author wenzelm Thu Nov 25 10:44:44 1993 +0100 (1993-11-25) changeset 142 6dfae8cddec7 parent 141 a133921366cb child 143 f8152ca36cd5
removed section 'Classes and types';
     1.1 --- a/doc-src/Logics/defining.tex	Thu Nov 25 10:29:40 1993 +0100
1.2 +++ b/doc-src/Logics/defining.tex	Thu Nov 25 10:44:44 1993 +0100
1.3 @@ -25,38 +25,6 @@
1.4  skipped on the first reading.
1.5
1.6
1.7 -%% FIXME move to Refman
1.8 -% \section{Classes and types *}
1.9 -% \index{*arities!context conditions}
1.10 -%
1.11 -% Type declarations are subject to the following two well-formedness
1.12 -% conditions:
1.13 -% \begin{itemize}
1.14 -% \item There are no two declarations $ty :: (\vec{r})c$ and $ty :: (\vec{s})c$
1.15 -%   with $\vec{r} \neq \vec{s}$.  For example
1.16 -% \begin{ttbox}
1.17 -% types ty 1
1.18 -% arities ty :: ({\ttlbrace}logic{\ttrbrace}) logic
1.19 -%         ty :: ({\ttlbrace}{\ttrbrace})logic
1.20 -% \end{ttbox}
1.21 -% leads to an error message and fails.
1.22 -% \item If there are two declarations $ty :: (s@1,\dots,s@n)c$ and $ty :: 1.23 -% (s@1',\dots,s@n')c'$ such that $c' < c$ then $s@i' \preceq s@i$ must hold
1.24 -%   for $i=1,\dots,n$.  The relationship $\preceq$, defined as
1.25 -% $s' \preceq s \iff \forall c\in s. \exists c'\in s'.~ c'\le c,$
1.26 -% expresses that the set of types represented by $s'$ is a subset of the set of
1.27 -% types represented by $s$.  For example
1.28 -% \begin{ttbox}
1.29 -% classes term < logic
1.30 -% types ty 1
1.31 -% arities ty :: ({\ttlbrace}logic{\ttrbrace})logic
1.32 -%         ty :: ({\ttlbrace}{\ttrbrace})term
1.33 -% \end{ttbox}
1.34 -% leads to an error message and fails.
1.35 -% \end{itemize}
1.36 -% These conditions guarantee principal types~\cite{nipkow-prehofer}.
1.37 -
1.38 -
1.39
1.40  \section{Precedence grammars} \label{sec:precedence_grammars}
1.41