972 +(let (($x98 (<= ?x97 ?x75)))
   4.973 +(let (($x403 (not $x98)))
   4.974 +(let (($x409 (and $x403 $x83 $x112)))
   4.975 +(let (($x114 (and (< ?x75 ?x97) (and $x83 $x112))))
   4.976 +(let ((@x408 (monotonicity (rewrite (= (< ?x75 ?x97) $x403)) (= $x114 (and $x403 (and $x83 $x112))))))
   4.977 +(let ((@x413 (trans @x408 (rewrite (= (and $x403 (and $x83 $x112)) $x409)) (= $x114 $x409))))
   4.978 +(let (($x397 (not (<= b_Infinity$ ?x75))))
   4.979 +(let (($x400 (and $x79 $x397)))
   4.980 +(let ((@x402 (monotonicity (rewrite (= (< ?x75 b_Infinity$) $x397)) (= (and $x79 (< ?x75 b_Infinity$)) $x400))))
   4.981 +(let ((@x425 (trans (monotonicity @x402 (quant-intro @x413 (= $x115 $x414)) $x418) (rewrite $x422) (= $x116 $x421))))
   4.982 +(let ((@x531 (monotonicity (quant-intro @x425 (= $x117 $x426)) @x528 (= $x154 (and $x426 $x513)))))
   4.983 +(let ((@x960 (monotonicity (trans @x531 (rewrite (= (and $x426 $x513) $x532)) (= $x154 $x532)) @x957 (= $x285 (=> $x532 $x955)))))
   4.984 +(let ((@x969 (monotonicity (quant-intro @x425 (= $x117 $x426)) (trans @x960 (rewrite (= (=> $x532 $x955) $x962)) (= $x285 $x962)) (= (and $x117 $x285) $x967))))
   4.985 +(let (($x106 (<= ?x97 (+ ?x75 ?x102))))
   4.986 +(let (($x388 (or (not (and $x83 $x378)) $x106)))
   4.987 +(let (($x107 (=> (and $x83 (< ?x102 b_Infinity$)) $x106)))
   4.988 +(let ((@x383 (monotonicity @x380 (= (and $x83 (< ?x102 b_Infinity$)) (and $x83 $x378)))))
   4.989 +(let ((@x392 (trans (monotonicity @x383 (= $x107 (=> (and $x83 $x378) $x106))) (rewrite (= (=> (and $x83 $x378) $x106) $x388)) (= $x107 $x388))))
   4.990 +(let ((@x972 (monotonicity (quant-intro @x392 (= $x108 $x393)) @x969 (= $x287 (=> $x393 $x967)))))
   4.991 +(let ((@x981 (monotonicity (quant-intro @x392 (= $x108 $x393)) (trans @x972 (rewrite (= (=> $x393 $x967) $x974)) (= $x287 $x974)) (= (and $x108 $x287) $x979))))
   4.992 +(let (($x95 (v_b_Visited_G_0$ ?1)))
   4.993 +(let (($x84 (not $x83)))
   4.994 +(let (($x96 (and $x84 $x95)))
   4.995 +(let (($x370 (not $x96)))
   4.996 +(let (($x371 (or $x370 $x98)))
   4.997 +(let ((@x984 (monotonicity (quant-intro (rewrite (= (=> $x96 $x98) $x371)) (= $x100 $x374)) @x981 (= $x289 (=> $x374 $x979)))))
   4.998 +(let ((@x993 (monotonicity (quant-intro (rewrite (= (=> $x96 $x98) $x371)) (= $x100 $x374)) (trans @x984 (rewrite (= (=> $x374 $x979) $x986)) (= $x289 $x986)) (= (and $x100 $x289) $x991))))
   4.999 +(let ((@x1002 (trans (monotonicity @x993 (= $x291 (=> $x94 $x991))) (rewrite (= (=> $x94 $x991) $x998)) (= $x291 $x998))))
  4.1000 +(let ((@x1008 (monotonicity (monotonicity @x1002 (= (and $x94 $x291) $x1003)) (= $x293 (=> $x92 $x1003)))))
  4.1001 +(let ((@x1017 (monotonicity (trans @x1008 (rewrite (= (=> $x92 $x1003) $x1010)) (= $x293 $x1010)) (= (and $x92 $x293) $x1015))))
  4.1002 +(let (($x340 (or $x74 (= ?x75 b_Infinity$))))
  4.1003 +(let ((@x345 (quant-intro (rewrite (= (=> $x79 (= ?x75 b_Infinity$)) $x340)) (= $x82 $x343))))
  4.1004 +(let ((@x350 (monotonicity @x345 (rewrite (= (and $x85 true) $x85)) (= (and $x82 (and $x85 true)) (and $x343 $x85)))))
  4.1005 +(let ((@x339 (quant-intro (rewrite (= (=> $x74 (= ?x75 0)) (or $x79 (= ?x75 0)))) (= $x78 $x337))))
  4.1006 +(let ((@x358 (trans (monotonicity @x339 @x350 (= $x88 (and $x337 (and $x343 $x85)))) (rewrite (= (and $x337 (and $x343 $x85)) $x354)) (= $x88 $x354))))
  4.1007 +(let ((@x365 (trans (monotonicity @x358 (= $x89 (and true $x354))) (rewrite (= (and true $x354) $x354)) (= $x89 $x354))))
  4.1008 +(let ((@x369 (trans (monotonicity @x365 (= $x90 (and true $x354))) (rewrite (= (and true $x354) $x354)) (= $x90 $x354))))
  4.1009 +(let ((@x1026 (trans (monotonicity @x369 @x1017 (= $x295 (=> $x354 $x1015))) (rewrite (= (=> $x354 $x1015) $x1022)) (= $x295 $x1022))))
  4.1010 +(let ((@x1030 (mp (asserted $x296) (monotonicity @x1026 (= $x296 (not $x1022))) (not $x1022))))
  4.1011 +(let ((@x1031 (not-or-elim @x1030 $x354)))
  4.1012 +(let ((@x1780 (mp~ (mp (and-elim @x1031 $x85) (rewrite* (= $x85 $x85)) $x85) @x1779 $x85)))
  4.1013 +(let ((@x4210 (unit-resolution ((_ quant-inst ?v1!3) (or (not $x3748) $x2668)) (mp @x1780 @x3752 $x3748) (hypothesis $x1821) false)))
  4.1014 +(let (($x2688 (not $x2683)))
  4.1015 +(let (($x4075 (or $x2688 $x4072)))
  4.1016 +(let (($x4078 (not $x4075)))
  4.1017 +(let (($x3763 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x1288 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
  4.1018 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
  4.1019 +(or $x83 (not (v_b_Visited_G_0$ ?v0)) $x1288))) :pattern ( (v_b_Visited_G_0$ ?v1) (v_b_Visited_G_0$ ?v0) )))
  4.1020 +))
  4.1021 +(let (($x4081 (or (not $x3763) $x4078)))
  4.1022 +(let (($x4084 (not $x4081)))
  4.1023 +(let (($x1807 (>= (+ (v_b_SP_G_0$ ?v1!1) (* (- 1) (v_b_SP_G_0$ ?v0!2))) 0)))
  4.1024 +(let (($x1800 (v_b_Visited_G_0$ ?v0!2)))
  4.1025 +(let (($x2622 (not $x1800)))
  4.1026 +(let (($x1798 (v_b_Visited_G_0$ ?v1!1)))
  4.1027 +(let (($x2637 (or $x1798 $x2622 $x1807)))
  4.1028 +(let (($x2642 (not $x2637)))
  4.1029 +(let (($x4087 (or $x2642 $x4084)))
  4.1030 +(let (($x4090 (not $x4087)))
  4.1031 +(let (($x3754 (forall ((?v0 B_Vertex$) )(!(let ((?x75 (v_b_SP_G_0$ ?v0)))
  4.1032 +(>= ?x75 0)) :pattern ( (v_b_SP_G_0$ ?v0) )))
  4.1033 +))
  4.1034 +(let (($x4093 (or (not $x3754) $x4090)))
  4.1035 +(let (($x4096 (not $x4093)))
  4.1036 +(let ((?x1784 (v_b_SP_G_0$ ?v0!0)))
  4.1037 +(let (($x1785 (>= ?x1784 0)))
  4.1038 +(let (($x307 (not (<= b_Infinity$ 0))))
  4.1039 +(let ((@x310 (mp (asserted (< 0 b_Infinity$)) (rewrite (= (< 0 b_Infinity$) $x307)) $x307)))
  4.1040 +(let (($x3424 (= b_Infinity$ ?x1784)))
  4.1041 +(let ((@x3416 (symm (commutativity (= $x3424 (= ?x1784 b_Infinity$))) (= (= ?x1784 b_Infinity$) $x3424))))
  4.1042 +(let (($x3481 (= ?x1784 b_Infinity$)))
  4.1043 +(let (($x5544 (= ?v0!0 b_Source$)))
  4.1044 +(let (($x5542 (not $x5544)))
  4.1045 +(let ((@x3411 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1784 0)) $x1785)) (hypothesis (not $x1785)) (not (= ?x1784 0)))))
  4.1046 +(let (($x3735 (forall ((?v0 B_Vertex$) )(!(let (($x74 (= ?v0 b_Source$)))
  4.1047 +(let (($x79 (not $x74)))
  4.1048 +(or $x79 (= (v_b_SP_G_0$ ?v0) 0)))) :pattern ( (v_b_SP_G_0$ ?v0) )))
  4.1049 +))
  4.1050 +(let ((@x3739 (quant-intro (refl (= (or $x79 (= ?x75 0)) (or $x79 (= ?x75 0)))) (= $x337 $x3735))))
  4.1051 +(let ((@x1769 (nnf-pos (refl (~ (or $x79 (= ?x75 0)) (or $x79 (= ?x75 0)))) (~ $x337 $x337))))
  4.1052 +(let ((@x1770 (mp~ (mp (and-elim @x1031 $x337) (rewrite* (= $x337 $x337)) $x337) @x1769 $x337)))
  4.1053 +(let (($x3446 (= (or (not $x3735) (or $x5542 (= ?x1784 0))) (or (not $x3735) $x5542 (= ?x1784 0)))))
  4.1054 +(let ((@x3448 (mp ((_ quant-inst ?v0!0) (or (not $x3735) (or $x5542 (= ?x1784 0)))) (rewrite $x3446) (or (not $x3735) $x5542 (= ?x1784 0)))))
  4.1055 +(let (($x3741 (forall ((?v0 B_Vertex$) )(!(let (($x74 (= ?v0 b_Source$)))
  4.1056 +(or $x74 (= (v_b_SP_G_0$ ?v0) b_Infinity$))) :pattern ( (v_b_SP_G_0$ ?v0) )))
  4.1057 +))
  4.1058 +(let ((@x1775 (mp~ (mp (and-elim @x1031 $x343) (rewrite* (= $x343 $x343)) $x343) (nnf-pos (refl (~ $x340 $x340)) (~ $x343 $x343)) $x343)))
  4.1059 +(let ((@x3440 (rewrite (= (or (not $x3741) (or $x5544 $x3481)) (or (not $x3741) $x5544 $x3481)))))
  4.1060 +(let ((@x3430 (mp ((_ quant-inst ?v0!0) (or (not $x3741) (or $x5544 $x3481))) @x3440 (or (not $x3741) $x5544 $x3481))))
  4.1061 +(let ((@x3417 (unit-resolution @x3430 (mp @x1775 (quant-intro (refl (= $x340 $x340)) (= $x343 $x3741)) $x3741) (unit-resolution @x3448 (mp @x1770 @x3739 $x3735) @x3411 $x5542) $x3481)))
  4.1062 +(let ((@x3399 ((_ th-lemma arith triangle-eq) (or (not $x3424) (<= (+ b_Infinity$ (* (- 1) ?x1784)) 0)))))
  4.1063 +(let ((@x3400 (unit-resolution @x3399 (mp @x3417 @x3416 $x3424) (<= (+ b_Infinity$ (* (- 1) ?x1784)) 0))))
  4.1064 +(let ((@x3331 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (<= ?x1784 0) $x1785)) (hypothesis (not $x1785)) (<= ?x1784 0))))
  4.1065 +(let ((@x3301 ((_ th-lemma arith farkas 1 -1 1) @x3331 @x3400 (mp @x310 (rewrite* (= $x307 $x307)) $x307) false)))
  4.1066 +(let (($x3437 (not $x3735)))
  4.1067 +(let (($x3312 (or $x3437 $x92)))
  4.1068 +(let ((@x3294 (monotonicity (rewrite (= (= b_Source$ b_Source$) true)) (= (not (= b_Source$ b_Source$)) (not true)))))
  4.1069 +(let ((@x3309 (trans @x3294 (rewrite (= (not true) false)) (= (not (= b_Source$ b_Source$)) false))))
  4.1070 +(let ((@x3315 (monotonicity @x3309 (= (or (not (= b_Source$ b_Source$)) $x92) (or false $x92)))))
  4.1071 +(let ((@x3319 (trans @x3315 (rewrite (= (or false $x92) $x92)) (= (or (not (= b_Source$ b_Source$)) $x92) $x92))))
  4.1072 +(let ((@x3291 (monotonicity @x3319 (= (or $x3437 (or (not (= b_Source$ b_Source$)) $x92)) $x3312))))
  4.1073 +(let ((@x3299 (trans @x3291 (rewrite (= $x3312 $x3312)) (= (or $x3437 (or (not (= b_Source$ b_Source$)) $x92)) $x3312))))
  4.1074 +(let ((@x3300 (mp ((_ quant-inst b_Source$) (or $x3437 (or (not (= b_Source$ b_Source$)) $x92))) @x3299 $x3312)))
  4.1075 +(let ((@x4116 (lemma (unit-resolution @x3300 (mp @x1770 @x3739 $x3735) (hypothesis $x1009) false) $x92)))
  4.1076 +(let (($x3122 (forall ((?v1 B_Vertex$) )(let ((?x2217 (v_b_SP_G_2$ ?v0!20)))
  4.1077 +(let ((?x2218 (* (- 1) ?x2217)))
  4.1078 +(let ((?x220 (v_b_SP_G_2$ ?v1)))
  4.1079 +(let (($x2528 (= (+ ?x220 ?x2218 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
  4.1080 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
  4.1081 +(let (($x247 (not $x238)))
  4.1082 +(or (>= (+ ?x220 ?x2218) 0) $x247 (not $x2528)))))))))
  4.1083 +))
  4.1084 +(let (($x3107 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1)))
  4.1085 +(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
  4.1086 +(let (($x1621 (>= (+ ?x102 ?x220 (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
  4.1087 +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
  4.1088 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
  4.1089 +(let (($x247 (not $x238)))
  4.1090 +(or $x247 $x1303 $x1621))))))))
  4.1091 +))
  4.1092 +(let (($x3131 (not (or (not $x3107) $x2215 $x2220 (not $x3122)))))
  4.1093 +(let (($x3136 (or $x3085 $x3131)))
  4.1094 +(let (($x3062 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1601 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
  4.1095 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
  4.1096 +(or $x238 (not (fun_app$ v_b_Visited_G_2$ ?v0)) $x1601))))
  4.1097 +))
  4.1098 +(let (($x3145 (not (or (not $x3062) (not $x3136)))))
  4.1099 +(let (($x3150 (or $x3039 $x3145)))
  4.1100 +(let (($x1595 (forall ((?v0 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v0)))
  4.1101 +(>= ?x220 0)))
  4.1102 +))
  4.1103 +(let (($x1598 (not $x1595)))
  4.1104 +(let (($x3158 (not (or $x1598 (not $x3150)))))
  4.1105 +(let (($x3163 (or $x913 $x2154 $x3158)))
  4.1106 +(let (($x3171 (not (or $x925 (not $x3163)))))
  4.1107 +(let (($x3176 (or $x2139 $x3171)))
  4.1108 +(let (($x1586 (forall ((?v0 B_Vertex$) )(>= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0))
  4.1109 +))
  4.1110 +(let (($x1589 (not $x1586)))
  4.1111 +(let (($x3184 (not (or $x1589 (not $x3176)))))
  4.1112 +(let (($x3189 (or $x2122 $x3184)))
  4.1113 +(let (($x3016 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
  4.1114 +(let ((?x220 (v_b_SP_G_2$ ?v0)))
  4.1115 +(let (($x225 (= ?x220 ?x121)))
  4.1116 +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
  4.1117 +(let ((?x1520 (* (- 1) ?x204)))
  4.1118 +(let (($x1547 (<= (+ ?x121 ?x1520 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
  4.1119 +(let (($x1540 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
  4.1120 +(let (($x2991 (or $x1540 $x1547)))
  4.1121 +(let (($x2992 (not $x2991)))
  4.1122 +(or $x2992 $x225)))))))))))
  4.1123 +))
  4.1124 +(let (($x3010 (forall ((?v0 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v0)))
  4.1125 +(let ((?x1560 (* (- 1) ?x220)))
  4.1126 +(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
  4.1127 +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
  4.1128 +(let (($x1559 (= (+ ?x204 ?x215 ?x1560) 0)))
  4.1129 +(let (($x1547 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x204) (* (- 1) ?x215)) 0)))
  4.1130 +(let (($x1540 (<= (+ b_Infinity$ (* (- 1) ?x215)) 0)))
  4.1131 +(or $x1540 $x1547 $x1559)))))))))
  4.1132 +))
  4.1133 +(let (($x1535 (forall ((?v0 B_Vertex$) )(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
  4.1134 +(let ((?x1520 (* (- 1) ?x204)))
  4.1135 +(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
  4.1136 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
  4.1137 +(or $x125 (>= (+ ?x121 ?x1520) 0)))))))
  4.1138 +))
  4.1139 +(let (($x3200 (or $x2082 $x2087 $x202 $x1522 (not $x1535) $x3196 (not $x3010) (not $x3016) (not $x3189))))
  4.1140 +(let (($x3201 (not $x3200)))
  4.1141 +(let (($x2946 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
  4.1142 +(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
  4.1143 +(let (($x1493 (>= (+ ?x102 ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
  4.1144 +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
  4.1145 +(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0)))
  4.1146 +(or $x1448 $x1303 $x1493)))))))
  4.1147 +))
  4.1148 +(let (($x2954 (not (or (not $x2946) $x193))))
  4.1149 +(let (($x2959 (or $x2924 $x2954)))
  4.1150 +(let (($x2902 (forall ((?v0 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v0)))
  4.1151 +(let ((?x2479 (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
  4.1152 +(let (($x2480 (= ?x2479 0)))
  4.1153 +(let (($x2464 (<= (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
  4.1154 +(let (($x2891 (not (or $x2464 (not $x2480)))))
  4.1155 +(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0)))
  4.1156 +(let (($x74 (= ?v0 b_Source$)))
  4.1157 +(or $x74 $x1448 $x2891)))))))))
  4.1158 +))
  4.1159 +(let (($x2968 (not (or (not $x2902) (not $x2959)))))
  4.1160 +(let (($x2865 (forall ((?v1 B_Vertex$) )(let ((?x1970 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  4.1161 +(let ((?x1971 (* (- 1) ?x1970)))
  4.1162 +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
  4.1163 +(let (($x2436 (= (+ ?x177 ?x1971 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
  4.1164 +(or (>= (+ ?x177 ?x1971) 0) (not $x2436)))))))
  4.1165 +))
  4.1166 +(let (($x2873 (not (or $x1968 $x1973 (not $x2865)))))
  4.1167 +(let (($x2973 (or $x2873 $x2968)))
  4.1168 +(let (($x2850 (forall ((?v0 B_Vertex$) )(let (($x1395 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  4.1169 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
  4.1170 +(or $x125 $x1395))))
  4.1171 +))
  4.1172 +(let (($x2986 (not (or (not $x2850) (not $x159) (not $x162) $x2982 (not $x167) (not $x2973)))))
  4.1173 +(let (($x3206 (or $x2986 $x3201)))
  4.1174 +(let (($x2836 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
  4.1175 +(let ((?x2416 (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
  4.1176 +(let (($x2417 (= ?x2416 0)))
  4.1177 +(let (($x2401 (<= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0)))) 0)))
  4.1178 +(let (($x2825 (not (or $x2401 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0))) (not $x2417)))))
  4.1179 +(let (($x1395 (<= (+ b_Infinity$ (* (- 1) ?x121)) 0)))
  4.1180 +(let (($x74 (= ?v0 b_Source$)))
  4.1181 +(or $x74 $x1395 $x2825)))))))))
  4.1182 +))
  4.1183 +(let (($x2808 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
  4.1184 +(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
  4.1185 +(let (($x1384 (>= (+ ?x102 ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  4.1186 +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
  4.1187 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
  4.1188 +(let (($x126 (not $x125)))
  4.1189 +(or $x126 $x1303 $x1384))))))))
  4.1190 +))
  4.1191 +(let (($x2786 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
  4.1192 +(let (($x1367 (>= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  4.1193 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
  4.1194 +(or $x125 (not (fun_app$ v_b_Visited_G_1$ ?v0)) $x1367)))))
  4.1195 +))
  4.1196 +(let (($x1363 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
  4.1197 +(>= ?x121 0)))
  4.1198 +))
  4.1199 +(let (($x2763 (forall ((?v0 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v0)))
  4.1200 +(let ((?x2378 (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
  4.1201 +(let (($x2379 (= ?x2378 0)))
  4.1202 +(let (($x2363 (<= (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0)))) 0)))
  4.1203 +(let (($x2752 (not (or $x2363 (not (v_b_Visited_G_0$ (?v1!6 ?v0))) (not $x2379)))))
  4.1204 +(let (($x1330 (<= (+ b_Infinity$ (* (- 1) ?x75)) 0)))
  4.1205 +(let (($x74 (= ?v0 b_Source$)))
  4.1206 +(or $x74 $x1330 $x2752)))))))))
  4.1207 +))
  4.1208 +(let (($x3219 (or (not $x2763) $x3213 (not $x1363) (not $x2786) (not $x2808) (not $x2836) (not $x3206))))
  4.1209 +(let (($x3220 (not $x3219)))
  4.1210 +(let (($x2725 (forall ((?v1 B_Vertex$) )(let ((?x1849 (v_b_SP_G_0$ ?v0!5)))
  4.1211 +(let ((?x1850 (* (- 1) ?x1849)))
  4.1212 +(let ((?x75 (v_b_SP_G_0$ ?v1)))
  4.1213 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
  4.1214 +(let (($x84 (not $x83)))
  4.1215 +(or (>= (+ ?x75 ?x1850) 0) $x84 (not (= (+ ?x75 ?x1850 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))))
  4.1216 +))
  4.1217 +(let (($x2733 (not (or $x1847 $x1852 (not $x2725)))))
  4.1218 +(let (($x3225 (or $x2733 $x3220)))
  4.1219 +(let (($x2710 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
  4.1220 +(let ((?x75 (v_b_SP_G_0$ ?v1)))
  4.1221 +(let (($x1316 (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x102) 0)))
  4.1222 +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
  4.1223 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
  4.1224 +(let (($x84 (not $x83)))
  4.1225 +(or $x84 $x1303 $x1316))))))))
  4.1226 +))
  4.1227 +(let (($x3234 (not (or (not $x2710) (not $x3225)))))
  4.1228 +(let (($x3239 (or $x2688 $x3234)))
  4.1229 +(let (($x2665 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1288 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
  4.1230 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
  4.1231 +(or $x83 (not (v_b_Visited_G_0$ ?v0)) $x1288))))
  4.1232 +))
  4.1233 +(let (($x3248 (not (or (not $x2665) (not $x3239)))))
  4.1234 +(let (($x3253 (or $x2642 $x3248)))
  4.1235 +(let (($x1280 (forall ((?v0 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v0)))
  4.1236 +(>= ?x75 0)))
  4.1237 +))
  4.1238 +(let (($x1283 (not $x1280)))
  4.1239 +(let (($x3261 (not (or $x1283 (not $x3253)))))
  4.1240 +(let (($x1786 (not $x1785)))
  4.1241 +(let (($x3266 (or $x1009 $x1786 $x3261)))
  4.1242 +(let (($x2528 (= (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20)) (b_G$ (pair$ ?0 ?v0!20))) 0)))
  4.1243 +(let (($x3111 (or (>= (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0) $x247 (not $x2528))))
  4.1244 +(let ((@x3984 (monotonicity (quant-intro (refl (= $x3111 $x3111)) (= $x3122 $x3977)) (= (not $x3122) $x3982))))
  4.1245 +(let (($x1621 (>= (+ ?x102 ?x220 (* (- 1) ?x250)) 0)))
  4.1246 +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
  4.1247 +(let (($x3102 (or $x247 $x1303 $x1621)))
  4.1248 +(let ((@x3975 (monotonicity (quant-intro (refl (= $x3102 $x3102)) (= $x3107 $x3968)) (= (not $x3107) $x3973))))
  4.1249 +(let ((@x3987 (monotonicity @x3975 @x3984 (= (or (not $x3107) $x2215 $x2220 (not $x3122)) $x3985))))
  4.1250 +(let ((@x3996 (monotonicity (monotonicity (monotonicity @x3987 (= $x3131 $x3988)) (= $x3136 $x3991)) (= (not $x3136) $x3994))))
  4.1251 +(let (($x1601 (>= (+ ?x220 (* (- 1) ?x250)) 0)))
  4.1252 +(let (($x3057 (or $x238 (not (fun_app$ v_b_Visited_G_2$ ?1)) $x1601)))
  4.1253 +(let ((@x3967 (monotonicity (quant-intro (refl (= $x3057 $x3057)) (= $x3062 $x3960)) (= (not $x3062) (not $x3960)))))
  4.1254 +(let ((@x4002 (monotonicity (monotonicity @x3967 @x3996 (= (or (not $x3062) (not $x3136)) $x3997)) (= $x3145 $x4000))))
  4.1255 +(let ((@x4008 (monotonicity (monotonicity @x4002 (= $x3150 $x4003)) (= (not $x3150) $x4006))))
  4.1256 +(let ((@x3955 (quant-intro (refl (= (>= ?x220 0) (>= ?x220 0))) (= $x1595 $x3951))))
  4.1257 +(let ((@x4011 (monotonicity (monotonicity @x3955 (= $x1598 (not $x3951))) @x4008 (= (or $x1598 (not $x3150)) $x4009))))
  4.1258 +(let ((@x4020 (monotonicity (monotonicity (monotonicity @x4011 (= $x3158 $x4012)) (= $x3163 $x4015)) (= (not $x3163) $x4018))))
  4.1259 +(let ((@x3950 (monotonicity (quant-intro (refl (= $x783 $x783)) (= $x786 $x3943)) (= $x925 $x3948))))
  4.1260 +(let ((@x4026 (monotonicity (monotonicity @x3950 @x4020 (= (or $x925 (not $x3163)) $x4021)) (= $x3171 $x4024))))
  4.1261 +(let ((@x4032 (monotonicity (monotonicity @x4026 (= $x3176 $x4027)) (= (not $x3176) $x4030))))
  4.1262 +(let (($x1582 (>= (+ ?x121 (* (- 1) ?x220)) 0)))
  4.1263 +(let ((@x3941 (monotonicity (quant-intro (refl (= $x1582 $x1582)) (= $x1586 $x3934)) (= $x1589 $x3939))))
  4.1264 +(let ((@x4038 (monotonicity (monotonicity @x3941 @x4032 (= (or $x1589 (not $x3176)) $x4033)) (= $x3184 $x4036))))
  4.1265 +(let ((@x4044 (monotonicity (monotonicity @x4038 (= $x3189 $x4039)) (= (not $x3189) $x4042))))
  4.1266 +(let (($x1547 (<= (+ ?x121 (* (- 1) ?x204) (* (- 1) ?x215)) 0)))
  4.1267 +(let (($x1540 (<= (+ b_Infinity$ (* (- 1) ?x215)) 0)))
  4.1268 +(let (($x2991 (or $x1540 $x1547)))
  4.1269 +(let (($x2992 (not $x2991)))
  4.1270 +(let (($x3013 (or $x2992 $x225)))
  4.1271 +(let ((@x3933 (monotonicity (quant-intro (refl (= $x3013 $x3013)) (= $x3016 $x3926)) (= (not $x3016) $x3931))))
  4.1272 +(let (($x1559 (= (+ ?x204 ?x215 (* (- 1) ?x220)) 0)))
  4.1273 +(let (($x3005 (or $x1540 $x1547 $x1559)))
  4.1274 +(let ((@x3925 (monotonicity (quant-intro (refl (= $x3005 $x3005)) (= $x3010 $x3918)) (= (not $x3010) $x3923))))
  4.1275 +(let (($x1532 (or $x125 (>= (+ ?x121 (* (- 1) ?x204)) 0))))
  4.1276 +(let ((@x3915 (monotonicity (quant-intro (refl (= $x1532 $x1532)) (= $x1535 $x3908)) (= (not $x1535) $x3913))))
  4.1277 +(let ((@x4050 (monotonicity (monotonicity @x3915 @x3925 @x3933 @x4044 (= $x3200 $x4045)) (= $x3201 $x4048))))
  4.1278 +(let (($x3903 (= (or (not $x2850) (not $x159) (not $x162) $x2982 (not $x167) (not $x2973)) $x3902)))
  4.1279 +(let (($x1493 (>= (+ ?x102 ?x177 (* (- 1) ?x180)) 0)))
  4.1280 +(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0)))
  4.1281 +(let (($x2941 (or $x1448 $x1303 $x1493)))
  4.1282 +(let ((@x3877 (monotonicity (quant-intro (refl (= $x2941 $x2941)) (= $x2946 $x3870)) (= (not $x2946) (not $x3870)))))
  4.1283 +(let ((@x3883 (monotonicity (monotonicity @x3877 (= (or (not $x2946) $x193) $x3878)) (= $x2954 $x3881))))
  4.1284 +(let ((@x3889 (monotonicity (monotonicity @x3883 (= $x2959 $x3884)) (= (not $x2959) $x3887))))
  4.1285 +(let ((?x2479 (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?0) ?0))))))
  4.1286 +(let (($x2480 (= ?x2479 0)))
  4.1287 +(let (($x2464 (<= (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?0)))) 0)))
  4.1288 +(let (($x2891 (not (or $x2464 (not $x2480)))))
  4.1289 +(let (($x2897 (or $x74 $x1448 $x2891)))
  4.1290 +(let ((@x3869 (monotonicity (quant-intro (refl (= $x2897 $x2897)) (= $x2902 $x3862)) (= (not $x2902) (not $x3862)))))
  4.1291 +(let ((@x3895 (monotonicity (monotonicity @x3869 @x3889 (= (or (not $x2902) (not $x2959)) $x3890)) (= $x2968 $x3893))))
  4.1292 +(let ((?x1970 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  4.1293 +(let ((?x1971 (* (- 1) ?x1970)))
  4.1294 +(let (($x2436 (= (+ ?x177 ?x1971 (b_G$ (pair$ ?0 ?v0!8))) 0)))
  4.1295 +(let (($x2854 (or (>= (+ ?x177 ?x1971) 0) (not $x2436))))
  4.1296 +(let ((@x3855 (monotonicity (quant-intro (refl (= $x2854 $x2854)) (= $x2865 $x3848)) (= (not $x2865) $x3853))))
  4.1297 +(let ((@x3861 (monotonicity (monotonicity @x3855 (= (or $x1968 $x1973 (not $x2865)) $x3856)) (= $x2873 $x3859))))
  4.1298 +(let ((@x3901 (monotonicity (monotonicity @x3861 @x3895 (= $x2973 $x3896)) (= (not $x2973) $x3899))))
  4.1299 +(let (($x1395 (<= (+ b_Infinity$ (* (- 1) ?x121)) 0)))
  4.1300 +(let (($x2839 (or $x125 $x1395)))
  4.1301 +(let ((@x3845 (monotonicity (quant-intro (refl (= $x2839 $x2839)) (= $x2850 $x3838)) (= (not $x2850) $x3843))))
  4.1302 +(let ((@x4053 (monotonicity (monotonicity (monotonicity @x3845 @x3901 $x3903) (= $x2986 $x3905)) @x4050 (= $x3206 $x4051))))
  4.1303 +(let ((?x2416 (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?0) ?0))))))
  4.1304 +(let (($x2417 (= ?x2416 0)))
  4.1305 +(let (($x2401 (<= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?0)))) 0)))
  4.1306 +(let (($x2825 (not (or $x2401 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?0))) (not $x2417)))))
  4.1307 +(let (($x2831 (or $x74 $x1395 $x2825)))
  4.1308 +(let ((@x3836 (monotonicity (quant-intro (refl (= $x2831 $x2831)) (= $x2836 $x3829)) (= (not $x2836) $x3834))))
  4.1309 +(let (($x1384 (>= (+ ?x102 ?x121 (* (- 1) ?x129)) 0)))
  4.1310 +(let (($x2803 (or $x126 $x1303 $x1384)))
  4.1311 +(let ((@x3828 (monotonicity (quant-intro (refl (= $x2803 $x2803)) (= $x2808 $x3821)) (= (not $x2808) $x3826))))
  4.1312 +(let (($x1367 (>= (+ ?x121 (* (- 1) ?x129)) 0)))
  4.1313 +(let (($x2781 (or $x125 (not $x127) $x1367)))
  4.1314 +(let ((@x3820 (monotonicity (quant-intro (refl (= $x2781 $x2781)) (= $x2786 $x3813)) (= (not $x2786) $x3818))))
  4.1315 +(let ((@x3808 (quant-intro (refl (= (>= ?x121 0) (>= ?x121 0))) (= $x1363 $x3804))))
  4.1316 +(let ((?x2378 (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?0) ?0))))))
  4.1317 +(let (($x2379 (= ?x2378 0)))
  4.1318 +(let (($x2363 (<= (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?0)))) 0)))
  4.1319 +(let (($x2752 (not (or $x2363 (not (v_b_Visited_G_0$ (?v1!6 ?0))) (not $x2379)))))
  4.1320 +(let (($x1330 (<= (+ b_Infinity$ (* (- 1) ?x75)) 0)))
  4.1321 +(let (($x2758 (or $x74 $x1330 $x2752)))
  4.1322 +(let ((@x3802 (monotonicity (quant-intro (refl (= $x2758 $x2758)) (= $x2763 $x3795)) (= (not $x2763) (not $x3795)))))
  4.1323 +(let ((@x4059 (monotonicity @x3802 (monotonicity @x3808 (= (not $x1363) $x3809)) @x3820 @x3828 @x3836 (monotonicity @x4053 (= (not $x3206) $x4054)) (= $x3219 $x4057))))
  4.1324 +(let (($x1862 (= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0!5)) (b_G$ (pair$ ?0 ?v0!5))) 0)))
  4.1325 +(let (($x2714 (or (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0!5))) 0) $x84 (not $x1862))))
  4.1326 +(let ((@x3788 (monotonicity (quant-intro (refl (= $x2714 $x2714)) (= $x2725 $x3781)) (= (not $x2725) (not $x3781)))))
  4.1327 +(let ((@x3794 (monotonicity (monotonicity @x3788 (= (or $x1847 $x1852 (not $x2725)) $x3789)) (= $x2733 $x3792))))
  4.1328 +(let ((@x4065 (monotonicity @x3794 (monotonicity @x4059 (= $x3220 $x4060)) (= $x3225 $x4063))))
  4.1329 +(let (($x1316 (>= (+ ?x75 (* (- 1) ?x97) ?x102) 0)))
  4.1330 +(let (($x2705 (or $x84 $x1303 $x1316)))
  4.1331 +(let ((@x3779 (monotonicity (quant-intro (refl (= $x2705 $x2705)) (= $x2710 $x3772)) (= (not $x2710) (not $x3772)))))
  4.1332 +(let ((@x4071 (monotonicity @x3779 (monotonicity @x4065 (= (not $x3225) $x4066)) (= (or (not $x2710) (not $x3225)) $x4069))))
  4.1333 +(let ((@x4080 (monotonicity (monotonicity (monotonicity @x4071 (= $x3234 $x4072)) (= $x3239 $x4075)) (= (not $x3239) $x4078))))
  4.1334 +(let (($x1288 (>= (+ ?x75 (* (- 1) ?x97)) 0)))
  4.1335 +(let (($x2660 (or $x83 (not $x95) $x1288)))
  4.1336 +(let ((@x3770 (monotonicity (quant-intro (refl (= $x2660 $x2660)) (= $x2665 $x3763)) (= (not $x2665) (not $x3763)))))
  4.1337 +(let ((@x4086 (monotonicity (monotonicity @x3770 @x4080 (= (or (not $x2665) (not $x3239)) $x4081)) (= $x3248 $x4084))))
  4.1338 +(let ((@x4092 (monotonicity (monotonicity @x4086 (= $x3253 $x4087)) (= (not $x3253) $x4090))))
  4.1339 +(let ((@x3758 (quant-intro (refl (= (>= ?x75 0) (>= ?x75 0))) (= $x1280 $x3754))))
  4.1340 +(let ((@x4095 (monotonicity (monotonicity @x3758 (= $x1283 (not $x3754))) @x4092 (= (or $x1283 (not $x3253)) $x4093))))
  4.1341 +(let ((@x4101 (monotonicity (monotonicity @x4095 (= $x3261 $x4096)) (= $x3266 (or $x1009 $x1786 $x4096)))))
  4.1342 +(let (($x2537 (forall ((?v1 B_Vertex$) )(let ((?x2217 (v_b_SP_G_2$ ?v0!20)))
  4.1343 +(let ((?x2218 (* (- 1) ?x2217)))
  4.1344 +(let ((?x220 (v_b_SP_G_2$ ?v1)))
  4.1345 +(let (($x2528 (= (+ ?x220 ?x2218 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
  4.1346 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
  4.1347 +(let (($x2531 (and (not (>= (+ ?x220 ?x2218) 0)) $x238 $x2528)))
  4.1348 +(not $x2531))))))))
  4.1349 +))
  4.1350 +(let (($x2221 (not $x2220)))
  4.1351 +(let (($x2216 (not $x2215)))
  4.1352 +(let (($x1628 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v1)))
  4.1353 +(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
  4.1354 +(let (($x1621 (>= (+ ?x102 ?x220 (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
  4.1355 +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
  4.1356 +(let (($x1306 (not $x1303)))
  4.1357 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
  4.1358 +(let (($x1615 (and $x238 $x1306)))
  4.1359 +(let (($x1618 (not $x1615)))
  4.1360 +(or $x1618 $x1621))))))))))
  4.1361 +))
  4.1362 +(let (($x2546 (and $x1628 $x2216 $x2221 $x2537)))
  4.1363 +(let (($x2197 (not (and $x2189 (not $x2194)))))
  4.1364 +(let (($x2203 (or $x2197 $x2202)))
  4.1365 +(let (($x2204 (not $x2203)))
  4.1366 +(let (($x2551 (or $x2204 $x2546)))
  4.1367 +(let (($x1609 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1601 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
  4.1368 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
  4.1369 +(let (($x247 (not $x238)))
  4.1370 +(let (($x249 (and $x247 (fun_app$ v_b_Visited_G_2$ ?v0))))
  4.1371 +(let (($x798 (not $x249)))
  4.1372 +(or $x798 $x1601)))))))
  4.1373 +))
  4.1374 +(let (($x2554 (and $x1609 $x2551)))
  4.1375 +(let (($x2170 (not (and (not $x2166) $x2168))))
  4.1376 +(let (($x2176 (or $x2170 $x2175)))
  4.1377 +(let (($x2177 (not $x2176)))
  4.1378 +(let (($x2557 (or $x2177 $x2554)))
  4.1379 +(let (($x2560 (and $x1595 $x2557)))
  4.1380 +(let (($x2563 (or $x913 $x2154 $x2560)))
  4.1381 +(let (($x2566 (and $x786 $x2563)))
  4.1382 +(let (($x2569 (or $x2139 $x2566)))
  4.1383 +(let (($x2572 (and $x1586 $x2569)))
  4.1384 +(let (($x2575 (or $x2122 $x2572)))
  4.1385 +(let (($x1573 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
  4.1386 +(let ((?x220 (v_b_SP_G_2$ ?v0)))
  4.1387 +(let (($x225 (= ?x220 ?x121)))
  4.1388 +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
  4.1389 +(let ((?x1520 (* (- 1) ?x204)))
  4.1390 +(let (($x1547 (<= (+ ?x121 ?x1520 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
  4.1391 +(let (($x1540 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
  4.1392 +(let (($x1553 (and (not $x1540) (not $x1547))))
  4.1393 +(or $x1553 $x225))))))))))
  4.1394 +))
  4.1395 +(let (($x1567 (forall ((?v0 B_Vertex$) )(let ((?x220 (v_b_SP_G_2$ ?v0)))
  4.1396 +(let ((?x1560 (* (- 1) ?x220)))
  4.1397 +(let ((?x215 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
  4.1398 +(let ((?x204 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
  4.1399 +(let (($x1559 (= (+ ?x204 ?x215 ?x1560) 0)))
  4.1400 +(let (($x1547 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x204) (* (- 1) ?x215)) 0)))
  4.1401 +(let (($x1553 (and (not (<= (+ b_Infinity$ (* (- 1) ?x215)) 0)) (not $x1547))))
  4.1402 +(let (($x1556 (not $x1553)))
  4.1403 +(or $x1556 $x1559))))))))))
  4.1404 +))
  4.1405 +(let (($x1525 (not $x1522)))
  4.1406 +(let (($x2088 (not $x2087)))
  4.1407 +(let (($x2083 (not $x2082)))
  4.1408 +(let (($x2581 (and $x2083 $x2088 $x203 $x1525 $x1535 $x213 $x1567 $x1573 $x2575)))
  4.1409 +(let (($x2058 (not $x193)))
  4.1410 +(let (($x1499 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
  4.1411 +(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
  4.1412 +(let (($x1493 (>= (+ ?x102 ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
  4.1413 +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
  4.1414 +(let (($x1306 (not $x1303)))
  4.1415 +(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0)))
  4.1416 +(let (($x1451 (not $x1448)))
  4.1417 +(let (($x1487 (and $x1451 $x1306)))
  4.1418 +(let (($x1490 (not $x1487)))
  4.1419 +(or $x1490 $x1493)))))))))))
  4.1420 +))
  4.1421 +(let (($x2061 (and $x1499 $x2058)))
  4.1422 +(let (($x2042 (not (and $x2034 (not $x2039)))))
  4.1423 +(let (($x2500 (or $x2042 $x2497)))
  4.1424 +(let (($x2503 (not $x2500)))
  4.1425 +(let (($x2506 (or $x2503 $x2061)))
  4.1426 +(let (($x2491 (forall ((?v0 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v0)))
  4.1427 +(let ((?x2479 (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
  4.1428 +(let (($x2480 (= ?x2479 0)))
  4.1429 +(let (($x2464 (<= (+ ?x177 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
  4.1430 +(let (($x2485 (and (not $x2464) $x2480)))
  4.1431 +(let (($x1448 (<= (+ b_Infinity$ (* (- 1) ?x177)) 0)))
  4.1432 +(let (($x1451 (not $x1448)))
  4.1433 +(let (($x74 (= ?v0 b_Source$)))
  4.1434 +(let (($x79 (not $x74)))
  4.1435 +(let (($x1454 (and $x79 $x1451)))
  4.1436 +(let (($x1457 (not $x1454)))
  4.1437 +(or $x1457 $x2485)))))))))))))
  4.1438 +))
  4.1439 +(let (($x2509 (and $x2491 $x2506)))
  4.1440 +(let (($x2445 (forall ((?v1 B_Vertex$) )(let ((?x1970 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  4.1441 +(let ((?x1971 (* (- 1) ?x1970)))
  4.1442 +(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v1)))
  4.1443 +(let (($x2436 (= (+ ?x177 ?x1971 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
  4.1444 +(let (($x2439 (and (not (>= (+ ?x177 ?x1971) 0)) $x2436)))
  4.1445 +(not $x2439)))))))
  4.1446 +))
  4.1447 +(let (($x1974 (not $x1973)))
  4.1448 +(let (($x1969 (not $x1968)))
  4.1449 +(let (($x2451 (and $x1969 $x1974 $x2445)))
  4.1450 +(let (($x2512 (or $x2451 $x2509)))
  4.1451 +(let (($x1950 (forall ((?v0 B_Vertex$) )(let (($x1395 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  4.1452 +(let (($x1398 (not $x1395)))
  4.1453 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v0)))
  4.1454 +(let (($x126 (not $x125)))
  4.1455 +(let (($x1431 (and $x126 $x1398)))
  4.1456 +(not $x1431)))))))
  4.1457 +))
  4.1458 +(let (($x2518 (and $x1950 $x159 $x162 $x164 $x167 $x2512)))
  4.1459 +(let (($x2586 (or $x2518 $x2581)))
  4.1460 +(let (($x2428 (forall ((?v0 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v0)))
  4.1461 +(let ((?x2416 (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
  4.1462 +(let (($x2417 (= ?x2416 0)))
  4.1463 +(let ((?x1922 (?v1!7 ?v0)))
  4.1464 +(let (($x1927 (fun_app$ v_b_Visited_G_1$ ?x1922)))
  4.1465 +(let (($x2422 (and (not (<= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?x1922))) 0)) $x1927 $x2417)))
  4.1466 +(let (($x1395 (<= (+ b_Infinity$ (* (- 1) ?x121)) 0)))
  4.1467 +(let (($x1398 (not $x1395)))
  4.1468 +(let (($x74 (= ?v0 b_Source$)))
  4.1469 +(let (($x79 (not $x74)))
  4.1470 +(let (($x1401 (and $x79 $x1398)))
  4.1471 +(let (($x1404 (not $x1401)))
  4.1472 +(or $x1404 $x2422))))))))))))))
  4.1473 +))
  4.1474 +(let (($x1390 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
  4.1475 +(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
  4.1476 +(let (($x1384 (>= (+ ?x102 ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  4.1477 +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
  4.1478 +(let (($x1306 (not $x1303)))
  4.1479 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
  4.1480 +(let (($x1377 (and $x125 $x1306)))
  4.1481 +(let (($x1380 (not $x1377)))
  4.1482 +(or $x1380 $x1384))))))))))
  4.1483 +))
  4.1484 +(let (($x1374 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x121 (fun_app$c v_b_SP_G_1$ ?v1)))
  4.1485 +(let (($x1367 (>= (+ ?x121 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  4.1486 +(let (($x127 (fun_app$ v_b_Visited_G_1$ ?v0)))
  4.1487 +(let (($x125 (fun_app$ v_b_Visited_G_1$ ?v1)))
  4.1488 +(let (($x126 (not $x125)))
  4.1489 +(let (($x128 (and $x126 $x127)))
  4.1490 +(let (($x429 (not $x128)))
  4.1491 +(or $x429 $x1367)))))))))
  4.1492 +))
  4.1493 +(let (($x2390 (forall ((?v0 B_Vertex$) )(let ((?x75 (v_b_SP_G_0$ ?v0)))
  4.1494 +(let ((?x2378 (+ ?x75 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
  4.1495 +(let (($x2379 (= ?x2378 0)))
  4.1496 +(let ((?x1887 (?v1!6 ?v0)))
  4.1497 +(let (($x1892 (v_b_Visited_G_0$ ?x1887)))
  4.1498 +(let (($x2384 (and (not (<= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?x1887))) 0)) $x1892 $x2379)))
  4.1499 +(let (($x74 (= ?v0 b_Source$)))
  4.1500 +(let (($x79 (not $x74)))
  4.1501 +(let (($x1336 (and $x79 (not (<= (+ b_Infinity$ (* (- 1) ?x75)) 0)))))
  4.1502 +(let (($x1339 (not $x1336)))
  4.1503 +(or $x1339 $x2384))))))))))))
  4.1504 +))
  4.1505 +(let (($x2595 (and $x2390 $x120 $x1363 $x1374 $x1390 $x2428 $x2586)))
  4.1506 +(let (($x1876 (forall ((?v1 B_Vertex$) )(let ((?x1849 (v_b_SP_G_0$ ?v0!5)))
  4.1507 +(let ((?x1850 (* (- 1) ?x1849)))
  4.1508 +(let ((?x75 (v_b_SP_G_0$ ?v1)))
  4.1509 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
  4.1510 +(let (($x1863 (and (not (>= (+ ?x75 ?x1850) 0)) $x83 (= (+ ?x75 ?x1850 (b_G$ (pair$ ?v1 ?v0!5))) 0))))
  4.1511 +(not $x1863)))))))
  4.1512 +))
  4.1513 +(let (($x1853 (not $x1852)))
  4.1514 +(let (($x1848 (not $x1847)))
  4.1515 +(let (($x2350 (and $x1848 $x1853 $x1876)))
  4.1516 +(let (($x2600 (or $x2350 $x2595)))
  4.1517 +(let (($x1322 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x102 (b_G$ (pair$ ?v1 ?v0))))
  4.1518 +(let ((?x75 (v_b_SP_G_0$ ?v1)))
  4.1519 +(let (($x1316 (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x102) 0)))
  4.1520 +(let (($x1303 (<= (+ b_Infinity$ (* (- 1) ?x102)) 0)))
  4.1521 +(let (($x1306 (not $x1303)))
  4.1522 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
  4.1523 +(let (($x1309 (and $x83 $x1306)))
  4.1524 +(let (($x1312 (not $x1309)))
  4.1525 +(or $x1312 $x1316))))))))))
  4.1526 +))
  4.1527 +(let (($x2603 (and $x1322 $x2600)))
  4.1528 +(let (($x1829 (not (and $x1821 (not $x1826)))))
  4.1529 +(let (($x2339 (or $x1829 $x2336)))
  4.1530 +(let (($x2342 (not $x2339)))
  4.1531 +(let (($x2606 (or $x2342 $x2603)))
  4.1532 +(let (($x1295 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1288 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
  4.1533 +(let (($x95 (v_b_Visited_G_0$ ?v0)))
  4.1534 +(let (($x83 (v_b_Visited_G_0$ ?v1)))
  4.1535 +(let (($x84 (not $x83)))
  4.1536 +(let (($x96 (and $x84 $x95)))
  4.1537 +(let (($x370 (not $x96)))
  4.1538 +(or $x370 $x1288))))))))
  4.1539 +))
  4.1540 +(let (($x2609 (and $x1295 $x2606)))
  4.1541 +(let (($x1802 (not (and (not $x1798) $x1800))))
  4.1542 +(let (($x1808 (or $x1802 $x1807)))
  4.1543 +(let (($x1809 (not $x1808)))
  4.1544 +(let (($x2612 (or $x1809 $x2609)))
  4.1545 +(let (($x2615 (and $x1280 $x2612)))
  4.1546 +(let (($x2618 (or $x1009 $x1786 $x2615)))
  4.1547 +(let ((@x3203 (rewrite (= (and $x2083 $x2088 $x203 $x1525 $x1535 $x213 $x3010 $x3016 $x3189) $x3201))))
  4.1548 +(let (($x2531 (and (not (>= (+ ?x220 (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0)) $x238 $x2528)))
  4.1549 +(let (($x2534 (not $x2531)))
  4.1550 +(let ((@x3117 (monotonicity (rewrite (= $x2531 (not $x3111))) (= $x2534 (not (not $x3111))))))
  4.1551 +(let ((@x3124 (quant-intro (trans @x3117 (rewrite (= (not (not $x3111)) $x3111)) (= $x2534 $x3111)) (= $x2537 $x3122))))
  4.1552 +(let (($x1306 (not $x1303)))
  4.1553 +(let (($x1615 (and $x238 $x1306)))
  4.1554 +(let (($x1618 (not $x1615)))
  4.1555 +(let (($x1625 (or $x1618 $x1621)))
  4.1556 +(let ((@x3094 (monotonicity (rewrite (= $x1615 (not (or $x247 $x1303)))) (= $x1618 (not (not (or $x247 $x1303)))))))
  4.1557 +(let ((@x3098 (trans @x3094 (rewrite (= (not (not (or $x247 $x1303))) (or $x247 $x1303))) (= $x1618 (or $x247 $x1303)))))
  4.1558 +(let ((@x3106 (trans (monotonicity @x3098 (= $x1625 (or (or $x247 $x1303) $x1621))) (rewrite (= (or (or $x247 $x1303) $x1621) $x3102)) (= $x1625 $x3102))))
  4.1559 +(let ((@x3127 (monotonicity (quant-intro @x3106 (= $x1628 $x3107)) @x3124 (= $x2546 (and $x3107 $x2216 $x2221 $x3122)))))
  4.1560 +(let ((@x3135 (trans @x3127 (rewrite (= (and $x3107 $x2216 $x2221 $x3122) $x3131)) (= $x2546 $x3131))))
  4.1561 +(let ((@x3072 (monotonicity (rewrite (= (and $x2189 (not $x2194)) (not (or $x3065 $x2194)))) (= $x2197 (not (not (or $x3065 $x2194)))))))
  4.1562 +(let ((@x3076 (trans @x3072 (rewrite (= (not (not (or $x3065 $x2194))) (or $x3065 $x2194))) (= $x2197 (or $x3065 $x2194)))))
  4.1563 +(let ((@x3084 (trans (monotonicity @x3076 (= $x2203 (or (or $x3065 $x2194) $x2202))) (rewrite (= (or (or $x3065 $x2194) $x2202) $x3080)) (= $x2203 $x3080))))
  4.1564 +(let ((@x3138 (monotonicity (monotonicity @x3084 (= $x2204 $x3085)) @x3135 (= $x2551 $x3136))))
  4.1565 +(let (($x3058 (= (or (or $x238 (not (fun_app$ v_b_Visited_G_2$ ?1))) $x1601) $x3057)))
  4.1566 +(let (($x1606 (or $x798 $x1601)))
  4.1567 +(let (($x3055 (= $x1606 (or (or $x238 (not (fun_app$ v_b_Visited_G_2$ ?1))) $x1601))))
  4.1568 +(let (($x3043 (or $x238 (not (fun_app$ v_b_Visited_G_2$ ?1)))))
  4.1569 +(let ((@x3049 (monotonicity (rewrite (= $x249 (not $x3043))) (= $x798 (not (not $x3043))))))
  4.1570 +(let ((@x3056 (monotonicity (trans @x3049 (rewrite (= (not (not $x3043)) $x3043)) (= $x798 $x3043)) $x3055)))
  4.1571 +(let ((@x3064 (quant-intro (trans @x3056 (rewrite $x3058) (= $x1606 $x3057)) (= $x1609 $x3062))))
  4.1572 +(let ((@x3149 (trans (monotonicity @x3064 @x3138 (= $x2554 (and $x3062 $x3136))) (rewrite (= (and $x3062 $x3136) $x3145)) (= $x2554 $x3145))))
  4.1573 +(let ((@x3026 (monotonicity (rewrite (= (and (not $x2166) $x2168) (not (or $x2166 $x3019)))) (= $x2170 (not (not (or $x2166 $x3019)))))))
  4.1574 +(let ((@x3030 (trans @x3026 (rewrite (= (not (not (or $x2166 $x3019))) (or $x2166 $x3019))) (= $x2170 (or $x2166 $x3019)))))
  4.1575 +(let ((@x3038 (trans (monotonicity @x3030 (= $x2176 (or (or $x2166 $x3019) $x2175))) (rewrite (= (or (or $x2166 $x3019) $x2175) $x3034)) (= $x2176 $x3034))))
  4.1576 +(let ((@x3152 (monotonicity (monotonicity @x3038 (= $x2177 $x3039)) @x3149 (= $x2557 $x3150))))
  4.1577 +(let ((@x3162 (trans (monotonicity @x3152 (= $x2560 (and $x1595 $x3150))) (rewrite (= (and $x1595 $x3150) $x3158)) (= $x2560 $x3158))))
  4.1578 +(let ((@x3168 (monotonicity (monotonicity @x3162 (= $x2563 $x3163)) (= $x2566 (and $x786 $x3163)))))
  4.1579 +(let ((@x3178 (monotonicity (trans @x3168 (rewrite (= (and $x786 $x3163) $x3171)) (= $x2566 $x3171)) (= $x2569 $x3176))))
  4.1580 +(let ((@x3188 (trans (monotonicity @x3178 (= $x2572 (and $x1586 $x3176))) (rewrite (= (and $x1586 $x3176) $x3184)) (= $x2572 $x3184))))
  4.1581 +(let ((@x3015 (monotonicity (rewrite (= (and (not $x1540) (not $x1547)) $x2992)) (= (or (and (not $x1540) (not $x1547)) $x225) $x3013))))
  4.1582 +(let ((@x2997 (monotonicity (rewrite (= (and (not $x1540) (not $x1547)) $x2992)) (= (not (and (not $x1540) (not $x1547))) (not $x2992)))))
  4.1583 +(let ((@x3001 (trans @x2997 (rewrite (= (not $x2992) $x2991)) (= (not (and (not $x1540) (not $x1547))) $x2991))))
  4.1584 +(let ((@x3004 (monotonicity @x3001 (= (or (not (and (not $x1540) (not $x1547))) $x1559) (or $x2991 $x1559)))))
  4.1585 +(let ((@x3009 (trans @x3004 (rewrite (= (or $x2991 $x1559) $x3005)) (= (or (not (and (not $x1540) (not $x1547))) $x1559) $x3005))))
  4.1586 +(let ((@x3194 (monotonicity (quant-intro @x3009 (= $x1567 $x3010)) (quant-intro @x3015 (= $x1573 $x3016)) (monotonicity @x3188 (= $x2575 $x3189)) (= $x2581 (and $x2083 $x2088 $x203 $x1525 $x1535 $x213 $x3010 $x3016 $x3189)))))
  4.1587 +(let (($x1451 (not $x1448)))
  4.1588 +(let (($x1487 (and $x1451 $x1306)))
  4.1589 +(let (($x1490 (not $x1487)))
  4.1590 +(let (($x1496 (or $x1490 $x1493)))
  4.1591 +(let ((@x2933 (monotonicity (rewrite (= $x1487 (not (or $x1448 $x1303)))) (= $x1490 (not (not (or $x1448 $x1303)))))))
  4.1592 +(let ((@x2937 (trans @x2933 (rewrite (= (not (not (or $x1448 $x1303))) (or $x1448 $x1303))) (= $x1490 (or $x1448 $x1303)))))
  4.1593 +(let ((@x2945 (trans (monotonicity @x2937 (= $x1496 (or (or $x1448 $x1303) $x1493))) (rewrite (= (or (or $x1448 $x1303) $x1493) $x2941)) (= $x1496 $x2941))))
  4.1594 +(let ((@x2951 (monotonicity (quant-intro @x2945 (= $x1499 $x2946)) (= $x2061 (and $x2946 $x2058)))))
  4.1595 +(let ((@x2911 (monotonicity (rewrite (= (and $x2034 (not $x2039)) (not (or $x2033 $x2039)))) (= $x2042 (not (not (or $x2033 $x2039)))))))
  4.1596 +(let ((@x2915 (trans @x2911 (rewrite (= (not (not (or $x2033 $x2039))) (or $x2033 $x2039))) (= $x2042 (or $x2033 $x2039)))))
  4.1597 +(let ((@x2923 (trans (monotonicity @x2915 (= $x2500 (or (or $x2033 $x2039) $x2497))) (rewrite (= (or (or $x2033 $x2039) $x2497) $x2919)) (= $x2500 $x2919))))
  4.1598 +(let ((@x2961 (monotonicity (monotonicity @x2923 (= $x2503 $x2924)) (trans @x2951 (rewrite (= (and $x2946 $x2058) $x2954)) (= $x2061 $x2954)) (= $x2506 $x2959))))
  4.1599 +(let (($x2485 (and (not $x2464) $x2480)))
  4.1600 +(let (($x1454 (and $x79 $x1451)))
  4.1601 +(let (($x1457 (not $x1454)))
  4.1602 +(let (($x2488 (or $x1457 $x2485)))
  4.1603 +(let ((@x2884 (monotonicity (rewrite (= $x1454 (not (or $x74 $x1448)))) (= $x1457 (not (not (or $x74 $x1448)))))))
  4.1604 +(let ((@x2888 (trans @x2884 (rewrite (= (not (not (or $x74 $x1448))) (or $x74 $x1448))) (= $x1457 (or $x74 $x1448)))))
  4.1605 +(let ((@x2896 (monotonicity @x2888 (rewrite (= $x2485 $x2891)) (= $x2488 (or (or $x74 $x1448) $x2891)))))
  4.1606 +(let ((@x2901 (trans @x2896 (rewrite (= (or (or $x74 $x1448) $x2891) $x2897)) (= $x2488 $x2897))))
  4.1607 +(let ((@x2964 (monotonicity (quant-intro @x2901 (= $x2491 $x2902)) @x2961 (= $x2509 (and $x2902 $x2959)))))
  4.1608 +(let (($x2439 (and (not (>= (+ ?x177 ?x1971) 0)) $x2436)))
  4.1609 +(let (($x2442 (not $x2439)))
  4.1610 +(let ((@x2860 (monotonicity (rewrite (= $x2439 (not $x2854))) (= $x2442 (not (not $x2854))))))
  4.1611 +(let ((@x2867 (quant-intro (trans @x2860 (rewrite (= (not (not $x2854)) $x2854)) (= $x2442 $x2854)) (= $x2445 $x2865))))
  4.1612 +(let ((@x2877 (trans (monotonicity @x2867 (= $x2451 (and $x1969 $x1974 $x2865))) (rewrite (= (and $x1969 $x1974 $x2865) $x2873)) (= $x2451 $x2873))))
  4.1613 +(let ((@x2975 (monotonicity @x2877 (trans @x2964 (rewrite (= (and $x2902 $x2959) $x2968)) (= $x2509 $x2968)) (= $x2512 $x2973))))
  4.1614 +(let ((@x2845 (monotonicity (rewrite (= (and $x126 (not $x1395)) (not $x2839))) (= (not (and $x126 (not $x1395))) (not (not $x2839))))))
  4.1615 +(let ((@x2849 (trans @x2845 (rewrite (= (not (not $x2839)) $x2839)) (= (not (and $x126 (not $x1395))) $x2839))))
  4.1616 +(let ((@x2978 (monotonicity (quant-intro @x2849 (= $x1950 $x2850)) @x2975 (= $x2518 (and $x2850 $x159 $x162 $x164 $x167 $x2973)))))
  4.1617 +(let ((@x2990 (trans @x2978 (rewrite (= (and $x2850 $x159 $x162 $x164 $x167 $x2973) $x2986)) (= $x2518 $x2986))))
  4.1618 +(let ((?x1922 (?v1!7 ?0)))
  4.1619 +(let (($x1927 (fun_app$ v_b_Visited_G_1$ ?x1922)))
  4.1620 +(let (($x2422 (and (not $x2401) $x1927 $x2417)))
  4.1621 +(let (($x1398 (not $x1395)))
  4.1622 +(let (($x1401 (and $x79 $x1398)))
  4.1623 +(let (($x1404 (not $x1401)))
  4.1624 +(let (($x2425 (or $x1404 $x2422)))
  4.1625 +(let ((@x2817 (monotonicity (rewrite (= $x1401 (not (or $x74 $x1395)))) (= $x1404 (not (not (or $x74 $x1395)))))))
  4.1626 +(let ((@x2821 (trans @x2817 (rewrite (= (not (not (or $x74 $x1395))) (or $x74 $x1395))) (= $x1404 (or $x74 $x1395)))))
  4.1627 +(let ((@x2830 (monotonicity @x2821 (rewrite (= $x2422 $x2825)) (= $x2425 (or (or $x74 $x1395) $x2825)))))
  4.1628 +(let ((@x2835 (trans @x2830 (rewrite (= (or (or $x74 $x1395) $x2825) $x2831)) (= $x2425 $x2831))))
  4.1629 +(let ((@x2795 (monotonicity (rewrite (= (and $x125 $x1306) (not (or $x126 $x1303)))) (= (not (and $x125 $x1306)) (not (not (or $x126 $x1303)))))))
  4.1630 +(let ((@x2799 (trans @x2795 (rewrite (= (not (not (or $x126 $x1303))) (or $x126 $x1303))) (= (not (and $x125 $x1306)) (or $x126 $x1303)))))
  4.1631 +(let ((@x2802 (monotonicity @x2799 (= (or (not (and $x125 $x1306)) $x1384) (or (or $x126 $x1303) $x1384)))))
  4.1632 +(let ((@x2807 (trans @x2802 (rewrite (= (or (or $x126 $x1303) $x1384) $x2803)) (= (or (not (and $x125 $x1306)) $x1384) $x2803))))
  4.1633 +(let ((@x2775 (rewrite (= (not (not (or $x125 (not $x127)))) (or $x125 (not $x127))))))
  4.1634 +(let ((@x2773 (monotonicity (rewrite (= $x128 (not (or $x125 (not $x127))))) (= $x429 (not (not (or $x125 (not $x127))))))))
  4.1635 +(let ((@x2780 (monotonicity (trans @x2773 @x2775 (= $x429 (or $x125 (not $x127)))) (= (or $x429 $x1367) (or (or $x125 (not $x127)) $x1367)))))
  4.1636 +(let ((@x2785 (trans @x2780 (rewrite (= (or (or $x125 (not $x127)) $x1367) $x2781)) (= (or $x429 $x1367) $x2781))))
  4.1637 +(let ((?x1887 (?v1!6 ?0)))
  4.1638 +(let (($x1892 (v_b_Visited_G_0$ ?x1887)))
  4.1639 +(let (($x2384 (and (not $x2363) $x1892 $x2379)))
  4.1640 +(let (($x1336 (and $x79 (not $x1330))))
  4.1641 +(let (($x1339 (not $x1336)))
  4.1642 +(let (($x2387 (or $x1339 $x2384)))
  4.1643 +(let ((@x2744 (monotonicity (rewrite (= $x1336 (not (or $x74 $x1330)))) (= $x1339 (not (not (or $x74 $x1330)))))))
  4.1644 +(let ((@x2748 (trans @x2744 (rewrite (= (not (not (or $x74 $x1330))) (or $x74 $x1330))) (= $x1339 (or $x74 $x1330)))))
  4.1645 +(let ((@x2757 (monotonicity @x2748 (rewrite (= $x2384 $x2752)) (= $x2387 (or (or $x74 $x1330) $x2752)))))
  4.1646 +(let ((@x2762 (trans @x2757 (rewrite (= (or (or $x74 $x1330) $x2752) $x2758)) (= $x2387 $x2758))))
  4.1647 +(let ((@x3211 (monotonicity (quant-intro @x2762 (= $x2390 $x2763)) (quant-intro @x2785 (= $x1374 $x2786)) (quant-intro @x2807 (= $x1390 $x2808)) (quant-intro @x2835 (= $x2428 $x2836)) (monotonicity @x2990 (trans @x3194 @x3203 (= $x2581 $x3201)) (= $x2586 $x3206)) (= $x2595 (and $x2763 $x120 $x1363 $x2786 $x2808 $x2836 $x3206)))))
  4.1648 +(let ((@x3224 (trans @x3211 (rewrite (= (and $x2763 $x120 $x1363 $x2786 $x2808 $x2836 $x3206) $x3220)) (= $x2595 $x3220))))
  4.1649 +(let (($x1863 (and (not (>= (+ ?x75 (* (- 1) (v_b_SP_G_0$ ?v0!5))) 0)) $x83 $x1862)))
  4.1650 +(let (($x1873 (not $x1863)))
  4.1651 +(let ((@x2720 (monotonicity (rewrite (= $x1863 (not $x2714))) (= $x1873 (not (not $x2714))))))
  4.1652 +(let ((@x2727 (quant-intro (trans @x2720 (rewrite (= (not (not $x2714)) $x2714)) (= $x1873 $x2714)) (= $x1876 $x2725))))
  4.1653 +(let ((@x2737 (trans (monotonicity @x2727 (= $x2350 (and $x1848 $x1853 $x2725))) (rewrite (= (and $x1848 $x1853 $x2725) $x2733)) (= $x2350 $x2733))))
  4.1654 +(let ((@x2697 (monotonicity (rewrite (= (and $x83 $x1306) (not (or $x84 $x1303)))) (= (not (and $x83 $x1306)) (not (not (or $x84 $x1303)))))))
  4.1655 +(let ((@x2701 (trans @x2697 (rewrite (= (not (not (or $x84 $x1303))) (or $x84 $x1303))) (= (not (and $x83 $x1306)) (or $x84 $x1303)))))
  4.1656 +(let ((@x2704 (monotonicity @x2701 (= (or (not (and $x83 $x1306)) $x1316) (or (or $x84 $x1303) $x1316)))))
  4.1657 +(let ((@x2709 (trans @x2704 (rewrite (= (or (or $x84 $x1303) $x1316) $x2705)) (= (or (not (and $x83 $x1306)) $x1316) $x2705))))
  4.1658 +(let ((@x3230 (monotonicity (quant-intro @x2709 (= $x1322 $x2710)) (monotonicity @x2737 @x3224 (= $x2600 $x3225)) (= $x2603 (and $x2710 $x3225)))))
  4.1659 +(let ((@x2675 (monotonicity (rewrite (= (and $x1821 (not $x1826)) (not (or $x2668 $x1826)))) (= $x1829 (not (not (or $x2668 $x1826)))))))
  4.1660 +(let ((@x2679 (trans @x2675 (rewrite (= (not (not (or $x2668 $x1826))) (or $x2668 $x1826))) (= $x1829 (or $x2668 $x1826)))))
  4.1661 +(let ((@x2687 (trans (monotonicity @x2679 (= $x2339 (or (or $x2668 $x1826) $x2336))) (rewrite (= (or (or $x2668 $x1826) $x2336) $x2683)) (= $x2339 $x2683))))
  4.1662 +(let ((@x3241 (monotonicity (monotonicity @x2687 (= $x2342 $x2688)) (trans @x3230 (rewrite (= (and $x2710 $x3225) $x3234)) (= $x2603 $x3234)) (= $x2606 $x3239))))
  4.1663 +(let ((@x2654 (rewrite (= (not (not (or $x83 (not $x95)))) (or $x83 (not $x95))))))
  4.1664 +(let ((@x2652 (monotonicity (rewrite (= $x96 (not (or $x83 (not $x95))))) (= $x370 (not (not (or $x83 (not $x95))))))))
  4.1665 +(let ((@x2659 (monotonicity (trans @x2652 @x2654 (= $x370 (or $x83 (not $x95)))) (= (or $x370 $x1288) (or (or $x83 (not $x95)) $x1288)))))
  4.1666 +(let ((@x2664 (trans @x2659 (rewrite (= (or (or $x83 (not $x95)) $x1288) $x2660)) (= (or $x370 $x1288) $x2660))))
  4.1667 +(let ((@x3244 (monotonicity (quant-intro @x2664 (= $x1295 $x2665)) @x3241 (= $x2609 (and $x2665 $x3239)))))
  4.1668 +(let ((@x2629 (monotonicity (rewrite (= (and (not $x1798) $x1800) (not (or $x1798 $x2622)))) (= $x1802 (not (not (or $x1798 $x2622)))))))
  4.1669 +(let ((@x2633 (trans @x2629 (rewrite (= (not (not (or $x1798 $x2622))) (or $x1798 $x2622))) (= $x1802 (or $x1798 $x2622)))))
  4.1670 +(let ((@x2641 (trans (monotonicity @x2633 (= $x1808 (or (or $x1798 $x2622) $x1807))) (rewrite (= (or (or $x1798 $x2622) $x1807) $x2637)) (= $x1808 $x2637))))
  4.1671 +(let ((@x3255 (monotonicity (monotonicity @x2641 (= $x1809 $x2642)) (trans @x3244 (rewrite (= (and $x2665 $x3239) $x3248)) (= $x2609 $x3248)) (= $x2612 $x3253))))
  4.1672 +(let ((@x3265 (trans (monotonicity @x3255 (= $x2615 (and $x1280 $x3253))) (rewrite (= (and $x1280 $x3253) $x3261)) (= $x2615 $x3261))))
  4.1673 +(let (($x2244 (forall ((?v1 B_Vertex$) )(let ((?x2217 (v_b_SP_G_2$ ?v0!20)))
  4.1674 +(let ((?x2218 (* (- 1) ?x2217)))
  4.1675 +(let ((?x220 (v_b_SP_G_2$ ?v1)))
  4.1676 +(let (($x238 (fun_app$ v_b_Visited_G_2$ ?v1)))
  4.1677 +(let (($x2231 (and (not (>= (+ ?x220 ?x2218) 0)) $x238 (= (+ (b_G$ (pair$ ?v1 ?v0!20)) ?x220 ?x2218) 0))))
  4.1678 +(not $x2231)))))))
  4.1679 +))
  4.1680 +(let (($x2238 (not (not (and $x2216 $x2221)))))
  4.1681 +(let (($x2248 (and $x2238 $x2244)))
  4.1682 +(let (($x2253 (and $x1628 $x2248)))
  4.1683 +(let (($x2257 (or $x2204 $x2253)))
  4.1684 +(let (($x2261 (and $x1609 $x2257)))
  4.1685 +(let (($x2265 (or $x2177 $x2261)))
  4.1686 +(let (($x2269 (and $x1595 $x2265)))
  4.1687 +(let (($x2273 (or $x913 $x2154 $x2269)))
  4.1688 +(let (($x2277 (and $x786 $x2273)))
  4.1689 +(let (($x2281 (or $x2139 $x2277)))
  4.1690 +(let (($x2285 (and $x1586 $x2281)))
  4.1691 +(let (($x2289 (or $x2122 $x2285)))
  4.1692 +(let (($x2110 (and (and $x2083 $x2088) $x203 $x1525 $x1535 $x213 $x1567 $x1573)))
  4.1693 +(let (($x2293 (and $x2110 $x2289)))
  4.1694 +(let (($x2047 (or $x2042 (>= (+ ?x2036 ?x2030 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!11))) 0))))
  4.1695 +(let (($x2048 (not $x2047)))
  4.1696 +(let (($x2065 (or $x2048 $x2061)))
  4.1697 +(let (($x2022 (forall ((?v0 B_Vertex$) )(let ((?x177 (fun_app$c v_b_SP_G_3$ ?v0)))
  4.1698 +(let ((?x1446 (* (- 1) ?x177)))
  4.1699 +(let ((?x2008 (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))))
  4.1700 +(let ((?x2013 (b_G$ (pair$ (?v1!9 ?v0) ?v0))))
  4.1701 +(let (($x2015 (= (+ ?x2013 ?x2008 ?x1446) 0)))
  4.1702 +(let (($x2016 (and (not (>= (+ ?x2008 ?x1446) 0)) $x2015)))
  4.1703 +(let (($x1448 (<= (+ b_Infinity$ ?x1446) 0)))