reactivated
authorkrauss
Wed Oct 13 09:56:00 2010 +0200 (2010-10-13)
changeset 399918a2c75478357
parent 39990 9b4341366b63
child 39992 f225a499a8e5
reactivated
src/ZF/ex/misc.thy
     1.1 --- a/src/ZF/ex/misc.thy	Tue Oct 12 21:30:44 2010 +0200
     1.2 +++ b/src/ZF/ex/misc.thy	Wed Oct 13 09:56:00 2010 +0200
     1.3 @@ -39,19 +39,19 @@
     1.4  lemma "(X = Y Un Z) <-> (Y \<subseteq> X & Z \<subseteq> X & (\<forall>V. Y \<subseteq> V & Z \<subseteq> V --> X \<subseteq> V))"
     1.5  by (blast intro!: equalityI)
     1.6  
     1.7 -text{*the dual of the previous one}
     1.8 +text{*the dual of the previous one*}
     1.9  lemma "(X = Y Int Z) <-> (X \<subseteq> Y & X \<subseteq> Z & (\<forall>V. V \<subseteq> Y & V \<subseteq> Z --> V \<subseteq> X))"
    1.10  by (blast intro!: equalityI)
    1.11  
    1.12 -text{*trivial example of term synthesis: apparently hard for some provers!}
    1.13 -lemma "a \<noteq> b ==> a:?X & b \<notin> ?X"
    1.14 +text{*trivial example of term synthesis: apparently hard for some provers!*}
    1.15 +schematic_lemma "a \<noteq> b ==> a:?X & b \<notin> ?X"
    1.16  by blast
    1.17  
    1.18 -text{*Nice Blast_tac benchmark.  Proved in 0.3s; old tactics can't manage it!}
    1.19 +text{*Nice blast benchmark.  Proved in 0.3s; old tactics can't manage it!*}
    1.20  lemma "\<forall>x \<in> S. \<forall>y \<in> S. x \<subseteq> y ==> \<exists>z. S \<subseteq> {z}"
    1.21  by blast
    1.22  
    1.23 -text{*variant of the benchmark above}
    1.24 +text{*variant of the benchmark above*}
    1.25  lemma "\<forall>x \<in> S. Union(S) \<subseteq> x ==> \<exists>z. S \<subseteq> {z}"
    1.26  by blast
    1.27  
    1.28 @@ -74,7 +74,7 @@
    1.29    Set Theory in First-Order Logic: Clauses for G\"odel's Axioms,
    1.30    JAR 2 (1986), 287-327 *}
    1.31  
    1.32 -text{*collecting the relevant lemmas}
    1.33 +text{*collecting the relevant lemmas*}
    1.34  declare comp_fun [simp] SigmaI [simp] apply_funtype [simp]
    1.35  
    1.36  (*Force helps prove conditions of rewrites such as comp_fun_apply, since
    1.37 @@ -86,7 +86,7 @@
    1.38         (K O J) \<in> hom(A,f,C,h)"
    1.39  by force
    1.40  
    1.41 -text{*Another version, with meta-level rewriting}
    1.42 +text{*Another version, with meta-level rewriting*}
    1.43  lemma "(!! A f B g. hom(A,f,B,g) ==  
    1.44             {H \<in> A->B. f \<in> A*A->A & g \<in> B*B->B &  
    1.45                       (\<forall>x \<in> A. \<forall>y \<in> A. H`(f`<x,y>) = g`<H`x,H`y>)}) 
    1.46 @@ -108,7 +108,7 @@
    1.47      "[| (h O g O f) \<in> inj(A,A);           
    1.48          (f O h O g) \<in> surj(B,B);          
    1.49          (g O f O h) \<in> surj(C,C);          
    1.50 -        f \<in> A->B;  g \<in> B->C;  h \<in> C->A |] ==> h \<in> bij(C,A)";
    1.51 +        f \<in> A->B;  g \<in> B->C;  h \<in> C->A |] ==> h \<in> bij(C,A)"
    1.52  by (unfold bij_def, blast)
    1.53  
    1.54  lemma pastre3: