renamed SMT certificate files, following 'SMT2' -> 'SMT' renaming
authorblanchet
Thu Sep 18 00:03:46 2014 +0200 (2014-09-18)
changeset 583678af1e68d7e1a
parent 58366 5cf7df52d71d
child 58368 fe083c681ed8
child 58383 09a2c3e08ec2
renamed SMT certificate files, following 'SMT2' -> 'SMT' renaming
src/HOL/ROOT
src/HOL/SMT_Examples/Boogie.thy
src/HOL/SMT_Examples/Boogie_Dijkstra.certs
src/HOL/SMT_Examples/Boogie_Dijkstra.certs2
src/HOL/SMT_Examples/Boogie_Max.certs
src/HOL/SMT_Examples/Boogie_Max.certs2
src/HOL/SMT_Examples/SMT_Examples.certs
src/HOL/SMT_Examples/SMT_Examples.certs2
src/HOL/SMT_Examples/SMT_Examples.thy
src/HOL/SMT_Examples/SMT_Word_Examples.certs
src/HOL/SMT_Examples/SMT_Word_Examples.certs2
src/HOL/SMT_Examples/SMT_Word_Examples.thy
src/HOL/SMT_Examples/VCC_Max.certs
src/HOL/SMT_Examples/VCC_Max.certs2
     1.1 --- a/src/HOL/ROOT	Thu Sep 18 00:02:45 2014 +0200
     1.2 +++ b/src/HOL/ROOT	Thu Sep 18 00:03:46 2014 +0200
     1.3 @@ -800,11 +800,11 @@
     1.4    theories [condition = ISABELLE_FULL_TEST]
     1.5      SMT_Tests
     1.6    files
     1.7 -    "Boogie_Dijkstra.certs2"
     1.8 -    "Boogie_Max.certs2"
     1.9 -    "SMT_Examples.certs2"
    1.10 -    "SMT_Word_Examples.certs2"
    1.11 -    "VCC_Max.certs2"
    1.12 +    "Boogie_Dijkstra.certs"
    1.13 +    "Boogie_Max.certs"
    1.14 +    "SMT_Examples.certs"
    1.15 +    "SMT_Word_Examples.certs"
    1.16 +    "VCC_Max.certs"
    1.17  
    1.18  session "HOL-SPARK" (main) in "SPARK" = "HOL-Word" +
    1.19    options [document = false]
     2.1 --- a/src/HOL/SMT_Examples/Boogie.thy	Thu Sep 18 00:02:45 2014 +0200
     2.2 +++ b/src/HOL/SMT_Examples/Boogie.thy	Thu Sep 18 00:03:46 2014 +0200
     2.3 @@ -55,18 +55,18 @@
     2.4  declare [[smt_read_only_certificates = true]]
     2.5  
     2.6  
     2.7 -declare [[smt_certificates = "Boogie_Max.certs2"]]
     2.8 +declare [[smt_certificates = "Boogie_Max.certs"]]
     2.9  
    2.10  boogie_file Boogie_Max
    2.11  
    2.12  
    2.13 -declare [[smt_certificates = "Boogie_Dijkstra.certs2"]]
    2.14 +declare [[smt_certificates = "Boogie_Dijkstra.certs"]]
    2.15  
    2.16  boogie_file Boogie_Dijkstra
    2.17  
    2.18  
    2.19  declare [[z3_extensions = true]]
    2.20 -declare [[smt_certificates = "VCC_Max.certs2"]]
    2.21 +declare [[smt_certificates = "VCC_Max.certs"]]
    2.22  
    2.23  boogie_file VCC_Max
    2.24  
     3.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     3.2 +++ b/src/HOL/SMT_Examples/Boogie_Dijkstra.certs	Thu Sep 18 00:03:46 2014 +0200
     3.3 @@ -0,0 +1,3045 @@
     3.4 +9d6b81d96fb21c8c08e3f1fd649ce37bdafb5f92 3044 0
     3.5 +unsat
     3.6 +((set-logic AUFLIA)
     3.7 +(declare-fun ?v0!19 () B_Vertex$)
     3.8 +(declare-fun ?v1!18 () B_Vertex$)
     3.9 +(declare-fun ?v0!20 () B_Vertex$)
    3.10 +(declare-fun ?v0!17 () B_Vertex$)
    3.11 +(declare-fun ?v1!16 () B_Vertex$)
    3.12 +(declare-fun ?v0!15 () B_Vertex$)
    3.13 +(declare-fun ?v0!14 () B_Vertex$)
    3.14 +(declare-fun ?v0!13 () B_Vertex$)
    3.15 +(declare-fun ?v0!12 () B_Vertex$)
    3.16 +(declare-fun ?v0!11 () B_Vertex$)
    3.17 +(declare-fun ?v1!10 () B_Vertex$)
    3.18 +(declare-fun ?v1!9 (B_Vertex$) B_Vertex$)
    3.19 +(declare-fun ?v0!8 () B_Vertex$)
    3.20 +(declare-fun ?v1!7 (B_Vertex$) B_Vertex$)
    3.21 +(declare-fun ?v1!6 (B_Vertex$) B_Vertex$)
    3.22 +(declare-fun ?v0!5 () B_Vertex$)
    3.23 +(declare-fun ?v0!4 () B_Vertex$)
    3.24 +(declare-fun ?v1!3 () B_Vertex$)
    3.25 +(declare-fun ?v0!2 () B_Vertex$)
    3.26 +(declare-fun ?v1!1 () B_Vertex$)
    3.27 +(declare-fun ?v0!0 () B_Vertex$)
    3.28 +(proof
    3.29 +(let ((?x1893 (v_b_SP_G_2$ ?v0!19)))
    3.30 +(let ((?x1894 (* (- 1) ?x1893)))
    3.31 +(let ((?x1892 (v_b_SP_G_2$ ?v1!18)))
    3.32 +(let ((?x1884 (pair$ ?v1!18 ?v0!19)))
    3.33 +(let ((?x1885 (b_G$ ?x1884)))
    3.34 +(let (($x1896 (>= (+ ?x1885 ?x1892 ?x1894) 0)))
    3.35 +(let (($x1888 (<= (+ b_Infinity$ (* (- 1) ?x1885)) 0)))
    3.36 +(let (($x1883 (fun_app$ v_b_Visited_G_2$ ?v1!18)))
    3.37 +(let (($x2791 (not $x1883)))
    3.38 +(let (($x2806 (or $x2791 $x1888 $x1896)))
    3.39 +(let (($x2811 (not $x2806)))
    3.40 +(let (($x3729 (forall ((?v1 B_Vertex$) )(!(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
    3.41 +(let ((?x1912 (* (- 1) ?x1911)))
    3.42 +(let ((?x273 (v_b_SP_G_2$ ?v1)))
    3.43 +(let (($x2242 (= (+ ?x273 ?x1912 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
    3.44 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
    3.45 +(let (($x300 (not $x291)))
    3.46 +(or (>= (+ ?x273 ?x1912) 0) $x300 (not $x2242)))))))) :pattern ( (v_b_SP_G_2$ ?v1) ) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!20) )))
    3.47 +))
    3.48 +(let (($x3734 (not $x3729)))
    3.49 +(let (($x1914 (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0)))
    3.50 +(let (($x1909 (= ?v0!20 b_Source$)))
    3.51 +(let (($x3720 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x303 (v_b_SP_G_2$ ?v0)))
    3.52 +(let ((?x1263 (* (- 1) ?x303)))
    3.53 +(let ((?x273 (v_b_SP_G_2$ ?v1)))
    3.54 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
    3.55 +(let (($x1282 (>= (+ ?x155 ?x273 ?x1263) 0)))
    3.56 +(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
    3.57 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
    3.58 +(let (($x300 (not $x291)))
    3.59 +(or $x300 $x922 $x1282))))))))) :pattern ( (pair$ ?v1 ?v0) )))
    3.60 +))
    3.61 +(let (($x3725 (not $x3720)))
    3.62 +(let (($x3737 (or $x3725 $x1909 $x1914 $x3734)))
    3.63 +(let ((?x4393 (fun_app$c v_b_SP_G_1$ ?v0!20)))
    3.64 +(let ((?x4418 (* (- 1) ?x4393)))
    3.65 +(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
    3.66 +(let ((?x4419 (+ ?x1911 ?x4418)))
    3.67 +(let (($x5977 (>= ?x4419 0)))
    3.68 +(let (($x4400 (= ?x1911 ?x4393)))
    3.69 +(let ((?x4434 (pair$ v_b_v_G_1$ ?v0!20)))
    3.70 +(let ((?x4435 (b_G$ ?x4434)))
    3.71 +(let ((?x4436 (* (- 1) ?x4435)))
    3.72 +(let ((?x3104 (v_b_SP_G_2$ v_b_v_G_1$)))
    3.73 +(let ((?x3105 (* (- 1) ?x3104)))
    3.74 +(let ((?x4546 (+ ?x1911 ?x3105 ?x4436)))
    3.75 +(let (($x4569 (<= ?x4546 0)))
    3.76 +(let (($x3740 (not $x3737)))
    3.77 +(let ((@x8092 (hypothesis $x3740)))
    3.78 +(let ((@x3222 (def-axiom (or $x3737 $x3720))))
    3.79 +(let (($x4161 (>= ?x3104 0)))
    3.80 +(let (($x3703 (forall ((?v0 B_Vertex$) )(!(let ((?x273 (v_b_SP_G_2$ ?v0)))
    3.81 +(>= ?x273 0)) :pattern ( (v_b_SP_G_2$ ?v0) )))
    3.82 +))
    3.83 +(let (($x3743 (or $x2811 $x3740)))
    3.84 +(let (($x3746 (not $x3743)))
    3.85 +(let (($x3712 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x1262 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
    3.86 +(let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0)))
    3.87 +(let (($x2768 (not $x301)))
    3.88 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
    3.89 +(or $x291 $x2768 $x1262))))) :pattern ( (v_b_SP_G_2$ ?v1) (v_b_SP_G_2$ ?v0) )))
    3.90 +))
    3.91 +(let (($x3717 (not $x3712)))
    3.92 +(let (($x3749 (or $x3717 $x3746)))
    3.93 +(let (($x3752 (not $x3749)))
    3.94 +(let (($x1869 (>= (+ (v_b_SP_G_2$ ?v1!16) (* (- 1) (v_b_SP_G_2$ ?v0!17))) 0)))
    3.95 +(let (($x1862 (fun_app$ v_b_Visited_G_2$ ?v0!17)))
    3.96 +(let (($x2745 (not $x1862)))
    3.97 +(let (($x1860 (fun_app$ v_b_Visited_G_2$ ?v1!16)))
    3.98 +(let (($x2760 (or $x1860 $x2745 $x1869)))
    3.99 +(let (($x2765 (not $x2760)))
   3.100 +(let (($x3755 (or $x2765 $x3752)))
   3.101 +(let (($x3758 (not $x3755)))
   3.102 +(let (($x3708 (not $x3703)))
   3.103 +(let (($x3761 (or $x3708 $x3758)))
   3.104 +(let (($x3764 (not $x3761)))
   3.105 +(let ((?x1846 (v_b_SP_G_2$ ?v0!15)))
   3.106 +(let (($x1847 (>= ?x1846 0)))
   3.107 +(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   3.108 +(let (($x3904 (>= ?x257 0)))
   3.109 +(let (($x3556 (forall ((?v0 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.110 +(>= ?x174 0)) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   3.111 +))
   3.112 +(let (($x1848 (not $x1847)))
   3.113 +(let (($x3767 (or $x1848 $x3764)))
   3.114 +(let (($x3770 (not $x3767)))
   3.115 +(let ((?x296 (v_b_SP_G_2$ b_Source$)))
   3.116 +(let (($x297 (= ?x296 0)))
   3.117 +(let (($x773 (not $x297)))
   3.118 +(let (($x3773 (or $x773 $x3770)))
   3.119 +(let (($x3776 (not $x3773)))
   3.120 +(let (($x3779 (or $x773 $x3776)))
   3.121 +(let (($x3782 (not $x3779)))
   3.122 +(let (($x3695 (forall ((?v0 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.123 +(let ((?x273 (v_b_SP_G_2$ ?v0)))
   3.124 +(let (($x278 (= ?x273 ?x174)))
   3.125 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v0)))
   3.126 +(let (($x300 (not $x291)))
   3.127 +(or $x300 $x278)))))) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   3.128 +))
   3.129 +(let (($x3700 (not $x3695)))
   3.130 +(let (($x3785 (or $x3700 $x3782)))
   3.131 +(let (($x3788 (not $x3785)))
   3.132 +(let ((?x1827 (fun_app$c v_b_SP_G_1$ ?v0!14)))
   3.133 +(let ((?x1826 (v_b_SP_G_2$ ?v0!14)))
   3.134 +(let (($x1828 (= ?x1826 ?x1827)))
   3.135 +(let (($x1829 (or (not (fun_app$ v_b_Visited_G_2$ ?v0!14)) $x1828)))
   3.136 +(let (($x1830 (not $x1829)))
   3.137 +(let (($x3791 (or $x1830 $x3788)))
   3.138 +(let (($x3794 (not $x3791)))
   3.139 +(let (($x3686 (forall ((?v0 B_Vertex$) )(!(>= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) )))
   3.140 +))
   3.141 +(let (($x3691 (not $x3686)))
   3.142 +(let (($x3797 (or $x3691 $x3794)))
   3.143 +(let (($x3800 (not $x3797)))
   3.144 +(let ((?x1809 (v_b_SP_G_2$ ?v0!13)))
   3.145 +(let ((?x1810 (* (- 1) ?x1809)))
   3.146 +(let ((?x1808 (fun_app$c v_b_SP_G_1$ ?v0!13)))
   3.147 +(let ((?x1811 (+ ?x1808 ?x1810)))
   3.148 +(let (($x1812 (>= ?x1811 0)))
   3.149 +(let (($x1813 (not $x1812)))
   3.150 +(let (($x3803 (or $x1813 $x3800)))
   3.151 +(let (($x3806 (not $x3803)))
   3.152 +(let (($x3678 (forall ((?v0 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.153 +(let ((?x273 (v_b_SP_G_2$ ?v0)))
   3.154 +(let (($x278 (= ?x273 ?x174)))
   3.155 +(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   3.156 +(let ((?x1173 (* (- 1) ?x257)))
   3.157 +(let (($x1175 (<= (+ ?x174 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
   3.158 +(let (($x1169 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
   3.159 +(let (($x2717 (or $x1169 $x1175)))
   3.160 +(let (($x2718 (not $x2717)))
   3.161 +(or $x2718 $x278)))))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) )))
   3.162 +))
   3.163 +(let (($x3683 (not $x3678)))
   3.164 +(let (($x3670 (forall ((?v0 B_Vertex$) )(!(let ((?x273 (v_b_SP_G_2$ ?v0)))
   3.165 +(let ((?x1186 (* (- 1) ?x273)))
   3.166 +(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   3.167 +(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   3.168 +(let (($x1185 (= (+ ?x257 ?x268 ?x1186) 0)))
   3.169 +(let (($x1175 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x257) (* (- 1) ?x268)) 0)))
   3.170 +(let (($x1169 (<= (+ b_Infinity$ (* (- 1) ?x268)) 0)))
   3.171 +(or $x1169 $x1175 $x1185)))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) )))
   3.172 +))
   3.173 +(let (($x3675 (not $x3670)))
   3.174 +(let ((?x263 (fun_upd$ v_b_Visited_G_1$)))
   3.175 +(let ((?x264 (fun_app$b ?x263 v_b_v_G_1$)))
   3.176 +(let ((?x265 (fun_app$a ?x264 true)))
   3.177 +(let (($x266 (= v_b_Visited_G_2$ ?x265)))
   3.178 +(let (($x2935 (not $x266)))
   3.179 +(let (($x3660 (forall ((?v0 B_Vertex$) )(!(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   3.180 +(let ((?x1173 (* (- 1) ?x257)))
   3.181 +(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.182 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   3.183 +(or $x178 (>= (+ ?x174 ?x1173) 0)))))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   3.184 +))
   3.185 +(let (($x3665 (not $x3660)))
   3.186 +(let ((?x1173 (* (- 1) ?x257)))
   3.187 +(let ((?x1212 (+ b_Infinity$ ?x1173)))
   3.188 +(let (($x1213 (<= ?x1212 0)))
   3.189 +(let (($x255 (fun_app$ v_b_Visited_G_1$ v_b_v_G_1$)))
   3.190 +(let ((?x1775 (fun_app$c v_b_SP_G_1$ ?v0!12)))
   3.191 +(let ((?x1776 (* (- 1) ?x1775)))
   3.192 +(let ((?x1777 (+ b_Infinity$ ?x1776)))
   3.193 +(let (($x1778 (<= ?x1777 0)))
   3.194 +(let (($x1773 (fun_app$ v_b_Visited_G_1$ ?v0!12)))
   3.195 +(let (($x3809 (or $x1773 $x1778 $x255 $x1213 $x3665 $x2935 $x3675 $x3683 $x3806)))
   3.196 +(let (($x3812 (not $x3809)))
   3.197 +(let ((?x245 (fun_app$c v_b_SP_G_3$ b_Source$)))
   3.198 +(let (($x246 (= ?x245 0)))
   3.199 +(let (($x3622 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   3.200 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.201 +(let (($x1140 (>= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
   3.202 +(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   3.203 +(let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
   3.204 +(or $x1099 $x922 $x1140)))))) :pattern ( (pair$ ?v1 ?v0) )))
   3.205 +))
   3.206 +(let (($x3627 (not $x3622)))
   3.207 +(let (($x3630 (or $x3627 $x246)))
   3.208 +(let (($x3633 (not $x3630)))
   3.209 +(let ((?x1734 (fun_app$c v_b_SP_G_3$ ?v0!11)))
   3.210 +(let ((?x1735 (* (- 1) ?x1734)))
   3.211 +(let ((?x1726 (pair$ ?v1!10 ?v0!11)))
   3.212 +(let ((?x1727 (b_G$ ?x1726)))
   3.213 +(let ((?x1721 (fun_app$c v_b_SP_G_3$ ?v1!10)))
   3.214 +(let ((?x2206 (+ ?x1721 ?x1727 ?x1735)))
   3.215 +(let (($x2209 (>= ?x2206 0)))
   3.216 +(let (($x1730 (<= (+ b_Infinity$ (* (- 1) ?x1727)) 0)))
   3.217 +(let (($x1724 (<= (+ b_Infinity$ (* (- 1) ?x1721)) 0)))
   3.218 +(let (($x2645 (or $x1724 $x1730 $x2209)))
   3.219 +(let (($x2650 (not $x2645)))
   3.220 +(let (($x3636 (or $x2650 $x3633)))
   3.221 +(let (($x3639 (not $x3636)))
   3.222 +(let (($x3614 (forall ((?v0 B_Vertex$) )(!(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
   3.223 +(let ((?x2191 (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
   3.224 +(let (($x2192 (= ?x2191 0)))
   3.225 +(let (($x2176 (<= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
   3.226 +(let (($x2617 (not (or $x2176 (not $x2192)))))
   3.227 +(let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
   3.228 +(let (($x127 (= ?v0 b_Source$)))
   3.229 +(or $x127 $x1099 $x2617)))))))) :pattern ( (fun_app$c v_b_SP_G_3$ ?v0) )))
   3.230 +))
   3.231 +(let (($x3619 (not $x3614)))
   3.232 +(let (($x3642 (or $x3619 $x3639)))
   3.233 +(let (($x3645 (not $x3642)))
   3.234 +(let (($x3600 (forall ((?v1 B_Vertex$) )(!(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
   3.235 +(let ((?x1662 (* (- 1) ?x1661)))
   3.236 +(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   3.237 +(let (($x2148 (= (+ ?x230 ?x1662 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
   3.238 +(or (>= (+ ?x230 ?x1662) 0) (not $x2148)))))) :pattern ( (fun_app$c v_b_SP_G_3$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!8) )))
   3.239 +))
   3.240 +(let (($x3605 (not $x3600)))
   3.241 +(let (($x1664 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!8))) 0)))
   3.242 +(let (($x1659 (= ?v0!8 b_Source$)))
   3.243 +(let (($x3608 (or $x1659 $x1664 $x3605)))
   3.244 +(let (($x3611 (not $x3608)))
   3.245 +(let (($x3648 (or $x3611 $x3645)))
   3.246 +(let (($x3651 (not $x3648)))
   3.247 +(let (($x220 (= v_b_oldSP_G_1$ v_b_oldSP_G_0$)))
   3.248 +(let (($x2709 (not $x220)))
   3.249 +(let (($x217 (= v_b_SP_G_3$ v_b_SP_G_1$)))
   3.250 +(let (($x2708 (not $x217)))
   3.251 +(let (($x215 (= v_b_v_G_2$ v_b_v_G_0$)))
   3.252 +(let (($x2707 (not $x215)))
   3.253 +(let (($x212 (= v_b_Visited_G_3$ v_b_Visited_G_1$)))
   3.254 +(let (($x2706 (not $x212)))
   3.255 +(let (($x3590 (forall ((?v0 B_Vertex$) )(!(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   3.256 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   3.257 +(or $x178 $x1002))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   3.258 +))
   3.259 +(let (($x3595 (not $x3590)))
   3.260 +(let (($x3654 (or $x3595 $x2706 $x2707 $x2708 $x2709 $x3651)))
   3.261 +(let (($x3657 (not $x3654)))
   3.262 +(let (($x3815 (or $x3657 $x3812)))
   3.263 +(let (($x3818 (not $x3815)))
   3.264 +(let (($x3581 (forall ((?v0 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.265 +(let ((?x2128 (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
   3.266 +(let (($x2129 (= ?x2128 0)))
   3.267 +(let (($x2113 (<= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0)))) 0)))
   3.268 +(let (($x2551 (not (or $x2113 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0))) (not $x2129)))))
   3.269 +(let (($x1002 (<= (+ b_Infinity$ (* (- 1) ?x174)) 0)))
   3.270 +(let (($x127 (= ?v0 b_Source$)))
   3.271 +(or $x127 $x1002 $x2551)))))))) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   3.272 +))
   3.273 +(let (($x3586 (not $x3581)))
   3.274 +(let (($x3573 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   3.275 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.276 +(let (($x990 (>= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   3.277 +(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   3.278 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   3.279 +(let (($x179 (not $x178)))
   3.280 +(or $x179 $x922 $x990))))))) :pattern ( (pair$ ?v1 ?v0) )))
   3.281 +))
   3.282 +(let (($x3578 (not $x3573)))
   3.283 +(let (($x3565 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   3.284 +(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   3.285 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   3.286 +(or $x178 (not (fun_app$ v_b_Visited_G_1$ ?v0)) $x1015)))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v1) (fun_app$ v_b_Visited_G_1$ ?v0) )))
   3.287 +))
   3.288 +(let (($x3570 (not $x3565)))
   3.289 +(let (($x3561 (not $x3556)))
   3.290 +(let ((?x172 (fun_app$c v_b_SP_G_1$ b_Source$)))
   3.291 +(let (($x173 (= ?x172 0)))
   3.292 +(let (($x2952 (not $x173)))
   3.293 +(let (($x3547 (forall ((?v0 B_Vertex$) )(!(let ((?x128 (v_b_SP_G_0$ ?v0)))
   3.294 +(let ((?x2090 (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
   3.295 +(let (($x2091 (= ?x2090 0)))
   3.296 +(let (($x2075 (<= (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0)))) 0)))
   3.297 +(let (($x2478 (not (or $x2075 (not (v_b_Visited_G_0$ (?v1!6 ?v0))) (not $x2091)))))
   3.298 +(let (($x947 (<= (+ b_Infinity$ (* (- 1) ?x128)) 0)))
   3.299 +(let (($x127 (= ?v0 b_Source$)))
   3.300 +(or $x127 $x947 $x2478)))))))) :pattern ( (v_b_SP_G_0$ ?v0) )))
   3.301 +))
   3.302 +(let (($x3552 (not $x3547)))
   3.303 +(let (($x3821 (or $x3552 $x2952 $x3561 $x3570 $x3578 $x3586 $x3818)))
   3.304 +(let (($x3824 (not $x3821)))
   3.305 +(let (($x3533 (forall ((?v1 B_Vertex$) )(!(let ((?x1540 (v_b_SP_G_0$ ?v0!5)))
   3.306 +(let ((?x1541 (* (- 1) ?x1540)))
   3.307 +(let ((?x128 (v_b_SP_G_0$ ?v1)))
   3.308 +(let (($x136 (v_b_Visited_G_0$ ?v1)))
   3.309 +(let (($x137 (not $x136)))
   3.310 +(or (>= (+ ?x128 ?x1541) 0) $x137 (not (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))) :pattern ( (v_b_SP_G_0$ ?v1) ) :pattern ( (v_b_Visited_G_0$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!5) )))
   3.311 +))
   3.312 +(let (($x3538 (not $x3533)))
   3.313 +(let ((?x1540 (v_b_SP_G_0$ ?v0!5)))
   3.314 +(let ((?x1541 (* (- 1) ?x1540)))
   3.315 +(let ((?x1542 (+ b_Infinity$ ?x1541)))
   3.316 +(let (($x1543 (<= ?x1542 0)))
   3.317 +(let (($x1538 (= ?v0!5 b_Source$)))
   3.318 +(let (($x3541 (or $x1538 $x1543 $x3538)))
   3.319 +(let (($x1539 (not $x1538)))
   3.320 +(let ((@x6246 (unit-resolution (def-axiom (or $x3541 $x1539)) (hypothesis (not $x3541)) $x1539)))
   3.321 +(let (($x5625 (= b_Infinity$ ?x1540)))
   3.322 +(let (($x6457 (not $x5625)))
   3.323 +(let (($x1544 (not $x1543)))
   3.324 +(let ((@x6514 (unit-resolution (def-axiom (or $x3541 $x1544)) (hypothesis (not $x3541)) $x1544)))
   3.325 +(let ((@x5778 (symm (commutativity (= $x5625 (= ?x1540 b_Infinity$))) (= (= ?x1540 b_Infinity$) $x5625))))
   3.326 +(let (($x5616 (= ?x1540 b_Infinity$)))
   3.327 +(let (($x3493 (forall ((?v0 B_Vertex$) )(!(let (($x127 (= ?v0 b_Source$)))
   3.328 +(or $x127 (= (v_b_SP_G_0$ ?v0) b_Infinity$))) :pattern ( (v_b_SP_G_0$ ?v0) )))
   3.329 +))
   3.330 +(let (($x360 (forall ((?v0 B_Vertex$) )(let (($x127 (= ?v0 b_Source$)))
   3.331 +(or $x127 (= (v_b_SP_G_0$ ?v0) b_Infinity$))))
   3.332 +))
   3.333 +(let (($x127 (= ?0 b_Source$)))
   3.334 +(let (($x357 (or $x127 (= (v_b_SP_G_0$ ?0) b_Infinity$))))
   3.335 +(let (($x138 (forall ((?v0 B_Vertex$) )(let (($x136 (v_b_Visited_G_0$ ?v0)))
   3.336 +(not $x136)))
   3.337 +))
   3.338 +(let (($x354 (forall ((?v0 B_Vertex$) )(let (($x127 (= ?v0 b_Source$)))
   3.339 +(let (($x132 (not $x127)))
   3.340 +(or $x132 (= (v_b_SP_G_0$ ?v0) 0)))))
   3.341 +))
   3.342 +(let (($x890 (and $x354 $x360 $x138)))
   3.343 +(let (($x1329 (forall ((?v0 B_Vertex$) )(let (($x1323 (exists ((?v1 B_Vertex$) )(let ((?x303 (v_b_SP_G_2$ ?v0)))
   3.344 +(let ((?x1263 (* (- 1) ?x303)))
   3.345 +(let ((?x273 (v_b_SP_G_2$ ?v1)))
   3.346 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.347 +(let (($x1306 (= (+ ?x155 ?x273 ?x1263) 0)))
   3.348 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   3.349 +(let (($x1262 (>= (+ ?x273 ?x1263) 0)))
   3.350 +(let (($x1309 (not $x1262)))
   3.351 +(and $x1309 $x291 $x1306))))))))))
   3.352 +))
   3.353 +(let (($x127 (= ?v0 b_Source$)))
   3.354 +(let (($x132 (not $x127)))
   3.355 +(let (($x1300 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))))
   3.356 +(or (not $x1300) $x1323))))))
   3.357 +))
   3.358 +(let (($x1289 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x303 (v_b_SP_G_2$ ?v0)))
   3.359 +(let ((?x1263 (* (- 1) ?x303)))
   3.360 +(let ((?x273 (v_b_SP_G_2$ ?v1)))
   3.361 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.362 +(let (($x1282 (>= (+ ?x155 ?x273 ?x1263) 0)))
   3.363 +(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   3.364 +(let (($x923 (not $x922)))
   3.365 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   3.366 +(let (($x1276 (and $x291 $x923)))
   3.367 +(let (($x1279 (not $x1276)))
   3.368 +(or $x1279 $x1282))))))))))))
   3.369 +))
   3.370 +(let (($x1292 (not $x1289)))
   3.371 +(let (($x1332 (or $x1292 $x1329)))
   3.372 +(let (($x1335 (and $x1289 $x1332)))
   3.373 +(let (($x1270 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1262 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
   3.374 +(let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0)))
   3.375 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   3.376 +(let (($x300 (not $x291)))
   3.377 +(let (($x302 (and $x300 $x301)))
   3.378 +(let (($x664 (not $x302)))
   3.379 +(or $x664 $x1262))))))))
   3.380 +))
   3.381 +(let (($x1273 (not $x1270)))
   3.382 +(let (($x1338 (or $x1273 $x1335)))
   3.383 +(let (($x1341 (and $x1270 $x1338)))
   3.384 +(let (($x1256 (forall ((?v0 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v0)))
   3.385 +(>= ?x273 0)))
   3.386 +))
   3.387 +(let (($x1259 (not $x1256)))
   3.388 +(let (($x1344 (or $x1259 $x1341)))
   3.389 +(let (($x1347 (and $x1256 $x1344)))
   3.390 +(let (($x1350 (or $x773 $x1347)))
   3.391 +(let (($x1353 (and $x297 $x1350)))
   3.392 +(let (($x652 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.393 +(let ((?x273 (v_b_SP_G_2$ ?v0)))
   3.394 +(let (($x278 (= ?x273 ?x174)))
   3.395 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v0)))
   3.396 +(let (($x300 (not $x291)))
   3.397 +(or $x300 $x278)))))))
   3.398 +))
   3.399 +(let (($x785 (not $x652)))
   3.400 +(let (($x1356 (or $x785 $x1353)))
   3.401 +(let (($x1359 (and $x652 $x1356)))
   3.402 +(let (($x1247 (forall ((?v0 B_Vertex$) )(>= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0))
   3.403 +))
   3.404 +(let (($x1250 (not $x1247)))
   3.405 +(let (($x1362 (or $x1250 $x1359)))
   3.406 +(let (($x1365 (and $x1247 $x1362)))
   3.407 +(let (($x1199 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.408 +(let ((?x273 (v_b_SP_G_2$ ?v0)))
   3.409 +(let (($x278 (= ?x273 ?x174)))
   3.410 +(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   3.411 +(let ((?x1173 (* (- 1) ?x257)))
   3.412 +(let (($x1175 (<= (+ ?x174 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
   3.413 +(let (($x1169 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
   3.414 +(let (($x1179 (and (not $x1169) (not $x1175))))
   3.415 +(or $x1179 $x278))))))))))
   3.416 +))
   3.417 +(let (($x1193 (forall ((?v0 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v0)))
   3.418 +(let ((?x1186 (* (- 1) ?x273)))
   3.419 +(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   3.420 +(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   3.421 +(let (($x1185 (= (+ ?x257 ?x268 ?x1186) 0)))
   3.422 +(let (($x1175 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x257) (* (- 1) ?x268)) 0)))
   3.423 +(let (($x1179 (and (not (<= (+ b_Infinity$ (* (- 1) ?x268)) 0)) (not $x1175))))
   3.424 +(let (($x1182 (not $x1179)))
   3.425 +(or $x1182 $x1185))))))))))
   3.426 +))
   3.427 +(let (($x1209 (forall ((?v0 B_Vertex$) )(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   3.428 +(let ((?x1173 (* (- 1) ?x257)))
   3.429 +(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.430 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   3.431 +(or $x178 (>= (+ ?x174 ?x1173) 0)))))))
   3.432 +))
   3.433 +(let (($x1214 (not $x1213)))
   3.434 +(let (($x256 (not $x255)))
   3.435 +(let (($x1080 (exists ((?v0 B_Vertex$) )(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   3.436 +(let (($x1003 (not $x1002)))
   3.437 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   3.438 +(let (($x179 (not $x178)))
   3.439 +(and $x179 $x1003))))))
   3.440 +))
   3.441 +(let (($x1235 (and $x1080 $x256 $x1214 $x1209 $x266 $x1193 $x1199)))
   3.442 +(let (($x1240 (not $x1235)))
   3.443 +(let (($x1368 (or $x1240 $x1365)))
   3.444 +(let (($x1146 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   3.445 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.446 +(let (($x1140 (>= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
   3.447 +(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   3.448 +(let (($x923 (not $x922)))
   3.449 +(let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
   3.450 +(let (($x1100 (not $x1099)))
   3.451 +(let (($x1134 (and $x1100 $x923)))
   3.452 +(let (($x1137 (not $x1134)))
   3.453 +(or $x1137 $x1140)))))))))))
   3.454 +))
   3.455 +(let (($x1149 (not $x1146)))
   3.456 +(let (($x1152 (or $x1149 $x246)))
   3.457 +(let (($x1155 (and $x1146 $x1152)))
   3.458 +(let (($x1128 (forall ((?v0 B_Vertex$) )(let (($x1122 (exists ((?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   3.459 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.460 +(and (not (>= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)) (= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))))
   3.461 +))
   3.462 +(let (($x1099 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
   3.463 +(let (($x1100 (not $x1099)))
   3.464 +(let (($x127 (= ?v0 b_Source$)))
   3.465 +(let (($x132 (not $x127)))
   3.466 +(let (($x1103 (and $x132 $x1100)))
   3.467 +(let (($x1106 (not $x1103)))
   3.468 +(or $x1106 $x1122)))))))))
   3.469 +))
   3.470 +(let (($x1131 (not $x1128)))
   3.471 +(let (($x1158 (or $x1131 $x1155)))
   3.472 +(let (($x1161 (and $x1128 $x1158)))
   3.473 +(let (($x1083 (not $x1080)))
   3.474 +(let (($x1089 (and $x1083 $x212 $x215 $x217 $x220)))
   3.475 +(let (($x1094 (not $x1089)))
   3.476 +(let (($x1164 (or $x1094 $x1161)))
   3.477 +(let (($x1371 (and $x1164 $x1368)))
   3.478 +(let (($x1037 (forall ((?v0 B_Vertex$) )(let (($x1031 (exists ((?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   3.479 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.480 +(let (($x1012 (= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   3.481 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   3.482 +(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   3.483 +(let (($x1017 (not $x1015)))
   3.484 +(and $x1017 $x178 $x1012))))))))
   3.485 +))
   3.486 +(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   3.487 +(let (($x1003 (not $x1002)))
   3.488 +(let (($x127 (= ?v0 b_Source$)))
   3.489 +(let (($x132 (not $x127)))
   3.490 +(let (($x1006 (and $x132 $x1003)))
   3.491 +(let (($x1009 (not $x1006)))
   3.492 +(or $x1009 $x1031)))))))))
   3.493 +))
   3.494 +(let (($x997 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   3.495 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.496 +(let (($x990 (>= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   3.497 +(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   3.498 +(let (($x923 (not $x922)))
   3.499 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   3.500 +(let (($x983 (and $x178 $x923)))
   3.501 +(let (($x986 (not $x983)))
   3.502 +(or $x986 $x990))))))))))
   3.503 +))
   3.504 +(let (($x1045 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   3.505 +(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   3.506 +(let (($x180 (fun_app$ v_b_Visited_G_1$ ?v0)))
   3.507 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   3.508 +(let (($x179 (not $x178)))
   3.509 +(let (($x181 (and $x179 $x180)))
   3.510 +(let (($x403 (not $x181)))
   3.511 +(or $x403 $x1015)))))))))
   3.512 +))
   3.513 +(let (($x1051 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.514 +(>= ?x174 0)))
   3.515 +))
   3.516 +(let (($x980 (forall ((?v0 B_Vertex$) )(let (($x974 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.517 +(let ((?x128 (v_b_SP_G_0$ ?v1)))
   3.518 +(let (($x957 (= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x155) 0)))
   3.519 +(let (($x136 (v_b_Visited_G_0$ ?v1)))
   3.520 +(let (($x907 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
   3.521 +(let (($x960 (not $x907)))
   3.522 +(and $x960 $x136 $x957))))))))
   3.523 +))
   3.524 +(let (($x127 (= ?v0 b_Source$)))
   3.525 +(let (($x132 (not $x127)))
   3.526 +(let (($x951 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))))
   3.527 +(let (($x954 (not $x951)))
   3.528 +(or $x954 $x974)))))))
   3.529 +))
   3.530 +(let (($x1069 (and $x980 $x173 $x1051 $x1045 $x997 $x1037)))
   3.531 +(let (($x1074 (not $x1069)))
   3.532 +(let (($x1374 (or $x1074 $x1371)))
   3.533 +(let (($x1377 (and $x980 $x1374)))
   3.534 +(let (($x939 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.535 +(let ((?x128 (v_b_SP_G_0$ ?v1)))
   3.536 +(let (($x933 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x155) 0)))
   3.537 +(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   3.538 +(let (($x923 (not $x922)))
   3.539 +(let (($x136 (v_b_Visited_G_0$ ?v1)))
   3.540 +(let (($x926 (and $x136 $x923)))
   3.541 +(let (($x929 (not $x926)))
   3.542 +(or $x929 $x933))))))))))
   3.543 +))
   3.544 +(let (($x942 (not $x939)))
   3.545 +(let (($x1380 (or $x942 $x1377)))
   3.546 +(let (($x1383 (and $x939 $x1380)))
   3.547 +(let (($x914 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x907 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
   3.548 +(let (($x148 (v_b_Visited_G_0$ ?v0)))
   3.549 +(let (($x136 (v_b_Visited_G_0$ ?v1)))
   3.550 +(let (($x137 (not $x136)))
   3.551 +(let (($x149 (and $x137 $x148)))
   3.552 +(let (($x382 (not $x149)))
   3.553 +(or $x382 $x907))))))))
   3.554 +))
   3.555 +(let (($x917 (not $x914)))
   3.556 +(let (($x1386 (or $x917 $x1383)))
   3.557 +(let (($x1389 (and $x914 $x1386)))
   3.558 +(let (($x899 (forall ((?v0 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v0)))
   3.559 +(>= ?x128 0)))
   3.560 +))
   3.561 +(let (($x902 (not $x899)))
   3.562 +(let (($x1392 (or $x902 $x1389)))
   3.563 +(let (($x1395 (and $x899 $x1392)))
   3.564 +(let ((?x144 (v_b_SP_G_0$ b_Source$)))
   3.565 +(let (($x145 (= ?x144 0)))
   3.566 +(let (($x869 (not $x145)))
   3.567 +(let (($x1398 (or $x869 $x1395)))
   3.568 +(let (($x1401 (and $x145 $x1398)))
   3.569 +(let (($x1407 (not (or (not $x890) $x1401))))
   3.570 +(let (($x320 (forall ((?v0 B_Vertex$) )(let (($x318 (exists ((?v1 B_Vertex$) )(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   3.571 +(let (($x316 (and $x291 (= (v_b_SP_G_2$ ?v0) (+ (v_b_SP_G_2$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))))
   3.572 +(let ((?x303 (v_b_SP_G_2$ ?v0)))
   3.573 +(let ((?x273 (v_b_SP_G_2$ ?v1)))
   3.574 +(let (($x314 (< ?x273 ?x303)))
   3.575 +(and $x314 $x316)))))))
   3.576 +))
   3.577 +(let (($x127 (= ?v0 b_Source$)))
   3.578 +(let (($x132 (not $x127)))
   3.579 +(let (($x313 (and $x132 (< (v_b_SP_G_2$ ?v0) b_Infinity$))))
   3.580 +(=> $x313 $x318))))))
   3.581 +))
   3.582 +(let (($x321 (and $x320 false)))
   3.583 +(let (($x322 (=> $x321 true)))
   3.584 +(let (($x323 (and $x320 $x322)))
   3.585 +(let (($x311 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.586 +(let ((?x273 (v_b_SP_G_2$ ?v1)))
   3.587 +(let ((?x308 (+ ?x273 ?x155)))
   3.588 +(let ((?x303 (v_b_SP_G_2$ ?v0)))
   3.589 +(let (($x156 (< ?x155 b_Infinity$)))
   3.590 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   3.591 +(let (($x307 (and $x291 $x156)))
   3.592 +(=> $x307 (<= ?x303 ?x308))))))))))
   3.593 +))
   3.594 +(let (($x324 (=> $x311 $x323)))
   3.595 +(let (($x306 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1)))
   3.596 +(let ((?x303 (v_b_SP_G_2$ ?v0)))
   3.597 +(let (($x304 (<= ?x303 ?x273)))
   3.598 +(let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0)))
   3.599 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   3.600 +(let (($x300 (not $x291)))
   3.601 +(let (($x302 (and $x300 $x301)))
   3.602 +(=> $x302 $x304)))))))))
   3.603 +))
   3.604 +(let (($x326 (=> $x306 (and $x311 $x324))))
   3.605 +(let (($x299 (forall ((?v0 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v0)))
   3.606 +(<= 0 ?x273)))
   3.607 +))
   3.608 +(let (($x328 (=> $x299 (and $x306 $x326))))
   3.609 +(let (($x330 (=> $x297 (and $x299 $x328))))
   3.610 +(let (($x293 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.611 +(let ((?x273 (v_b_SP_G_2$ ?v0)))
   3.612 +(let (($x278 (= ?x273 ?x174)))
   3.613 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v0)))
   3.614 +(=> $x291 $x278))))))
   3.615 +))
   3.616 +(let (($x295 (and $x293 (and true true))))
   3.617 +(let (($x332 (=> $x295 (and $x297 $x330))))
   3.618 +(let (($x290 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.619 +(let ((?x273 (v_b_SP_G_2$ ?v0)))
   3.620 +(<= ?x273 ?x174))))
   3.621 +))
   3.622 +(let (($x334 (=> $x290 (and $x293 $x332))))
   3.623 +(let (($x280 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.624 +(let ((?x273 (v_b_SP_G_2$ ?v0)))
   3.625 +(let (($x278 (= ?x273 ?x174)))
   3.626 +(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   3.627 +(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   3.628 +(let ((?x270 (+ ?x257 ?x268)))
   3.629 +(let (($x272 (and (< ?x268 b_Infinity$) (< ?x270 ?x174))))
   3.630 +(let (($x277 (not $x272)))
   3.631 +(=> $x277 $x278))))))))))
   3.632 +))
   3.633 +(let (($x276 (forall ((?v0 B_Vertex$) )(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   3.634 +(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   3.635 +(let ((?x270 (+ ?x257 ?x268)))
   3.636 +(let ((?x273 (v_b_SP_G_2$ ?v0)))
   3.637 +(let (($x274 (= ?x273 ?x270)))
   3.638 +(let (($x272 (and (< ?x268 b_Infinity$) (< ?x270 (fun_app$c v_b_SP_G_1$ ?v0)))))
   3.639 +(=> $x272 $x274))))))))
   3.640 +))
   3.641 +(let (($x261 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.642 +(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   3.643 +(let (($x259 (<= ?x257 ?x174)))
   3.644 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   3.645 +(let (($x179 (not $x178)))
   3.646 +(=> $x179 $x259)))))))
   3.647 +))
   3.648 +(let (($x258 (< ?x257 b_Infinity$)))
   3.649 +(let (($x209 (exists ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.650 +(let (($x191 (< ?x174 b_Infinity$)))
   3.651 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   3.652 +(let (($x179 (not $x178)))
   3.653 +(and $x179 $x191))))))
   3.654 +))
   3.655 +(let (($x286 (and $x209 (and $x256 (and $x258 (and $x261 (and $x266 (and $x276 $x280))))))))
   3.656 +(let (($x287 (and true $x286)))
   3.657 +(let (($x288 (and true $x287)))
   3.658 +(let (($x336 (=> $x288 (and $x290 $x334))))
   3.659 +(let (($x248 (and $x246 (=> $x246 true))))
   3.660 +(let (($x244 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.661 +(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   3.662 +(let ((?x235 (+ ?x230 ?x155)))
   3.663 +(let ((?x233 (fun_app$c v_b_SP_G_3$ ?v0)))
   3.664 +(let (($x156 (< ?x155 b_Infinity$)))
   3.665 +(let (($x231 (< ?x230 b_Infinity$)))
   3.666 +(let (($x241 (and $x231 $x156)))
   3.667 +(=> $x241 (<= ?x233 ?x235))))))))))
   3.668 +))
   3.669 +(let (($x249 (=> $x244 $x248)))
   3.670 +(let (($x240 (forall ((?v0 B_Vertex$) )(let (($x238 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.671 +(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   3.672 +(let ((?x235 (+ ?x230 ?x155)))
   3.673 +(let ((?x233 (fun_app$c v_b_SP_G_3$ ?v0)))
   3.674 +(let (($x234 (< ?x230 ?x233)))
   3.675 +(and $x234 (= ?x233 ?x235))))))))
   3.676 +))
   3.677 +(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
   3.678 +(let (($x231 (< ?x230 b_Infinity$)))
   3.679 +(let (($x127 (= ?v0 b_Source$)))
   3.680 +(let (($x132 (not $x127)))
   3.681 +(let (($x232 (and $x132 $x231)))
   3.682 +(=> $x232 $x238))))))))
   3.683 +))
   3.684 +(let (($x251 (=> $x240 (and $x244 $x249))))
   3.685 +(let (($x225 (and true (and $x212 (and $x215 (and $x217 (and $x220 true)))))))
   3.686 +(let (($x226 (and true $x225)))
   3.687 +(let (($x210 (not $x209)))
   3.688 +(let (($x228 (and true (and $x210 $x226))))
   3.689 +(let (($x229 (and true $x228)))
   3.690 +(let (($x253 (=> $x229 (and $x240 $x251))))
   3.691 +(let (($x199 (forall ((?v0 B_Vertex$) )(let (($x197 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.692 +(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   3.693 +(let ((?x187 (+ ?x174 ?x155)))
   3.694 +(let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.695 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   3.696 +(let (($x193 (< ?x174 ?x182)))
   3.697 +(and $x193 (and $x178 (= ?x182 ?x187))))))))))
   3.698 +))
   3.699 +(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.700 +(let (($x191 (< ?x174 b_Infinity$)))
   3.701 +(let (($x127 (= ?v0 b_Source$)))
   3.702 +(let (($x132 (not $x127)))
   3.703 +(let (($x192 (and $x132 $x191)))
   3.704 +(=> $x192 $x197))))))))
   3.705 +))
   3.706 +(let (($x200 (and $x199 true)))
   3.707 +(let (($x190 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.708 +(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   3.709 +(let ((?x187 (+ ?x174 ?x155)))
   3.710 +(let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.711 +(let (($x156 (< ?x155 b_Infinity$)))
   3.712 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   3.713 +(let (($x186 (and $x178 $x156)))
   3.714 +(=> $x186 (<= ?x182 ?x187))))))))))
   3.715 +))
   3.716 +(let (($x185 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   3.717 +(let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.718 +(let (($x183 (<= ?x182 ?x174)))
   3.719 +(let (($x180 (fun_app$ v_b_Visited_G_1$ ?v0)))
   3.720 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   3.721 +(let (($x179 (not $x178)))
   3.722 +(let (($x181 (and $x179 $x180)))
   3.723 +(=> $x181 $x183)))))))))
   3.724 +))
   3.725 +(let (($x176 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.726 +(<= 0 ?x174)))
   3.727 +))
   3.728 +(let (($x205 (and true (and $x173 (and $x176 (and $x185 (and $x190 $x200)))))))
   3.729 +(let (($x206 (and true $x205)))
   3.730 +(let (($x170 (forall ((?v0 B_Vertex$) )(let (($x168 (exists ((?v1 B_Vertex$) )(let (($x136 (v_b_Visited_G_0$ ?v1)))
   3.731 +(let (($x166 (and $x136 (= (v_b_SP_G_0$ ?v0) (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))))
   3.732 +(and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?v0)) $x166))))
   3.733 +))
   3.734 +(let (($x127 (= ?v0 b_Source$)))
   3.735 +(let (($x132 (not $x127)))
   3.736 +(let (($x163 (and $x132 (< (v_b_SP_G_0$ ?v0) b_Infinity$))))
   3.737 +(=> $x163 $x168))))))
   3.738 +))
   3.739 +(let (($x338 (=> (and $x170 $x206) (and $x253 $x336))))
   3.740 +(let (($x161 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x150 (v_b_SP_G_0$ ?v0)))
   3.741 +(let (($x159 (<= ?x150 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))
   3.742 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.743 +(let (($x156 (< ?x155 b_Infinity$)))
   3.744 +(let (($x136 (v_b_Visited_G_0$ ?v1)))
   3.745 +(let (($x157 (and $x136 $x156)))
   3.746 +(=> $x157 $x159))))))))
   3.747 +))
   3.748 +(let (($x340 (=> $x161 (and $x170 $x338))))
   3.749 +(let (($x153 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v1)))
   3.750 +(let ((?x150 (v_b_SP_G_0$ ?v0)))
   3.751 +(let (($x151 (<= ?x150 ?x128)))
   3.752 +(let (($x148 (v_b_Visited_G_0$ ?v0)))
   3.753 +(let (($x136 (v_b_Visited_G_0$ ?v1)))
   3.754 +(let (($x137 (not $x136)))
   3.755 +(let (($x149 (and $x137 $x148)))
   3.756 +(=> $x149 $x151)))))))))
   3.757 +))
   3.758 +(let (($x342 (=> $x153 (and $x161 $x340))))
   3.759 +(let (($x147 (forall ((?v0 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v0)))
   3.760 +(<= 0 ?x128)))
   3.761 +))
   3.762 +(let (($x344 (=> $x147 (and $x153 $x342))))
   3.763 +(let (($x346 (=> $x145 (and $x147 $x344))))
   3.764 +(let (($x135 (forall ((?v0 B_Vertex$) )(let (($x127 (= ?v0 b_Source$)))
   3.765 +(let (($x132 (not $x127)))
   3.766 +(=> $x132 (= (v_b_SP_G_0$ ?v0) b_Infinity$)))))
   3.767 +))
   3.768 +(let (($x131 (forall ((?v0 B_Vertex$) )(let (($x127 (= ?v0 b_Source$)))
   3.769 +(=> $x127 (= (v_b_SP_G_0$ ?v0) 0))))
   3.770 +))
   3.771 +(let (($x142 (and true (and $x131 (and $x135 (and $x138 true))))))
   3.772 +(let (($x143 (and true $x142)))
   3.773 +(let (($x348 (=> $x143 (and $x145 $x346))))
   3.774 +(let (($x349 (not $x348)))
   3.775 +(let (($x710 (forall ((?v0 B_Vertex$) )(let (($x698 (exists ((?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1)))
   3.776 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.777 +(let ((?x671 (+ ?x155 ?x273)))
   3.778 +(let ((?x303 (v_b_SP_G_2$ ?v0)))
   3.779 +(let (($x689 (= ?x303 ?x671)))
   3.780 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   3.781 +(let (($x692 (and $x291 $x689)))
   3.782 +(let (($x314 (< ?x273 ?x303)))
   3.783 +(and $x314 $x692))))))))))
   3.784 +))
   3.785 +(let (($x127 (= ?v0 b_Source$)))
   3.786 +(let (($x132 (not $x127)))
   3.787 +(let (($x313 (and $x132 (< (v_b_SP_G_2$ ?v0) b_Infinity$))))
   3.788 +(or (not $x313) $x698))))))
   3.789 +))
   3.790 +(let (($x686 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1)))
   3.791 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.792 +(let ((?x671 (+ ?x155 ?x273)))
   3.793 +(let ((?x303 (v_b_SP_G_2$ ?v0)))
   3.794 +(let (($x674 (<= ?x303 ?x671)))
   3.795 +(or (not (and (fun_app$ v_b_Visited_G_2$ ?v1) (< ?x155 b_Infinity$))) $x674)))))))
   3.796 +))
   3.797 +(let (($x738 (or (not $x686) $x710)))
   3.798 +(let (($x743 (and $x686 $x738)))
   3.799 +(let (($x668 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1)))
   3.800 +(let ((?x303 (v_b_SP_G_2$ ?v0)))
   3.801 +(let (($x304 (<= ?x303 ?x273)))
   3.802 +(let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0)))
   3.803 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   3.804 +(let (($x300 (not $x291)))
   3.805 +(let (($x302 (and $x300 $x301)))
   3.806 +(let (($x664 (not $x302)))
   3.807 +(or $x664 $x304))))))))))
   3.808 +))
   3.809 +(let (($x750 (or (not $x668) $x743)))
   3.810 +(let (($x755 (and $x668 $x750)))
   3.811 +(let (($x762 (or (not $x299) $x755)))
   3.812 +(let (($x767 (and $x299 $x762)))
   3.813 +(let (($x774 (or $x773 $x767)))
   3.814 +(let (($x779 (and $x297 $x774)))
   3.815 +(let (($x786 (or $x785 $x779)))
   3.816 +(let (($x791 (and $x652 $x786)))
   3.817 +(let (($x798 (or (not $x290) $x791)))
   3.818 +(let (($x803 (and $x290 $x798)))
   3.819 +(let (($x617 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.820 +(let ((?x273 (v_b_SP_G_2$ ?v0)))
   3.821 +(let (($x278 (= ?x273 ?x174)))
   3.822 +(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   3.823 +(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   3.824 +(let ((?x270 (+ ?x257 ?x268)))
   3.825 +(let (($x272 (and (< ?x268 b_Infinity$) (< ?x270 ?x174))))
   3.826 +(or $x272 $x278)))))))))
   3.827 +))
   3.828 +(let (($x611 (forall ((?v0 B_Vertex$) )(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   3.829 +(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   3.830 +(let ((?x270 (+ ?x257 ?x268)))
   3.831 +(let ((?x273 (v_b_SP_G_2$ ?v0)))
   3.832 +(let (($x274 (= ?x273 ?x270)))
   3.833 +(let (($x272 (and (< ?x268 b_Infinity$) (< ?x270 (fun_app$c v_b_SP_G_1$ ?v0)))))
   3.834 +(let (($x277 (not $x272)))
   3.835 +(or $x277 $x274)))))))))
   3.836 +))
   3.837 +(let (($x620 (and $x611 $x617)))
   3.838 +(let (($x623 (and $x266 $x620)))
   3.839 +(let (($x605 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.840 +(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   3.841 +(let (($x259 (<= ?x257 ?x174)))
   3.842 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   3.843 +(or $x178 $x259))))))
   3.844 +))
   3.845 +(let (($x626 (and $x605 $x623)))
   3.846 +(let (($x629 (and $x258 $x626)))
   3.847 +(let (($x632 (and $x256 $x629)))
   3.848 +(let (($x635 (and $x209 $x632)))
   3.849 +(let (($x810 (or (not $x635) $x803)))
   3.850 +(let (($x557 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   3.851 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.852 +(let ((?x521 (+ ?x155 ?x230)))
   3.853 +(let ((?x233 (fun_app$c v_b_SP_G_3$ ?v0)))
   3.854 +(let (($x545 (<= ?x233 ?x521)))
   3.855 +(or (not (and (< ?x230 b_Infinity$) (< ?x155 b_Infinity$))) $x545)))))))
   3.856 +))
   3.857 +(let (($x573 (or (not $x557) $x246)))
   3.858 +(let (($x578 (and $x557 $x573)))
   3.859 +(let (($x542 (forall ((?v0 B_Vertex$) )(let (($x530 (exists ((?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   3.860 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.861 +(let ((?x521 (+ ?x155 ?x230)))
   3.862 +(let ((?x233 (fun_app$c v_b_SP_G_3$ ?v0)))
   3.863 +(let (($x524 (= ?x233 ?x521)))
   3.864 +(let (($x234 (< ?x230 ?x233)))
   3.865 +(and $x234 $x524))))))))
   3.866 +))
   3.867 +(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
   3.868 +(let (($x231 (< ?x230 b_Infinity$)))
   3.869 +(let (($x127 (= ?v0 b_Source$)))
   3.870 +(let (($x132 (not $x127)))
   3.871 +(let (($x232 (and $x132 $x231)))
   3.872 +(or (not $x232) $x530))))))))
   3.873 +))
   3.874 +(let (($x585 (or (not $x542) $x578)))
   3.875 +(let (($x590 (and $x542 $x585)))
   3.876 +(let (($x597 (or (not (and $x210 (and $x212 (and $x215 (and $x217 $x220))))) $x590)))
   3.877 +(let (($x815 (and $x597 $x810)))
   3.878 +(let (($x449 (forall ((?v0 B_Vertex$) )(let (($x437 (exists ((?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   3.879 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.880 +(let ((?x410 (+ ?x155 ?x174)))
   3.881 +(let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.882 +(let (($x428 (= ?x182 ?x410)))
   3.883 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   3.884 +(let (($x431 (and $x178 $x428)))
   3.885 +(let (($x193 (< ?x174 ?x182)))
   3.886 +(and $x193 $x431))))))))))
   3.887 +))
   3.888 +(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.889 +(let (($x191 (< ?x174 b_Infinity$)))
   3.890 +(let (($x127 (= ?v0 b_Source$)))
   3.891 +(let (($x132 (not $x127)))
   3.892 +(let (($x192 (and $x132 $x191)))
   3.893 +(or (not $x192) $x437))))))))
   3.894 +))
   3.895 +(let (($x425 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   3.896 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.897 +(let ((?x410 (+ ?x155 ?x174)))
   3.898 +(let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.899 +(let (($x413 (<= ?x182 ?x410)))
   3.900 +(or (not (and (fun_app$ v_b_Visited_G_1$ ?v1) (< ?x155 b_Infinity$))) $x413)))))))
   3.901 +))
   3.902 +(let (($x459 (and $x425 $x449)))
   3.903 +(let (($x407 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   3.904 +(let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   3.905 +(let (($x183 (<= ?x182 ?x174)))
   3.906 +(let (($x180 (fun_app$ v_b_Visited_G_1$ ?v0)))
   3.907 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   3.908 +(let (($x179 (not $x178)))
   3.909 +(let (($x181 (and $x179 $x180)))
   3.910 +(let (($x403 (not $x181)))
   3.911 +(or $x403 $x183))))))))))
   3.912 +))
   3.913 +(let (($x462 (and $x407 $x459)))
   3.914 +(let (($x465 (and $x176 $x462)))
   3.915 +(let (($x468 (and $x173 $x465)))
   3.916 +(let (($x400 (forall ((?v0 B_Vertex$) )(let (($x168 (exists ((?v1 B_Vertex$) )(let (($x136 (v_b_Visited_G_0$ ?v1)))
   3.917 +(let (($x166 (and $x136 (= (v_b_SP_G_0$ ?v0) (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))))
   3.918 +(and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?v0)) $x166))))
   3.919 +))
   3.920 +(let (($x127 (= ?v0 b_Source$)))
   3.921 +(let (($x132 (not $x127)))
   3.922 +(let (($x163 (and $x132 (< (v_b_SP_G_0$ ?v0) b_Infinity$))))
   3.923 +(or (not $x163) $x168))))))
   3.924 +))
   3.925 +(let (($x482 (and $x400 $x468)))
   3.926 +(let (($x822 (or (not $x482) $x815)))
   3.927 +(let (($x827 (and $x400 $x822)))
   3.928 +(let (($x393 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x150 (v_b_SP_G_0$ ?v0)))
   3.929 +(let (($x159 (<= ?x150 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))
   3.930 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   3.931 +(let (($x156 (< ?x155 b_Infinity$)))
   3.932 +(let (($x136 (v_b_Visited_G_0$ ?v1)))
   3.933 +(let (($x157 (and $x136 $x156)))
   3.934 +(or (not $x157) $x159))))))))
   3.935 +))
   3.936 +(let (($x834 (or (not $x393) $x827)))
   3.937 +(let (($x839 (and $x393 $x834)))
   3.938 +(let (($x386 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v1)))
   3.939 +(let ((?x150 (v_b_SP_G_0$ ?v0)))
   3.940 +(let (($x151 (<= ?x150 ?x128)))
   3.941 +(let (($x148 (v_b_Visited_G_0$ ?v0)))
   3.942 +(let (($x136 (v_b_Visited_G_0$ ?v1)))
   3.943 +(let (($x137 (not $x136)))
   3.944 +(let (($x149 (and $x137 $x148)))
   3.945 +(let (($x382 (not $x149)))
   3.946 +(or $x382 $x151))))))))))
   3.947 +))
   3.948 +(let (($x846 (or (not $x386) $x839)))
   3.949 +(let (($x851 (and $x386 $x846)))
   3.950 +(let (($x858 (or (not $x147) $x851)))
   3.951 +(let (($x863 (and $x147 $x858)))
   3.952 +(let (($x870 (or $x869 $x863)))
   3.953 +(let (($x875 (and $x145 $x870)))
   3.954 +(let (($x882 (or (not (and $x354 (and $x360 $x138))) $x875)))
   3.955 +(let (($x1323 (exists ((?v1 B_Vertex$) )(let ((?x303 (v_b_SP_G_2$ ?0)))
   3.956 +(let ((?x1263 (* (- 1) ?x303)))
   3.957 +(let ((?x273 (v_b_SP_G_2$ ?v1)))
   3.958 +(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
   3.959 +(let (($x1306 (= (+ ?x155 ?x273 ?x1263) 0)))
   3.960 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   3.961 +(let (($x1262 (>= (+ ?x273 ?x1263) 0)))
   3.962 +(let (($x1309 (not $x1262)))
   3.963 +(and $x1309 $x291 $x1306))))))))))
   3.964 +))
   3.965 +(let (($x132 (not $x127)))
   3.966 +(let (($x1300 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?0))) 0)))))
   3.967 +(let (($x698 (exists ((?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1)))
   3.968 +(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
   3.969 +(let ((?x671 (+ ?x155 ?x273)))
   3.970 +(let ((?x303 (v_b_SP_G_2$ ?0)))
   3.971 +(let (($x689 (= ?x303 ?x671)))
   3.972 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   3.973 +(let (($x692 (and $x291 $x689)))
   3.974 +(let (($x314 (< ?x273 ?x303)))
   3.975 +(and $x314 $x692))))))))))
   3.976 +))
   3.977 +(let (($x705 (or (not (and $x132 (< (v_b_SP_G_2$ ?0) b_Infinity$))) $x698)))
   3.978 +(let ((?x303 (v_b_SP_G_2$ ?1)))
   3.979 +(let ((?x1263 (* (- 1) ?x303)))
   3.980 +(let ((?x273 (v_b_SP_G_2$ ?0)))
   3.981 +(let ((?x155 (b_G$ (pair$ ?0 ?1))))
   3.982 +(let (($x1306 (= (+ ?x155 ?x273 ?x1263) 0)))
   3.983 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?0)))
   3.984 +(let (($x1262 (>= (+ ?x273 ?x1263) 0)))
   3.985 +(let (($x1309 (not $x1262)))
   3.986 +(let (($x1318 (and $x1309 $x291 $x1306)))
   3.987 +(let ((?x671 (+ ?x155 ?x273)))
   3.988 +(let (($x689 (= ?x303 ?x671)))
   3.989 +(let (($x692 (and $x291 $x689)))
   3.990 +(let (($x314 (< ?x273 ?x303)))
   3.991 +(let (($x695 (and $x314 $x692)))
   3.992 +(let ((@x1317 (monotonicity (rewrite (= $x314 $x1309)) (monotonicity (rewrite (= $x689 $x1306)) (= $x692 (and $x291 $x1306))) (= $x695 (and $x1309 (and $x291 $x1306))))))
   3.993 +(let ((@x1322 (trans @x1317 (rewrite (= (and $x1309 (and $x291 $x1306)) $x1318)) (= $x695 $x1318))))
   3.994 +(let (($x1298 (= (< ?x273 b_Infinity$) (not (<= (+ b_Infinity$ (* (- 1) ?x273)) 0)))))
   3.995 +(let ((@x1302 (monotonicity (rewrite $x1298) (= (and $x132 (< ?x273 b_Infinity$)) $x1300))))
   3.996 +(let ((@x1305 (monotonicity @x1302 (= (not (and $x132 (< ?x273 b_Infinity$))) (not $x1300)))))
   3.997 +(let ((@x1328 (monotonicity @x1305 (quant-intro @x1322 (= $x698 $x1323)) (= $x705 (or (not $x1300) $x1323)))))
   3.998 +(let (($x1282 (>= (+ ?x155 ?x273 ?x1263) 0)))
   3.999 +(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  3.1000 +(let (($x923 (not $x922)))
  3.1001 +(let (($x1276 (and $x291 $x923)))
  3.1002 +(let (($x1279 (not $x1276)))
  3.1003 +(let (($x1286 (or $x1279 $x1282)))
  3.1004 +(let (($x674 (<= ?x303 ?x671)))
  3.1005 +(let (($x681 (or (not (and $x291 (< ?x155 b_Infinity$))) $x674)))
  3.1006 +(let ((@x925 (rewrite (= (< ?x155 b_Infinity$) $x923))))
  3.1007 +(let ((@x1281 (monotonicity (monotonicity @x925 (= (and $x291 (< ?x155 b_Infinity$)) $x1276)) (= (not (and $x291 (< ?x155 b_Infinity$))) $x1279))))
  3.1008 +(let ((@x1291 (quant-intro (monotonicity @x1281 (rewrite (= $x674 $x1282)) (= $x681 $x1286)) (= $x686 $x1289))))
  3.1009 +(let ((@x1334 (monotonicity (monotonicity @x1291 (= (not $x686) $x1292)) (quant-intro @x1328 (= $x710 $x1329)) (= $x738 $x1332))))
  3.1010 +(let (($x301 (fun_app$ v_b_Visited_G_2$ ?1)))
  3.1011 +(let (($x300 (not $x291)))
  3.1012 +(let (($x302 (and $x300 $x301)))
  3.1013 +(let (($x664 (not $x302)))
  3.1014 +(let (($x1267 (or $x664 $x1262)))
  3.1015 +(let (($x304 (<= ?x303 ?x273)))
  3.1016 +(let (($x665 (or $x664 $x304)))
  3.1017 +(let ((@x1272 (quant-intro (monotonicity (rewrite (= $x304 $x1262)) (= $x665 $x1267)) (= $x668 $x1270))))
  3.1018 +(let ((@x1340 (monotonicity (monotonicity @x1272 (= (not $x668) $x1273)) (monotonicity @x1291 @x1334 (= $x743 $x1335)) (= $x750 $x1338))))
  3.1019 +(let ((@x1258 (quant-intro (rewrite (= (<= 0 ?x273) (>= ?x273 0))) (= $x299 $x1256))))
  3.1020 +(let ((@x1346 (monotonicity (monotonicity @x1258 (= (not $x299) $x1259)) (monotonicity @x1272 @x1340 (= $x755 $x1341)) (= $x762 $x1344))))
  3.1021 +(let ((@x1352 (monotonicity (monotonicity @x1258 @x1346 (= $x767 $x1347)) (= $x774 $x1350))))
  3.1022 +(let ((@x1361 (monotonicity (monotonicity (monotonicity @x1352 (= $x779 $x1353)) (= $x786 $x1356)) (= $x791 $x1359))))
  3.1023 +(let (($x1243 (>= (+ (fun_app$c v_b_SP_G_1$ ?0) (* (- 1) ?x273)) 0)))
  3.1024 +(let ((@x1249 (quant-intro (rewrite (= (<= ?x273 (fun_app$c v_b_SP_G_1$ ?0)) $x1243)) (= $x290 $x1247))))
  3.1025 +(let ((@x1364 (monotonicity (monotonicity @x1249 (= (not $x290) $x1250)) @x1361 (= $x798 $x1362))))
  3.1026 +(let (($x1232 (and $x1080 (and $x256 (and $x1214 (and $x1209 (and $x266 (and $x1193 $x1199))))))))
  3.1027 +(let (($x1230 (= $x632 (and $x256 (and $x1214 (and $x1209 (and $x266 (and $x1193 $x1199))))))))
  3.1028 +(let ((?x174 (fun_app$c v_b_SP_G_1$ ?0)))
  3.1029 +(let (($x278 (= ?x273 ?x174)))
  3.1030 +(let (($x1175 (<= (+ ?x174 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?0)))) 0)))
  3.1031 +(let (($x1169 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?0)))) 0)))
  3.1032 +(let (($x1179 (and (not $x1169) (not $x1175))))
  3.1033 +(let (($x1196 (or $x1179 $x278)))
  3.1034 +(let (($x272 (and (< (b_G$ (pair$ v_b_v_G_1$ ?0)) b_Infinity$) (< (+ ?x257 (b_G$ (pair$ v_b_v_G_1$ ?0))) ?x174))))
  3.1035 +(let (($x614 (or $x272 $x278)))
  3.1036 +(let ((@x1178 (rewrite (= (< (+ ?x257 (b_G$ (pair$ v_b_v_G_1$ ?0))) ?x174) (not $x1175)))))
  3.1037 +(let ((@x1172 (rewrite (= (< (b_G$ (pair$ v_b_v_G_1$ ?0)) b_Infinity$) (not $x1169)))))
  3.1038 +(let ((@x1198 (monotonicity (monotonicity @x1172 @x1178 (= $x272 $x1179)) (= $x614 $x1196))))
  3.1039 +(let (($x1185 (= (+ ?x257 (b_G$ (pair$ v_b_v_G_1$ ?0)) (* (- 1) ?x273)) 0)))
  3.1040 +(let (($x1182 (not $x1179)))
  3.1041 +(let (($x1190 (or $x1182 $x1185)))
  3.1042 +(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?0))))
  3.1043 +(let ((?x270 (+ ?x257 ?x268)))
  3.1044 +(let (($x274 (= ?x273 ?x270)))
  3.1045 +(let (($x277 (not $x272)))
  3.1046 +(let (($x608 (or $x277 $x274)))
  3.1047 +(let ((@x1184 (monotonicity (monotonicity @x1172 @x1178 (= $x272 $x1179)) (= $x277 $x1182))))
  3.1048 +(let ((@x1195 (quant-intro (monotonicity @x1184 (rewrite (= $x274 $x1185)) (= $x608 $x1190)) (= $x611 $x1193))))
  3.1049 +(let ((@x1219 (monotonicity @x1195 (quant-intro @x1198 (= $x617 $x1199)) (= $x620 (and $x1193 $x1199)))))
  3.1050 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?0)))
  3.1051 +(let (($x1206 (or $x178 (>= (+ ?x174 ?x1173) 0))))
  3.1052 +(let (($x259 (<= ?x257 ?x174)))
  3.1053 +(let (($x602 (or $x178 $x259)))
  3.1054 +(let ((@x1208 (monotonicity (rewrite (= $x259 (>= (+ ?x174 ?x1173) 0))) (= $x602 $x1206))))
  3.1055 +(let ((@x1225 (monotonicity (quant-intro @x1208 (= $x605 $x1209)) (monotonicity @x1219 (= $x623 (and $x266 (and $x1193 $x1199)))) (= $x626 (and $x1209 (and $x266 (and $x1193 $x1199)))))))
  3.1056 +(let ((@x1228 (monotonicity (rewrite (= $x258 $x1214)) @x1225 (= $x629 (and $x1214 (and $x1209 (and $x266 (and $x1193 $x1199))))))))
  3.1057 +(let (($x1002 (<= (+ b_Infinity$ (* (- 1) ?x174)) 0)))
  3.1058 +(let (($x1003 (not $x1002)))
  3.1059 +(let (($x179 (not $x178)))
  3.1060 +(let (($x1077 (and $x179 $x1003)))
  3.1061 +(let ((@x1079 (monotonicity (rewrite (= (< ?x174 b_Infinity$) $x1003)) (= (and $x179 (< ?x174 b_Infinity$)) $x1077))))
  3.1062 +(let ((@x1234 (monotonicity (quant-intro @x1079 (= $x209 $x1080)) (monotonicity @x1228 $x1230) (= $x635 $x1232))))
  3.1063 +(let ((@x1242 (monotonicity (trans @x1234 (rewrite (= $x1232 $x1235)) (= $x635 $x1235)) (= (not $x635) $x1240))))
  3.1064 +(let ((@x1370 (monotonicity @x1242 (monotonicity @x1249 @x1364 (= $x803 $x1365)) (= $x810 $x1368))))
  3.1065 +(let ((?x230 (fun_app$c v_b_SP_G_3$ ?0)))
  3.1066 +(let (($x1140 (>= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?1))) 0)))
  3.1067 +(let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
  3.1068 +(let (($x1100 (not $x1099)))
  3.1069 +(let (($x1134 (and $x1100 $x923)))
  3.1070 +(let (($x1137 (not $x1134)))
  3.1071 +(let (($x1143 (or $x1137 $x1140)))
  3.1072 +(let ((?x521 (+ ?x155 ?x230)))
  3.1073 +(let ((?x233 (fun_app$c v_b_SP_G_3$ ?1)))
  3.1074 +(let (($x545 (<= ?x233 ?x521)))
  3.1075 +(let (($x552 (or (not (and (< ?x230 b_Infinity$) (< ?x155 b_Infinity$))) $x545)))
  3.1076 +(let ((@x1136 (monotonicity (rewrite (= (< ?x230 b_Infinity$) $x1100)) @x925 (= (and (< ?x230 b_Infinity$) (< ?x155 b_Infinity$)) $x1134))))
  3.1077 +(let ((@x1139 (monotonicity @x1136 (= (not (and (< ?x230 b_Infinity$) (< ?x155 b_Infinity$))) $x1137))))
  3.1078 +(let ((@x1148 (quant-intro (monotonicity @x1139 (rewrite (= $x545 $x1140)) (= $x552 $x1143)) (= $x557 $x1146))))
  3.1079 +(let ((@x1154 (monotonicity (monotonicity @x1148 (= (not $x557) $x1149)) (= $x573 $x1152))))
  3.1080 +(let (($x1122 (exists ((?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  3.1081 +(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  3.1082 +(and (not (>= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?0))) 0)) (= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?0))) 0)))))
  3.1083 +))
  3.1084 +(let (($x1103 (and $x132 $x1100)))
  3.1085 +(let (($x1106 (not $x1103)))
  3.1086 +(let (($x1125 (or $x1106 $x1122)))
  3.1087 +(let (($x530 (exists ((?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  3.1088 +(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  3.1089 +(let ((?x521 (+ ?x155 ?x230)))
  3.1090 +(let ((?x233 (fun_app$c v_b_SP_G_3$ ?0)))
  3.1091 +(let (($x524 (= ?x233 ?x521)))
  3.1092 +(let (($x234 (< ?x230 ?x233)))
  3.1093 +(and $x234 $x524))))))))
  3.1094 +))
  3.1095 +(let (($x537 (or (not (and $x132 (< ?x230 b_Infinity$))) $x530)))
  3.1096 +(let (($x1119 (and (not (>= (+ ?x230 (* (- 1) ?x233)) 0)) (= (+ ?x155 ?x230 (* (- 1) ?x233)) 0))))
  3.1097 +(let (($x524 (= ?x233 ?x521)))
  3.1098 +(let (($x234 (< ?x230 ?x233)))
  3.1099 +(let (($x527 (and $x234 $x524)))
  3.1100 +(let ((@x1121 (monotonicity (rewrite (= $x234 (not (>= (+ ?x230 (* (- 1) ?x233)) 0)))) (rewrite (= $x524 (= (+ ?x155 ?x230 (* (- 1) ?x233)) 0))) (= $x527 $x1119))))
  3.1101 +(let ((@x1105 (monotonicity (rewrite (= (< ?x230 b_Infinity$) $x1100)) (= (and $x132 (< ?x230 b_Infinity$)) $x1103))))
  3.1102 +(let ((@x1127 (monotonicity (monotonicity @x1105 (= (not (and $x132 (< ?x230 b_Infinity$))) $x1106)) (quant-intro @x1121 (= $x530 $x1122)) (= $x537 $x1125))))
  3.1103 +(let ((@x1133 (monotonicity (quant-intro @x1127 (= $x542 $x1128)) (= (not $x542) $x1131))))
  3.1104 +(let ((@x1160 (monotonicity @x1133 (monotonicity @x1148 @x1154 (= $x578 $x1155)) (= $x585 $x1158))))
  3.1105 +(let ((@x1091 (rewrite (= (and $x1083 (and $x212 (and $x215 (and $x217 $x220)))) $x1089))))
  3.1106 +(let (($x493 (and $x212 (and $x215 (and $x217 $x220)))))
  3.1107 +(let (($x507 (and $x210 $x493)))
  3.1108 +(let ((@x1088 (monotonicity (monotonicity (quant-intro @x1079 (= $x209 $x1080)) (= $x210 $x1083)) (= $x507 (and $x1083 $x493)))))
  3.1109 +(let ((@x1096 (monotonicity (trans @x1088 @x1091 (= $x507 $x1089)) (= (not $x507) $x1094))))
  3.1110 +(let ((@x1166 (monotonicity @x1096 (monotonicity (quant-intro @x1127 (= $x542 $x1128)) @x1160 (= $x590 $x1161)) (= $x597 $x1164))))
  3.1111 +(let (($x1070 (= (and $x980 (and $x173 (and $x1051 (and $x1045 (and $x997 $x1037))))) $x1069)))
  3.1112 +(let (($x1067 (= $x482 (and $x980 (and $x173 (and $x1051 (and $x1045 (and $x997 $x1037))))))))
  3.1113 +(let (($x1031 (exists ((?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
  3.1114 +(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  3.1115 +(let (($x1012 (= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?0))) 0)))
  3.1116 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
  3.1117 +(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?0))) 0)))
  3.1118 +(let (($x1017 (not $x1015)))
  3.1119 +(and $x1017 $x178 $x1012))))))))
  3.1120 +))
  3.1121 +(let (($x1006 (and $x132 $x1003)))
  3.1122 +(let (($x1009 (not $x1006)))
  3.1123 +(let (($x1034 (or $x1009 $x1031)))
  3.1124 +(let (($x437 (exists ((?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
  3.1125 +(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  3.1126 +(let ((?x410 (+ ?x155 ?x174)))
  3.1127 +(let ((?x182 (fun_app$c v_b_SP_G_1$ ?0)))
  3.1128 +(let (($x428 (= ?x182 ?x410)))
  3.1129 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
  3.1130 +(let (($x431 (and $x178 $x428)))
  3.1131 +(let (($x193 (< ?x174 ?x182)))
  3.1132 +(and $x193 $x431))))))))))
  3.1133 +))
  3.1134 +(let (($x444 (or (not (and $x132 (< ?x174 b_Infinity$))) $x437)))
  3.1135 +(let (($x1012 (= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?1))) 0)))
  3.1136 +(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?1))) 0)))
  3.1137 +(let (($x1017 (not $x1015)))
  3.1138 +(let (($x1026 (and $x1017 $x178 $x1012)))
  3.1139 +(let ((?x410 (+ ?x155 ?x174)))
  3.1140 +(let ((?x182 (fun_app$c v_b_SP_G_1$ ?1)))
  3.1141 +(let (($x428 (= ?x182 ?x410)))
  3.1142 +(let (($x431 (and $x178 $x428)))
  3.1143 +(let (($x193 (< ?x174 ?x182)))
  3.1144 +(let (($x434 (and $x193 $x431)))
  3.1145 +(let ((@x1025 (monotonicity (rewrite (= $x193 $x1017)) (monotonicity (rewrite (= $x428 $x1012)) (= $x431 (and $x178 $x1012))) (= $x434 (and $x1017 (and $x178 $x1012))))))
  3.1146 +(let ((@x1030 (trans @x1025 (rewrite (= (and $x1017 (and $x178 $x1012)) $x1026)) (= $x434 $x1026))))
  3.1147 +(let ((@x1008 (monotonicity (rewrite (= (< ?x174 b_Infinity$) $x1003)) (= (and $x132 (< ?x174 b_Infinity$)) $x1006))))
  3.1148 +(let ((@x1036 (monotonicity (monotonicity @x1008 (= (not (and $x132 (< ?x174 b_Infinity$))) $x1009)) (quant-intro @x1030 (= $x437 $x1031)) (= $x444 $x1034))))
  3.1149 +(let (($x990 (>= (+ ?x155 ?x174 (* (- 1) ?x182)) 0)))
  3.1150 +(let (($x983 (and $x178 $x923)))
  3.1151 +(let (($x986 (not $x983)))
  3.1152 +(let (($x994 (or $x986 $x990)))
  3.1153 +(let (($x413 (<= ?x182 ?x410)))
  3.1154 +(let (($x420 (or (not (and $x178 (< ?x155 b_Infinity$))) $x413)))
  3.1155 +(let ((@x988 (monotonicity (monotonicity @x925 (= (and $x178 (< ?x155 b_Infinity$)) $x983)) (= (not (and $x178 (< ?x155 b_Infinity$))) $x986))))
  3.1156 +(let ((@x999 (quant-intro (monotonicity @x988 (rewrite (= $x413 $x990)) (= $x420 $x994)) (= $x425 $x997))))
  3.1157 +(let ((@x1056 (monotonicity @x999 (quant-intro @x1036 (= $x449 $x1037)) (= $x459 (and $x997 $x1037)))))
  3.1158 +(let (($x180 (fun_app$ v_b_Visited_G_1$ ?1)))
  3.1159 +(let (($x181 (and $x179 $x180)))
  3.1160 +(let (($x403 (not $x181)))
  3.1161 +(let (($x1042 (or $x403 $x1015)))
  3.1162 +(let (($x183 (<= ?x182 ?x174)))
  3.1163 +(let (($x404 (or $x403 $x183)))
  3.1164 +(let ((@x1047 (quant-intro (monotonicity (rewrite (= $x183 $x1015)) (= $x404 $x1042)) (= $x407 $x1045))))
  3.1165 +(let ((@x1053 (quant-intro (rewrite (= (<= 0 ?x174) (>= ?x174 0))) (= $x176 $x1051))))
  3.1166 +(let ((@x1062 (monotonicity @x1053 (monotonicity @x1047 @x1056 (= $x462 (and $x1045 (and $x997 $x1037)))) (= $x465 (and $x1051 (and $x1045 (and $x997 $x1037)))))))
  3.1167 +(let ((@x1065 (monotonicity @x1062 (= $x468 (and $x173 (and $x1051 (and $x1045 (and $x997 $x1037))))))))
  3.1168 +(let (($x974 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  3.1169 +(let ((?x128 (v_b_SP_G_0$ ?v1)))
  3.1170 +(let (($x957 (= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?0)) ?x155) 0)))
  3.1171 +(let (($x136 (v_b_Visited_G_0$ ?v1)))
  3.1172 +(let (($x907 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?0))) 0)))
  3.1173 +(let (($x960 (not $x907)))
  3.1174 +(and $x960 $x136 $x957))))))))
  3.1175 +))
  3.1176 +(let (($x951 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?0))) 0)))))
  3.1177 +(let (($x954 (not $x951)))
  3.1178 +(let (($x977 (or $x954 $x974)))
  3.1179 +(let (($x168 (exists ((?v1 B_Vertex$) )(let (($x136 (v_b_Visited_G_0$ ?v1)))
  3.1180 +(let (($x166 (and $x136 (= (v_b_SP_G_0$ ?0) (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?0)))))))
  3.1181 +(and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?0)) $x166))))
  3.1182 +))
  3.1183 +(let (($x397 (or (not (and $x132 (< (v_b_SP_G_0$ ?0) b_Infinity$))) $x168)))
  3.1184 +(let (($x957 (= (+ (v_b_SP_G_0$ ?0) (* (- 1) (v_b_SP_G_0$ ?1)) ?x155) 0)))
  3.1185 +(let (($x136 (v_b_Visited_G_0$ ?0)))
  3.1186 +(let (($x907 (>= (+ (v_b_SP_G_0$ ?0) (* (- 1) (v_b_SP_G_0$ ?1))) 0)))
  3.1187 +(let (($x960 (not $x907)))
  3.1188 +(let (($x969 (and $x960 $x136 $x957)))
  3.1189 +(let (($x167 (and (< (v_b_SP_G_0$ ?0) (v_b_SP_G_0$ ?1)) (and $x136 (= (v_b_SP_G_0$ ?1) (+ (v_b_SP_G_0$ ?0) ?x155))))))
  3.1190 +(let (($x964 (= (and $x136 (= (v_b_SP_G_0$ ?1) (+ (v_b_SP_G_0$ ?0) ?x155))) (and $x136 $x957))))
  3.1191 +(let ((@x959 (rewrite (= (= (v_b_SP_G_0$ ?1) (+ (v_b_SP_G_0$ ?0) ?x155)) $x957))))
  3.1192 +(let ((@x968 (monotonicity (rewrite (= (< (v_b_SP_G_0$ ?0) (v_b_SP_G_0$ ?1)) $x960)) (monotonicity @x959 $x964) (= $x167 (and $x960 (and $x136 $x957))))))
  3.1193 +(let ((@x973 (trans @x968 (rewrite (= (and $x960 (and $x136 $x957)) $x969)) (= $x167 $x969))))
  3.1194 +(let (($x949 (= (< (v_b_SP_G_0$ ?0) b_Infinity$) (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?0))) 0)))))
  3.1195 +(let ((@x953 (monotonicity (rewrite $x949) (= (and $x132 (< (v_b_SP_G_0$ ?0) b_Infinity$)) $x951))))
  3.1196 +(let ((@x956 (monotonicity @x953 (= (not (and $x132 (< (v_b_SP_G_0$ ?0) b_Infinity$))) $x954))))
  3.1197 +(let ((@x982 (quant-intro (monotonicity @x956 (quant-intro @x973 (= $x168 $x974)) (= $x397 $x977)) (= $x400 $x980))))
  3.1198 +(let ((@x1076 (monotonicity (trans (monotonicity @x982 @x1065 $x1067) (rewrite $x1070) (= $x482 $x1069)) (= (not $x482) $x1074))))
  3.1199 +(let ((@x1376 (monotonicity @x1076 (monotonicity @x1166 @x1370 (= $x815 $x1371)) (= $x822 $x1374))))
  3.1200 +(let (($x933 (>= (+ (v_b_SP_G_0$ ?0) (* (- 1) (v_b_SP_G_0$ ?1)) ?x155) 0)))
  3.1201 +(let (($x926 (and $x136 $x923)))
  3.1202 +(let (($x929 (not $x926)))
  3.1203 +(let (($x936 (or $x929 $x933)))
  3.1204 +(let ((?x150 (v_b_SP_G_0$ ?1)))
  3.1205 +(let (($x159 (<= ?x150 (+ (v_b_SP_G_0$ ?0) ?x155))))
  3.1206 +(let (($x390 (or (not (and $x136 (< ?x155 b_Infinity$))) $x159)))
  3.1207 +(let ((@x931 (monotonicity (monotonicity @x925 (= (and $x136 (< ?x155 b_Infinity$)) $x926)) (= (not (and $x136 (< ?x155 b_Infinity$))) $x929))))
  3.1208 +(let ((@x941 (quant-intro (monotonicity @x931 (rewrite (= $x159 $x933)) (= $x390 $x936)) (= $x393 $x939))))
  3.1209 +(let ((@x1382 (monotonicity (monotonicity @x941 (= (not $x393) $x942)) (monotonicity @x982 @x1376 (= $x827 $x1377)) (= $x834 $x1380))))
  3.1210 +(let (($x148 (v_b_Visited_G_0$ ?1)))
  3.1211 +(let (($x137 (not $x136)))
  3.1212 +(let (($x149 (and $x137 $x148)))
  3.1213 +(let (($x382 (not $x149)))
  3.1214 +(let (($x911 (or $x382 $x907)))
  3.1215 +(let ((?x128 (v_b_SP_G_0$ ?0)))
  3.1216 +(let (($x151 (<= ?x150 ?x128)))
  3.1217 +(let (($x383 (or $x382 $x151)))
  3.1218 +(let ((@x916 (quant-intro (monotonicity (rewrite (= $x151 $x907)) (= $x383 $x911)) (= $x386 $x914))))
  3.1219 +(let ((@x1388 (monotonicity (monotonicity @x916 (= (not $x386) $x917)) (monotonicity @x941 @x1382 (= $x839 $x1383)) (= $x846 $x1386))))
  3.1220 +(let ((@x901 (quant-intro (rewrite (= (<= 0 ?x128) (>= ?x128 0))) (= $x147 $x899))))
  3.1221 +(let ((@x1394 (monotonicity (monotonicity @x901 (= (not $x147) $x902)) (monotonicity @x916 @x1388 (= $x851 $x1389)) (= $x858 $x1392))))
  3.1222 +(let ((@x1400 (monotonicity (monotonicity @x901 @x1394 (= $x863 $x1395)) (= $x870 $x1398))))
  3.1223 +(let ((@x895 (monotonicity (rewrite (= (and $x354 (and $x360 $x138)) $x890)) (= (not (and $x354 (and $x360 $x138))) (not $x890)))))
  3.1224 +(let ((@x1406 (monotonicity @x895 (monotonicity @x1400 (= $x875 $x1401)) (= $x882 (or (not $x890) $x1401)))))
  3.1225 +(let (($x318 (exists ((?v1 B_Vertex$) )(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  3.1226 +(let (($x316 (and $x291 (= (v_b_SP_G_2$ ?0) (+ (v_b_SP_G_2$ ?v1) (b_G$ (pair$ ?v1 ?0)))))))
  3.1227 +(let ((?x303 (v_b_SP_G_2$ ?0)))
  3.1228 +(let ((?x273 (v_b_SP_G_2$ ?v1)))
  3.1229 +(let (($x314 (< ?x273 ?x303)))
  3.1230 +(and $x314 $x316)))))))
  3.1231 +))
  3.1232 +(let (($x313 (and $x132 (< ?x273 b_Infinity$))))
  3.1233 +(let (($x319 (=> $x313 $x318)))
  3.1234 +(let ((@x691 (monotonicity (rewrite (= (+ ?x273 ?x155) ?x671)) (= (= ?x303 (+ ?x273 ?x155)) $x689))))
  3.1235 +(let ((@x697 (monotonicity (monotonicity @x691 (= (and $x291 (= ?x303 (+ ?x273 ?x155))) $x692)) (= (and $x314 (and $x291 (= ?x303 (+ ?x273 ?x155)))) $x695))))
  3.1236 +(let ((@x703 (monotonicity (quant-intro @x697 (= $x318 $x698)) (= $x319 (=> $x313 $x698)))))
  3.1237 +(let ((@x712 (quant-intro (trans @x703 (rewrite (= (=> $x313 $x698) $x705)) (= $x319 $x705)) (= $x320 $x710))))
  3.1238 +(let ((@x719 (trans (monotonicity @x712 (= $x321 (and $x710 false))) (rewrite (= (and $x710 false) false)) (= $x321 false))))
  3.1239 +(let ((@x726 (trans (monotonicity @x719 (= $x322 (=> false true))) (rewrite (= (=> false true) true)) (= $x322 true))))
  3.1240 +(let ((@x733 (trans (monotonicity @x712 @x726 (= $x323 (and $x710 true))) (rewrite (= (and $x710 true) $x710)) (= $x323 $x710))))
  3.1241 +(let (($x156 (< ?x155 b_Infinity$)))
  3.1242 +(let (($x307 (and $x291 $x156)))
  3.1243 +(let (($x310 (=> $x307 (<= ?x303 (+ ?x273 ?x155)))))
  3.1244 +(let ((@x676 (monotonicity (rewrite (= (+ ?x273 ?x155) ?x671)) (= (<= ?x303 (+ ?x273 ?x155)) $x674))))
  3.1245 +(let ((@x685 (trans (monotonicity @x676 (= $x310 (=> $x307 $x674))) (rewrite (= (=> $x307 $x674) $x681)) (= $x310 $x681))))
  3.1246 +(let ((@x736 (monotonicity (quant-intro @x685 (= $x311 $x686)) @x733 (= $x324 (=> $x686 $x710)))))
  3.1247 +(let ((@x745 (monotonicity (quant-intro @x685 (= $x311 $x686)) (trans @x736 (rewrite (= (=> $x686 $x710) $x738)) (= $x324 $x738)) (= (and $x311 $x324) $x743))))
  3.1248 +(let ((@x748 (monotonicity (quant-intro (rewrite (= (=> $x302 $x304) $x665)) (= $x306 $x668)) @x745 (= $x326 (=> $x668 $x743)))))
  3.1249 +(let ((@x757 (monotonicity (quant-intro (rewrite (= (=> $x302 $x304) $x665)) (= $x306 $x668)) (trans @x748 (rewrite (= (=> $x668 $x743) $x750)) (= $x326 $x750)) (= (and $x306 $x326) $x755))))
  3.1250 +(let ((@x766 (trans (monotonicity @x757 (= $x328 (=> $x299 $x755))) (rewrite (= (=> $x299 $x755) $x762)) (= $x328 $x762))))
  3.1251 +(let ((@x772 (monotonicity (monotonicity @x766 (= (and $x299 $x328) $x767)) (= $x330 (=> $x297 $x767)))))
  3.1252 +(let ((@x781 (monotonicity (trans @x772 (rewrite (= (=> $x297 $x767) $x774)) (= $x330 $x774)) (= (and $x297 $x330) $x779))))
  3.1253 +(let ((@x654 (quant-intro (rewrite (= (=> $x291 $x278) (or $x300 $x278))) (= $x293 $x652))))
  3.1254 +(let ((@x659 (monotonicity @x654 (rewrite (= (and true true) true)) (= $x295 (and $x652 true)))))
  3.1255 +(let ((@x784 (monotonicity (trans @x659 (rewrite (= (and $x652 true) $x652)) (= $x295 $x652)) @x781 (= $x332 (=> $x652 $x779)))))
  3.1256 +(let ((@x793 (monotonicity @x654 (trans @x784 (rewrite (= (=> $x652 $x779) $x786)) (= $x332 $x786)) (= (and $x293 $x332) $x791))))
  3.1257 +(let ((@x802 (trans (monotonicity @x793 (= $x334 (=> $x290 $x791))) (rewrite (= (=> $x290 $x791) $x798)) (= $x334 $x798))))
  3.1258 +(let (($x633 (= (and $x256 (and $x258 (and $x261 (and $x266 (and $x276 $x280))))) $x632)))
  3.1259 +(let ((@x622 (monotonicity (quant-intro (rewrite (= (=> $x272 $x274) $x608)) (= $x276 $x611)) (quant-intro (rewrite (= (=> $x277 $x278) $x614)) (= $x280 $x617)) (= (and $x276 $x280) $x620))))
  3.1260 +(let ((@x628 (monotonicity (quant-intro (rewrite (= (=> $x179 $x259) $x602)) (= $x261 $x605)) (monotonicity @x622 (= (and $x266 (and $x276 $x280)) $x623)) (= (and $x261 (and $x266 (and $x276 $x280))) $x626))))
  3.1261 +(let ((@x631 (monotonicity @x628 (= (and $x258 (and $x261 (and $x266 (and $x276 $x280)))) $x629))))
  3.1262 +(let ((@x640 (monotonicity (monotonicity (monotonicity @x631 $x633) (= $x286 $x635)) (= $x287 (and true $x635)))))
  3.1263 +(let ((@x646 (monotonicity (trans @x640 (rewrite (= (and true $x635) $x635)) (= $x287 $x635)) (= $x288 (and true $x635)))))
  3.1264 +(let ((@x808 (monotonicity (trans @x646 (rewrite (= (and true $x635) $x635)) (= $x288 $x635)) (monotonicity @x802 (= (and $x290 $x334) $x803)) (= $x336 (=> $x635 $x803)))))
  3.1265 +(let ((@x564 (monotonicity (rewrite (= (=> $x246 true) true)) (= $x248 (and $x246 true)))))
  3.1266 +(let (($x231 (< ?x230 b_Infinity$)))
  3.1267 +(let (($x241 (and $x231 $x156)))
  3.1268 +(let (($x243 (=> $x241 (<= ?x233 (+ ?x230 ?x155)))))
  3.1269 +(let ((@x547 (monotonicity (rewrite (= (+ ?x230 ?x155) ?x521)) (= (<= ?x233 (+ ?x230 ?x155)) $x545))))
  3.1270 +(let ((@x556 (trans (monotonicity @x547 (= $x243 (=> $x241 $x545))) (rewrite (= (=> $x241 $x545) $x552)) (= $x243 $x552))))
  3.1271 +(let ((@x571 (monotonicity (quant-intro @x556 (= $x244 $x557)) (trans @x564 (rewrite (= (and $x246 true) $x246)) (= $x248 $x246)) (= $x249 (=> $x557 $x246)))))
  3.1272 +(let ((@x580 (monotonicity (quant-intro @x556 (= $x244 $x557)) (trans @x571 (rewrite (= (=> $x557 $x246) $x573)) (= $x249 $x573)) (= (and $x244 $x249) $x578))))
  3.1273 +(let (($x238 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  3.1274 +(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  3.1275 +(let ((?x235 (+ ?x230 ?x155)))
  3.1276 +(let ((?x233 (fun_app$c v_b_SP_G_3$ ?0)))
  3.1277 +(let (($x234 (< ?x230 ?x233)))
  3.1278 +(and $x234 (= ?x233 ?x235))))))))
  3.1279 +))
  3.1280 +(let (($x232 (and $x132 $x231)))
  3.1281 +(let (($x239 (=> $x232 $x238)))
  3.1282 +(let ((@x526 (monotonicity (rewrite (= (+ ?x230 ?x155) ?x521)) (= (= ?x233 (+ ?x230 ?x155)) $x524))))
  3.1283 +(let ((@x532 (quant-intro (monotonicity @x526 (= (and $x234 (= ?x233 (+ ?x230 ?x155))) $x527)) (= $x238 $x530))))
  3.1284 +(let ((@x541 (trans (monotonicity @x532 (= $x239 (=> $x232 $x530))) (rewrite (= (=> $x232 $x530) $x537)) (= $x239 $x537))))
  3.1285 +(let ((@x583 (monotonicity (quant-intro @x541 (= $x240 $x542)) @x580 (= $x251 (=> $x542 $x578)))))
  3.1286 +(let ((@x592 (monotonicity (quant-intro @x541 (= $x240 $x542)) (trans @x583 (rewrite (= (=> $x542 $x578) $x585)) (= $x251 $x585)) (= (and $x240 $x251) $x590))))
  3.1287 +(let (($x491 (= (and $x215 (and $x217 (and $x220 true))) (and $x215 (and $x217 $x220)))))
  3.1288 +(let ((@x489 (monotonicity (rewrite (= (and $x220 true) $x220)) (= (and $x217 (and $x220 true)) (and $x217 $x220)))))
  3.1289 +(let ((@x495 (monotonicity (monotonicity @x489 $x491) (= (and $x212 (and $x215 (and $x217 (and $x220 true)))) $x493))))
  3.1290 +(let ((@x502 (trans (monotonicity @x495 (= $x225 (and true $x493))) (rewrite (= (and true $x493) $x493)) (= $x225 $x493))))
  3.1291 +(let ((@x506 (trans (monotonicity @x502 (= $x226 (and true $x493))) (rewrite (= (and true $x493) $x493)) (= $x226 $x493))))
  3.1292 +(let ((@x512 (monotonicity (monotonicity @x506 (= (and $x210 $x226) $x507)) (= $x228 (and true $x507)))))
  3.1293 +(let ((@x518 (monotonicity (trans @x512 (rewrite (= (and true $x507) $x507)) (= $x228 $x507)) (= $x229 (and true $x507)))))
  3.1294 +(let ((@x595 (monotonicity (trans @x518 (rewrite (= (and true $x507) $x507)) (= $x229 $x507)) @x592 (= $x253 (=> $x507 $x590)))))
  3.1295 +(let ((@x817 (monotonicity (trans @x595 (rewrite (= (=> $x507 $x590) $x597)) (= $x253 $x597)) (trans @x808 (rewrite (= (=> $x635 $x803) $x810)) (= $x336 $x810)) (= (and $x253 $x336) $x815))))
  3.1296 +(let (($x197 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  3.1297 +(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
  3.1298 +(let ((?x187 (+ ?x174 ?x155)))
  3.1299 +(let ((?x182 (fun_app$c v_b_SP_G_1$ ?0)))
  3.1300 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
  3.1301 +(let (($x193 (< ?x174 ?x182)))
  3.1302 +(and $x193 (and $x178 (= ?x182 ?x187))))))))))
  3.1303 +))
  3.1304 +(let (($x191 (< ?x174 b_Infinity$)))
  3.1305 +(let (($x192 (and $x132 $x191)))
  3.1306 +(let (($x198 (=> $x192 $x197)))
  3.1307 +(let ((@x430 (monotonicity (rewrite (= (+ ?x174 ?x155) ?x410)) (= (= ?x182 (+ ?x174 ?x155)) $x428))))
  3.1308 +(let ((@x436 (monotonicity (monotonicity @x430 (= (and $x178 (= ?x182 (+ ?x174 ?x155))) $x431)) (= (and $x193 (and $x178 (= ?x182 (+ ?x174 ?x155)))) $x434))))
  3.1309 +(let ((@x442 (monotonicity (quant-intro @x436 (= $x197 $x437)) (= $x198 (=> $x192 $x437)))))
  3.1310 +(let ((@x451 (quant-intro (trans @x442 (rewrite (= (=> $x192 $x437) $x444)) (= $x198 $x444)) (= $x199 $x449))))
  3.1311 +(let ((@x458 (trans (monotonicity @x451 (= $x200 (and $x449 true))) (rewrite (= (and $x449 true) $x449)) (= $x200 $x449))))
  3.1312 +(let (($x186 (and $x178 $x156)))
  3.1313 +(let (($x189 (=> $x186 (<= ?x182 (+ ?x174 ?x155)))))
  3.1314 +(let ((@x415 (monotonicity (rewrite (= (+ ?x174 ?x155) ?x410)) (= (<= ?x182 (+ ?x174 ?x155)) $x413))))
  3.1315 +(let ((@x424 (trans (monotonicity @x415 (= $x189 (=> $x186 $x413))) (rewrite (= (=> $x186 $x413) $x420)) (= $x189 $x420))))
  3.1316 +(let ((@x461 (monotonicity (quant-intro @x424 (= $x190 $x425)) @x458 (= (and $x190 $x200) $x459))))
  3.1317 +(let ((@x464 (monotonicity (quant-intro (rewrite (= (=> $x181 $x183) $x404)) (= $x185 $x407)) @x461 (= (and $x185 (and $x190 $x200)) $x462))))
  3.1318 +(let ((@x470 (monotonicity (monotonicity @x464 (= (and $x176 (and $x185 (and $x190 $x200))) $x465)) (= (and $x173 (and $x176 (and $x185 (and $x190 $x200)))) $x468))))
  3.1319 +(let ((@x477 (trans (monotonicity @x470 (= $x205 (and true $x468))) (rewrite (= (and true $x468) $x468)) (= $x205 $x468))))
  3.1320 +(let ((@x481 (trans (monotonicity @x477 (= $x206 (and true $x468))) (rewrite (= (and true $x468) $x468)) (= $x206 $x468))))
  3.1321 +(let ((@x402 (quant-intro (rewrite (= (=> (and $x132 (< ?x128 b_Infinity$)) $x168) $x397)) (= $x170 $x400))))
  3.1322 +(let ((@x820 (monotonicity (monotonicity @x402 @x481 (= (and $x170 $x206) $x482)) @x817 (= $x338 (=> $x482 $x815)))))
  3.1323 +(let ((@x829 (monotonicity @x402 (trans @x820 (rewrite (= (=> $x482 $x815) $x822)) (= $x338 $x822)) (= (and $x170 $x338) $x827))))
  3.1324 +(let ((@x395 (quant-intro (rewrite (= (=> (and $x136 $x156) $x159) $x390)) (= $x161 $x393))))
  3.1325 +(let ((@x838 (trans (monotonicity @x395 @x829 (= $x340 (=> $x393 $x827))) (rewrite (= (=> $x393 $x827) $x834)) (= $x340 $x834))))
  3.1326 +(let ((@x844 (monotonicity (quant-intro (rewrite (= (=> $x149 $x151) $x383)) (= $x153 $x386)) (monotonicity @x395 @x838 (= (and $x161 $x340) $x839)) (= $x342 (=> $x386 $x839)))))
  3.1327 +(let ((@x853 (monotonicity (quant-intro (rewrite (= (=> $x149 $x151) $x383)) (= $x153 $x386)) (trans @x844 (rewrite (= (=> $x386 $x839) $x846)) (= $x342 $x846)) (= (and $x153 $x342) $x851))))
  3.1328 +(let ((@x862 (trans (monotonicity @x853 (= $x344 (=> $x147 $x851))) (rewrite (= (=> $x147 $x851) $x858)) (= $x344 $x858))))
  3.1329 +(let ((@x868 (monotonicity (monotonicity @x862 (= (and $x147 $x344) $x863)) (= $x346 (=> $x145 $x863)))))
  3.1330 +(let ((@x877 (monotonicity (trans @x868 (rewrite (= (=> $x145 $x863) $x870)) (= $x346 $x870)) (= (and $x145 $x346) $x875))))
  3.1331 +(let (($x368 (and $x354 (and $x360 $x138))))
  3.1332 +(let (($x371 (and true $x368)))
  3.1333 +(let ((@x362 (quant-intro (rewrite (= (=> $x132 (= ?x128 b_Infinity$)) $x357)) (= $x135 $x360))))
  3.1334 +(let ((@x367 (monotonicity @x362 (rewrite (= (and $x138 true) $x138)) (= (and $x135 (and $x138 true)) (and $x360 $x138)))))
  3.1335 +(let ((@x356 (quant-intro (rewrite (= (=> $x127 (= ?x128 0)) (or $x132 (= ?x128 0)))) (= $x131 $x354))))
  3.1336 +(let ((@x370 (monotonicity @x356 @x367 (= (and $x131 (and $x135 (and $x138 true))) $x368))))
  3.1337 +(let ((@x377 (trans (monotonicity @x370 (= $x142 $x371)) (rewrite (= $x371 $x368)) (= $x142 $x368))))
  3.1338 +(let ((@x381 (trans (monotonicity @x377 (= $x143 $x371)) (rewrite (= $x371 $x368)) (= $x143 $x368))))
  3.1339 +(let ((@x886 (trans (monotonicity @x381 @x877 (= $x348 (=> $x368 $x875))) (rewrite (= (=> $x368 $x875) $x882)) (= $x348 $x882))))
  3.1340 +(let ((@x1411 (trans (monotonicity @x886 (= $x349 (not $x882))) (monotonicity @x1406 (= (not $x882) $x1407)) (= $x349 $x1407))))
  3.1341 +(let ((@x1413 (not-or-elim (mp (asserted $x349) @x1411 $x1407) $x890)))
  3.1342 +(let ((@x1463 (mp~ (and-elim @x1413 $x360) (nnf-pos (refl (~ $x357 $x357)) (~ $x360 $x360)) $x360)))
  3.1343 +(let ((@x3498 (mp @x1463 (quant-intro (refl (= $x357 $x357)) (= $x360 $x3493)) $x3493)))
  3.1344 +(let ((@x6489 (rewrite (= (or (not $x3493) (or $x1538 $x5616)) (or (not $x3493) $x1538 $x5616)))))
  3.1345 +(let ((@x5602 (mp ((_ quant-inst ?v0!5) (or (not $x3493) (or $x1538 $x5616))) @x6489 (or (not $x3493) $x1538 $x5616))))
  3.1346 +(let ((@x5777 (unit-resolution (hypothesis $x6457) (mp (unit-resolution @x5602 @x3498 (hypothesis $x1539) $x5616) @x5778 $x5625) false)))
  3.1347 +(let ((@x5735 (unit-resolution (lemma @x5777 (or $x5625 $x1538)) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x6457 $x1543)) @x6514 $x6457) @x6246 false)))
  3.1348 +(let (($x3544 (not $x3541)))
  3.1349 +(let (($x3827 (or $x3544 $x3824)))
  3.1350 +(let (($x3830 (not $x3827)))
  3.1351 +(let (($x3524 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
  3.1352 +(let ((?x128 (v_b_SP_G_0$ ?v1)))
  3.1353 +(let (($x933 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x155) 0)))
  3.1354 +(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  3.1355 +(let (($x136 (v_b_Visited_G_0$ ?v1)))
  3.1356 +(let (($x137 (not $x136)))
  3.1357 +(or $x137 $x922 $x933))))))) :pattern ( (pair$ ?v1 ?v0) )))
  3.1358 +))
  3.1359 +(let (($x3529 (not $x3524)))
  3.1360 +(let (($x3833 (or $x3529 $x3830)))
  3.1361 +(let (($x3836 (not $x3833)))
  3.1362 +(let ((?x1522 (v_b_SP_G_0$ ?v0!4)))
  3.1363 +(let ((?x1523 (* (- 1) ?x1522)))
  3.1364 +(let ((?x1521 (v_b_SP_G_0$ ?v1!3)))
  3.1365 +(let ((?x1513 (pair$ ?v1!3 ?v0!4)))
  3.1366 +(let ((?x1514 (b_G$ ?x1513)))
  3.1367 +(let ((?x2045 (+ ?x1514 ?x1521 ?x1523)))
  3.1368 +(let (($x2048 (>= ?x2045 0)))
  3.1369 +(let (($x1517 (<= (+ b_Infinity$ (* (- 1) ?x1514)) 0)))
  3.1370 +(let (($x1512 (v_b_Visited_G_0$ ?v1!3)))
  3.1371 +(let (($x2394 (not $x1512)))
  3.1372 +(let (($x2409 (or $x2394 $x1517 $x2048)))
  3.1373 +(let (($x3500 (forall ((?v0 B_Vertex$) )(!(let (($x136 (v_b_Visited_G_0$ ?v0)))
  3.1374 +(not $x136)) :pattern ( (v_b_Visited_G_0$ ?v0) )))
  3.1375 +))
  3.1376 +(let ((@x1468 (mp~ (and-elim @x1413 $x138) (nnf-pos (refl (~ $x137 $x137)) (~ $x138 $x138)) $x138)))
  3.1377 +(let ((@x3505 (mp @x1468 (quant-intro (refl (= $x137 $x137)) (= $x138 $x3500)) $x3500)))
  3.1378 +(let ((@x3073 (unit-resolution ((_ quant-inst ?v1!3) (or (not $x3500) $x2394)) @x3505 (hypothesis $x1512) false)))
  3.1379 +(let (($x2414 (not $x2409)))
  3.1380 +(let (($x3839 (or $x2414 $x3836)))
  3.1381 +(let (($x3842 (not $x3839)))
  3.1382 +(let (($x3515 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x907 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
  3.1383 +(let (($x136 (v_b_Visited_G_0$ ?v1)))
  3.1384 +(or $x136 (not (v_b_Visited_G_0$ ?v0)) $x907))) :pattern ( (v_b_Visited_G_0$ ?v1) (v_b_Visited_G_0$ ?v0) )))
  3.1385 +))
  3.1386 +(let (($x3520 (not $x3515)))
  3.1387 +(let (($x3845 (or $x3520 $x3842)))
  3.1388 +(let (($x3848 (not $x3845)))
  3.1389 +(let (($x1498 (>= (+ (v_b_SP_G_0$ ?v1!1) (* (- 1) (v_b_SP_G_0$ ?v0!2))) 0)))
  3.1390 +(let (($x1491 (v_b_Visited_G_0$ ?v0!2)))
  3.1391 +(let (($x2348 (not $x1491)))
  3.1392 +(let (($x1489 (v_b_Visited_G_0$ ?v1!1)))
  3.1393 +(let (($x2363 (or $x1489 $x2348 $x1498)))
  3.1394 +(let (($x2368 (not $x2363)))
  3.1395 +(let (($x3851 (or $x2368 $x3848)))
  3.1396 +(let (($x3854 (not $x3851)))
  3.1397 +(let (($x3506 (forall ((?v0 B_Vertex$) )(!(let ((?x128 (v_b_SP_G_0$ ?v0)))
  3.1398 +(>= ?x128 0)) :pattern ( (v_b_SP_G_0$ ?v0) )))
  3.1399 +))
  3.1400 +(let (($x3511 (not $x3506)))
  3.1401 +(let (($x3857 (or $x3511 $x3854)))
  3.1402 +(let (($x3860 (not $x3857)))
  3.1403 +(let ((?x1475 (v_b_SP_G_0$ ?v0!0)))
  3.1404 +(let (($x1476 (>= ?x1475 0)))
  3.1405 +(let (($x1477 (not $x1476)))
  3.1406 +(let ((@x5848 (hypothesis $x1477)))
  3.1407 +(let (($x5440 (<= ?x1475 0)))
  3.1408 +(let (($x86 (<= b_Infinity$ 0)))
  3.1409 +(let (($x87 (not $x86)))
  3.1410 +(let ((@x90 (mp (asserted (< 0 b_Infinity$)) (rewrite (= (< 0 b_Infinity$) $x87)) $x87)))
  3.1411 +(let (($x5734 (= b_Infinity$ ?x1475)))
  3.1412 +(let ((@x4994 (symm (commutativity (= $x5734 (= ?x1475 b_Infinity$))) (= (= ?x1475 b_Infinity$) $x5734))))
  3.1413 +(let (($x5461 (= ?x1475 b_Infinity$)))
  3.1414 +(let (($x5589 (= ?v0!0 b_Source$)))
  3.1415 +(let (($x4695 (not $x5589)))
  3.1416 +(let ((@x5096 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1475 0)) $x1476)) @x5848 (not (= ?x1475 0)))))
  3.1417 +(let (($x3487 (forall ((?v0 B_Vertex$) )(!(let (($x127 (= ?v0 b_Source$)))
  3.1418 +(let (($x132 (not $x127)))
  3.1419 +(or $x132 (= (v_b_SP_G_0$ ?v0) 0)))) :pattern ( (v_b_SP_G_0$ ?v0) )))
  3.1420 +))
  3.1421 +(let ((@x3491 (quant-intro (refl (= (or $x132 (= ?x128 0)) (or $x132 (= ?x128 0)))) (= $x354 $x3487))))
  3.1422 +(let ((@x1457 (nnf-pos (refl (~ (or $x132 (= ?x128 0)) (or $x132 (= ?x128 0)))) (~ $x354 $x354))))
  3.1423 +(let ((@x3492 (mp (mp~ (and-elim @x1413 $x354) @x1457 $x354) @x3491 $x3487)))
  3.1424 +(let (($x5571 (= (or (not $x3487) (or $x4695 (= ?x1475 0))) (or (not $x3487) $x4695 (= ?x1475 0)))))
  3.1425 +(let ((@x5058 (mp ((_ quant-inst ?v0!0) (or (not $x3487) (or $x4695 (= ?x1475 0)))) (rewrite $x5571) (or (not $x3487) $x4695 (= ?x1475 0)))))
  3.1426 +(let ((@x5156 (rewrite (= (or (not $x3493) (or $x5589 $x5461)) (or (not $x3493) $x5589 $x5461)))))
  3.1427 +(let ((@x5542 (mp ((_ quant-inst ?v0!0) (or (not $x3493) (or $x5589 $x5461))) @x5156 (or (not $x3493) $x5589 $x5461))))
  3.1428 +(let ((@x5003 (mp (unit-resolution @x5542 @x3498 (unit-resolution @x5058 @x3492 @x5096 $x4695) $x5461) @x4994 $x5734)))
  3.1429 +(let ((@x5457 ((_ th-lemma arith triangle-eq) (or (not $x5734) (<= (+ b_Infinity$ (* (- 1) ?x1475)) 0)))))
  3.1430 +(let ((@x5462 (unit-resolution @x5457 @x5003 (<= (+ b_Infinity$ (* (- 1) ?x1475)) 0))))
  3.1431 +(let ((@x5446 (lemma ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x5440) @x5462 @x90 false) (or (not $x5440) $x1476))))
  3.1432 +(let ((@x6353 (unit-resolution @x5446 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x5440 $x1476)) @x5848 $x5440) @x5848 false)))
  3.1433 +(let (($x3863 (or $x1477 $x3860)))
  3.1434 +(let (($x3866 (not $x3863)))
  3.1435 +(let (($x3869 (or $x869 $x3866)))
  3.1436 +(let (($x3872 (not $x3869)))
  3.1437 +(let (($x5983 (not $x3487)))
  3.1438 +(let (($x3194 (or $x5983 $x145)))
  3.1439 +(let ((@x5448 (monotonicity (rewrite (= (= b_Source$ b_Source$) true)) (= (not (= b_Source$ b_Source$)) (not true)))))
  3.1440 +(let ((@x5820 (trans @x5448 (rewrite (= (not true) false)) (= (not (= b_Source$ b_Source$)) false))))
  3.1441 +(let ((@x5657 (monotonicity @x5820 (= (or (not (= b_Source$ b_Source$)) $x145) (or false $x145)))))
  3.1442 +(let ((@x5707 (trans @x5657 (rewrite (= (or false $x145) $x145)) (= (or (not (= b_Source$ b_Source$)) $x145) $x145))))
  3.1443 +(let ((@x5373 (monotonicity @x5707 (= (or $x5983 (or (not (= b_Source$ b_Source$)) $x145)) $x3194))))
  3.1444 +(let ((@x5431 (trans @x5373 (rewrite (= $x3194 $x3194)) (= (or $x5983 (or (not (= b_Source$ b_Source$)) $x145)) $x3194))))
  3.1445 +(let ((@x5763 (mp ((_ quant-inst b_Source$) (or $x5983 (or (not (= b_Source$ b_Source$)) $x145))) @x5431 $x3194)))
  3.1446 +(let (($x3875 (or $x869 $x3872)))
  3.1447 +(let (($x2848 (forall ((?v1 B_Vertex$) )(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
  3.1448 +(let ((?x1912 (* (- 1) ?x1911)))
  3.1449 +(let ((?x273 (v_b_SP_G_2$ ?v1)))
  3.1450 +(let (($x2242 (= (+ ?x273 ?x1912 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
  3.1451 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  3.1452 +(let (($x300 (not $x291)))
  3.1453 +(or (>= (+ ?x273 ?x1912) 0) $x300 (not $x2242)))))))))
  3.1454 +))
  3.1455 +(let (($x2833 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x303 (v_b_SP_G_2$ ?v0)))
  3.1456 +(let ((?x1263 (* (- 1) ?x303)))
  3.1457 +(let ((?x273 (v_b_SP_G_2$ ?v1)))
  3.1458 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
  3.1459 +(let (($x1282 (>= (+ ?x155 ?x273 ?x1263) 0)))
  3.1460 +(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  3.1461 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  3.1462 +(let (($x300 (not $x291)))
  3.1463 +(or $x300 $x922 $x1282))))))))))
  3.1464 +))
  3.1465 +(let (($x2857 (not (or (not $x2833) $x1909 $x1914 (not $x2848)))))
  3.1466 +(let (($x2862 (or $x2811 $x2857)))
  3.1467 +(let (($x2788 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1262 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
  3.1468 +(let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0)))
  3.1469 +(let (($x2768 (not $x301)))
  3.1470 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  3.1471 +(or $x291 $x2768 $x1262))))))
  3.1472 +))
  3.1473 +(let (($x2871 (not (or (not $x2788) (not $x2862)))))
  3.1474 +(let (($x2876 (or $x2765 $x2871)))
  3.1475 +(let (($x2884 (not (or $x1259 (not $x2876)))))
  3.1476 +(let (($x2889 (or $x1848 $x2884)))
  3.1477 +(let (($x2897 (not (or $x773 (not $x2889)))))
  3.1478 +(let (($x2902 (or $x773 $x2897)))
  3.1479 +(let (($x2910 (not (or $x785 (not $x2902)))))
  3.1480 +(let (($x2915 (or $x1830 $x2910)))
  3.1481 +(let (($x2923 (not (or $x1250 (not $x2915)))))
  3.1482 +(let (($x2928 (or $x1813 $x2923)))
  3.1483 +(let (($x2742 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
  3.1484 +(let ((?x273 (v_b_SP_G_2$ ?v0)))
  3.1485 +(let (($x278 (= ?x273 ?x174)))
  3.1486 +(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
  3.1487 +(let ((?x1173 (* (- 1) ?x257)))
  3.1488 +(let (($x1175 (<= (+ ?x174 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
  3.1489 +(let (($x1169 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
  3.1490 +(let (($x2717 (or $x1169 $x1175)))
  3.1491 +(let (($x2718 (not $x2717)))
  3.1492 +(or $x2718 $x278)))))))))))
  3.1493 +))
  3.1494 +(let (($x2736 (forall ((?v0 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v0)))
  3.1495 +(let ((?x1186 (* (- 1) ?x273)))
  3.1496 +(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
  3.1497 +(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
  3.1498 +(let (($x1185 (= (+ ?x257 ?x268 ?x1186) 0)))
  3.1499 +(let (($x1175 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x257) (* (- 1) ?x268)) 0)))
  3.1500 +(let (($x1169 (<= (+ b_Infinity$ (* (- 1) ?x268)) 0)))
  3.1501 +(or $x1169 $x1175 $x1185)))))))))
  3.1502 +))
  3.1503 +(let (($x2939 (or $x1773 $x1778 $x255 $x1213 (not $x1209) $x2935 (not $x2736) (not $x2742) (not $x2928))))
  3.1504 +(let (($x2940 (not $x2939)))
  3.1505 +(let (($x2672 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  3.1506 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
  3.1507 +(let (($x1140 (>= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
  3.1508 +(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  3.1509 +(let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
  3.1510 +(or $x1099 $x922 $x1140)))))))
  3.1511 +))
  3.1512 +(let (($x2680 (not (or (not $x2672) $x246))))
  3.1513 +(let (($x2685 (or $x2650 $x2680)))
  3.1514 +(let (($x2628 (forall ((?v0 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
  3.1515 +(let ((?x2191 (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
  3.1516 +(let (($x2192 (= ?x2191 0)))
  3.1517 +(let (($x2176 (<= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
  3.1518 +(let (($x2617 (not (or $x2176 (not $x2192)))))
  3.1519 +(let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
  3.1520 +(let (($x127 (= ?v0 b_Source$)))
  3.1521 +(or $x127 $x1099 $x2617)))))))))
  3.1522 +))
  3.1523 +(let (($x2694 (not (or (not $x2628) (not $x2685)))))
  3.1524 +(let (($x2591 (forall ((?v1 B_Vertex$) )(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  3.1525 +(let ((?x1662 (* (- 1) ?x1661)))
  3.1526 +(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  3.1527 +(let (($x2148 (= (+ ?x230 ?x1662 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
  3.1528 +(or (>= (+ ?x230 ?x1662) 0) (not $x2148)))))))
  3.1529 +))
  3.1530 +(let (($x2599 (not (or $x1659 $x1664 (not $x2591)))))
  3.1531 +(let (($x2699 (or $x2599 $x2694)))
  3.1532 +(let (($x2576 (forall ((?v0 B_Vertex$) )(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  3.1533 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
  3.1534 +(or $x178 $x1002))))
  3.1535 +))
  3.1536 +(let (($x2712 (not (or (not $x2576) $x2706 $x2707 $x2708 $x2709 (not $x2699)))))
  3.1537 +(let (($x2945 (or $x2712 $x2940)))
  3.1538 +(let (($x2562 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
  3.1539 +(let ((?x2128 (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
  3.1540 +(let (($x2129 (= ?x2128 0)))
  3.1541 +(let (($x2113 (<= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0)))) 0)))
  3.1542 +(let (($x2551 (not (or $x2113 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0))) (not $x2129)))))
  3.1543 +(let (($x1002 (<= (+ b_Infinity$ (* (- 1) ?x174)) 0)))
  3.1544 +(let (($x127 (= ?v0 b_Source$)))
  3.1545 +(or $x127 $x1002 $x2551)))))))))
  3.1546 +))
  3.1547 +(let (($x2534 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
  3.1548 +(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
  3.1549 +(let (($x990 (>= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  3.1550 +(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  3.1551 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
  3.1552 +(let (($x179 (not $x178)))
  3.1553 +(or $x179 $x922 $x990))))))))
  3.1554 +))
  3.1555 +(let (($x2512 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
  3.1556 +(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  3.1557 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
  3.1558 +(or $x178 (not (fun_app$ v_b_Visited_G_1$ ?v0)) $x1015)))))
  3.1559 +))
  3.1560 +(let (($x2489 (forall ((?v0 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v0)))
  3.1561 +(let ((?x2090 (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
  3.1562 +(let (($x2091 (= ?x2090 0)))
  3.1563 +(let (($x2075 (<= (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0)))) 0)))
  3.1564 +(let (($x2478 (not (or $x2075 (not (v_b_Visited_G_0$ (?v1!6 ?v0))) (not $x2091)))))
  3.1565 +(let (($x947 (<= (+ b_Infinity$ (* (- 1) ?x128)) 0)))
  3.1566 +(let (($x127 (= ?v0 b_Source$)))
  3.1567 +(or $x127 $x947 $x2478)))))))))
  3.1568 +))
  3.1569 +(let (($x2958 (or (not $x2489) $x2952 (not $x1051) (not $x2512) (not $x2534) (not $x2562) (not $x2945))))
  3.1570 +(let (($x2959 (not $x2958)))
  3.1571 +(let (($x2451 (forall ((?v1 B_Vertex$) )(let ((?x1540 (v_b_SP_G_0$ ?v0!5)))
  3.1572 +(let ((?x1541 (* (- 1) ?x1540)))
  3.1573 +(let ((?x128 (v_b_SP_G_0$ ?v1)))
  3.1574 +(let (($x136 (v_b_Visited_G_0$ ?v1)))
  3.1575 +(let (($x137 (not $x136)))
  3.1576 +(or (>= (+ ?x128 ?x1541) 0) $x137 (not (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))))
  3.1577 +))
  3.1578 +(let (($x2459 (not (or $x1538 $x1543 (not $x2451)))))
  3.1579 +(let (($x2964 (or $x2459 $x2959)))
  3.1580 +(let (($x2436 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
  3.1581 +(let ((?x128 (v_b_SP_G_0$ ?v1)))
  3.1582 +(let (($x933 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x155) 0)))
  3.1583 +(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  3.1584 +(let (($x136 (v_b_Visited_G_0$ ?v1)))
  3.1585 +(let (($x137 (not $x136)))
  3.1586 +(or $x137 $x922 $x933))))))))
  3.1587 +))
  3.1588 +(let (($x2973 (not (or (not $x2436) (not $x2964)))))
  3.1589 +(let (($x2978 (or $x2414 $x2973)))
  3.1590 +(let (($x2391 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x907 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
  3.1591 +(let (($x136 (v_b_Visited_G_0$ ?v1)))
  3.1592 +(or $x136 (not (v_b_Visited_G_0$ ?v0)) $x907))))
  3.1593 +))
  3.1594 +(let (($x2987 (not (or (not $x2391) (not $x2978)))))
  3.1595 +(let (($x2992 (or $x2368 $x2987)))
  3.1596 +(let (($x3000 (not (or $x902 (not $x2992)))))
  3.1597 +(let (($x3005 (or $x1477 $x3000)))
  3.1598 +(let (($x3013 (not (or $x869 (not $x3005)))))
  3.1599 +(let (($x3018 (or $x869 $x3013)))
  3.1600 +(let (($x2837 (or (>= (+ ?x273 (* (- 1) ?x1911)) 0) $x300 (not (= (+ ?x273 (* (- 1) ?x1911) (b_G$ (pair$ ?0 ?v0!20))) 0)))))
  3.1601 +(let ((@x3736 (monotonicity (quant-intro (refl (= $x2837 $x2837)) (= $x2848 $x3729)) (= (not $x2848) $x3734))))
  3.1602 +(let ((@x3724 (quant-intro (refl (= (or $x300 $x922 $x1282) (or $x300 $x922 $x1282))) (= $x2833 $x3720))))
  3.1603 +(let ((@x3739 (monotonicity (monotonicity @x3724 (= (not $x2833) $x3725)) @x3736 (= (or (not $x2833) $x1909 $x1914 (not $x2848)) $x3737))))
  3.1604 +(let ((@x3748 (monotonicity (monotonicity (monotonicity @x3739 (= $x2857 $x3740)) (= $x2862 $x3743)) (= (not $x2862) $x3746))))
  3.1605 +(let ((@x3716 (quant-intro (refl (= (or $x291 (not $x301) $x1262) (or $x291 (not $x301) $x1262))) (= $x2788 $x3712))))
  3.1606 +(let ((@x3751 (monotonicity (monotonicity @x3716 (= (not $x2788) $x3717)) @x3748 (= (or (not $x2788) (not $x2862)) $x3749))))
  3.1607 +(let ((@x3760 (monotonicity (monotonicity (monotonicity @x3751 (= $x2871 $x3752)) (= $x2876 $x3755)) (= (not $x2876) $x3758))))
  3.1608 +(let ((@x3707 (quant-intro (refl (= (>= ?x273 0) (>= ?x273 0))) (= $x1256 $x3703))))
  3.1609 +(let ((@x3763 (monotonicity (monotonicity @x3707 (= $x1259 $x3708)) @x3760 (= (or $x1259 (not $x2876)) $x3761))))
  3.1610 +(let ((@x3772 (monotonicity (monotonicity (monotonicity @x3763 (= $x2884 $x3764)) (= $x2889 $x3767)) (= (not $x2889) $x3770))))
  3.1611 +(let ((@x3778 (monotonicity (monotonicity @x3772 (= (or $x773 (not $x2889)) $x3773)) (= $x2897 $x3776))))
  3.1612 +(let ((@x3784 (monotonicity (monotonicity @x3778 (= $x2902 $x3779)) (= (not $x2902) $x3782))))
  3.1613 +(let ((@x3699 (quant-intro (refl (= (or $x300 $x278) (or $x300 $x278))) (= $x652 $x3695))))
  3.1614 +(let ((@x3787 (monotonicity (monotonicity @x3699 (= $x785 $x3700)) @x3784 (= (or $x785 (not $x2902)) $x3785))))
  3.1615 +(let ((@x3796 (monotonicity (monotonicity (monotonicity @x3787 (= $x2910 $x3788)) (= $x2915 $x3791)) (= (not $x2915) $x3794))))
  3.1616 +(let ((@x3693 (monotonicity (quant-intro (refl (= $x1243 $x1243)) (= $x1247 $x3686)) (= $x1250 $x3691))))
  3.1617 +(let ((@x3802 (monotonicity (monotonicity @x3693 @x3796 (= (or $x1250 (not $x2915)) $x3797)) (= $x2923 $x3800))))
  3.1618 +(let ((@x3808 (monotonicity (monotonicity @x3802 (= $x2928 $x3803)) (= (not $x2928) $x3806))))
  3.1619 +(let ((@x3680 (refl (= (or (not (or $x1169 $x1175)) $x278) (or (not (or $x1169 $x1175)) $x278)))))
  3.1620 +(let ((@x3685 (monotonicity (quant-intro @x3680 (= $x2742 $x3678)) (= (not $x2742) $x3683))))
  3.1621 +(let ((@x3674 (quant-intro (refl (= (or $x1169 $x1175 $x1185) (or $x1169 $x1175 $x1185))) (= $x2736 $x3670))))
  3.1622 +(let ((@x3667 (monotonicity (quant-intro (refl (= $x1206 $x1206)) (= $x1209 $x3660)) (= (not $x1209) $x3665))))
  3.1623 +(let ((@x3811 (monotonicity @x3667 (monotonicity @x3674 (= (not $x2736) $x3675)) @x3685 @x3808 (= $x2939 $x3809))))
  3.1624 +(let ((@x3626 (quant-intro (refl (= (or $x1099 $x922 $x1140) (or $x1099 $x922 $x1140))) (= $x2672 $x3622))))
  3.1625 +(let ((@x3632 (monotonicity (monotonicity @x3626 (= (not $x2672) $x3627)) (= (or (not $x2672) $x246) $x3630))))
  3.1626 +(let ((@x3641 (monotonicity (monotonicity (monotonicity @x3632 (= $x2680 $x3633)) (= $x2685 $x3636)) (= (not $x2685) $x3639))))
  3.1627 +(let ((?x2191 (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?0) ?0))))))
  3.1628 +(let (($x2192 (= ?x2191 0)))
  3.1629 +(let (($x2176 (<= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?0)))) 0)))
  3.1630 +(let (($x2617 (not (or $x2176 (not $x2192)))))
  3.1631 +(let (($x2623 (or $x127 $x1099 $x2617)))
  3.1632 +(let ((@x3621 (monotonicity (quant-intro (refl (= $x2623 $x2623)) (= $x2628 $x3614)) (= (not $x2628) $x3619))))
  3.1633 +(let ((@x3647 (monotonicity (monotonicity @x3621 @x3641 (= (or (not $x2628) (not $x2685)) $x3642)) (= $x2694 $x3645))))
  3.1634 +(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  3.1635 +(let ((?x1662 (* (- 1) ?x1661)))
  3.1636 +(let (($x2148 (= (+ ?x230 ?x1662 (b_G$ (pair$ ?0 ?v0!8))) 0)))
  3.1637 +(let (($x2580 (or (>= (+ ?x230 ?x1662) 0) (not $x2148))))
  3.1638 +(let ((@x3607 (monotonicity (quant-intro (refl (= $x2580 $x2580)) (= $x2591 $x3600)) (= (not $x2591) $x3605))))
  3.1639 +(let ((@x3613 (monotonicity (monotonicity @x3607 (= (or $x1659 $x1664 (not $x2591)) $x3608)) (= $x2599 $x3611))))
  3.1640 +(let ((@x3653 (monotonicity (monotonicity @x3613 @x3647 (= $x2699 $x3648)) (= (not $x2699) $x3651))))
  3.1641 +(let ((@x3594 (quant-intro (refl (= (or $x178 $x1002) (or $x178 $x1002))) (= $x2576 $x3590))))
  3.1642 +(let ((@x3656 (monotonicity (monotonicity @x3594 (= (not $x2576) $x3595)) @x3653 (= (or (not $x2576) $x2706 $x2707 $x2708 $x2709 (not $x2699)) $x3654))))
  3.1643 +(let ((@x3817 (monotonicity (monotonicity @x3656 (= $x2712 $x3657)) (monotonicity @x3811 (= $x2940 $x3812)) (= $x2945 $x3815))))
  3.1644 +(let ((?x2128 (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?0) ?0))))))
  3.1645 +(let (($x2129 (= ?x2128 0)))
  3.1646 +(let (($x2113 (<= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?0)))) 0)))
  3.1647 +(let (($x2551 (not (or $x2113 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?0))) (not $x2129)))))
  3.1648 +(let (($x2557 (or $x127 $x1002 $x2551)))
  3.1649 +(let ((@x3588 (monotonicity (quant-intro (refl (= $x2557 $x2557)) (= $x2562 $x3581)) (= (not $x2562) $x3586))))
  3.1650 +(let ((@x3577 (quant-intro (refl (= (or $x179 $x922 $x990) (or $x179 $x922 $x990))) (= $x2534 $x3573))))
  3.1651 +(let ((@x3569 (quant-intro (refl (= (or $x178 (not $x180) $x1015) (or $x178 (not $x180) $x1015))) (= $x2512 $x3565))))
  3.1652 +(let ((@x3560 (quant-intro (refl (= (>= ?x174 0) (>= ?x174 0))) (= $x1051 $x3556))))
  3.1653 +(let ((?x2090 (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?0) ?0))))))
  3.1654 +(let (($x2091 (= ?x2090 0)))
  3.1655 +(let (($x2075 (<= (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?0)))) 0)))
  3.1656 +(let (($x2478 (not (or $x2075 (not (v_b_Visited_G_0$ (?v1!6 ?0))) (not $x2091)))))
  3.1657 +(let (($x947 (<= (+ b_Infinity$ (* (- 1) ?x128)) 0)))
  3.1658 +(let (($x2484 (or $x127 $x947 $x2478)))
  3.1659 +(let ((@x3554 (monotonicity (quant-intro (refl (= $x2484 $x2484)) (= $x2489 $x3547)) (= (not $x2489) $x3552))))
  3.1660 +(let ((@x3823 (monotonicity @x3554 (monotonicity @x3560 (= (not $x1051) $x3561)) (monotonicity @x3569 (= (not $x2512) $x3570)) (monotonicity @x3577 (= (not $x2534) $x3578)) @x3588 (monotonicity @x3817 (= (not $x2945) $x3818)) (= $x2958 $x3821))))
  3.1661 +(let (($x2440 (or (>= (+ ?x128 ?x1541) 0) $x137 (not (= (+ ?x128 ?x1541 (b_G$ (pair$ ?0 ?v0!5))) 0)))))
  3.1662 +(let ((@x3540 (monotonicity (quant-intro (refl (= $x2440 $x2440)) (= $x2451 $x3533)) (= (not $x2451) $x3538))))
  3.1663 +(let ((@x3546 (monotonicity (monotonicity @x3540 (= (or $x1538 $x1543 (not $x2451)) $x3541)) (= $x2459 $x3544))))
  3.1664 +(let ((@x3829 (monotonicity @x3546 (monotonicity @x3823 (= $x2959 $x3824)) (= $x2964 $x3827))))
  3.1665 +(let ((@x3528 (quant-intro (refl (= (or $x137 $x922 $x933) (or $x137 $x922 $x933))) (= $x2436 $x3524))))
  3.1666 +(let ((@x3835 (monotonicity (monotonicity @x3528 (= (not $x2436) $x3529)) (monotonicity @x3829 (= (not $x2964) $x3830)) (= (or (not $x2436) (not $x2964)) $x3833))))
  3.1667 +(let ((@x3844 (monotonicity (monotonicity (monotonicity @x3835 (= $x2973 $x3836)) (= $x2978 $x3839)) (= (not $x2978) $x3842))))
  3.1668 +(let ((@x3519 (quant-intro (refl (= (or $x136 (not $x148) $x907) (or $x136 (not $x148) $x907))) (= $x2391 $x3515))))
  3.1669 +(let ((@x3847 (monotonicity (monotonicity @x3519 (= (not $x2391) $x3520)) @x3844 (= (or (not $x2391) (not $x2978)) $x3845))))
  3.1670 +(let ((@x3856 (monotonicity (monotonicity (monotonicity @x3847 (= $x2987 $x3848)) (= $x2992 $x3851)) (= (not $x2992) $x3854))))
  3.1671 +(let ((@x3510 (quant-intro (refl (= (>= ?x128 0) (>= ?x128 0))) (= $x899 $x3506))))
  3.1672 +(let ((@x3859 (monotonicity (monotonicity @x3510 (= $x902 $x3511)) @x3856 (= (or $x902 (not $x2992)) $x3857))))
  3.1673 +(let ((@x3868 (monotonicity (monotonicity (monotonicity @x3859 (= $x3000 $x3860)) (= $x3005 $x3863)) (= (not $x3005) $x3866))))
  3.1674 +(let ((@x3874 (monotonicity (monotonicity @x3868 (= (or $x869 (not $x3005)) $x3869)) (= $x3013 $x3872))))
  3.1675 +(let (($x2251 (forall ((?v1 B_Vertex$) )(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
  3.1676 +(let ((?x1912 (* (- 1) ?x1911)))
  3.1677 +(let ((?x273 (v_b_SP_G_2$ ?v1)))
  3.1678 +(let (($x2242 (= (+ ?x273 ?x1912 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
  3.1679 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  3.1680 +(let (($x2245 (and (not (>= (+ ?x273 ?x1912) 0)) $x291 $x2242)))
  3.1681 +(not $x2245))))))))
  3.1682 +))
  3.1683 +(let (($x1915 (not $x1914)))
  3.1684 +(let (($x1910 (not $x1909)))
  3.1685 +(let (($x2260 (and $x1289 $x1910 $x1915 $x2251)))
  3.1686 +(let (($x1891 (not (and $x1883 (not $x1888)))))
  3.1687 +(let (($x1897 (or $x1891 $x1896)))
  3.1688 +(let (($x1898 (not $x1897)))
  3.1689 +(let (($x2265 (or $x1898 $x2260)))
  3.1690 +(let (($x2268 (and $x1270 $x2265)))
  3.1691 +(let (($x1864 (not (and (not $x1860) $x1862))))
  3.1692 +(let (($x1870 (or $x1864 $x1869)))
  3.1693 +(let (($x1871 (not $x1870)))
  3.1694 +(let (($x2271 (or $x1871 $x2268)))
  3.1695 +(let (($x2274 (and $x1256 $x2271)))
  3.1696 +(let (($x2277 (or $x1848 $x2274)))
  3.1697 +(let (($x2280 (and $x297 $x2277)))
  3.1698 +(let (($x2283 (or $x773 $x2280)))
  3.1699 +(let (($x2286 (and $x652 $x2283)))
  3.1700 +(let (($x2289 (or $x1830 $x2286)))
  3.1701 +(let (($x2292 (and $x1247 $x2289)))
  3.1702 +(let (($x2295 (or $x1813 $x2292)))
  3.1703 +(let (($x1779 (not $x1778)))
  3.1704 +(let (($x1774 (not $x1773)))
  3.1705 +(let (($x2301 (and $x1774 $x1779 $x256 $x1214 $x1209 $x266 $x1193 $x1199 $x2295)))
  3.1706 +(let (($x1749 (not $x246)))
  3.1707 +(let (($x1752 (and $x1146 $x1749)))
  3.1708 +(let (($x1733 (not (and (not $x1724) (not $x1730)))))
  3.1709 +(let (($x2212 (or $x1733 $x2209)))
  3.1710 +(let (($x2215 (not $x2212)))
  3.1711 +(let (($x2218 (or $x2215 $x1752)))
  3.1712 +(let (($x2203 (forall ((?v0 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
  3.1713 +(let ((?x2191 (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
  3.1714 +(let (($x2192 (= ?x2191 0)))
  3.1715 +(let (($x2176 (<= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
  3.1716 +(let (($x2197 (and (not $x2176) $x2192)))
  3.1717 +(let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
  3.1718 +(let (($x1100 (not $x1099)))
  3.1719 +(let (($x127 (= ?v0 b_Source$)))
  3.1720 +(let (($x132 (not $x127)))
  3.1721 +(let (($x1103 (and $x132 $x1100)))
  3.1722 +(let (($x1106 (not $x1103)))
  3.1723 +(or $x1106 $x2197)))))))))))))
  3.1724 +))
  3.1725 +(let (($x2221 (and $x2203 $x2218)))
  3.1726 +(let (($x2157 (forall ((?v1 B_Vertex$) )(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  3.1727 +(let ((?x1662 (* (- 1) ?x1661)))
  3.1728 +(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  3.1729 +(let (($x2148 (= (+ ?x230 ?x1662 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
  3.1730 +(let (($x2151 (and (not (>= (+ ?x230 ?x1662) 0)) $x2148)))
  3.1731 +(not $x2151)))))))
  3.1732 +))
  3.1733 +(let (($x1665 (not $x1664)))
  3.1734 +(let (($x1660 (not $x1659)))
  3.1735 +(let (($x2163 (and $x1660 $x1665 $x2157)))
  3.1736 +(let (($x2224 (or $x2163 $x2221)))
  3.1737 +(let (($x1641 (forall ((?v0 B_Vertex$) )(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  3.1738 +(let (($x1003 (not $x1002)))
  3.1739 +(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
  3.1740 +(let (($x179 (not $x178)))
  3.1741 +(let (($x1077 (and $x179 $x1003)))
  3.1742 +(not $x1077)))))))
  3.1743 +))
  3.1744 +(let (($x2230 (and $x1641 $x212 $x215 $x217 $x220 $x2224)))
  3.1745 +(let (($x2306 (or $x2230 $x2301)))
  3.1746 +(let (($x2140 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
  3.1747 +(let ((?x2128 (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
  3.1748 +(let (($x2129 (= ?x2128 0)))
  3.1749 +(let ((?x1613 (?v1!7 ?v0)))
  3.1750 +(let (($x1618 (fun_app$ v_b_Visited_G_1$ ?x1613)))
  3.1751 +(let (($x2134 (and (not (<= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?x1613))) 0)) $x1618 $x2129)))
  3.1752 +(let (($x1002 (<= (+ b_Infinity$ (* (- 1) ?x174)) 0)))
  3.1753 +(let (($x1003 (not $x1002)))
  3.1754 +(let (($x127 (= ?v0 b_Source$)))
  3.1755 +(let (($x132 (not $x127)))
  3.1756 +(let (($x1006 (and $x132 $x1003)))
  3.1757 +(let (($x1009 (not $x1006)))
  3.1758 +(or $x1009 $x2134))))))))))))))
  3.1759 +))
  3.1760 +(let (($x2102 (forall ((?v0 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v0)))
  3.1761 +(let ((?x2090 (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
  3.1762 +(let (($x2091 (= ?x2090 0)))
  3.1763 +(let ((?x1578 (?v1!6 ?v0)))
  3.1764 +(let (($x1583 (v_b_Visited_G_0$ ?x1578)))
  3.1765 +(let (($x2096 (and (not (<= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?x1578))) 0)) $x1583 $x2091)))
  3.1766 +(let (($x127 (= ?v0 b_Source$)))
  3.1767 +(let (($x132 (not $x127)))
  3.1768 +(let (($x951 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) ?x128)) 0)))))
  3.1769 +(let (($x954 (not $x951)))
  3.1770 +(or $x954 $x2096))))))))))))
  3.1771 +))
  3.1772 +(let (($x2315 (and $x2102 $x173 $x1051 $x1045 $x997 $x2140 $x2306)))
  3.1773 +(let (($x1567 (forall ((?v1 B_Vertex$) )(let ((?x1540 (v_b_SP_G_0$ ?v0!5)))
  3.1774 +(let ((?x1541 (* (- 1) ?x1540)))
  3.1775 +(let ((?x128 (v_b_SP_G_0$ ?v1)))
  3.1776 +(let (($x136 (v_b_Visited_G_0$ ?v1)))
  3.1777 +(let (($x1554 (and (not (>= (+ ?x128 ?x1541) 0)) $x136 (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0))))
  3.1778 +(not $x1554)))))))
  3.1779 +))
  3.1780 +(let (($x2062 (and $x1539 $x1544 $x1567)))
  3.1781 +(let (($x2320 (or $x2062 $x2315)))
  3.1782 +(let (($x2323 (and $x939 $x2320)))
  3.1783 +(let (($x1520 (not (and $x1512 (not $x1517)))))
  3.1784 +(let (($x2051 (or $x1520 $x2048)))
  3.1785 +(let (($x2054 (not $x2051)))
  3.1786 +(let (($x2326 (or $x2054 $x2323)))
  3.1787 +(let (($x2329 (and $x914 $x2326)))
  3.1788 +(let (($x1493 (not (and (not $x1489) $x1491))))
  3.1789 +(let (($x1499 (or $x1493 $x1498)))
  3.1790 +(let (($x1500 (not $x1499)))
  3.1791 +(let (($x2332 (or $x1500 $x2329)))
  3.1792 +(let (($x2335 (and $x899 $x2332)))
  3.1793 +(let (($x2338 (or $x1477 $x2335)))
  3.1794 +(let (($x2341 (and $x145 $x2338)))
  3.1795 +(let (($x2344 (or $x869 $x2341)))
  3.1796 +(let ((@x2942 (rewrite (= (and $x1774 $x1779 $x256 $x1214 $x1209 $x266 $x2736 $x2742 $x2928) $x2940))))
  3.1797 +(let (($x2242 (= (+ ?x273 (* (- 1) ?x1911) (b_G$ (pair$ ?0 ?v0!20))) 0)))
  3.1798 +(let (($x2245 (and (not (>= (+ ?x273 (* (- 1) ?x1911)) 0)) $x291 $x2242)))
  3.1799 +(let (($x2248 (not $x2245)))
  3.1800 +(let ((@x2843 (monotonicity (rewrite (= $x2245 (not $x2837))) (= $x2248 (not (not $x2837))))))
  3.1801 +(let ((@x2850 (quant-intro (trans @x2843 (rewrite (= (not (not $x2837)) $x2837)) (= $x2248 $x2837)) (= $x2251 $x2848))))
  3.1802 +(let ((@x2820 (monotonicity (rewrite (= $x1276 (not (or $x300 $x922)))) (= $x1279 (not (not (or $x300 $x922)))))))
  3.1803 +(let ((@x2824 (trans @x2820 (rewrite (= (not (not (or $x300 $x922))) (or $x300 $x922))) (= $x1279 (or $x300 $x922)))))
  3.1804 +(let ((@x2832 (trans (monotonicity @x2824 (= $x1286 (or (or $x300 $x922) $x1282))) (rewrite (= (or (or $x300 $x922) $x1282) (or $x300 $x922 $x1282))) (= $x1286 (or $x300 $x922 $x1282)))))
  3.1805 +(let ((@x2853 (monotonicity (quant-intro @x2832 (= $x1289 $x2833)) @x2850 (= $x2260 (and $x2833 $x1910 $x1915 $x2848)))))
  3.1806 +(let ((@x2861 (trans @x2853 (rewrite (= (and $x2833 $x1910 $x1915 $x2848) $x2857)) (= $x2260 $x2857))))
  3.1807 +(let ((@x2798 (monotonicity (rewrite (= (and $x1883 (not $x1888)) (not (or $x2791 $x1888)))) (= $x1891 (not (not (or $x2791 $x1888)))))))
  3.1808 +(let ((@x2802 (trans @x2798 (rewrite (= (not (not (or $x2791 $x1888))) (or $x2791 $x1888))) (= $x1891 (or $x2791 $x1888)))))
  3.1809 +(let ((@x2810 (trans (monotonicity @x2802 (= $x1897 (or (or $x2791 $x1888) $x1896))) (rewrite (= (or (or $x2791 $x1888) $x1896) $x2806)) (= $x1897 $x2806))))
  3.1810 +(let ((@x2864 (monotonicity (monotonicity @x2810 (= $x1898 $x2811)) @x2861 (= $x2265 $x2862))))
  3.1811 +(let ((@x2785 (rewrite (= (or (or $x291 (not $x301)) $x1262) (or $x291 (not $x301) $x1262)))))
  3.1812 +(let ((@x2777 (rewrite (= (not (not (or $x291 (not $x301)))) (or $x291 (not $x301))))))
  3.1813 +(let ((@x2775 (monotonicity (rewrite (= $x302 (not (or $x291 (not $x301))))) (= $x664 (not (not (or $x291 (not $x301))))))))
  3.1814 +(let ((@x2782 (monotonicity (trans @x2775 @x2777 (= $x664 (or $x291 (not $x301)))) (= $x1267 (or (or $x291 (not $x301)) $x1262)))))
  3.1815 +(let ((@x2790 (quant-intro (trans @x2782 @x2785 (= $x1267 (or $x291 (not $x301) $x1262))) (= $x1270 $x2788))))
  3.1816 +(let ((@x2875 (trans (monotonicity @x2790 @x2864 (= $x2268 (and $x2788 $x2862))) (rewrite (= (and $x2788 $x2862) $x2871)) (= $x2268 $x2871))))
  3.1817 +(let ((@x2752 (monotonicity (rewrite (= (and (not $x1860) $x1862) (not (or $x1860 $x2745)))) (= $x1864 (not (not (or $x1860 $x2745)))))))
  3.1818 +(let ((@x2756 (trans @x2752 (rewrite (= (not (not (or $x1860 $x2745))) (or $x1860 $x2745))) (= $x1864 (or $x1860 $x2745)))))
  3.1819 +(let ((@x2764 (trans (monotonicity @x2756 (= $x1870 (or (or $x1860 $x2745) $x1869))) (rewrite (= (or (or $x1860 $x2745) $x1869) $x2760)) (= $x1870 $x2760))))
  3.1820 +(let ((@x2878 (monotonicity (monotonicity @x2764 (= $x1871 $x2765)) @x2875 (= $x2271 $x2876))))
  3.1821 +(let ((@x2888 (trans (monotonicity @x2878 (= $x2274 (and $x1256 $x2876))) (rewrite (= (and $x1256 $x2876) $x2884)) (= $x2274 $x2884))))
  3.1822 +(let ((@x2894 (monotonicity (monotonicity @x2888 (= $x2277 $x2889)) (= $x2280 (and $x297 $x2889)))))
  3.1823 +(let ((@x2904 (monotonicity (trans @x2894 (rewrite (= (and $x297 $x2889) $x2897)) (= $x2280 $x2897)) (= $x2283 $x2902))))
  3.1824 +(let ((@x2914 (trans (monotonicity @x2904 (= $x2286 (and $x652 $x2902))) (rewrite (= (and $x652 $x2902) $x2910)) (= $x2286 $x2910))))
  3.1825 +(let ((@x2920 (monotonicity (monotonicity @x2914 (= $x2289 $x2915)) (= $x2292 (and $x1247 $x2915)))))
  3.1826 +(let ((@x2930 (monotonicity (trans @x2920 (rewrite (= (and $x1247 $x2915) $x2923)) (= $x2292 $x2923)) (= $x2295 $x2928))))
  3.1827 +(let ((@x2741 (monotonicity (rewrite (= $x1179 (not (or $x1169 $x1175)))) (= $x1196 (or (not (or $x1169 $x1175)) $x278)))))
  3.1828 +(let ((@x2723 (monotonicity (rewrite (= $x1179 (not (or $x1169 $x1175)))) (= $x1182 (not (not (or $x1169 $x1175)))))))
  3.1829 +(let ((@x2727 (trans @x2723 (rewrite (= (not (not (or $x1169 $x1175))) (or $x1169 $x1175))) (= $x1182 (or $x1169 $x1175)))))
  3.1830 +(let ((@x2735 (trans (monotonicity @x2727 (= $x1190 (or (or $x1169 $x1175) $x1185))) (rewrite (= (or (or $x1169 $x1175) $x1185) (or $x1169 $x1175 $x1185))) (= $x1190 (or $x1169 $x1175 $x1185)))))
  3.1831 +(let ((@x2933 (monotonicity (quant-intro @x2735 (= $x1193 $x2736)) (quant-intro @x2741 (= $x1199 $x2742)) @x2930 (= $x2301 (and $x1774 $x1779 $x256 $x1214 $x1209 $x266 $x2736 $x2742 $x2928)))))
  3.1832 +(let ((@x2659 (monotonicity (rewrite (= $x1134 (not (or $x1099 $x922)))) (= $x1137 (not (not (or $x1099 $x922)))))))
  3.1833 +(let ((@x2663 (trans @x2659 (rewrite (= (not (not (or $x1099 $x922))) (or $x1099 $x922))) (= $x1137 (or $x1099 $x922)))))
  3.1834 +(let ((@x2671 (trans (monotonicity @x2663 (= $x1143 (or (or $x1099 $x922) $x1140))) (rewrite (= (or (or $x1099 $x922) $x1140) (or $x1099 $x922 $x1140))) (= $x1143 (or $x1099 $x922 $x1140)))))
  3.1835 +(let ((@x2677 (monotonicity (quant-intro @x2671 (= $x1146 $x2672)) (= $x1752 (and $x2672 $x1749)))))
  3.1836 +(let ((@x2637 (monotonicity (rewrite (= (and (not $x1724) (not $x1730)) (not (or $x1724 $x1730)))) (= $x1733 (not (not (or $x1724 $x1730)))))))
  3.1837 +(let ((@x2641 (trans @x2637 (rewrite (= (not (not (or $x1724 $x1730))) (or $x1724 $x1730))) (= $x1733 (or $x1724 $x1730)))))
  3.1838 +(let ((@x2649 (trans (monotonicity @x2641 (= $x2212 (or (or $x1724 $x1730) $x2209))) (rewrite (= (or (or $x1724 $x1730) $x2209) $x2645)) (= $x2212 $x2645))))
  3.1839 +(let ((@x2687 (monotonicity (monotonicity @x2649 (= $x2215 $x2650)) (trans @x2677 (rewrite (= (and $x2672 $x1749) $x2680)) (= $x1752 $x2680)) (= $x2218 $x2685))))
  3.1840 +(let ((@x2610 (monotonicity (rewrite (= $x1103 (not (or $x127 $x1099)))) (= $x1106 (not (not (or $x127 $x1099)))))))
  3.1841 +(let ((@x2614 (trans @x2610 (rewrite (= (not (not (or $x127 $x1099))) (or $x127 $x1099))) (= $x1106 (or $x127 $x1099)))))
  3.1842 +(let ((@x2622 (monotonicity @x2614 (rewrite (= (and (not $x2176) $x2192) $x2617)) (= (or $x1106 (and (not $x2176) $x2192)) (or (or $x127 $x1099) $x2617)))))
  3.1843 +(let ((@x2627 (trans @x2622 (rewrite (= (or (or $x127 $x1099) $x2617) $x2623)) (= (or $x1106 (and (not $x2176) $x2192)) $x2623))))
  3.1844 +(let ((@x2690 (monotonicity (quant-intro @x2627 (= $x2203 $x2628)) @x2687 (= $x2221 (and $x2628 $x2685)))))
  3.1845 +(let (($x2151 (and (not (>= (+ ?x230 ?x1662) 0)) $x2148)))
  3.1846 +(let (($x2154 (not $x2151)))
  3.1847 +(let ((@x2586 (monotonicity (rewrite (= $x2151 (not $x2580))) (= $x2154 (not (not $x2580))))))
  3.1848 +(let ((@x2593 (quant-intro (trans @x2586 (rewrite (= (not (not $x2580)) $x2580)) (= $x2154 $x2580)) (= $x2157 $x2591))))
  3.1849 +(let ((@x2603 (trans (monotonicity @x2593 (= $x2163 (and $x1660 $x1665 $x2591))) (rewrite (= (and $x1660 $x1665 $x2591) $x2599)) (= $x2163 $x2599))))
  3.1850 +(let ((@x2701 (monotonicity @x2603 (trans @x2690 (rewrite (= (and $x2628 $x2685) $x2694)) (= $x2221 $x2694)) (= $x2224 $x2699))))
  3.1851 +(let ((@x2571 (monotonicity (rewrite (= $x1077 (not (or $x178 $x1002)))) (= (not $x1077) (not (not (or $x178 $x1002)))))))
  3.1852 +(let ((@x2575 (trans @x2571 (rewrite (= (not (not (or $x178 $x1002))) (or $x178 $x1002))) (= (not $x1077) (or $x178 $x1002)))))
  3.1853 +(let ((@x2704 (monotonicity (quant-intro @x2575 (= $x1641 $x2576)) @x2701 (= $x2230 (and $x2576 $x212 $x215 $x217 $x220 $x2699)))))
  3.1854 +(let ((@x2716 (trans @x2704 (rewrite (= (and $x2576 $x212 $x215 $x217 $x220 $x2699) $x2712)) (= $x2230 $x2712))))
  3.1855 +(let ((?x1613 (?v1!7 ?0)))
  3.1856 +(let (($x1618 (fun_app$ v_b_Visited_G_1$ ?x1613)))
  3.1857 +(let (($x2134 (and (not $x2113) $x1618 $x2129)))
  3.1858 +(let (($x2137 (or $x1009 $x2134)))
  3.1859 +(let ((@x2543 (monotonicity (rewrite (= $x1006 (not (or $x127 $x1002)))) (= $x1009 (not (not (or $x127 $x1002)))))))
  3.1860 +(let ((@x2547 (trans @x2543 (rewrite (= (not (not (or $x127 $x1002))) (or $x127 $x1002))) (= $x1009 (or $x127 $x1002)))))
  3.1861 +(let ((@x2556 (monotonicity @x2547 (rewrite (= $x2134 $x2551)) (= $x2137 (or (or $x127 $x1002) $x2551)))))
  3.1862 +(let ((@x2561 (trans @x2556 (rewrite (= (or (or $x127 $x1002) $x2551) $x2557)) (= $x2137 $x2557))))
  3.1863 +(let ((@x2521 (monotonicity (rewrite (= $x983 (not (or $x179 $x922)))) (= $x986 (not (not (or $x179 $x922)))))))
  3.1864 +(let ((@x2525 (trans @x2521 (rewrite (= (not (not (or $x179 $x922))) (or $x179 $x922))) (= $x986 (or $x179 $x922)))))
  3.1865 +(let ((@x2533 (trans (monotonicity @x2525 (= $x994 (or (or $x179 $x922) $x990))) (rewrite (= (or (or $x179 $x922) $x990) (or $x179 $x922 $x990))) (= $x994 (or $x179 $x922 $x990)))))
  3.1866 +(let ((@x2509 (rewrite (= (or (or $x178 (not $x180)) $x1015) (or $x178 (not $x180) $x1015)))))
  3.1867 +(let ((@x2501 (rewrite (= (not (not (or $x178 (not $x180)))) (or $x178 (not $x180))))))
  3.1868 +(let ((@x2499 (monotonicity (rewrite (= $x181 (not (or $x178 (not $x180))))) (= $x403 (not (not (or $x178 (not $x180))))))))
  3.1869 +(let ((@x2506 (monotonicity (trans @x2499 @x2501 (= $x403 (or $x178 (not $x180)))) (= $x1042 (or (or $x178 (not $x180)) $x1015)))))
  3.1870 +(let ((@x2514 (quant-intro (trans @x2506 @x2509 (= $x1042 (or $x178 (not $x180) $x1015))) (= $x1045 $x2512))))
  3.1871 +(let ((?x1578 (?v1!6 ?0)))
  3.1872 +(let (($x1583 (v_b_Visited_G_0$ ?x1578)))
  3.1873 +(let (($x2096 (and (not $x2075) $x1583 $x2091)))
  3.1874 +(let (($x2099 (or $x954 $x2096)))
  3.1875 +(let ((@x2470 (monotonicity (rewrite (= $x951 (not (or $x127 $x947)))) (= $x954 (not (not (or $x127 $x947)))))))
  3.1876 +(let ((@x2474 (trans @x2470 (rewrite (= (not (not (or $x127 $x947))) (or $x127 $x947))) (= $x954 (or $x127 $x947)))))
  3.1877 +(let ((@x2483 (monotonicity @x2474 (rewrite (= $x2096 $x2478)) (= $x2099 (or (or $x127 $x947) $x2478)))))
  3.1878 +(let ((@x2488 (trans @x2483 (rewrite (= (or (or $x127 $x947) $x2478) $x2484)) (= $x2099 $x2484))))
  3.1879 +(let ((@x2950 (monotonicity (quant-intro @x2488 (= $x2102 $x2489)) @x2514 (quant-intro @x2533 (= $x997 $x2534)) (quant-intro @x2561 (= $x2140 $x2562)) (monotonicity @x2716 (trans @x2933 @x2942 (= $x2301 $x2940)) (= $x2306 $x2945)) (= $x2315 (and $x2489 $x173 $x1051 $x2512 $x2534 $x2562 $x2945)))))
  3.1880 +(let ((@x2963 (trans @x2950 (rewrite (= (and $x2489 $x173 $x1051 $x2512 $x2534 $x2562 $x2945) $x2959)) (= $x2315 $x2959))))
  3.1881 +(let (($x1554 (and (not (>= (+ ?x128 ?x1541) 0)) $x136 (= (+ ?x128 ?x1541 (b_G$ (pair$ ?0 ?v0!5))) 0))))
  3.1882 +(let (($x1564 (not $x1554)))
  3.1883 +(let ((@x2446 (monotonicity (rewrite (= $x1554 (not $x2440))) (= $x1564 (not (not $x2440))))))
  3.1884 +(let ((@x2453 (quant-intro (trans @x2446 (rewrite (= (not (not $x2440)) $x2440)) (= $x1564 $x2440)) (= $x1567 $x2451))))
  3.1885 +(let ((@x2463 (trans (monotonicity @x2453 (= $x2062 (and $x1539 $x1544 $x2451))) (rewrite (= (and $x1539 $x1544 $x2451) $x2459)) (= $x2062 $x2459))))
  3.1886 +(let ((@x2423 (monotonicity (rewrite (= $x926 (not (or $x137 $x922)))) (= $x929 (not (not (or $x137 $x922)))))))
  3.1887 +(let ((@x2427 (trans @x2423 (rewrite (= (not (not (or $x137 $x922))) (or $x137 $x922))) (= $x929 (or $x137 $x922)))))
  3.1888 +(let ((@x2435 (trans (monotonicity @x2427 (= $x936 (or (or $x137 $x922) $x933))) (rewrite (= (or (or $x137 $x922) $x933) (or $x137 $x922 $x933))) (= $x936 (or $x137 $x922 $x933)))))
  3.1889 +(let ((@x2969 (monotonicity (quant-intro @x2435 (= $x939 $x2436)) (monotonicity @x2463 @x2963 (= $x2320 $x2964)) (= $x2323 (and $x2436 $x2964)))))
  3.1890 +(let ((@x2401 (monotonicity (rewrite (= (and $x1512 (not $x1517)) (not (or $x2394 $x1517)))) (= $x1520 (not (not (or $x2394 $x1517)))))))
  3.1891 +(let ((@x2405 (trans @x2401 (rewrite (= (not (not (or $x2394 $x1517))) (or $x2394 $x1517))) (= $x1520 (or $x2394 $x1517)))))
  3.1892 +(let ((@x2413 (trans (monotonicity @x2405 (= $x2051 (or (or $x2394 $x1517) $x2048))) (rewrite (= (or (or $x2394 $x1517) $x2048) $x2409)) (= $x2051 $x2409))))
  3.1893 +(let ((@x2980 (monotonicity (monotonicity @x2413 (= $x2054 $x2414)) (trans @x2969 (rewrite (= (and $x2436 $x2964) $x2973)) (= $x2323 $x2973)) (= $x2326 $x2978))))
  3.1894 +(let ((@x2388 (rewrite (= (or (or $x136 (not $x148)) $x907) (or $x136 (not $x148) $x907)))))
  3.1895 +(let ((@x2380 (rewrite (= (not (not (or $x136 (not $x148)))) (or $x136 (not $x148))))))
  3.1896 +(let ((@x2378 (monotonicity (rewrite (= $x149 (not (or $x136 (not $x148))))) (= $x382 (not (not (or $x136 (not $x148))))))))
  3.1897 +(let ((@x2385 (monotonicity (trans @x2378 @x2380 (= $x382 (or $x136 (not $x148)))) (= $x911 (or (or $x136 (not $x148)) $x907)))))
  3.1898 +(let ((@x2393 (quant-intro (trans @x2385 @x2388 (= $x911 (or $x136 (not $x148) $x907))) (= $x914 $x2391))))
  3.1899 +(let ((@x2991 (trans (monotonicity @x2393 @x2980 (= $x2329 (and $x2391 $x2978))) (rewrite (= (and $x2391 $x2978) $x2987)) (= $x2329 $x2987))))
  3.1900 +(let ((@x2355 (monotonicity (rewrite (= (and (not $x1489) $x1491) (not (or $x1489 $x2348)))) (= $x1493 (not (not (or $x1489 $x2348)))))))
  3.1901 +(let ((@x2359 (trans @x2355 (rewrite (= (not (not (or $x1489 $x2348))) (or $x1489 $x2348))) (= $x1493 (or $x1489 $x2348)))))
  3.1902 +(let ((@x2367 (trans (monotonicity @x2359 (= $x1499 (or (or $x1489 $x2348) $x1498))) (rewrite (= (or (or $x1489 $x2348) $x1498) $x2363)) (= $x1499 $x2363))))
  3.1903 +(let ((@x2994 (monotonicity (monotonicity @x2367 (= $x1500 $x2368)) @x2991 (= $x2332 $x2992))))
  3.1904 +(let ((@x3004 (trans (monotonicity @x2994 (= $x2335 (and $x899 $x2992))) (rewrite (= (and $x899 $x2992) $x3000)) (= $x2335 $x3000))))
  3.1905 +(let ((@x3010 (monotonicity (monotonicity @x3004 (= $x2338 $x3005)) (= $x2341 (and $x145 $x3005)))))
  3.1906 +(let ((@x3020 (monotonicity (trans @x3010 (rewrite (= (and $x145 $x3005) $x3013)) (= $x2341 $x3013)) (= $x2344 $x3018))))
  3.1907 +(let (($x1938 (forall ((?v1 B_Vertex$) )(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
  3.1908 +(let ((?x1912 (* (- 1) ?x1911)))
  3.1909 +(let ((?x273 (v_b_SP_G_2$ ?v1)))
  3.1910 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  3.1911 +(let (($x1925 (and (not (>= (+ ?x273 ?x1912) 0)) $x291 (= (+ (b_G$ (pair$ ?v1 ?v0!20)) ?x273 ?x1912) 0))))
  3.1912 +(not $x1925)))))))
  3.1913 +))
  3.1914 +(let (($x1932 (not (not (and $x1910 $x1915)))))
  3.1915 +(let (($x1942 (and $x1932 $x1938)))
  3.1916 +(let (($x1947 (and $x1289 $x1942)))
  3.1917 +(let (($x1951 (or $x1898 $x1947)))
  3.1918 +(let (($x1955 (and $x1270 $x1951)))
  3.1919 +(let (($x1959 (or $x1871 $x1955)))
  3.1920 +(let (($x1963 (and $x1256 $x1959)))
  3.1921 +(let (($x1967 (or $x1848 $x1963)))
  3.1922 +(let (($x1842 (not $x773)))
  3.1923 +(let (($x1971 (and $x1842 $x1967)))
  3.1924 +(let (($x1975 (or $x773 $x1971)))
  3.1925 +(let (($x1979 (and $x652 $x1975)))
  3.1926 +(let (($x1983 (or $x1830 $x1979)))
  3.1927 +(let (($x1987 (and $x1247 $x1983)))
  3.1928 +(let (($x1991 (or $x1813 $x1987)))
  3.1929 +(let (($x1801 (and (and $x1774 $x1779) $x256 $x1214 $x1209 $x266 $x1193 $x1199)))
  3.1930 +(let (($x1995 (and $x1801 $x1991)))
  3.1931 +(let (($x1739 (not (or $x1733 (>= (+ ?x1727 ?x1721 ?x1735) 0)))))
  3.1932 +(let (($x1756 (or $x1739 $x1752)))
  3.1933 +(let (($x1713 (forall ((?v0 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
  3.1934 +(let ((?x1097 (* (- 1) ?x230)))
  3.1935 +(let ((?x1699 (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))))
  3.1936 +(let ((?x1704 (b_G$ (pair$ (?v1!9 ?v0) ?v0))))
  3.1937 +(let (($x1706 (= (+ ?x1704 ?x1699 ?x1097) 0)))
  3.1938 +(let (($x1707 (and (not (>= (+ ?x1699 ?x1097) 0)) $x1706)))
  3.1939 +(let (($x1099 (<= (+ b_Infinity$ ?x1097) 0)))
  3.1940 +(let (($x1100 (not $x1099)))
  3.1941 +(let (($x127 (= ?v0 b_Source$)))
  3.1942 +(let (($x132 (not $x127)))
  3.1943 +(let (($x1103 (and $x132 $x1100)))
  3.1944 +(let (($x1106 (not $x1103)))
  3.1945 +(or $x1106 $x1707))))))))))))))
  3.1946 +))
  3.1947 +(let (($x1760 (and $x1713 $x1756)))
  3.1948 +(let (($x1687 (forall ((?v1 B_Vertex$) )(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  3.1949 +(let ((?x1662 (* (- 1) ?x1661)))
  3.1950 +(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  3.1951 +(let (($x1675 (and (not (>= (+ ?x230 ?x1662) 0)) (= (+ (b_G$ (pair$ ?v1 ?v0!8)) ?x230 ?x1662) 0))))
  3.1952 +(not $x1675))))))
  3.1953 +))
  3.1954 +(let (($x1681 (not (not (and $x1660 $x1665)))))
  3.1955 +(let (($x1691 (and $x1681 $x1687)))
  3.1956 +(let (($x1764 (or $x1691 $x1760)))
  3.1957 +(let (($x1652 (and $x1641 $x212 $x215 $x217 $x220)))
  3.1958 +(let (($x1768 (and $x1652 $x1764)))
  3.1959 +(let (($x1999 (or $x1768 $x1995)))
  3.1960 +(let (($x1629 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
  3.1961 +(let ((?x1000 (* (- 1) ?x174)))
  3.1962 +(let ((?x1613 (?v1!7 ?v0)))
  3.1963 +(let ((?x1614 (fun_app$c v_b_SP_G_1$ ?x1613)))
  3.1964 +(let ((?x1620 (b_G$ (pair$ ?x1613 ?v0))))
  3.1965 +(let (($x1622 (= (+ ?x1620 ?x1614 ?x1000) 0)))
  3.1966 +(let (($x1618 (fun_app$ v_b_Visited_G_1$ ?x1613)))
  3.1967 +(let (($x1623 (and (not (>= (+ ?x1614 ?x1000) 0)) $x1618 $x1622)))
  3.1968 +(let (($x1002 (<= (+ b_Infinity$ ?x1000) 0)))
  3.1969 +(let (($x1003 (not $x1002)))
  3.1970 +(let (($x127 (= ?v0 b_Source$)))
  3.1971 +(let (($x132 (not $x127)))
  3.1972 +(let (($x1006 (and $x132 $x1003)))
  3.1973 +(let (($x1009 (not $x1006)))
  3.1974 +(or $x1009 $x1623))))))))))))))))
  3.1975 +))
  3.1976 +(let (($x1594 (forall ((?v0 B_Vertex$) )(let ((?x1585 (b_G$ (pair$ (?v1!6 ?v0) ?v0))))
  3.1977 +(let ((?x128 (v_b_SP_G_0$ ?v0)))
  3.1978 +(let ((?x945 (* (- 1) ?x128)))
  3.1979 +(let ((?x1578 (?v1!6 ?v0)))
  3.1980 +(let ((?x1579 (v_b_SP_G_0$ ?x1578)))
  3.1981 +(let (($x1587 (= (+ ?x1579 ?x945 ?x1585) 0)))
  3.1982 +(let (($x1583 (v_b_Visited_G_0$ ?x1578)))
  3.1983 +(let (($x1588 (and (not (>= (+ ?x1579 ?x945) 0)) $x1583 $x1587)))
  3.1984 +(let (($x127 (= ?v0 b_Source$)))
  3.1985 +(let (($x132 (not $x127)))
  3.1986 +(let (($x951 (and $x132 (not (<= (+ b_Infinity$ ?x945) 0)))))
  3.1987 +(let (($x954 (not $x951)))
  3.1988 +(or $x954 $x1588))))))))))))))
  3.1989 +))
  3.1990 +(let (($x1632 (and $x1594 $x173 $x1051 $x1045 $x997 $x1629)))
  3.1991 +(let (($x2003 (and $x1632 $x1999)))
  3.1992 +(let (($x1561 (not (not (and $x1539 $x1544)))))
  3.1993 +(let (($x1571 (and $x1561 $x1567)))
  3.1994 +(let (($x2007 (or $x1571 $x2003)))
  3.1995 +(let (($x2011 (and $x939 $x2007)))
  3.1996 +(let (($x1527 (not (or $x1520 (>= (+ ?x1521 ?x1523 ?x1514) 0)))))
  3.1997 +(let (($x2015 (or $x1527 $x2011)))
  3.1998 +(let (($x2019 (and $x914 $x2015)))
  3.1999 +(let (($x2023 (or $x1500 $x2019)))
  3.2000 +(let (($x2027 (and $x899 $x2023)))
  3.2001 +(let (($x2031 (or $x1477 $x2027)))
  3.2002 +(let (($x1471 (not $x869)))
  3.2003 +(let (($x2035 (and $x1471 $x2031)))
  3.2004 +(let (($x2039 (or $x869 $x2035)))
  3.2005 +(let (($x1925 (and (not (>= (+ ?x273 (* (- 1) ?x1911)) 0)) $x291 (= (+ (b_G$ (pair$ ?0 ?v0!20)) ?x273 (* (- 1) ?x1911)) 0))))
  3.2006 +(let (($x1935 (not $x1925)))
  3.2007 +(let (($x2243 (= (= (+ (b_G$ (pair$ ?0 ?v0!20)) ?x273 (* (- 1) ?x1911)) 0) $x2242)))
  3.2008 +(let (($x2240 (= (+ (b_G$ (pair$ ?0 ?v0!20)) ?x273 (* (- 1) ?x1911)) (+ ?x273 (* (- 1) ?x1911) (b_G$ (pair$ ?0 ?v0!20))))))
  3.2009 +(let ((@x2250 (monotonicity (monotonicity (monotonicity (rewrite $x2240) $x2243) (= $x1925 $x2245)) (= $x1935 $x2248))))
  3.2010 +(let ((@x2256 (monotonicity (rewrite (= $x1932 (and $x1910 $x1915))) (quant-intro @x2250 (= $x1938 $x2251)) (= $x1942 (and (and $x1910 $x1915) $x2251)))))
  3.2011 +(let ((@x2264 (trans (monotonicity @x2256 (= $x1947 (and $x1289 (and (and $x1910 $x1915) $x2251)))) (rewrite (= (and $x1289 (and (and $x1910 $x1915) $x2251)) $x2260)) (= $x1947 $x2260))))
  3.2012 +(let ((@x2273 (monotonicity (monotonicity (monotonicity @x2264 (= $x1951 $x2265)) (= $x1955 $x2268)) (= $x1959 $x2271))))
  3.2013 +(let ((@x2282 (monotonicity (rewrite (= $x1842 $x297)) (monotonicity (monotonicity @x2273 (= $x1963 $x2274)) (= $x1967 $x2277)) (= $x1971 $x2280))))
  3.2014 +(let ((@x2291 (monotonicity (monotonicity (monotonicity @x2282 (= $x1975 $x2283)) (= $x1979 $x2286)) (= $x1983 $x2289))))
  3.2015 +(let ((@x2300 (monotonicity (monotonicity (monotonicity @x2291 (= $x1987 $x2292)) (= $x1991 $x2295)) (= $x1995 (and $x1801 $x2295)))))
  3.2016 +(let ((@x2211 (monotonicity (rewrite (= (+ ?x1727 ?x1721 ?x1735) ?x2206)) (= (>= (+ ?x1727 ?x1721 ?x1735) 0) $x2209))))
  3.2017 +(let ((@x2214 (monotonicity @x2211 (= (or $x1733 (>= (+ ?x1727 ?x1721 ?x1735) 0)) $x2212))))
  3.2018 +(let (($x2197 (and (not $x2176) $x2192)))
  3.2019 +(let (($x2200 (or $x1106 $x2197)))
  3.2020 +(let ((?x1097 (* (- 1) ?x230)))
  3.2021 +(let ((?x1699 (fun_app$c v_b_SP_G_3$ (?v1!9 ?0))))
  3.2022 +(let ((?x1704 (b_G$ (pair$ (?v1!9 ?0) ?0))))
  3.2023 +(let (($x1706 (= (+ ?x1704 ?x1699 ?x1097) 0)))
  3.2024 +(let (($x1707 (and (not (>= (+ ?x1699 ?x1097) 0)) $x1706)))
  3.2025 +(let (($x1710 (or $x1106 $x1707)))
  3.2026 +(let ((@x2189 (monotonicity (rewrite (= (+ ?x1704 ?x1699 ?x1097) (+ ?x1097 ?x1699 ?x1704))) (= $x1706 (= (+ ?x1097 ?x1699 ?x1704) 0)))))
  3.2027 +(let ((@x2196 (trans @x2189 (rewrite (= (= (+ ?x1097 ?x1699 ?x1704) 0) $x2192)) (= $x1706 $x2192))))
  3.2028 +(let ((@x2173 (monotonicity (rewrite (= (+ ?x1699 ?x1097) (+ ?x1097 ?x1699))) (= (>= (+ ?x1699 ?x1097) 0) (>= (+ ?x1097 ?x1699) 0)))))
  3.2029 +(let ((@x2180 (trans @x2173 (rewrite (= (>= (+ ?x1097 ?x1699) 0) $x2176)) (= (>= (+ ?x1699 ?x1097) 0) $x2176))))
  3.2030 +(let ((@x2199 (monotonicity (monotonicity @x2180 (= (not (>= (+ ?x1699 ?x1097) 0)) (not $x2176))) @x2196 (= $x1707 $x2197))))
  3.2031 +(let ((@x2223 (monotonicity (quant-intro (monotonicity @x2199 (= $x1710 $x2200)) (= $x1713 $x2203)) (monotonicity (monotonicity @x2214 (= $x1739 $x2215)) (= $x1756 $x2218)) (= $x1760 $x2221))))
  3.2032 +(let (($x1675 (and (not (>= (+ ?x230 ?x1662) 0)) (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x230 ?x1662) 0))))
  3.2033 +(let (($x1684 (not $x1675)))
  3.2034 +(let (($x2146 (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x230 ?x1662) (+ ?x230 ?x1662 (b_G$ (pair$ ?0 ?v0!8))))))
  3.2035 +(let ((@x2150 (monotonicity (rewrite $x2146) (= (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x230 ?x1662) 0) $x2148))))
  3.2036 +(let ((@x2159 (quant-intro (monotonicity (monotonicity @x2150 (= $x1675 $x2151)) (= $x1684 $x2154)) (= $x1687 $x2157))))
  3.2037 +(let ((@x2162 (monotonicity (rewrite (= $x1681 (and $x1660 $x1665))) @x2159 (= $x1691 (and (and $x1660 $x1665) $x2157)))))
  3.2038 +(let ((@x2167 (trans @x2162 (rewrite (= (and (and $x1660 $x1665) $x2157) $x2163)) (= $x1691 $x2163))))
  3.2039 +(let ((@x2229 (monotonicity (monotonicity @x2167 @x2223 (= $x1764 $x2224)) (= $x1768 (and $x1652 $x2224)))))
  3.2040 +(let ((@x2308 (monotonicity (trans @x2229 (rewrite (= (and $x1652 $x2224) $x2230)) (= $x1768 $x2230)) (trans @x2300 (rewrite (= (and $x1801 $x2295) $x2301)) (= $x1995 $x2301)) (= $x1999 $x2306))))
  3.2041 +(let ((?x1000 (* (- 1) ?x174)))
  3.2042 +(let ((?x1614 (fun_app$c v_b_SP_G_1$ ?x1613)))
  3.2043 +(let ((?x1620 (b_G$ (pair$ ?x1613 ?0))))
  3.2044 +(let (($x1622 (= (+ ?x1620 ?x1614 ?x1000) 0)))
  3.2045 +(let (($x1623 (and (not (>= (+ ?x1614 ?x1000) 0)) $x1618 $x1622)))
  3.2046 +(let (($x1626 (or $x1009 $x1623)))
  3.2047 +(let ((@x2126 (monotonicity (rewrite (= (+ ?x1620 ?x1614 ?x1000) (+ ?x1000 ?x1614 ?x1620))) (= $x1622 (= (+ ?x1000 ?x1614 ?x1620) 0)))))
  3.2048 +(let ((@x2133 (trans @x2126 (rewrite (= (= (+ ?x1000 ?x1614 ?x1620) 0) $x2129)) (= $x1622 $x2129))))
  3.2049 +(let ((@x2110 (monotonicity (rewrite (= (+ ?x1614 ?x1000) (+ ?x1000 ?x1614))) (= (>= (+ ?x1614 ?x1000) 0) (>= (+ ?x1000 ?x1614) 0)))))
  3.2050 +(let ((@x2117 (trans @x2110 (rewrite (= (>= (+ ?x1000 ?x1614) 0) $x2113)) (= (>= (+ ?x1614 ?x1000) 0) $x2113))))
  3.2051 +(let ((@x2136 (monotonicity (monotonicity @x2117 (= (not (>= (+ ?x1614 ?x1000) 0)) (not $x2113))) @x2133 (= $x1623 $x2134))))
  3.2052 +(let (($x1587 (= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128) (b_G$ (pair$ ?x1578 ?0))) 0)))
  3.2053 +(let (($x1588 (and (not (>= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128)) 0)) $x1583 $x1587)))
  3.2054 +(let (($x1591 (or $x954 $x1588)))
  3.2055 +(let (($x2086 (= (+ (* (- 1) ?x128) (v_b_SP_G_0$ ?x1578) (b_G$ (pair$ ?x1578 ?0))) 0)))
  3.2056 +(let (($x2084 (= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128) (b_G$ (pair$ ?x1578 ?0))) (+ (* (- 1) ?x128) (v_b_SP_G_0$ ?x1578) (b_G$ (pair$ ?x1578 ?0))))))
  3.2057 +(let ((@x2095 (trans (monotonicity (rewrite $x2084) (= $x1587 $x2086)) (rewrite (= $x2086 $x2091)) (= $x1587 $x2091))))
  3.2058 +(let (($x2081 (= (not (>= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128)) 0)) (not $x2075))))
  3.2059 +(let (($x1581 (>= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128)) 0)))
  3.2060 +(let (($x2068 (= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128)) (+ (* (- 1) ?x128) (v_b_SP_G_0$ ?x1578)))))
  3.2061 +(let ((@x2072 (monotonicity (rewrite $x2068) (= $x1581 (>= (+ (* (- 1) ?x128) (v_b_SP_G_0$ ?x1578)) 0)))))
  3.2062 +(let ((@x2079 (trans @x2072 (rewrite (= (>= (+ (* (- 1) ?x128) (v_b_SP_G_0$ ?x1578)) 0) $x2075)) (= $x1581 $x2075))))
  3.2063 +(let ((@x2101 (monotonicity (monotonicity (monotonicity @x2079 $x2081) @x2095 (= $x1588 $x2096)) (= $x1591 $x2099))))
  3.2064 +(let ((@x2311 (monotonicity (quant-intro @x2101 (= $x1594 $x2102)) (quant-intro (monotonicity @x2136 (= $x1626 $x2137)) (= $x1629 $x2140)) (= $x1632 (and $x2102 $x173 $x1051 $x1045 $x997 $x2140)))))
  3.2065 +(let ((@x2314 (monotonicity @x2311 @x2308 (= $x2003 (and (and $x2102 $x173 $x1051 $x1045 $x997 $x2140) $x2306)))))
  3.2066 +(let ((@x2319 (trans @x2314 (rewrite (= (and (and $x2102 $x173 $x1051 $x1045 $x997 $x2140) $x2306) $x2315)) (= $x2003 $x2315))))
  3.2067 +(let ((@x2061 (monotonicity (rewrite (= $x1561 (and $x1539 $x1544))) (= $x1571 (and (and $x1539 $x1544) $x1567)))))
  3.2068 +(let ((@x2066 (trans @x2061 (rewrite (= (and (and $x1539 $x1544) $x1567) $x2062)) (= $x1571 $x2062))))
  3.2069 +(let ((@x2325 (monotonicity (monotonicity @x2066 @x2319 (= $x2007 $x2320)) (= $x2011 $x2323))))
  3.2070 +(let ((@x2050 (monotonicity (rewrite (= (+ ?x1521 ?x1523 ?x1514) ?x2045)) (= (>= (+ ?x1521 ?x1523 ?x1514) 0) $x2048))))
  3.2071 +(let ((@x2053 (monotonicity @x2050 (= (or $x1520 (>= (+ ?x1521 ?x1523 ?x1514) 0)) $x2051))))
  3.2072 +(let ((@x2328 (monotonicity (monotonicity @x2053 (= $x1527 $x2054)) @x2325 (= $x2015 $x2326))))
  3.2073 +(let ((@x2337 (monotonicity (monotonicity (monotonicity @x2328 (= $x2019 $x2329)) (= $x2023 $x2332)) (= $x2027 $x2335))))
  3.2074 +(let ((@x2343 (monotonicity (rewrite (= $x1471 $x145)) (monotonicity @x2337 (= $x2031 $x2338)) (= $x2035 $x2341))))
  3.2075 +(let (($x1926 (exists ((?v1 B_Vertex$) )(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
  3.2076 +(let ((?x1912 (* (- 1) ?x1911)))
  3.2077 +(let ((?x273 (v_b_SP_G_2$ ?v1)))
  3.2078 +(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  3.2079 +(and (not (>= (+ ?x273 ?x1912) 0)) $x291 (= (+ (b_G$ (pair$ ?v1 ?v0!20)) ?x273 ?x1912) 0)))))))
  3.2080 +))
  3.2081 +(let ((@x1944 (nnf-neg (refl (~ $x1932 $x1932)) (nnf-neg (refl (~ $x1935 $x1935)) (~ (not $x1926) $x1938)) (~ (not (or (not (and $x1910 $x1915)) $x1926)) $x1942))))
  3.2082 +(let ((@x1946 (trans (sk (~ (not $x1329) (not (or (not (and $x1910 $x1915)) $x1926)))) @x1944 (~ (not $x1329) $x1942))))
  3.2083 +(let ((@x1907 (nnf-neg (nnf-pos (refl (~ $x1286 $x1286)) (~ $x1289 $x1289)) (~ (not $x1292) $x1289))))
  3.2084 +(let ((@x1954 (nnf-neg (sk (~ $x1292 $x1898)) (nnf-neg @x1907 @x1946 (~ (not $x1332) $x1947)) (~ (not $x1335) $x1951))))
  3.2085 +(let ((@x1880 (nnf-neg (nnf-pos (refl (~ $x1267 $x1267)) (~ $x1270 $x1270)) (~ (not $x1273) $x1270))))
  3.2086 +(let ((@x1962 (nnf-neg (sk (~ $x1273 $x1871)) (nnf-neg @x1880 @x1954 (~ (not $x1338) $x1955)) (~ (not $x1341) $x1959))))
  3.2087 +(let ((@x1857 (nnf-neg (nnf-pos (refl (~ (>= ?x273 0) (>= ?x273 0))) (~ $x1256 $x1256)) (~ (not $x1259) $x1256))))
  3.2088 +(let ((@x1970 (nnf-neg (sk (~ $x1259 $x1848)) (nnf-neg @x1857 @x1962 (~ (not $x1344) $x1963)) (~ (not $x1347) $x1967))))
  3.2089 +(let ((@x1978 (nnf-neg (refl (~ $x773 $x773)) (nnf-neg (refl (~ $x1842 $x1842)) @x1970 (~ (not $x1350) $x1971)) (~ (not $x1353) $x1975))))
  3.2090 +(let ((@x1839 (nnf-neg (nnf-pos (refl (~ (or $x300 $x278) (or $x300 $x278))) (~ $x652 $x652)) (~ (not $x785) $x652))))
  3.2091 +(let ((@x1986 (nnf-neg (sk (~ $x785 $x1830)) (nnf-neg @x1839 @x1978 (~ (not $x1356) $x1979)) (~ (not $x1359) $x1983))))
  3.2092 +(let ((@x1822 (nnf-neg (nnf-pos (refl (~ $x1243 $x1243)) (~ $x1247 $x1247)) (~ (not $x1250) $x1247))))
  3.2093 +(let ((@x1994 (nnf-neg (sk (~ $x1250 $x1813)) (nnf-neg @x1822 @x1986 (~ (not $x1362) $x1987)) (~ (not $x1365) $x1991))))
  3.2094 +(let ((@x1803 (monotonicity (sk (~ $x1080 (and $x1774 $x1779))) (refl (~ $x256 $x256)) (refl (~ $x1214 $x1214)) (nnf-pos (refl (~ $x1206 $x1206)) (~ $x1209 $x1209)) (refl (~ $x266 $x266)) (nnf-pos (refl (~ $x1190 $x1190)) (~ $x1193 $x1193)) (nnf-pos (refl (~ $x1196 $x1196)) (~ $x1199 $x1199)) (~ $x1235 $x1801))))
  3.2095 +(let ((@x1998 (nnf-neg (nnf-neg @x1803 (~ (not $x1240) $x1801)) @x1994 (~ (not $x1368) $x1995))))
  3.2096 +(let ((@x1748 (nnf-neg (nnf-pos (refl (~ $x1143 $x1143)) (~ $x1146 $x1146)) (~ (not $x1149) $x1146))))
  3.2097 +(let ((@x1759 (nnf-neg (sk (~ $x1149 $x1739)) (nnf-neg @x1748 (refl (~ $x1749 $x1749)) (~ (not $x1152) $x1752)) (~ (not $x1155) $x1756))))
  3.2098 +(let ((@x1715 (nnf-pos (monotonicity (refl (~ $x1106 $x1106)) (sk (~ $x1122 $x1707)) (~ $x1125 $x1710)) (~ $x1128 $x1713))))
  3.2099 +(let ((@x1763 (nnf-neg (nnf-neg @x1715 (~ (not $x1131) $x1713)) @x1759 (~ (not $x1158) $x1760))))
  3.2100 +(let (($x1676 (exists ((?v1 B_Vertex$) )(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  3.2101 +(let ((?x1662 (* (- 1) ?x1661)))
  3.2102 +(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  3.2103 +(and (not (>= (+ ?x230 ?x1662) 0)) (= (+ (b_G$ (pair$ ?v1 ?v0!8)) ?x230 ?x1662) 0))))))
  3.2104 +))
  3.2105 +(let ((@x1693 (nnf-neg (refl (~ $x1681 $x1681)) (nnf-neg (refl (~ $x1684 $x1684)) (~ (not $x1676) $x1687)) (~ (not (or (not (and $x1660 $x1665)) $x1676)) $x1691))))
  3.2106 +(let ((@x1695 (trans (sk (~ $x1131 (not (or (not (and $x1660 $x1665)) $x1676)))) @x1693 (~ $x1131 $x1691))))
  3.2107 +(let ((@x1654 (monotonicity (nnf-neg (refl (~ (not $x1077) (not $x1077))) (~ $x1083 $x1641)) (refl (~ $x212 $x212)) (refl (~ $x215 $x215)) (refl (~ $x217 $x217)) (refl (~ $x220 $x220)) (~ $x1089 $x1652))))
  3.2108 +(let ((@x1771 (nnf-neg (nnf-neg @x1654 (~ (not $x1094) $x1652)) (nnf-neg @x1695 @x1763 (~ (not $x1161) $x1764)) (~ (not $x1164) $x1768))))
  3.2109 +(let ((@x1631 (nnf-pos (monotonicity (refl (~ $x1009 $x1009)) (sk (~ $x1031 $x1623)) (~ $x1034 $x1626)) (~ $x1037 $x1629))))
  3.2110 +(let ((@x1596 (nnf-pos (monotonicity (refl (~ $x954 $x954)) (sk (~ $x974 $x1588)) (~ $x977 $x1591)) (~ $x980 $x1594))))
  3.2111 +(let ((@x1634 (monotonicity @x1596 (refl (~ $x173 $x173)) (nnf-pos (refl (~ (>= ?x174 0) (>= ?x174 0))) (~ $x1051 $x1051)) (nnf-pos (refl (~ $x1042 $x1042)) (~ $x1045 $x1045)) (nnf-pos (refl (~ $x994 $x994)) (~ $x997 $x997)) @x1631 (~ $x1069 $x1632))))
  3.2112 +(let ((@x2006 (nnf-neg (nnf-neg @x1634 (~ (not $x1074) $x1632)) (nnf-neg @x1771 @x1998 (~ (not $x1371) $x1999)) (~ (not $x1374) $x2003))))
  3.2113 +(let (($x1555 (exists ((?v1 B_Vertex$) )(let ((?x1540 (v_b_SP_G_0$ ?v0!5)))
  3.2114 +(let ((?x1541 (* (- 1) ?x1540)))
  3.2115 +(let ((?x128 (v_b_SP_G_0$ ?v1)))
  3.2116 +(let (($x136 (v_b_Visited_G_0$ ?v1)))
  3.2117 +(and (not (>= (+ ?x128 ?x1541) 0)) $x136 (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))
  3.2118 +))
  3.2119 +(let ((@x1573 (nnf-neg (refl (~ $x1561 $x1561)) (nnf-neg (refl (~ $x1564 $x1564)) (~ (not $x1555) $x1567)) (~ (not (or (not (and $x1539 $x1544)) $x1555)) $x1571))))
  3.2120 +(let ((@x1575 (trans (sk (~ (not $x980) (not (or (not (and $x1539 $x1544)) $x1555)))) @x1573 (~ (not $x980) $x1571))))
  3.2121 +(let ((@x1536 (nnf-neg (nnf-pos (refl (~ $x936 $x936)) (~ $x939 $x939)) (~ (not $x942) $x939))))
  3.2122 +(let ((@x2014 (nnf-neg @x1536 (nnf-neg @x1575 @x2006 (~ (not $x1377) $x2007)) (~ (not $x1380) $x2011))))
  3.2123 +(let ((@x1509 (nnf-neg (nnf-pos (refl (~ $x911 $x911)) (~ $x914 $x914)) (~ (not $x917) $x914))))
  3.2124 +(let ((@x2022 (nnf-neg @x1509 (nnf-neg (sk (~ $x942 $x1527)) @x2014 (~ (not $x1383) $x2015)) (~ (not $x1386) $x2019))))
  3.2125 +(let ((@x1486 (nnf-neg (nnf-pos (refl (~ (>= ?x128 0) (>= ?x128 0))) (~ $x899 $x899)) (~ (not $x902) $x899))))
  3.2126 +(let ((@x2030 (nnf-neg @x1486 (nnf-neg (sk (~ $x917 $x1500)) @x2022 (~ (not $x1389) $x2023)) (~ (not $x1392) $x2027))))
  3.2127 +(let ((@x2038 (nnf-neg (refl (~ $x1471 $x1471)) (nnf-neg (sk (~ $x902 $x1477)) @x2030 (~ (not $x1395) $x2031)) (~ (not $x1398) $x2035))))
  3.2128 +(let ((@x2042 (mp~ (not-or-elim (mp (asserted $x349) @x1411 $x1407) (not $x1401)) (nnf-neg (refl (~ $x869 $x869)) @x2038 (~ (not $x1401) $x2039)) $x2039)))
  3.2129 +(let ((@x3878 (mp (mp (mp @x2042 (monotonicity @x2343 (= $x2039 $x2344)) $x2344) @x3020 $x3018) (monotonicity @x3874 (= $x3018 $x3875)) $x3875)))
  3.2130 +(let ((@x4209 (unit-resolution @x3878 (lemma (unit-resolution @x5763 @x3492 (hypothesis $x869) false) $x145) $x3872)))
  3.2131 +(let ((@x4211 (unit-resolution (def-axiom (or $x3866 $x1477 $x3860)) (unit-resolution (def-axiom (or $x3869 $x3863)) @x4209 $x3863) (lemma @x6353 $x1476) $x3860)))
  3.2132 +(let ((@x6165 (unit-resolution ((_ quant-inst ?v0!2) (or (not $x3500) $x2348)) @x3505 (hypothesis $x1491) false)))
  3.2133 +(let ((@x4215 (unit-resolution (def-axiom (or $x3854 $x2368 $x3848)) (unit-resolution (def-axiom (or $x2363 $x1491)) (lemma @x6165 $x2348) $x2363) (unit-resolution (def-axiom (or $x3857 $x3851)) @x4211 $x3851) $x3848)))
  3.2134 +(let ((@x4217 (unit-resolution (def-axiom (or $x3842 $x2414 $x3836)) (unit-resolution (def-axiom (or $x3845 $x3839)) @x4215 $x3839) (unit-resolution (def-axiom (or $x2409 $x1512)) (lemma @x3073 $x2394) $x2409) $x3836)))
  3.2135 +(let ((@x4219 (unit-resolution (def-axiom (or $x3830 $x3544 $x3824)) (unit-resolution (def-axiom (or $x3833 $x3827)) @x4217 $x3827) (lemma @x5735 $x3541) $x3824)))
  3.2136 +(let ((@x5955 (unit-resolution (def-axiom (or $x3821 $x3556)) @x4219 $x3556)))
  3.2137 +(let (($x4373 (or $x3561 $x3904)))
  3.2138 +(let ((@x4363 ((_ quant-inst v_b_v_G_1$) $x4373)))
  3.2139 +(let ((@x5049 (unit-resolution @x4363 @x5955 $x3904)))
  3.2140 +(let ((?x5210 (pair$ v_b_v_G_1$ ?v0!15)))
  3.2141 +(let ((?x5018 (b_G$ ?x5210)))
  3.2142 +(let ((?x4456 (* (- 1) ?x1846)))
  3.2143 +(let ((?x6267 (+ ?x257 ?x4456 ?x5018)))
  3.2144 +(let (($x5853 (<= ?x6267 0)))
  3.2145 +(let (($x6128 (= ?x6267 0)))
  3.2146 +(let (($x6822 (>= (+ ?x257 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!15)) ?x5018) 0)))
  3.2147 +(let (($x4911 (<= (+ b_Infinity$ (* (- 1) ?x5018)) 0)))
  3.2148 +(let (($x6706 (or $x4911 $x6822)))
  3.2149 +(let (($x6711 (not $x6706)))
  3.2150 +(let ((@x5703 (hypothesis $x1848)))
  3.2151 +(let (($x5745 (or (not (>= (+ ?x1846 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!15))) 0)) $x1847)))
  3.2152 +(let ((?x4480 (fun_app$c v_b_SP_G_1$ ?v0!15)))
  3.2153 +(let (($x5850 (>= ?x4480 0)))
  3.2154 +(let ((@x5698 ((_ th-lemma arith farkas -1 1 1) @x5703 (hypothesis (>= (+ ?x1846 (* (- 1) ?x4480)) 0)) (unit-resolution ((_ quant-inst ?v0!15) (or $x3561 $x5850)) @x5955 $x5850) false)))
  3.2155 +(let ((@x6183 (unit-resolution (lemma @x5698 $x5745) @x5703 (not (>= (+ ?x1846 (* (- 1) ?x4480)) 0)))))
  3.2156 +(let ((@x6242 ((_ th-lemma arith triangle-eq) (or (not (= ?x1846 ?x4480)) (>= (+ ?x1846 (* (- 1) ?x4480)) 0)))))
  3.2157 +(let ((@x4529 (unit-resolution (def-axiom (or $x3821 $x173)) @x4219 $x173)))
  3.2158 +(let ((@x5142 (hypothesis $x3657)))
  3.2159 +(let ((@x4265 (unit-resolution (def-axiom (or $x3654 $x217)) @x5142 $x217)))
  3.2160 +(let ((?x5667 (fun_app$c v_b_SP_G_1$ ?v1!10)))
  3.2161 +(let ((?x5152 (fun_app$c v_b_SP_G_1$ ?v0!11)))
  3.2162 +(let ((?x5630 (* (- 1) ?x5152)))
  3.2163 +(let (($x4072 (>= (+ ?x1727 ?x5630 ?x5667) 0)))
  3.2164 +(let (($x5699 (fun_app$ v_b_Visited_G_1$ ?v1!10)))
  3.2165 +(let (($x1725 (not $x1724)))
  3.2166 +(let ((@x4170 (hypothesis $x2650)))
  3.2167 +(let (($x4150 (>= (+ ?x1721 (* (- 1) ?x5667)) 0)))
  3.2168 +(let ((@x4195 (monotonicity (symm (hypothesis $x217) (= v_b_SP_G_1$ v_b_SP_G_3$)) (= ?x5667 ?x1721))))
  3.2169 +(let ((@x4203 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1721 ?x5667)) $x4150)) (symm @x4195 (= ?x1721 ?x5667)) $x4150)))
  3.2170 +(let (($x4167 (or (not (<= (+ b_Infinity$ (* (- 1) ?x5667)) 0)) (not $x4150) $x1724)))
  3.2171 +(let ((@x4163 ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x4150) (hypothesis (<= (+ b_Infinity$ (* (- 1) ?x5667)) 0)) (hypothesis $x1725) false)))
  3.2172 +(let ((@x4204 (unit-resolution (lemma @x4163 $x4167) @x4203 (unit-resolution (def-axiom (or $x2645 $x1725)) @x4170 $x1725) (not (<= (+ b_Infinity$ (* (- 1) ?x5667)) 0)))))
  3.2173 +(let (($x6045 (<= (+ b_Infinity$ (* (- 1) ?x5667)) 0)))
  3.2174 +(let (($x5247 (or $x5699 $x6045)))
  3.2175 +(let ((@x3048 (mp ((_ quant-inst ?v1!10) (or $x3595 $x5247)) (rewrite (= (or $x3595 $x5247) (or $x3595 $x5699 $x6045))) (or $x3595 $x5699 $x6045))))
  3.2176 +(let ((@x4206 (unit-resolution (unit-resolution @x3048 (hypothesis $x3590) $x5247) @x4204 $x5699)))
  3.2177 +(let ((@x4223 (unit-resolution (def-axiom (or $x3821 $x3573)) @x4219 $x3573)))
  3.2178 +(let (($x5758 (not $x5699)))
  3.2179 +(let (($x4064 (or $x3578 $x5758 $x1730 $x4072)))
  3.2180 +(let (($x5845 (or $x5758 $x1730 (>= (+ ?x1727 ?x5667 ?x5630) 0))))
  3.2181 +(let (($x4065 (or $x3578 $x5845)))
  3.2182 +(let ((@x4061 (monotonicity (rewrite (= (+ ?x1727 ?x5667 ?x5630) (+ ?x1727 ?x5630 ?x5667))) (= (>= (+ ?x1727 ?x5667 ?x5630) 0) $x4072))))
  3.2183 +(let ((@x4102 (monotonicity (monotonicity @x4061 (= $x5845 (or $x5758 $x1730 $x4072))) (= $x4065 (or $x3578 (or $x5758 $x1730 $x4072))))))
  3.2184 +(let ((@x4106 (trans @x4102 (rewrite (= (or $x3578 (or $x5758 $x1730 $x4072)) $x4064)) (= $x4065 $x4064))))
  3.2185 +(let ((@x4225 (unit-resolution (mp ((_ quant-inst ?v0!11 ?v1!10) $x4065) @x4106 $x4064) @x4223 (unit-resolution (def-axiom (or $x2645 (not $x1730))) @x4170 (not $x1730)) (or $x5758 $x4072))))
  3.2186 +(let ((@x4228 (monotonicity (symm (hypothesis $x217) (= v_b_SP_G_1$ v_b_SP_G_3$)) (= ?x5152 ?x1734))))
  3.2187 +(let ((@x4234 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1734 ?x5152)) (<= (+ ?x1734 ?x5630) 0))) (symm @x4228 (= ?x1734 ?x5152)) (<= (+ ?x1734 ?x5630) 0))))
  3.2188 +(let ((@x4235 ((_ th-lemma arith farkas -1 -1 1 1) @x4234 (unit-resolution (def-axiom (or $x2645 (not $x2209))) @x4170 (not $x2209)) @x4203 (unit-resolution @x4225 @x4206 $x4072) false)))
  3.2189 +(let ((@x4885 (unit-resolution (lemma @x4235 (or $x2645 $x3595 $x2708)) @x4265 (unit-resolution (def-axiom (or $x3654 $x3590)) @x5142 $x3590) $x2645)))
  3.2190 +(let (($x4595 (<= (+ ?x1661 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!7 ?v0!8)))) 0)))
  3.2191 +(let ((?x3922 (?v1!7 ?v0!8)))
  3.2192 +(let ((?x3910 (fun_app$c v_b_SP_G_1$ ?x3922)))
  3.2193 +(let ((?x3989 (* (- 1) ?x3910)))
  3.2194 +(let ((?x3142 (fun_app$c v_b_SP_G_1$ ?v0!8)))
  3.2195 +(let (($x3936 (<= (+ ?x3142 ?x3989) 0)))
  3.2196 +(let (($x4266 (not $x3936)))
  3.2197 +(let ((?x3945 (pair$ ?x3922 ?v0!8)))
  3.2198 +(let ((?x3946 (b_G$ ?x3945)))
  3.2199 +(let ((?x3031 (* (- 1) ?x3946)))
  3.2200 +(let ((?x3056 (+ ?x3142 ?x3989 ?x3031)))
  3.2201 +(let (($x3032 (= ?x3056 0)))
  3.2202 +(let (($x3033 (not $x3032)))
  3.2203 +(let (($x3034 (or $x3936 (not (fun_app$ v_b_Visited_G_1$ ?x3922)) $x3033)))
  3.2204 +(let (($x3049 (not $x3034)))
  3.2205 +(let ((@x3978 (hypothesis $x1665)))
  3.2206 +(let ((?x3144 (* (- 1) ?x3142)))
  3.2207 +(let ((?x3984 (+ ?x1661 ?x3144)))
  3.2208 +(let (($x3969 (>= ?x3984 0)))
  3.2209 +(let ((@x4544 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1661 ?x3142)) $x3969)) (monotonicity @x4265 (= ?x1661 ?x3142)) $x3969)))
  3.2210 +(let ((@x3973 ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x3969) (hypothesis (<= (+ b_Infinity$ ?x3144) 0)) @x3978 false)))
  3.2211 +(let ((@x4027 (lemma @x3973 (or (not (<= (+ b_Infinity$ ?x3144) 0)) (not $x3969) $x1664))))
  3.2212 +(let ((@x4552 (unit-resolution @x4027 @x4544 @x3978 (not (<= (+ b_Infinity$ ?x3144) 0)))))
  3.2213 +(let ((@x3425 (def-axiom (or $x3630 $x1749))))
  3.2214 +(let ((@x4543 (unit-resolution @x3425 (trans (monotonicity @x4265 (= ?x245 ?x172)) @x4529 $x246) $x3630)))
  3.2215 +(let ((@x3134 (def-axiom (or $x3639 $x2650 $x3633))))
  3.2216 +(let ((@x3138 (def-axiom (or $x3642 $x3636))))
  3.2217 +(let ((@x3120 (def-axiom (or $x3651 $x3611 $x3645))))
  3.2218 +(let ((@x4905 (unit-resolution @x3120 (unit-resolution @x3138 (unit-resolution @x3134 @x4543 @x4885 $x3639) $x3642) (unit-resolution (def-axiom (or $x3654 $x3648)) @x5142 $x3648) $x3611)))
  3.2219 +(let ((@x4545 (unit-resolution (def-axiom (or $x3821 $x3581)) @x4219 $x3581)))
  3.2220 +(let (($x4738 (= (or $x3586 (or $x1659 (<= (+ b_Infinity$ ?x3144) 0) $x3049)) (or $x3586 $x1659 (<= (+ b_Infinity$ ?x3144) 0) $x3049))))
  3.2221 +(let ((@x4737 ((_ quant-inst ?v0!8) (or $x3586 (or $x1659 (<= (+ b_Infinity$ ?x3144) 0) $x3049)))))
  3.2222 +(let ((@x5209 (mp @x4737 (rewrite $x4738) (or $x3586 $x1659 (<= (+ b_Infinity$ ?x3144) 0) $x3049))))
  3.2223 +(let ((@x4406 (unit-resolution @x5209 @x4545 (unit-resolution (def-axiom (or $x3608 $x1660)) @x4905 $x1660) @x4552 $x3049)))
  3.2224 +(let ((?x3126 (fun_app$c v_b_SP_G_3$ ?x3922)))
  3.2225 +(let ((?x4327 (+ ?x3126 ?x3989)))
  3.2226 +(let (($x4402 (<= ?x4327 0)))
  3.2227 +(let ((@x4541 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x3126 ?x3910)) $x4402)) (monotonicity @x4265 (= ?x3126 ?x3910)) $x4402)))
  3.2228 +(let ((@x4852 ((_ th-lemma arith farkas 1 -1 -1 1) (hypothesis $x3969) (hypothesis $x4595) (hypothesis $x4402) (hypothesis $x4266) false)))
  3.2229 +(let ((@x4542 (unit-resolution (lemma @x4852 (or (not $x4595) (not $x3969) (not $x4402) $x3936)) @x4544 @x4541 (unit-resolution (def-axiom (or $x3034 $x4266)) @x4406 $x4266) (not $x4595))))
  3.2230 +(let ((?x5182 (* (- 1) ?x3126)))
  3.2231 +(let ((?x4179 (+ ?x1661 ?x5182 ?x3031)))
  3.2232 +(let (($x5089 (= ?x4179 0)))
  3.2233 +(let (($x3918 (>= ?x4179 0)))
  3.2234 +(let (($x5284 (>= ?x3056 0)))
  3.2235 +(let ((@x4264 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x3033 $x5284)) (unit-resolution (def-axiom (or $x3034 $x3032)) @x4406 $x3032) $x5284)))
  3.2236 +(let ((@x5267 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 1) (or $x3918 (not $x5284) (not $x3969) (not $x4402))) @x4264 @x4544 @x4541 $x3918)))
  3.2237 +(let (($x3917 (<= ?x4179 0)))
  3.2238 +(let (($x4407 (>= ?x4327 0)))
  3.2239 +(let ((@x4549 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x3126 ?x3910)) $x4407)) (monotonicity @x4265 (= ?x3126 ?x3910)) $x4407)))
  3.2240 +(let (($x3979 (<= ?x3984 0)))
  3.2241 +(let ((@x6239 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1661 ?x3142)) $x3979)) (monotonicity @x4265 (= ?x1661 ?x3142)) $x3979)))
  3.2242 +(let (($x5179 (<= ?x3056 0)))
  3.2243 +(let ((@x3960 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x3033 $x5179)) (unit-resolution (def-axiom (or $x3034 $x3032)) @x4406 $x3032) $x5179)))
  3.2244 +(let ((@x4631 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 1) (or $x3917 (not $x5179) (not $x3979) (not $x4407))) @x3960 @x6239 @x4549 $x3917)))
  3.2245 +(let ((@x4760 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x5089 (not $x3917) (not $x3918))) @x4631 @x5267 $x5089)))
  3.2246 +(let (($x4746 (not $x5089)))
  3.2247 +(let (($x4181 (or $x4595 $x4746)))
  3.2248 +(let (($x3184 (or $x3605 $x4595 $x4746)))
  3.2249 +(let (($x5980 (>= (+ ?x3126 ?x1662) 0)))
  3.2250 +(let (($x5913 (or $x5980 (not (= (+ ?x3126 ?x1662 ?x3946) 0)))))
  3.2251 +(let (($x3976 (or $x3605 $x5913)))
  3.2252 +(let ((@x4178 (monotonicity (rewrite (= (+ ?x3126 ?x1662 ?x3946) (+ ?x1662 ?x3126 ?x3946))) (= (= (+ ?x3126 ?x1662 ?x3946) 0) (= (+ ?x1662 ?x3126 ?x3946) 0)))))
  3.2253 +(let ((@x4745 (trans @x4178 (rewrite (= (= (+ ?x1662 ?x3126 ?x3946) 0) $x5089)) (= (= (+ ?x3126 ?x1662 ?x3946) 0) $x5089))))
  3.2254 +(let ((@x5181 (monotonicity (rewrite (= (+ ?x3126 ?x1662) (+ ?x1662 ?x3126))) (= $x5980 (>= (+ ?x1662 ?x3126) 0)))))
  3.2255 +(let ((@x4634 (trans @x5181 (rewrite (= (>= (+ ?x1662 ?x3126) 0) $x4595)) (= $x5980 $x4595))))
  3.2256 +(let ((@x4184 (monotonicity @x4634 (monotonicity @x4745 (= (not (= (+ ?x3126 ?x1662 ?x3946) 0)) $x4746)) (= $x5913 $x4181))))
  3.2257 +(let ((@x3916 (trans (monotonicity @x4184 (= $x3976 (or $x3605 $x4181))) (rewrite (= (or $x3605 $x4181) $x3184)) (= $x3976 $x3184))))
  3.2258 +(let ((@x5060 (unit-resolution (mp ((_ quant-inst (?v1!7 ?v0!8)) $x3976) @x3916 $x3184) (unit-resolution (def-axiom (or $x3608 $x3600)) @x4905 $x3600) $x4181)))
  3.2259 +(let ((@x6153 (unit-resolution (lemma (unit-resolution @x5060 @x4760 @x4542 false) (or $x3654 $x1664)) @x5142 $x1664)))
  3.2260 +(let ((@x6273 (unit-resolution @x3120 (unit-resolution (def-axiom (or $x3608 $x1665)) @x6153 $x3608) (unit-resolution (def-axiom (or $x3654 $x3648)) @x5142 $x3648) $x3645)))
  3.2261 +(let ((@x5939 (unit-resolution @x3425 (unit-resolution @x3134 (unit-resolution @x3138 @x6273 $x3636) @x4885 $x3633) $x1749)))
  3.2262 +(let ((@x5914 (unit-resolution @x5939 (trans (monotonicity @x4265 (= ?x245 ?x172)) @x4529 $x246) false)))
  3.2263 +(let ((@x6386 (unit-resolution (def-axiom (or $x3818 $x3657 $x3812)) (unit-resolution (def-axiom (or $x3821 $x3815)) @x4219 $x3815) $x3815)))
  3.2264 +(let ((@x6181 (unit-resolution @x6386 (lemma @x5914 $x3654) $x3812)))
  3.2265 +(let ((@x5944 (unit-resolution (def-axiom (or $x3809 $x3678)) @x6181 $x3678)))
  3.2266 +(let (($x4481 (= ?x1846 ?x4480)))
  3.2267 +(let (($x3188 (or $x3683 $x6711 $x4481)))
  3.2268 +(let (($x5285 (or (not (or $x4911 (<= (+ ?x4480 ?x1173 (* (- 1) ?x5018)) 0))) $x4481)))
  3.2269 +(let (($x6363 (or $x3683 $x5285)))
  3.2270 +(let (($x5370 (<= (+ ?x4480 ?x1173 (* (- 1) ?x5018)) 0)))
  3.2271 +(let ((@x4465 (rewrite (= (+ ?x4480 ?x1173 (* (- 1) ?x5018)) (+ ?x1173 ?x4480 (* (- 1) ?x5018))))))
  3.2272 +(let ((@x6818 (monotonicity @x4465 (= $x5370 (<= (+ ?x1173 ?x4480 (* (- 1) ?x5018)) 0)))))
  3.2273 +(let ((@x6705 (trans @x6818 (rewrite (= (<= (+ ?x1173 ?x4480 (* (- 1) ?x5018)) 0) $x6822)) (= $x5370 $x6822))))
  3.2274 +(let ((@x5840 (monotonicity (monotonicity @x6705 (= (or $x4911 $x5370) $x6706)) (= (not (or $x4911 $x5370)) $x6711))))
  3.2275 +(let ((@x6545 (monotonicity (monotonicity @x5840 (= $x5285 (or $x6711 $x4481))) (= $x6363 (or $x3683 (or $x6711 $x4481))))))
  3.2276 +(let ((@x4811 (trans @x6545 (rewrite (= (or $x3683 (or $x6711 $x4481)) $x3188)) (= $x6363 $x3188))))
  3.2277 +(let ((@x6726 (unit-resolution (mp ((_ quant-inst ?v0!15) $x6363) @x4811 $x3188) @x5944 (unit-resolution @x6242 @x6183 (not $x4481)) $x6711)))
  3.2278 +(let ((@x6470 (unit-resolution (def-axiom (or $x6706 (not $x4911))) (hypothesis $x6711) (not $x4911))))
  3.2279 +(let ((@x6494 (unit-resolution (def-axiom (or $x6706 (not $x6822))) (hypothesis $x6711) (not $x6822))))
  3.2280 +(let (($x6511 (or $x4911 $x6822 $x6128)))
  3.2281 +(let ((@x6588 (unit-resolution (def-axiom (or $x3809 $x3670)) @x6181 $x3670)))
  3.2282 +(let (($x6235 (or $x3675 $x4911 $x6822 $x6128)))
  3.2283 +(let (($x6510 (or $x4911 $x5370 (= (+ ?x257 ?x5018 ?x4456) 0))))
  3.2284 +(let (($x6263 (or $x3675 $x6510)))
  3.2285 +(let ((@x6480 (monotonicity (rewrite (= (+ ?x257 ?x5018 ?x4456) ?x6267)) (= (= (+ ?x257 ?x5018 ?x4456) 0) $x6128))))
  3.2286 +(let ((@x4472 (monotonicity (monotonicity @x6705 @x6480 (= $x6510 $x6511)) (= $x6263 (or $x3675 $x6511)))))
  3.2287 +(let ((@x5852 (mp ((_ quant-inst ?v0!15) $x6263) (trans @x4472 (rewrite (= (or $x3675 $x6511) $x6235)) (= $x6263 $x6235)) $x6235)))
  3.2288 +(let ((@x6501 (unit-resolution (unit-resolution @x5852 @x6588 $x6511) @x6494 @x6470 (hypothesis (not $x6128)) false)))
  3.2289 +(let ((@x4608 (lemma @x6501 (or $x6706 $x6128))))
  3.2290 +(let ((@x6959 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6128) $x5853)) (unit-resolution @x4608 @x6726 $x6128) $x5853)))
  3.2291 +(let (($x6603 (>= ?x5018 0)))
  3.2292 +(let (($x6582 (<= ?x5018 0)))
  3.2293 +(let (($x6583 (not $x6582)))
  3.2294 +(let (($x6156 (= v_b_v_G_1$ ?v0!15)))
  3.2295 +(let (($x5538 (not $x6156)))
  3.2296 +(let ((@x7337 (symm (commutativity (= $x6156 (= ?v0!15 v_b_v_G_1$))) (= (= ?v0!15 v_b_v_G_1$) $x6156))))
  3.2297 +(let (($x6631 (= ?v0!15 v_b_v_G_1$)))
  3.2298 +(let (($x7483 (not $x6631)))
  3.2299 +(let (($x6269 (fun_app$ v_b_Visited_G_1$ ?v0!15)))
  3.2300 +(let (($x7698 (or $x6631 $x6269)))
  3.2301 +(let (($x6630 (fun_app$ ?x265 ?v0!15)))
  3.2302 +(let (($x7702 (= $x6630 $x7698)))
  3.2303 +(let (($x3468 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(!(let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
  3.2304 +(= $x67 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))) :pattern ( (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3) )))
  3.2305 +))
  3.2306 +(let (($x77 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
  3.2307 +(= $x67 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))))
  3.2308 +))
  3.2309 +(let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?3) ?2) ?1) ?0)))
  3.2310 +(let (($x74 (= $x67 (ite (= ?0 ?2) ?1 (fun_app$ ?3 ?0)))))
  3.2311 +(let (($x72 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
  3.2312 +(= $x67 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))))
  3.2313 +))
  3.2314 +(let ((@x76 (rewrite (= (= $x67 (ite (= ?0 ?2) ?1 (fun_app$ ?3 ?0))) $x74))))
  3.2315 +(let ((@x1443 (mp~ (mp (asserted $x72) (quant-intro @x76 (= $x72 $x77)) $x77) (nnf-pos (refl (~ $x74 $x74)) (~ $x77 $x77)) $x77)))
  3.2316 +(let ((@x3473 (mp @x1443 (quant-intro (refl (= $x74 $x74)) (= $x77 $x3468)) $x3468)))
  3.2317 +(let (($x4114 (not $x3468)))
  3.2318 +(let (($x6435 (or $x4114 $x7702)))
  3.2319 +(let ((@x5925 (monotonicity (rewrite (= (ite $x6631 true $x6269) $x7698)) (= (= $x6630 (ite $x6631 true $x6269)) $x7702))))
  3.2320 +(let ((@x6213 (monotonicity @x5925 (= (or $x4114 (= $x6630 (ite $x6631 true $x6269))) $x6435))))
  3.2321 +(let ((@x7487 (trans @x6213 (rewrite (= $x6435 $x6435)) (= (or $x4114 (= $x6630 (ite $x6631 true $x6269))) $x6435))))
  3.2322 +(let ((@x7488 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!15) (or $x4114 (= $x6630 (ite $x6631 true $x6269)))) @x7487 $x6435)))
  3.2323 +(let ((@x5875 (symm (unit-resolution (def-axiom (or $x3809 $x266)) @x6181 $x266) (= ?x265 v_b_Visited_G_2$))))
  3.2324 +(let ((@x7321 (symm (monotonicity @x5875 (= $x6630 (fun_app$ v_b_Visited_G_2$ ?v0!15))) (= (fun_app$ v_b_Visited_G_2$ ?v0!15) $x6630))))
  3.2325 +(let ((@x7322 (monotonicity @x7321 (= (not (fun_app$ v_b_Visited_G_2$ ?v0!15)) (not $x6630)))))
  3.2326 +(let (($x4415 (fun_app$ v_b_Visited_G_2$ ?v0!15)))
  3.2327 +(let (($x4479 (not $x4415)))
  3.2328 +(let ((?x5054 (b_G$ (pair$ v_b_v_G_1$ ?v0!13))))
  3.2329 +(let ((?x4706 (+ ?x257 ?x1810 ?x5054)))
  3.2330 +(let (($x4687 (= ?x4706 0)))
  3.2331 +(let (($x5187 (>= (+ ?x257 (* (- 1) ?x1808) ?x5054) 0)))
  3.2332 +(let (($x5051 (<= (+ b_Infinity$ (* (- 1) ?x5054)) 0)))
  3.2333 +(let (($x5186 (or $x5051 $x5187)))
  3.2334 +(let (($x5221 (not $x5186)))
  3.2335 +(let ((@x5744 (monotonicity (commutativity (= (= ?x1808 ?x1809) (= ?x1809 ?x1808))) (= (not (= ?x1808 ?x1809)) (not (= ?x1809 ?x1808))))))
  3.2336 +(let (($x5690 (not (= ?x1808 ?x1809))))
  3.2337 +(let ((@x5726 (mp (unit-resolution ((_ th-lemma arith triangle-eq) (or $x5690 $x1812)) (hypothesis $x1813) $x5690) @x5744 (not (= ?x1809 ?x1808)))))
  3.2338 +(let (($x5270 (= ?x1809 ?x1808)))
  3.2339 +(let (($x5230 (or $x5221 $x5270)))
  3.2340 +(let ((@x4739 (hypothesis $x3678)))
  3.2341 +(let (($x5327 (or $x3683 $x5221 $x5270)))
  3.2342 +(let (($x5333 (or (not (or $x5051 (<= (+ ?x1808 ?x1173 (* (- 1) ?x5054)) 0))) $x5270)))
  3.2343 +(let (($x5268 (or $x3683 $x5333)))
  3.2344 +(let (($x5095 (<= (+ ?x1808 ?x1173 (* (- 1) ?x5054)) 0)))
  3.2345 +(let ((@x5120 (rewrite (= (+ ?x1808 ?x1173 (* (- 1) ?x5054)) (+ ?x1173 ?x1808 (* (- 1) ?x5054))))))
  3.2346 +(let ((@x5127 (monotonicity @x5120 (= $x5095 (<= (+ ?x1173 ?x1808 (* (- 1) ?x5054)) 0)))))
  3.2347 +(let ((@x4705 (trans @x5127 (rewrite (= (<= (+ ?x1173 ?x1808 (* (- 1) ?x5054)) 0) $x5187)) (= $x5095 $x5187))))
  3.2348 +(let ((@x5229 (monotonicity (monotonicity @x4705 (= (or $x5051 $x5095) $x5186)) (= (not (or $x5051 $x5095)) $x5221))))
  3.2349 +(let ((@x5269 (monotonicity (monotonicity @x5229 (= $x5333 $x5230)) (= $x5268 (or $x3683 $x5230)))))
  3.2350 +(let ((@x5432 (mp ((_ quant-inst ?v0!13) $x5268) (trans @x5269 (rewrite (= (or $x3683 $x5230) $x5327)) (= $x5268 $x5327)) $x5327)))
  3.2351 +(let ((@x5729 (unit-resolution (def-axiom (or $x5186 (not $x5051))) (unit-resolution (unit-resolution @x5432 @x4739 $x5230) @x5726 $x5221) (not $x5051))))
  3.2352 +(let ((@x5749 (unit-resolution (def-axiom (or $x5186 (not $x5187))) (unit-resolution (unit-resolution @x5432 @x4739 $x5230) @x5726 $x5221) (not $x5187))))
  3.2353 +(let (($x5211 (or $x5051 $x5187 $x4687)))
  3.2354 +(let ((@x5807 (hypothesis $x3670)))
  3.2355 +(let (($x5189 (or $x3675 $x5051 $x5187 $x4687)))
  3.2356 +(let (($x5102 (or $x5051 $x5095 (= (+ ?x257 ?x5054 ?x1810) 0))))
  3.2357 +(let (($x5163 (or $x3675 $x5102)))
  3.2358 +(let ((@x5164 (monotonicity (rewrite (= (+ ?x257 ?x5054 ?x1810) ?x4706)) (= (= (+ ?x257 ?x5054 ?x1810) 0) $x4687))))
  3.2359 +(let ((@x5215 (monotonicity (monotonicity @x4705 @x5164 (= $x5102 $x5211)) (= $x5163 (or $x3675 $x5211)))))
  3.2360 +(let ((@x5376 (mp ((_ quant-inst ?v0!13) $x5163) (trans @x5215 (rewrite (= (or $x3675 $x5211) $x5189)) (= $x5163 $x5189)) $x5189)))
  3.2361 +(let ((@x5714 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4687) (>= ?x4706 0))) (unit-resolution (unit-resolution @x5376 @x5807 $x5211) @x5749 @x5729 $x4687) (>= ?x4706 0))))
  3.2362 +(let ((@x5723 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (<= ?x1811 0) $x1812)) (hypothesis $x1813) (<= ?x1811 0))))
  3.2363 +(let ((@x6888 (unit-resolution (lemma ((_ th-lemma arith farkas 1 -1 1) @x5723 @x5749 @x5714 false) (or $x1812 $x3675 $x3683)) @x6588 @x5944 $x1812)))
  3.2364 +(let ((@x6891 (unit-resolution (def-axiom (or $x3806 $x1813 $x3800)) @x6888 (unit-resolution (def-axiom (or $x3809 $x3803)) @x6181 $x3803) $x3800)))
  3.2365 +(let (($x6050 (= ?v0!14 v_b_v_G_1$)))
  3.2366 +(let (($x5678 (fun_app$ v_b_Visited_G_1$ ?v0!14)))
  3.2367 +(let (($x4963 (or $x6050 $x5678)))
  3.2368 +(let (($x6049 (fun_app$ ?x265 ?v0!14)))
  3.2369 +(let (($x6452 (= $x6049 $x4963)))
  3.2370 +(let (($x5869 (or $x4114 $x6452)))
  3.2371 +(let ((@x6355 (monotonicity (rewrite (= (ite $x6050 true $x5678) $x4963)) (= (= $x6049 (ite $x6050 true $x5678)) $x6452))))
  3.2372 +(let ((@x5854 (monotonicity @x6355 (= (or $x4114 (= $x6049 (ite $x6050 true $x5678))) $x5869))))
  3.2373 +(let ((@x6366 (trans @x5854 (rewrite (= $x5869 $x5869)) (= (or $x4114 (= $x6049 (ite $x6050 true $x5678))) $x5869))))
  3.2374 +(let ((@x6233 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!14) (or $x4114 (= $x6049 (ite $x6050 true $x5678)))) @x6366 $x5869)))
  3.2375 +(let ((@x6372 (symm (monotonicity @x5875 (= $x6049 (fun_app$ v_b_Visited_G_2$ ?v0!14))) (= (fun_app$ v_b_Visited_G_2$ ?v0!14) $x6049))))
  3.2376 +(let (($x1824 (fun_app$ v_b_Visited_G_2$ ?v0!14)))
  3.2377 +(let ((@x4837 (mp (unit-resolution (def-axiom (or $x1829 $x1824)) (hypothesis $x1830) $x1824) @x6372 $x6049)))
  3.2378 +(let ((@x5037 (unit-resolution (def-axiom (or (not $x6452) (not $x6049) $x4963)) @x4837 (unit-resolution @x6233 @x3473 $x6452) $x4963)))
  3.2379 +(let (($x4290 (not $x5678)))
  3.2380 +(let ((?x5658 (* (- 1) ?x1827)))
  3.2381 +(let ((?x4907 (+ ?x257 ?x5658)))
  3.2382 +(let (($x6523 (>= ?x4907 0)))
  3.2383 +(let (($x6556 (not $x6523)))
  3.2384 +(let (($x4887 (>= (+ ?x257 ?x5658 (b_G$ (pair$ v_b_v_G_1$ ?v0!14))) 0)))
  3.2385 +(let (($x4812 (not $x4887)))
  3.2386 +(let (($x4783 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) 0)))
  3.2387 +(let (($x5110 (or $x4783 $x4887)))
  3.2388 +(let (($x5079 (not $x5110)))
  3.2389 +(let ((@x5065 (unit-resolution (def-axiom (or $x1829 (not $x1828))) (hypothesis $x1830) (not $x1828))))
  3.2390 +(let (($x4844 (or $x3683 $x5079 $x1828)))
  3.2391 +(let (($x4891 (<= (+ ?x1827 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) 0)))
  3.2392 +(let (($x5552 (or (not (or $x4783 $x4891)) $x1828)))
  3.2393 +(let (($x4766 (or $x3683 $x5552)))
  3.2394 +(let (($x4493 (<= (+ ?x1173 ?x1827 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) 0)))
  3.2395 +(let (($x5019 (= (+ ?x1827 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) (+ ?x1173 ?x1827 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))))))
  3.2396 +(let ((@x5288 (trans (monotonicity (rewrite $x5019) (= $x4891 $x4493)) (rewrite (= $x4493 $x4887)) (= $x4891 $x4887))))
  3.2397 +(let ((@x5082 (monotonicity (monotonicity @x5288 (= (or $x4783 $x4891) $x5110)) (= (not (or $x4783 $x4891)) $x5079))))
  3.2398 +(let ((@x5868 (monotonicity (monotonicity @x5082 (= $x5552 (or $x5079 $x1828))) (= $x4766 (or $x3683 (or $x5079 $x1828))))))
  3.2399 +(let ((@x5811 (trans @x5868 (rewrite (= (or $x3683 (or $x5079 $x1828)) $x4844)) (= $x4766 $x4844))))
  3.2400 +(let ((@x6433 (unit-resolution (def-axiom (or $x5110 $x4812)) (unit-resolution (mp ((_ quant-inst ?v0!14) $x4766) @x5811 $x4844) @x5944 @x5065 $x5079) $x4812)))
  3.2401 +(let ((?x6047 (pair$ v_b_v_G_1$ ?v0!14)))
  3.2402 +(let ((?x6491 (b_G$ ?x6047)))
  3.2403 +(let (($x5826 (>= ?x6491 0)))
  3.2404 +(let ((@x6283 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6491 0)) $x5826)) (hypothesis (not $x5826)) (not (= ?x6491 0)))))
  3.2405 +(let (($x5742 (= v_b_v_G_1$ ?v0!14)))
  3.2406 +(let (($x5751 (<= ?x6491 0)))
  3.2407 +(let ((@x6302 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x5826 $x5751)) (hypothesis (not $x5826)) $x5751)))
  3.2408 +(let (($x5738 (or $x5742 (not $x5751))))
  3.2409 +(let (($x3480 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x84 (= ?v0 ?v1)))
  3.2410 +(or $x84 (not (<= (b_G$ (pair$ ?v0 ?v1)) 0)))) :pattern ( (pair$ ?v0 ?v1) )))
  3.2411 +))
  3.2412 +(let (($x120 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x84 (= ?v0 ?v1)))
  3.2413 +(or $x84 (not (<= (b_G$ (pair$ ?v0 ?v1)) 0)))))
  3.2414 +))
  3.2415 +(let (($x84 (= ?1 ?0)))
  3.2416 +(let (($x117 (or $x84 (not (<= (b_G$ (pair$ ?1 ?0)) 0)))))
  3.2417 +(let (($x105 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x29 (pair$ ?v0 ?v1)))
  3.2418 +(let ((?x85 (b_G$ ?x29)))
  3.2419 +(let (($x102 (< 0 ?x85)))
  3.2420 +(=> (not (= ?v0 ?v1)) $x102)))))
  3.2421 +))
  3.2422 +(let (($x110 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x29 (pair$ ?v0 ?v1)))
  3.2423 +(let ((?x85 (b_G$ ?x29)))
  3.2424 +(let (($x102 (< 0 ?x85)))
  3.2425 +(let (($x84 (= ?v0 ?v1)))
  3.2426 +(or $x84 $x102))))))
  3.2427 +))
  3.2428 +(let ((?x29 (pair$ ?1 ?0)))
  3.2429 +(let ((?x85 (b_G$ ?x29)))
  3.2430 +(let (($x102 (< 0 ?x85)))
  3.2431 +(let ((@x119 (monotonicity (rewrite (= $x102 (not (<= ?x85 0)))) (= (or $x84 $x102) $x117))))
  3.2432 +(let ((@x112 (quant-intro (rewrite (= (=> (not $x84) $x102) (or $x84 $x102))) (= $x105 $x110))))
  3.2433 +(let ((@x125 (mp (asserted $x105) (trans @x112 (quant-intro @x119 (= $x110 $x120)) (= $x105 $x120)) $x120)))
  3.2434 +(let ((@x3485 (mp (mp~ @x125 (nnf-pos (refl (~ $x117 $x117)) (~ $x120 $x120)) $x120) (quant-intro (refl (= $x117 $x117)) (= $x120 $x3480)) $x3480)))
  3.2435 +(let ((@x5780 (mp ((_ quant-inst v_b_v_G_1$ ?v0!14) (or (not $x3480) $x5738)) (rewrite (= (or (not $x3480) $x5738) (or (not $x3480) $x5742 (not $x5751)))) (or (not $x3480) $x5742 (not $x5751)))))
  3.2436 +(let (($x5739 (= ?x6491 0)))
  3.2437 +(let (($x5781 (or (not $x5742) $x5739)))
  3.2438 +(let (($x3474 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(or (not (= ?v0 ?v1)) (= (b_G$ (pair$ ?v0 ?v1)) 0)) :pattern ( (pair$ ?v0 ?v1) )))
  3.2439 +))
  3.2440 +(let (($x99 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(or (not (= ?v0 ?v1)) (= (b_G$ (pair$ ?v0 ?v1)) 0)))
  3.2441 +))
  3.2442 +(let ((@x3476 (refl (= (or (not $x84) (= ?x85 0)) (or (not $x84) (= ?x85 0))))))
  3.2443 +(let ((@x1447 (refl (~ (or (not $x84) (= ?x85 0)) (or (not $x84) (= ?x85 0))))))
  3.2444 +(let (($x93 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x84 (= ?v0 ?v1)))
  3.2445 +(=> $x84 (= (b_G$ (pair$ ?v0 ?v1)) 0))))
  3.2446 +))
  3.2447 +(let ((@x98 (rewrite (= (=> $x84 (= ?x85 0)) (or (not $x84) (= ?x85 0))))))
  3.2448 +(let ((@x1448 (mp~ (mp (asserted $x93) (quant-intro @x98 (= $x93 $x99)) $x99) (nnf-pos @x1447 (~ $x99 $x99)) $x99)))
  3.2449 +(let ((@x3479 (mp @x1448 (quant-intro @x3476 (= $x99 $x3474)) $x3474)))
  3.2450 +(let ((@x5817 (mp ((_ quant-inst v_b_v_G_1$ ?v0!14) (or (not $x3474) $x5781)) (rewrite (= (or (not $x3474) $x5781) (or (not $x3474) (not $x5742) $x5739))) (or (not $x3474) (not $x5742) $x5739))))
  3.2451 +(let ((@x6306 (unit-resolution (unit-resolution @x5817 @x3479 $x5781) (unit-resolution (unit-resolution @x5780 @x3485 $x5738) @x6302 $x5742) @x6283 false)))
  3.2452 +(let ((@x6555 ((_ th-lemma arith farkas 1 -1 1) (lemma @x6306 $x5826) (hypothesis $x4812) (hypothesis $x6523) false)))
  3.2453 +(let ((@x6225 (unit-resolution (def-axiom (or $x3809 $x256)) @x6181 $x256)))
  3.2454 +(let ((@x5748 (unit-resolution (def-axiom (or $x3821 $x3565)) @x4219 $x3565)))
  3.2455 +(let ((@x6018 (rewrite (= (or $x3570 (or $x255 $x4290 $x6523)) (or $x3570 $x255 $x4290 $x6523)))))
  3.2456 +(let ((@x6055 (mp ((_ quant-inst ?v0!14 v_b_v_G_1$) (or $x3570 (or $x255 $x4290 $x6523))) @x6018 (or $x3570 $x255 $x4290 $x6523))))
  3.2457 +(let ((@x6222 (unit-resolution @x6055 @x5748 @x6225 (hypothesis $x5678) (hypothesis $x6556) false)))
  3.2458 +(let ((@x5057 (unit-resolution (lemma @x6222 (or $x4290 $x6523)) (unit-resolution (lemma @x6555 (or $x6556 $x4887)) @x6433 $x6556) $x4290)))
  3.2459 +(let ((@x6293 (monotonicity (unit-resolution (def-axiom (or (not $x4963) $x6050 $x5678)) @x5057 @x5037 $x6050) (= ?x1827 ?x257))))
  3.2460 +(let (($x3052 (= ?x3104 ?x257)))
  3.2461 +(let ((?x3130 (pair$ v_b_v_G_1$ v_b_v_G_1$)))
  3.2462 +(let ((?x3096 (b_G$ ?x3130)))
  3.2463 +(let (($x3079 (>= ?x3096 0)))
  3.2464 +(let (($x3088 (<= (+ b_Infinity$ (* (- 1) ?x3096)) 0)))
  3.2465 +(let (($x4242 (or $x3088 $x3079)))
  3.2466 +(let (($x4785 (= ?x3096 0)))
  3.2467 +(let (($x3151 (not $x3474)))
  3.2468 +(let (($x4816 (or $x3151 $x4785)))
  3.2469 +(let ((@x4770 (monotonicity (rewrite (= (= v_b_v_G_1$ v_b_v_G_1$) true)) (= (not (= v_b_v_G_1$ v_b_v_G_1$)) (not true)))))
  3.2470 +(let ((@x4775 (trans @x4770 (rewrite (= (not true) false)) (= (not (= v_b_v_G_1$ v_b_v_G_1$)) false))))
  3.2471 +(let ((@x4767 (monotonicity @x4775 (= (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4785) (or false $x4785)))))
  3.2472 +(let ((@x4773 (trans @x4767 (rewrite (= (or false $x4785) $x4785)) (= (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4785) $x4785))))
  3.2473 +(let ((@x4820 (monotonicity @x4773 (= (or $x3151 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4785)) $x4816))))
  3.2474 +(let ((@x4821 (trans @x4820 (rewrite (= $x4816 $x4816)) (= (or $x3151 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4785)) $x4816))))
  3.2475 +(let ((@x4822 (mp ((_ quant-inst v_b_v_G_1$ v_b_v_G_1$) (or $x3151 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4785))) @x4821 $x4816)))
  3.2476 +(let ((@x4849 (lemma (unit-resolution @x4822 @x3479 (hypothesis (not $x4785)) false) $x4785)))
  3.2477 +(let ((@x6019 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4785) $x3079)) @x4849 $x3079)))
  3.2478 +(let ((@x4316 (def-axiom (or $x4242 (not $x3079)))))
  3.2479 +(let (($x4245 (not $x4242)))
  3.2480 +(let (($x3975 (or $x3683 $x4245 $x3052)))
  3.2481 +(let (($x3053 (or (not (or $x3088 (<= (+ ?x257 ?x1173 (* (- 1) ?x3096)) 0))) $x3052)))
  3.2482 +(let (($x3958 (or $x3683 $x3053)))
  3.2483 +(let (($x3103 (<= (+ ?x257 ?x1173 (* (- 1) ?x3096)) 0)))
  3.2484 +(let ((@x4023 (monotonicity (rewrite (= (+ ?x257 ?x1173 (* (- 1) ?x3096)) (* (- 1) ?x3096))) (= $x3103 (<= (* (- 1) ?x3096) 0)))))
  3.2485 +(let ((@x4044 (trans @x4023 (rewrite (= (<= (* (- 1) ?x3096) 0) $x3079)) (= $x3103 $x3079))))
  3.2486 +(let ((@x4247 (monotonicity (monotonicity @x4044 (= (or $x3088 $x3103) $x4242)) (= (not (or $x3088 $x3103)) $x4245))))
  3.2487 +(let ((@x4254 (monotonicity (monotonicity @x4247 (= $x3053 (or $x4245 $x3052))) (= $x3958 (or $x3683 (or $x4245 $x3052))))))
  3.2488 +(let ((@x4258 (trans @x4254 (rewrite (= (or $x3683 (or $x4245 $x3052)) $x3975)) (= $x3958 $x3975))))
  3.2489 +(let ((@x4259 (mp ((_ quant-inst v_b_v_G_1$) $x3958) @x4258 $x3975)))
  3.2490 +(let ((@x6268 (monotonicity (unit-resolution (def-axiom (or (not $x4963) $x6050 $x5678)) @x5057 @x5037 $x6050) (= ?x1826 ?x3104))))
  3.2491 +(let ((@x6107 (trans @x6268 (unit-resolution @x4259 @x5944 (unit-resolution @x4316 @x6019 $x4242) $x3052) (= ?x1826 ?x257))))
  3.2492 +(let ((@x6162 (unit-resolution @x5065 (trans @x6107 (symm @x6293 (= ?x257 ?x1827)) $x1828) false)))
  3.2493 +(let ((@x7615 (unit-resolution (def-axiom (or $x3794 $x1830 $x3788)) (lemma @x6162 $x1829) (unit-resolution (def-axiom (or $x3797 $x3791)) @x6891 $x3791) $x3788)))
  3.2494 +(let ((@x7616 (unit-resolution (def-axiom (or $x3785 $x3695)) @x7615 $x3695)))
  3.2495 +(let ((@x7443 (mp ((_ quant-inst ?v0!15) (or $x3700 (or $x4479 $x4481))) (rewrite (= (or $x3700 (or $x4479 $x4481)) (or $x3700 $x4479 $x4481))) (or $x3700 $x4479 $x4481))))
  3.2496 +(let ((@x7323 (mp (unit-resolution @x7443 @x7616 (unit-resolution @x6242 @x6183 (not $x4481)) $x4479) @x7322 (not $x6630))))
  3.2497 +(let ((@x7334 (unit-resolution (def-axiom (or (not $x7702) $x6630 (not $x7698))) @x7323 (unit-resolution @x7488 @x3473 $x7702) (not $x7698))))
  3.2498 +(let ((@x7344 (mp (unit-resolution (def-axiom (or $x7698 $x7483)) @x7334 $x7483) (monotonicity @x7337 (= $x7483 $x5538)) $x5538)))
  3.2499 +(let (($x5470 (or $x6156 $x6583)))
  3.2500 +(let ((@x6577 (mp ((_ quant-inst v_b_v_G_1$ ?v0!15) (or (not $x3480) $x5470)) (rewrite (= (or (not $x3480) $x5470) (or (not $x3480) $x6156 $x6583))) (or (not $x3480) $x6156 $x6583))))
  3.2501 +(let ((@x7345 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x6603 $x6582)) (unit-resolution (unit-resolution @x6577 @x3485 $x5470) @x7344 $x6583) $x6603)))
  3.2502 +(let (($x4153 (<= ?x296 0)))
  3.2503 +(let ((?x4058 (* (- 1) ?x296)))
  3.2504 +(let ((?x4124 (+ ?x172 ?x4058)))
  3.2505 +(let (($x4125 (>= ?x4124 0)))
  3.2506 +(let ((@x6892 (unit-resolution (def-axiom (or $x3797 $x3686)) @x6891 $x3686)))
  3.2507 +(let (($x4878 (or $x3691 $x4125)))
  3.2508 +(let ((@x4880 ((_ quant-inst b_Source$) $x4878)))
  3.2509 +(let (($x3198 (<= ?x172 0)))
  3.2510 +(let ((@x4532 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x2952 $x3198)) @x4529 $x3198)))
  3.2511 +(let ((@x6899 (unit-resolution ((_ th-lemma arith assign-bounds -1 1) (or $x4153 (not $x3198) (not $x4125))) @x4532 (or $x4153 (not $x4125)))))
  3.2512 +(let ((@x6900 (unit-resolution @x6899 (unit-resolution @x4880 @x6892 $x4125) $x4153)))
  3.2513 +(let (($x3887 (= v_b_v_G_1$ b_Source$)))
  3.2514 +(let (($x5313 (not $x3887)))
  3.2515 +(let ((@x5202 (hypothesis $x773)))
  3.2516 +(let ((?x4565 (pair$ b_Source$ b_Source$)))
  3.2517 +(let ((?x4566 (b_G$ ?x4565)))
  3.2518 +(let ((?x4567 (* (- 1) ?x4566)))
  3.2519 +(let ((?x4041 (pair$ v_b_v_G_1$ b_Source$)))
  3.2520 +(let ((?x4042 (b_G$ ?x4041)))
  3.2521 +(let ((@x4671 (monotonicity (symm (hypothesis $x3887) (= b_Source$ v_b_v_G_1$)) (= ?x4565 ?x4041))))
  3.2522 +(let ((@x4659 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x4042 ?x4566)) (>= (+ ?x4042 ?x4567) 0))) (monotonicity (symm @x4671 (= ?x4041 ?x4565)) (= ?x4042 ?x4566)) (>= (+ ?x4042 ?x4567) 0))))
  3.2523 +(let ((?x4049 (* (- 1) ?x4042)))
  3.2524 +(let ((?x5672 (+ ?x3096 ?x4049)))
  3.2525 +(let (($x5674 (>= ?x5672 0)))
  3.2526 +(let ((@x4664 (monotonicity (monotonicity (hypothesis $x3887) (= ?x3130 ?x4041)) (= ?x3096 ?x4042))))
  3.2527 +(let (($x4315 (not $x3079)))
  3.2528 +(let ((@x4728 (trans (monotonicity (hypothesis $x3887) (= ?x257 ?x172)) @x4529 (= ?x257 0))))
  3.2529 +(let ((@x4830 (monotonicity (monotonicity (hypothesis $x3887) (= ?x3104 ?x296)) @x4728 (= $x3052 $x297))))
  3.2530 +(let ((@x4736 (mp @x5202 (monotonicity (symm @x4830 (= $x297 $x3052)) (= $x773 (not $x3052))) (not $x3052))))
  3.2531 +(let ((@x5369 (unit-resolution @x4316 (unit-resolution (unit-resolution @x4259 @x4739 (or $x4245 $x3052)) @x4736 $x4245) $x4315)))
  3.2532 +(let (($x4601 (= ?x4566 0)))
  3.2533 +(let (($x4613 (or $x3151 $x4601)))
  3.2534 +(let ((@x4604 (monotonicity @x5820 (= (or (not (= b_Source$ b_Source$)) $x4601) (or false $x4601)))))
  3.2535 +(let ((@x4630 (trans @x4604 (rewrite (= (or false $x4601) $x4601)) (= (or (not (= b_Source$ b_Source$)) $x4601) $x4601))))
  3.2536 +(let ((@x4617 (monotonicity @x4630 (= (or $x3151 (or (not (= b_Source$ b_Source$)) $x4601)) $x4613))))
  3.2537 +(let ((@x4620 (trans @x4617 (rewrite (= $x4613 $x4613)) (= (or $x3151 (or (not (= b_Source$ b_Source$)) $x4601)) $x4613))))
  3.2538 +(let ((@x4621 (mp ((_ quant-inst b_Source$ b_Source$) (or $x3151 (or (not (= b_Source$ b_Source$)) $x4601))) @x4620 $x4613)))
  3.2539 +(let ((@x5180 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4601) (>= ?x4566 0))) (unit-resolution @x4621 @x3479 $x4601) (>= ?x4566 0))))
  3.2540 +(let ((@x5283 ((_ th-lemma arith farkas 1 -1 1 1) @x5180 @x5369 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x3096 ?x4042)) $x5674)) @x4664 $x5674) @x4659 false)))
  3.2541 +(let (($x5310 (<= ?x4042 0)))
  3.2542 +(let ((?x4076 (+ ?x257 ?x4058 ?x4042)))
  3.2543 +(let (($x4096 (<= ?x4076 0)))
  3.2544 +(let (($x4079 (= ?x4076 0)))
  3.2545 +(let (($x4053 (<= (+ ?x172 ?x1173 ?x4049) 0)))
  3.2546 +(let (($x4051 (<= (+ b_Infinity$ ?x4049) 0)))
  3.2547 +(let (($x4054 (or $x4051 $x4053)))
  3.2548 +(let (($x4055 (not $x4054)))
  3.2549 +(let ((@x5609 (symm (monotonicity @x4529 (= (= ?x296 ?x172) $x297)) (= $x297 (= ?x296 ?x172)))))
  3.2550 +(let ((@x5618 (mp @x5202 (monotonicity @x5609 (= $x773 (not (= ?x296 ?x172)))) (not (= ?x296 ?x172)))))
  3.2551 +(let (($x4056 (= ?x296 ?x172)))
  3.2552 +(let (($x4057 (or $x4055 $x4056)))
  3.2553 +(let (($x4295 (or $x3683 $x4055 $x4056)))
  3.2554 +(let ((@x4884 (mp ((_ quant-inst b_Source$) (or $x3683 $x4057)) (rewrite (= (or $x3683 $x4057) $x4295)) $x4295)))
  3.2555 +(let ((@x5791 (unit-resolution (def-axiom (or $x4054 (not $x4051))) (hypothesis $x4055) (not $x4051))))
  3.2556 +(let ((@x5806 (unit-resolution (def-axiom (or $x4054 (not $x4053))) (hypothesis $x4055) (not $x4053))))
  3.2557 +(let (($x4082 (or $x4051 $x4053 $x4079)))
  3.2558 +(let (($x4085 (or $x3675 $x4051 $x4053 $x4079)))
  3.2559 +(let (($x4075 (or $x4051 $x4053 (= (+ ?x257 ?x4042 ?x4058) 0))))
  3.2560 +(let (($x4086 (or $x3675 $x4075)))
  3.2561 +(let ((@x4081 (monotonicity (rewrite (= (+ ?x257 ?x4042 ?x4058) ?x4076)) (= (= (+ ?x257 ?x4042 ?x4058) 0) $x4079))))
  3.2562 +(let ((@x4090 (monotonicity (monotonicity @x4081 (= $x4075 $x4082)) (= $x4086 (or $x3675 $x4082)))))
  3.2563 +(let ((@x4095 (mp ((_ quant-inst b_Source$) $x4086) (trans @x4090 (rewrite (= (or $x3675 $x4082) $x4085)) (= $x4086 $x4085)) $x4085)))
  3.2564 +(let ((@x5789 (unit-resolution (unit-resolution @x4095 @x5807 $x4082) @x5806 @x5791 (hypothesis (not $x4079)) false)))
  3.2565 +(let ((@x5623 (unit-resolution (lemma @x5789 (or $x4054 $x4079 $x3675)) (unit-resolution (unit-resolution @x4884 @x4739 $x4057) @x5618 $x4055) @x5807 $x4079)))
  3.2566 +(let ((@x5923 (hypothesis $x4096)))
  3.2567 +(let ((@x5933 ((_ th-lemma arith farkas -1 1 -1 1) (hypothesis $x3904) (hypothesis $x4153) (hypothesis (not $x5310)) @x5923 false)))
  3.2568 +(let ((@x5938 (lemma @x5933 (or $x5310 (not $x3904) (not $x4153) (not $x4096)))))
  3.2569 +(let ((@x5596 (unit-resolution @x5938 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4079) $x4096)) @x5623 $x4096) (hypothesis $x4153) @x5049 $x5310)))
  3.2570 +(let (($x5886 (= (or (not $x3480) (or $x3887 (not $x5310))) (or (not $x3480) $x3887 (not $x5310)))))
  3.2571 +(let ((@x5952 (mp ((_ quant-inst v_b_v_G_1$ b_Source$) (or (not $x3480) (or $x3887 (not $x5310)))) (rewrite $x5886) (or (not $x3480) $x3887 (not $x5310)))))
  3.2572 +(let ((@x5597 (unit-resolution @x5952 @x3485 @x5596 (unit-resolution (lemma @x5283 (or $x5313 $x3683 $x297)) @x5202 @x4739 $x5313) false)))
  3.2573 +(let ((@x6788 (unit-resolution (lemma @x5597 (or $x297 (not $x4153) $x3675 $x3683)) @x6900 @x6588 @x5944 $x297)))
  3.2574 +(let ((@x7810 (unit-resolution (def-axiom (or $x3782 $x773 $x3776)) (unit-resolution (def-axiom (or $x3785 $x3779)) @x7615 $x3779) @x6788 $x3776)))
  3.2575 +(let ((@x3347 (def-axiom (or $x3770 $x1848 $x3764))))
  3.2576 +(let ((@x9293 (unit-resolution @x3347 (unit-resolution (def-axiom (or $x3773 $x3767)) @x7810 $x3767) $x3767)))
  3.2577 +(let ((@x9294 (unit-resolution @x9293 (lemma ((_ th-lemma arith farkas 1 1 -1 1) @x5703 @x7345 @x6959 @x5049 false) $x1847) $x3764)))
  3.2578 +(let ((@x3367 (def-axiom (or $x3761 $x3703))))
  3.2579 +(let (($x4335 (or $x3708 $x4161)))
  3.2580 +(let ((@x4337 ((_ quant-inst v_b_v_G_1$) $x4335)))
  3.2581 +(let (($x4126 (fun_app$ v_b_Visited_G_2$ v_b_v_G_1$)))
  3.2582 +(let (($x3136 (fun_app$ ?x265 v_b_v_G_1$)))
  3.2583 +(let (($x3461 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(!(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2) :pattern ( (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) )))
  3.2584 +))
  3.2585 +(let (($x57 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2))
  3.2586 +))
  3.2587 +(let (($x54 (= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?2) ?1) ?0) ?1) ?0)))
  3.2588 +(let (($x52 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2))
  3.2589 +))
  3.2590 +(let (($x51 (= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?2) ?1) ?0) ?1) ?0)))
  3.2591 +(let ((@x62 (mp (asserted $x52) (quant-intro (rewrite (= $x51 $x54)) (= $x52 $x57)) $x57)))
  3.2592 +(let ((@x3466 (mp (mp~ @x62 (nnf-pos (refl (~ $x54 $x54)) (~ $x57 $x57)) $x57) (quant-intro (refl (= $x54 $x54)) (= $x57 $x3461)) $x3461)))
  3.2593 +(let (($x6140 (or (not $x3461) $x3136)))
  3.2594 +(let ((@x6106 (monotonicity (rewrite (= (= $x3136 true) $x3136)) (= (or (not $x3461) (= $x3136 true)) $x6140))))
  3.2595 +(let ((@x5837 (trans @x6106 (rewrite (= $x6140 $x6140)) (= (or (not $x3461) (= $x3136 true)) $x6140))))
  3.2596 +(let ((@x5928 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true) (or (not $x3461) (= $x3136 true))) @x5837 $x6140)))
  3.2597 +(let ((@x7482 (mp (unit-resolution @x5928 @x3466 $x3136) (monotonicity @x5875 (= $x3136 $x4126)) $x4126)))
  3.2598 +(let (($x4570 (>= ?x4546 0)))
  3.2599 +(let ((@x5420 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x4570 $x4569)) (hypothesis (not $x4569)) $x4570)))
  3.2600 +(let (($x4438 (<= (+ b_Infinity$ ?x4436) 0)))
  3.2601 +(let (($x4127 (not $x4126)))
  3.2602 +(let (($x5352 (or $x3725 $x4127 $x4438 $x4569)))
  3.2603 +(let (($x5336 (>= (+ ?x4435 ?x3104 (* (- 1) ?x1911)) 0)))
  3.2604 +(let (($x5339 (or $x4127 $x4438 $x5336)))
  3.2605 +(let (($x5353 (or $x3725 $x5339)))
  3.2606 +(let ((@x5341 (rewrite (= (+ ?x4435 ?x3104 (* (- 1) ?x1911)) (+ (* (- 1) ?x1911) ?x3104 ?x4435)))))
  3.2607 +(let ((@x5344 (monotonicity @x5341 (= $x5336 (>= (+ (* (- 1) ?x1911) ?x3104 ?x4435) 0)))))
  3.2608 +(let ((@x5348 (trans @x5344 (rewrite (= (>= (+ (* (- 1) ?x1911) ?x3104 ?x4435) 0) $x4569)) (= $x5336 $x4569))))
  3.2609 +(let ((@x5357 (monotonicity (monotonicity @x5348 (= $x5339 (or $x4127 $x4438 $x4569))) (= $x5353 (or $x3725 (or $x4127 $x4438 $x4569))))))
  3.2610 +(let ((@x5361 (trans @x5357 (rewrite (= (or $x3725 (or $x4127 $x4438 $x4569)) $x5352)) (= $x5353 $x5352))))
  3.2611 +(let ((@x5424 (unit-resolution (mp ((_ quant-inst ?v0!20 v_b_v_G_1$) $x5353) @x5361 $x5352) (hypothesis $x3720) (hypothesis $x4126) (hypothesis (not $x4569)) $x4438)))
  3.2612 +(let ((@x5428 (lemma ((_ th-lemma arith farkas 1 1 1 1) @x5424 (hypothesis $x4161) @x5420 (hypothesis $x1915) false) (or $x4569 (not $x4161) $x1914 $x3725 $x4127))))
  3.2613 +(let ((@x7692 (unit-resolution (unit-resolution @x5428 @x7482 (or $x4569 (not $x4161) $x1914 $x3725)) (unit-resolution @x4337 (unit-resolution @x3367 @x9294 $x3703) $x4161) (or $x4569 $x1914 $x3725))))
  3.2614 +(let ((@x7751 (unit-resolution @x7692 (unit-resolution (def-axiom (or $x3737 $x1915)) @x8092 $x1915) (unit-resolution @x3222 @x8092 $x3720) $x4569)))
  3.2615 +(let (($x5386 (= v_b_v_G_1$ ?v0!20)))
  3.2616 +(let (($x5390 (not $x5386)))
  3.2617 +(let ((@x9325 (symm (commutativity (= $x5386 (= ?v0!20 v_b_v_G_1$))) (= (= ?v0!20 v_b_v_G_1$) $x5386))))
  3.2618 +(let (($x5240 (= ?v0!20 v_b_v_G_1$)))
  3.2619 +(let (($x9145 (not $x5240)))
  3.2620 +(let (($x4609 (fun_app$ v_b_Visited_G_1$ ?v0!20)))
  3.2621 +(let (($x9130 (or $x5240 $x4609)))
  3.2622 +(let (($x5237 (fun_app$ ?x265 ?v0!20)))
  3.2623 +(let (($x9133 (= $x5237 $x9130)))
  3.2624 +(let (($x9136 (or $x4114 $x9133)))
  3.2625 +(let ((@x9135 (monotonicity (rewrite (= (ite $x5240 true $x4609) $x9130)) (= (= $x5237 (ite $x5240 true $x4609)) $x9133))))
  3.2626 +(let ((@x9140 (monotonicity @x9135 (= (or $x4114 (= $x5237 (ite $x5240 true $x4609))) $x9136))))
  3.2627 +(let ((@x9143 (trans @x9140 (rewrite (= $x9136 $x9136)) (= (or $x4114 (= $x5237 (ite $x5240 true $x4609))) $x9136))))
  3.2628 +(let ((@x9144 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!20) (or $x4114 (= $x5237 (ite $x5240 true $x4609)))) @x9143 $x9136)))
  3.2629 +(let ((@x9316 (symm (monotonicity @x5875 (= $x5237 (fun_app$ v_b_Visited_G_2$ ?v0!20))) (= (fun_app$ v_b_Visited_G_2$ ?v0!20) $x5237))))
  3.2630 +(let ((@x9318 (monotonicity @x9316 (= (not (fun_app$ v_b_Visited_G_2$ ?v0!20)) (not $x5237)))))
  3.2631 +(let (($x4278 (fun_app$ v_b_Visited_G_2$ ?v0!20)))
  3.2632 +(let (($x4279 (not $x4278)))
  3.2633 +(let (($x4403 (or $x4279 $x4400)))
  3.2634 +(let ((@x8012 (mp ((_ quant-inst ?v0!20) (or $x3700 $x4403)) (rewrite (= (or $x3700 $x4403) (or $x3700 $x4279 $x4400))) (or $x3700 $x4279 $x4400))))
  3.2635 +(let ((@x9292 (unit-resolution (unit-resolution @x8012 @x7616 $x4403) (hypothesis (not $x4400)) $x4279)))
  3.2636 +(let ((@x9320 (unit-resolution (def-axiom (or (not $x9133) $x5237 (not $x9130))) (mp @x9292 @x9318 (not $x5237)) (unit-resolution @x9144 @x3473 $x9133) (not $x9130))))
  3.2637 +(let ((@x9328 (mp (unit-resolution (def-axiom (or $x9130 $x9145)) @x9320 $x9145) (monotonicity @x9325 (= $x9145 $x5390)) $x5390)))
  3.2638 +(let (($x5387 (<= ?x4435 0)))
  3.2639 +(let (($x5391 (= ?x4435 0)))
  3.2640 +(let ((?x3106 (+ ?x257 ?x3096 ?x3105)))
  3.2641 +(let (($x4239 (<= ?x3106 0)))
  3.2642 +(let ((?x3884 (+ ?x257 ?x3105)))
  3.2643 +(let (($x3885 (<= ?x3884 0)))
  3.2644 +(let (($x6004 (= ?x257 ?x3104)))
  3.2645 +(let ((@x7828 (mp (unit-resolution @x4259 @x5944 (unit-resolution @x4316 @x6019 $x4242) $x3052) (symm (commutativity (= $x6004 $x3052)) (= $x3052 $x6004)) $x6004)))
  3.2646 +(let (($x4177 (<= ?x3096 0)))
  3.2647 +(let ((@x6933 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4785) $x4177)) @x4849 $x4177)))
  3.2648 +(let ((@x7838 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x4239 (not $x3885) (not $x4177))) @x6933 (or $x4239 (not $x3885)))))
  3.2649 +(let ((@x7839 (unit-resolution @x7838 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6004) $x3885)) @x7828 $x3885) $x4239)))
  3.2650 +(let (($x3044 (>= ?x3106 0)))
  3.2651 +(let (($x3886 (>= ?x3884 0)))
  3.2652 +(let (($x5927 (or $x3691 $x3886)))
  3.2653 +(let ((@x5941 ((_ quant-inst v_b_v_G_1$) $x5927)))
  3.2654 +(let ((@x6925 (unit-resolution @x5941 @x6892 $x3886)))
  3.2655 +(let ((@x6929 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x3044 $x4315 (not $x3886))) @x6019 (or $x3044 (not $x3886)))))
  3.2656 +(let ((@x6930 (unit-resolution @x6929 @x6925 $x3044)))
  3.2657 +(let ((?x4381 (+ ?x1911 ?x3105)))
  3.2658 +(let (($x7049 (<= ?x4381 0)))
  3.2659 +(let (($x7135 (= ?x4546 0)))
  3.2660 +(let ((?x1912 (* (- 1) ?x1911)))
  3.2661 +(let ((?x4487 (+ ?x257 ?x1912 ?x4435)))
  3.2662 +(let (($x4507 (<= ?x4487 0)))
  3.2663 +(let (($x5673 (= ?x4487 0)))
  3.2664 +(let (($x6827 (>= (+ ?x257 ?x4418 ?x4435) 0)))
  3.2665 +(let (($x6723 (or $x4438 $x6827)))
  3.2666 +(let (($x6684 (not $x6723)))
  3.2667 +(let (($x6831 (or $x6684 $x4400)))
  3.2668 +(let (($x6789 (or $x3683 $x6684 $x4400)))
  3.2669 +(let (($x4443 (or (not (or $x4438 (<= (+ ?x4393 ?x1173 ?x4436) 0))) $x4400)))
  3.2670 +(let (($x6790 (or $x3683 $x4443)))
  3.2671 +(let ((@x6945 (monotonicity (rewrite (= (+ ?x4393 ?x1173 ?x4436) (+ ?x1173 ?x4393 ?x4436))) (= (<= (+ ?x4393 ?x1173 ?x4436) 0) (<= (+ ?x1173 ?x4393 ?x4436) 0)))))
  3.2672 +(let ((@x6725 (trans @x6945 (rewrite (= (<= (+ ?x1173 ?x4393 ?x4436) 0) $x6827)) (= (<= (+ ?x4393 ?x1173 ?x4436) 0) $x6827))))
  3.2673 +(let ((@x6730 (monotonicity @x6725 (= (or $x4438 (<= (+ ?x4393 ?x1173 ?x4436) 0)) $x6723))))
  3.2674 +(let ((@x6830 (monotonicity @x6730 (= (not (or $x4438 (<= (+ ?x4393 ?x1173 ?x4436) 0))) $x6684))))
  3.2675 +(let ((@x6829 (monotonicity (monotonicity @x6830 (= $x4443 $x6831)) (= $x6790 (or $x3683 $x6831)))))
  3.2676 +(let ((@x6824 (mp ((_ quant-inst ?v0!20) $x6790) (trans @x6829 (rewrite (= (or $x3683 $x6831) $x6789)) (= $x6790 $x6789)) $x6789)))
  3.2677 +(let ((@x9281 (unit-resolution (unit-resolution @x6824 @x5944 $x6831) (hypothesis (not $x4400)) $x6684)))
  3.2678 +(let ((@x7436 (unit-resolution (def-axiom (or $x6723 (not $x4438))) (hypothesis $x6684) (not $x4438))))
  3.2679 +(let ((@x7494 (unit-resolution (def-axiom (or $x6723 (not $x6827))) (hypothesis $x6684) (not $x6827))))
  3.2680 +(let (($x6621 (or $x4438 $x6827 $x5673)))
  3.2681 +(let (($x6987 (or $x3675 $x4438 $x6827 $x5673)))
  3.2682 +(let (($x4440 (<= (+ ?x4393 ?x1173 ?x4436) 0)))
  3.2683 +(let (($x4486 (or $x4438 $x4440 (= (+ ?x257 ?x4435 ?x1912) 0))))
  3.2684 +(let (($x6624 (or $x3675 $x4486)))
  3.2685 +(let ((@x5324 (monotonicity (rewrite (= (+ ?x257 ?x4435 ?x1912) ?x4487)) (= (= (+ ?x257 ?x4435 ?x1912) 0) $x5673))))
  3.2686 +(let ((@x6996 (monotonicity (monotonicity @x6725 @x5324 (= $x4486 $x6621)) (= $x6624 (or $x3675 $x6621)))))
  3.2687 +(let ((@x7057 (mp ((_ quant-inst ?v0!20) $x6624) (trans @x6996 (rewrite (= (or $x3675 $x6621) $x6987)) (= $x6624 $x6987)) $x6987)))
  3.2688 +(let ((@x7649 (unit-resolution (unit-resolution @x7057 @x6588 $x6621) @x7494 @x7436 (hypothesis (not $x5673)) false)))
  3.2689 +(let ((@x7699 (lemma @x7649 (or $x6723 $x5673))))
  3.2690 +(let ((@x9285 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x5673) $x4507)) (unit-resolution @x7699 @x9281 $x5673) $x4507)))
  3.2691 +(let ((@x9287 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or (not $x4507) $x4570 (not $x3886))) @x6925 (or (not $x4507) $x4570))))
  3.2692 +(let ((@x7251 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7135 (not $x4569) (not $x4570))) (hypothesis $x4569) (or $x7135 (not $x4570)))))
  3.2693 +(let (($x7151 (not $x7135)))
  3.2694 +(let (($x7157 (or $x3734 $x7049 $x4127 $x7151)))
  3.2695 +(let (($x4516 (>= (+ ?x3104 ?x1912) 0)))
  3.2696 +(let (($x4528 (or $x4516 $x4127 (not (= (+ ?x3104 ?x1912 ?x4435) 0)))))
  3.2697 +(let (($x7317 (or $x3734 $x4528)))
  3.2698 +(let ((@x7137 (monotonicity (rewrite (= (+ ?x3104 ?x1912 ?x4435) (+ ?x1912 ?x3104 ?x4435))) (= (= (+ ?x3104 ?x1912 ?x4435) 0) (= (+ ?x1912 ?x3104 ?x4435) 0)))))
  3.2699 +(let ((@x7149 (trans @x7137 (rewrite (= (= (+ ?x1912 ?x3104 ?x4435) 0) $x7135)) (= (= (+ ?x3104 ?x1912 ?x4435) 0) $x7135))))
  3.2700 +(let ((@x7063 (monotonicity (rewrite (= (+ ?x3104 ?x1912) (+ ?x1912 ?x3104))) (= $x4516 (>= (+ ?x1912 ?x3104) 0)))))
  3.2701 +(let ((@x7144 (trans @x7063 (rewrite (= (>= (+ ?x1912 ?x3104) 0) $x7049)) (= $x4516 $x7049))))
  3.2702 +(let ((@x7156 (monotonicity @x7144 (monotonicity @x7149 (= (not (= (+ ?x3104 ?x1912 ?x4435) 0)) $x7151)) (= $x4528 (or $x7049 $x4127 $x7151)))))
  3.2703 +(let ((@x7313 (trans (monotonicity @x7156 (= $x7317 (or $x3734 (or $x7049 $x4127 $x7151)))) (rewrite (= (or $x3734 (or $x7049 $x4127 $x7151)) $x7157)) (= $x7317 $x7157))))
  3.2704 +(let ((@x7502 (unit-resolution (mp ((_ quant-inst v_b_v_G_1$) $x7317) @x7313 $x7157) (hypothesis $x3729) @x7482 (or $x7049 $x7151))))
  3.2705 +(let ((@x9290 (unit-resolution @x7502 (unit-resolution @x7251 (unit-resolution @x9287 @x9285 $x4570) $x7135) $x7049)))
  3.2706 +(let (($x4382 (>= ?x4381 0)))
  3.2707 +(let (($x6813 (= ?v1!16 v_b_v_G_1$)))
  3.2708 +(let (($x7202 (= v_b_v_G_1$ ?v1!16)))
  3.2709 +(let ((?x6481 (pair$ v_b_v_G_1$ ?v1!16)))
  3.2710 +(let ((?x6374 (b_G$ ?x6481)))
  3.2711 +(let (($x7203 (<= ?x6374 0)))
  3.2712 +(let ((?x1866 (v_b_SP_G_2$ ?v0!17)))
  3.2713 +(let ((?x6890 (+ ?x1866 ?x3105)))
  3.2714 +(let (($x6886 (<= ?x6890 0)))
  3.2715 +(let ((?x4496 (fun_app$c v_b_SP_G_1$ ?v0!17)))
  3.2716 +(let ((?x6307 (* (- 1) ?x4496)))
  3.2717 +(let ((?x5972 (+ ?x257 ?x6307)))
  3.2718 +(let (($x7220 (>= ?x5972 0)))
  3.2719 +(let (($x3187 (fun_app$ v_b_Visited_G_1$ ?v0!17)))
  3.2720 +(let (($x4478 (= ?v0!17 v_b_v_G_1$)))
  3.2721 +(let (($x4499 (or $x4478 $x3187)))
  3.2722 +(let (($x4471 (fun_app$ ?x265 ?v0!17)))
  3.2723 +(let (($x4593 (= $x4471 $x4499)))
  3.2724 +(let (($x4712 (or $x4114 $x4593)))
  3.2725 +(let ((@x4495 (monotonicity (rewrite (= (ite $x4478 true $x3187) $x4499)) (= (= $x4471 (ite $x4478 true $x3187)) $x4593))))
  3.2726 +(let ((@x5371 (monotonicity @x4495 (= (or $x4114 (= $x4471 (ite $x4478 true $x3187))) $x4712))))
  3.2727 +(let ((@x5958 (trans @x5371 (rewrite (= $x4712 $x4712)) (= (or $x4114 (= $x4471 (ite $x4478 true $x3187))) $x4712))))
  3.2728 +(let ((@x6125 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!17) (or $x4114 (= $x4471 (ite $x4478 true $x3187)))) @x5958 $x4712)))
  3.2729 +(let ((@x8166 (mp (unit-resolution (def-axiom (or $x2760 $x1862)) (hypothesis $x2765) $x1862) (symm (monotonicity @x5875 (= $x4471 $x1862)) (= $x1862 $x4471)) $x4471)))
  3.2730 +(let ((@x8237 (unit-resolution (def-axiom (or (not $x4593) (not $x4471) $x4499)) @x8166 (unit-resolution @x6125 @x3473 $x4593) $x4499)))
  3.2731 +(let (($x6485 (not $x4478)))
  3.2732 +(let (($x8046 (<= (+ ?x257 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!16))) 0)))
  3.2733 +(let (($x6814 (fun_app$ v_b_Visited_G_1$ ?v1!16)))
  3.2734 +(let (($x8334 (or $x6813 $x6814)))
  3.2735 +(let (($x6812 (fun_app$ ?x265 ?v1!16)))
  3.2736 +(let (($x7683 (= $x6812 $x8334)))
  3.2737 +(let (($x6622 (or $x4114 $x7683)))
  3.2738 +(let ((@x6719 (monotonicity (rewrite (= (ite $x6813 true $x6814) $x8334)) (= (= $x6812 (ite $x6813 true $x6814)) $x7683))))
  3.2739 +(let ((@x8777 (monotonicity @x6719 (= (or $x4114 (= $x6812 (ite $x6813 true $x6814))) $x6622))))
  3.2740 +(let ((@x8650 (trans @x8777 (rewrite (= $x6622 $x6622)) (= (or $x4114 (= $x6812 (ite $x6813 true $x6814))) $x6622))))
  3.2741 +(let ((@x8651 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v1!16) (or $x4114 (= $x6812 (ite $x6813 true $x6814)))) @x8650 $x6622)))
  3.2742 +(let ((@x8121 (monotonicity (symm (monotonicity @x5875 (= $x6812 $x1860)) (= $x1860 $x6812)) (= (not $x1860) (not $x6812)))))
  3.2743 +(let (($x1861 (not $x1860)))
  3.2744 +(let ((@x7803 (hypothesis $x2765)))
  3.2745 +(let ((@x8141 (mp (unit-resolution (def-axiom (or $x2760 $x1861)) @x7803 $x1861) @x8121 (not $x6812))))
  3.2746 +(let ((@x8147 (unit-resolution (def-axiom (or (not $x7683) $x6812 (not $x8334))) @x8141 (unit-resolution @x8651 @x3473 $x7683) (not $x8334))))
  3.2747 +(let (($x8156 (or $x6814 $x8046)))
  3.2748 +(let (($x8160 (or $x3665 $x6814 $x8046)))
  3.2749 +(let (($x6666 (>= (+ (fun_app$c v_b_SP_G_1$ ?v1!16) ?x1173) 0)))
  3.2750 +(let (($x6673 (or $x6814 $x6666)))
  3.2751 +(let (($x8163 (or $x3665 $x6673)))
  3.2752 +(let ((@x7990 (rewrite (= (>= (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v1!16)) 0) $x8046))))
  3.2753 +(let (($x8213 (= (+ (fun_app$c v_b_SP_G_1$ ?v1!16) ?x1173) (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v1!16)))))
  3.2754 +(let ((@x8047 (monotonicity (rewrite $x8213) (= $x6666 (>= (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v1!16)) 0)))))
  3.2755 +(let ((@x8089 (monotonicity (monotonicity (trans @x8047 @x7990 (= $x6666 $x8046)) (= $x6673 $x8156)) (= $x8163 (or $x3665 $x8156)))))
  3.2756 +(let ((@x8093 (mp ((_ quant-inst ?v1!16) $x8163) (trans @x8089 (rewrite (= (or $x3665 $x8156) $x8160)) (= $x8163 $x8160)) $x8160)))
  3.2757 +(let ((@x8217 (unit-resolution @x8093 (unit-resolution (def-axiom (or $x3809 $x3660)) @x6181 $x3660) $x8156)))
  3.2758 +(let ((@x8239 (unit-resolution @x8217 (unit-resolution (def-axiom (or $x8334 (not $x6814))) @x8147 (not $x6814)) $x8046)))
  3.2759 +(let (($x3386 (not $x1869)))
  3.2760 +(let ((@x3390 (def-axiom (or $x2760 $x3386))))
  3.2761 +(let ((@x8240 (unit-resolution @x3390 @x7803 $x3386)))
  3.2762 +(let ((?x6009 (pair$ v_b_v_G_1$ ?v0!17)))
  3.2763 +(let ((?x6010 (b_G$ ?x6009)))
  3.2764 +(let ((?x1867 (* (- 1) ?x1866)))
  3.2765 +(let ((?x6187 (+ ?x257 ?x1867 ?x6010)))
  3.2766 +(let ((@x8743 (monotonicity (monotonicity (hypothesis $x4478) (= ?x6009 ?x3130)) (= ?x6010 ?x3096))))
  3.2767 +(let (($x6889 (= ?x1866 ?x3104)))
  3.2768 +(let ((@x6922 (hypothesis $x4478)))
  3.2769 +(let ((@x6921 (unit-resolution (hypothesis (not $x6889)) (monotonicity @x6922 $x6889) false)))
  3.2770 +(let ((@x6939 (lemma @x6921 (or $x6485 $x6889))))
  3.2771 +(let ((@x6214 ((_ th-lemma arith triangle-eq) (or (not $x6889) $x6886))))
  3.2772 +(let (($x7675 (>= ?x6890 0)))
  3.2773 +(let ((@x8362 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6889) $x7675)) (unit-resolution @x6939 @x6922 $x6889) $x7675)))
  3.2774 +(let ((@x7970 ((_ th-lemma arith eq-propagate 1 1 1 1 -1 -1) @x8362 (unit-resolution @x6214 (unit-resolution @x6939 @x6922 $x6889) $x6886) @x6019 @x6933 @x6930 @x7839 (= ?x6010 ?x6187))))
  3.2775 +(let ((@x8765 (trans (trans (symm @x7970 (= ?x6187 ?x6010)) @x8743 (= ?x6187 ?x3096)) @x4849 (= ?x6187 0))))
  3.2776 +(let (($x6564 (>= ?x6187 0)))
  3.2777 +(let (($x7274 (not $x6564)))
  3.2778 +(let ((@x7271 (hypothesis $x3386)))
  3.2779 +(let ((?x1865 (v_b_SP_G_2$ ?v1!16)))
  3.2780 +(let ((?x6126 (* (- 1) ?x1865)))
  3.2781 +(let ((?x6400 (+ ?x257 ?x6126 ?x6374)))
  3.2782 +(let (($x6319 (<= ?x6400 0)))
  3.2783 +(let (($x8008 (= ?x6400 0)))
  3.2784 +(let (($x6238 (<= (+ b_Infinity$ (* (- 1) ?x6374)) 0)))
  3.2785 +(let (($x8646 (not $x6238)))
  3.2786 +(let (($x7241 (>= (+ ?x257 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!16)) ?x6374) 0)))
  3.2787 +(let (($x7239 (or $x6238 $x7241)))
  3.2788 +(let (($x4416 (not $x7239)))
  3.2789 +(let ((?x6234 (fun_app$c v_b_SP_G_1$ ?v1!16)))
  3.2790 +(let (($x6378 (= ?x1865 ?x6234)))
  3.2791 +(let (($x8565 (not $x6378)))
  3.2792 +(let (($x8664 (>= (+ ?x1865 (* (- 1) ?x6234)) 0)))
  3.2793 +(let (($x8549 (not $x8664)))
  3.2794 +(let ((@x8517 ((_ th-lemma arith assign-bounds -1 -1 -1 -1 1) (or $x8549 (not $x8046) $x1869 (not $x6886) (not $x4177) (not $x3044)))))
  3.2795 +(let ((@x8321 (unit-resolution @x8517 (unit-resolution @x6214 (unit-resolution @x6939 @x6922 $x6889) $x6886) @x6933 @x6930 @x7271 (hypothesis $x8046) $x8549)))
  3.2796 +(let (($x8358 (or $x4416 $x6378)))
  3.2797 +(let (($x8640 (or $x3683 $x4416 $x6378)))
  3.2798 +(let (($x6219 (or (not (or $x6238 (<= (+ ?x6234 ?x1173 (* (- 1) ?x6374)) 0))) $x6378)))
  3.2799 +(let (($x8252 (or $x3683 $x6219)))
  3.2800 +(let (($x6539 (<= (+ ?x6234 ?x1173 (* (- 1) ?x6374)) 0)))
  3.2801 +(let ((@x7664 (rewrite (= (+ ?x6234 ?x1173 (* (- 1) ?x6374)) (+ ?x1173 ?x6234 (* (- 1) ?x6374))))))
  3.2802 +(let ((@x7697 (monotonicity @x7664 (= $x6539 (<= (+ ?x1173 ?x6234 (* (- 1) ?x6374)) 0)))))
  3.2803 +(let ((@x4371 (trans @x7697 (rewrite (= (<= (+ ?x1173 ?x6234 (* (- 1) ?x6374)) 0) $x7241)) (= $x6539 $x7241))))
  3.2804 +(let ((@x8352 (monotonicity (monotonicity @x4371 (= (or $x6238 $x6539) $x7239)) (= (not (or $x6238 $x6539)) $x4416))))
  3.2805 +(let ((@x8173 (monotonicity (monotonicity @x8352 (= $x6219 $x8358)) (= $x8252 (or $x3683 $x8358)))))
  3.2806 +(let ((@x8649 (mp ((_ quant-inst ?v1!16) $x8252) (trans @x8173 (rewrite (= (or $x3683 $x8358) $x8640)) (= $x8252 $x8640)) $x8640)))
  3.2807 +(let ((@x8632 (unit-resolution (unit-resolution @x8649 @x5944 $x8358) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x8565 $x8664)) @x8321 $x8565) $x4416)))
  3.2808 +(let (($x8029 (or $x6238 $x7241 $x8008)))
  3.2809 +(let (($x8118 (or $x3675 $x6238 $x7241 $x8008)))
  3.2810 +(let (($x6399 (or $x6238 $x6539 (= (+ ?x257 ?x6374 ?x6126) 0))))
  3.2811 +(let (($x8113 (or $x3675 $x6399)))
  3.2812 +(let ((@x8010 (monotonicity (rewrite (= (+ ?x257 ?x6374 ?x6126) ?x6400)) (= (= (+ ?x257 ?x6374 ?x6126) 0) $x8008))))
  3.2813 +(let ((@x5909 (monotonicity (monotonicity @x4371 @x8010 (= $x6399 $x8029)) (= $x8113 (or $x3675 $x8029)))))
  3.2814 +(let ((@x7712 (mp ((_ quant-inst ?v1!16) $x8113) (trans @x5909 (rewrite (= (or $x3675 $x8029) $x8118)) (= $x8113 $x8118)) $x8118)))
  3.2815 +(let ((@x8635 (unit-resolution (unit-resolution @x7712 @x6588 $x8029) (unit-resolution (def-axiom (or $x7239 (not $x7241))) @x8632 (not $x7241)) (unit-resolution (def-axiom (or $x7239 $x8646)) @x8632 $x8646) $x8008)))
  3.2816 +(let ((@x7288 (monotonicity (commutativity (= (= v_b_v_G_1$ ?v0!17) $x4478)) (= (not (= v_b_v_G_1$ ?v0!17)) $x6485))))
  3.2817 +(let (($x7176 (= v_b_v_G_1$ ?v0!17)))
  3.2818 +(let (($x7180 (not $x7176)))
  3.2819 +(let (($x7177 (<= ?x6010 0)))
  3.2820 +(let (($x7178 (not $x7177)))
  3.2821 +(let (($x7206 (not $x7203)))
  3.2822 +(let ((@x7267 (monotonicity (symm (commutativity (= $x7202 $x6813)) (= $x6813 $x7202)) (= (not $x6813) (not $x7202)))))
  3.2823 +(let (($x7207 (or $x7202 $x7206)))
  3.2824 +(let ((@x7215 (mp ((_ quant-inst v_b_v_G_1$ ?v1!16) (or (not $x3480) $x7207)) (rewrite (= (or (not $x3480) $x7207) (or (not $x3480) $x7202 $x7206))) (or (not $x3480) $x7202 $x7206))))
  3.2825 +(let ((@x7270 (unit-resolution (unit-resolution @x7215 @x3485 $x7207) (mp (hypothesis (not $x6813)) @x7267 (not $x7202)) $x7206)))
  3.2826 +(let ((@x7278 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x7178 $x7274 $x1869 $x7203 (not $x6319))) (hypothesis $x6319) (hypothesis $x6564) @x7271 @x7270 $x7178)))
  3.2827 +(let ((@x7282 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6010 0)) $x7177)) @x7278 (not (= ?x6010 0)))))
  3.2828 +(let (($x7181 (= ?x6010 0)))
  3.2829 +(let (($x7188 (or $x7180 $x7181)))
  3.2830 +(let ((@x7196 (mp ((_ quant-inst v_b_v_G_1$ ?v0!17) (or $x3151 $x7188)) (rewrite (= (or $x3151 $x7188) (or $x3151 $x7180 $x7181))) (or $x3151 $x7180 $x7181))))
  3.2831 +(let ((@x7289 (mp (unit-resolution (unit-resolution @x7196 @x3479 $x7188) @x7282 $x7180) @x7288 $x6485)))
  3.2832 +(let ((@x5812 (def-axiom (or (not $x4499) $x4478 $x3187))))
  3.2833 +(let (($x7229 (= (or $x3570 (or $x255 (not $x3187) $x7220)) (or $x3570 $x255 (not $x3187) $x7220))))
  3.2834 +(let ((@x7231 (mp ((_ quant-inst ?v0!17 v_b_v_G_1$) (or $x3570 (or $x255 (not $x3187) $x7220))) (rewrite $x7229) (or $x3570 $x255 (not $x3187) $x7220))))
  3.2835 +(let ((@x7291 (unit-resolution @x7231 @x5748 @x6225 (unit-resolution @x5812 @x7289 (hypothesis $x4499) $x3187) $x7220)))
  3.2836 +(let (($x6327 (<= (+ ?x1866 ?x6307) 0)))
  3.2837 +(let (($x6088 (or $x3691 $x6327)))
  3.2838 +(let ((@x6464 (monotonicity (rewrite (= (+ ?x4496 ?x1867) (+ ?x1867 ?x4496))) (= (>= (+ ?x4496 ?x1867) 0) (>= (+ ?x1867 ?x4496) 0)))))
  3.2839 +(let ((@x5905 (trans @x6464 (rewrite (= (>= (+ ?x1867 ?x4496) 0) $x6327)) (= (>= (+ ?x4496 ?x1867) 0) $x6327))))
  3.2840 +(let ((@x5843 (trans (monotonicity @x5905 (= (or $x3691 (>= (+ ?x4496 ?x1867) 0)) $x6088)) (rewrite (= $x6088 $x6088)) (= (or $x3691 (>= (+ ?x4496 ?x1867) 0)) $x6088))))
  3.2841 +(let ((@x7292 (unit-resolution (mp ((_ quant-inst ?v0!17) (or $x3691 (>= (+ ?x4496 ?x1867) 0))) @x5843 $x6088) @x6892 $x6327)))
  3.2842 +(let ((@x7295 (lemma ((_ th-lemma arith farkas 1 1 1 1 1) @x7292 @x7271 @x7270 (hypothesis $x6319) @x7291 false) (or (not $x6319) $x1869 (not $x4499) $x7274 $x6813))))
  3.2843 +(let ((@x8734 (unit-resolution @x7295 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x8008) $x6319)) @x8635 $x6319) (hypothesis $x4499) (hypothesis (not $x6813)) @x7271 $x7274)))
  3.2844 +(let ((@x8324 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6187 0)) $x6564)) @x8734 (not (= ?x6187 0)))))
  3.2845 +(let ((@x8494 (lemma (unit-resolution @x8324 @x8765 false) (or $x6485 (not $x4499) $x6813 $x1869 (not $x8046)))))
  3.2846 +(let ((@x8211 (unit-resolution @x8494 @x8237 (unit-resolution (def-axiom (or $x8334 (not $x6813))) @x8147 (not $x6813)) @x8240 @x8239 $x6485)))
  3.2847 +(let ((@x8909 (unit-resolution @x7231 @x5748 @x6225 (hypothesis $x3187) (hypothesis (not $x7220)) false)))
  3.2848 +(let ((@x8256 (unit-resolution (lemma @x8909 (or (not $x3187) $x7220)) (unit-resolution @x5812 @x8211 @x8237 $x3187) $x7220)))
  3.2849 +(let ((@x8314 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1) (or $x6886 (not $x7220) (not $x6327) $x4315 (not $x4239))) @x7292 @x7839 @x8256 @x6019 $x6886)))
  3.2850 +(let ((@x8385 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x8565 $x8664)) (unit-resolution @x8517 @x8314 @x6933 @x6930 @x8240 @x8239 $x8549) $x8565)))
  3.2851 +(let ((@x8386 (unit-resolution (def-axiom (or $x7239 $x8646)) (unit-resolution (unit-resolution @x8649 @x5944 $x8358) @x8385 $x4416) $x8646)))
  3.2852 +(let (($x8654 (not $x7241)))
  3.2853 +(let ((@x8390 (unit-resolution (def-axiom (or $x7239 $x8654)) (unit-resolution (unit-resolution @x8649 @x5944 $x8358) @x8385 $x4416) $x8654)))
  3.2854 +(let ((@x8410 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x8008) $x6319)) (unit-resolution (unit-resolution @x7712 @x6588 $x8029) @x8390 @x8386 $x8008) $x6319)))
  3.2855 +(let ((@x8411 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x7203 (not $x6319) $x1869 (not $x6886) (not $x4177) (not $x3044)))))
  3.2856 +(let ((@x8413 (unit-resolution @x7215 @x3485 (unit-resolution @x8411 @x8410 @x6933 @x6930 @x8240 @x8314 $x7203) $x7202)))
  3.2857 +(let ((@x8417 (unit-resolution (unit-resolution (def-axiom (or $x8334 (not $x6813))) @x8147 (not $x6813)) (symm @x8413 $x6813) false)))
  3.2858 +(let ((@x3365 (def-axiom (or $x3758 $x2765 $x3752))))
  3.2859 +(let ((@x9296 (unit-resolution @x3365 (lemma @x8417 $x2760) (unit-resolution (def-axiom (or $x3761 $x3755)) @x9294 $x3755) $x3752)))
  3.2860 +(let ((@x8225 (rewrite (= (or $x3717 (or $x4278 $x4127 $x4382)) (or $x3717 $x4278 $x4127 $x4382)))))
  3.2861 +(let ((@x8229 (mp ((_ quant-inst v_b_v_G_1$ ?v0!20) (or $x3717 (or $x4278 $x4127 $x4382))) @x8225 (or $x3717 $x4278 $x4127 $x4382))))
  3.2862 +(let ((@x9299 (unit-resolution @x8229 (unit-resolution (def-axiom (or $x3749 $x3712)) @x9296 $x3712) @x7482 (or $x4278 $x4382))))
  3.2863 +(let (($x4508 (>= ?x4487 0)))
  3.2864 +(let ((@x9304 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or $x4508 (not $x4569) (not $x3886))) @x6925 (or $x4508 (not $x4569)))))
  3.2865 +(let ((@x9306 ((_ th-lemma arith eq-propagate -1 -1 -1 -1 -1 -1 1 1) (unit-resolution @x9304 (hypothesis $x4569) $x4508) @x9285 (unit-resolution @x9299 @x9292 $x4382) @x9290 @x6019 @x6933 @x6930 @x7839 $x5391)))
  3.2866 +(let (($x5388 (not $x5387)))
  3.2867 +(let (($x5389 (or $x5386 $x5388)))
  3.2868 +(let ((@x7598 (mp ((_ quant-inst v_b_v_G_1$ ?v0!20) (or (not $x3480) $x5389)) (rewrite (= (or (not $x3480) $x5389) (or (not $x3480) $x5386 $x5388))) (or (not $x3480) $x5386 $x5388))))
  3.2869 +(let ((@x9311 (unit-resolution (unit-resolution @x7598 @x3485 $x5389) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x5391) $x5387)) @x9306 $x5387) $x5386)))
  3.2870 +(let ((@x8045 (unit-resolution (lemma (unit-resolution @x9311 @x9328 false) (or $x4400 $x3734 (not $x4569))) (unit-resolution (def-axiom (or $x3737 $x3729)) @x8092 $x3729) @x7751 $x4400)))
  3.2871 +(let ((@x8812 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4400) $x5977)) @x8045 $x5977)))
  3.2872 +(let ((?x4641 (?v1!7 ?v0!20)))
  3.2873 +(let ((?x4648 (pair$ ?x4641 ?v0!20)))
  3.2874 +(let ((?x4649 (b_G$ ?x4648)))
  3.2875 +(let ((?x4650 (* (- 1) ?x4649)))
  3.2876 +(let ((?x4642 (fun_app$c v_b_SP_G_1$ ?x4641)))
  3.2877 +(let ((?x4643 (* (- 1) ?x4642)))
  3.2878 +(let ((?x4651 (+ ?x4393 ?x4643 ?x4650)))
  3.2879 +(let (($x4391 (>= ?x4651 0)))
  3.2880 +(let (($x4652 (= ?x4651 0)))
  3.2881 +(let (($x4653 (not $x4652)))
  3.2882 +(let (($x4646 (fun_app$ v_b_Visited_G_1$ ?x4641)))
  3.2883 +(let (($x4647 (not $x4646)))
  3.2884 +(let ((?x4644 (+ ?x4393 ?x4643)))
  3.2885 +(let (($x4645 (<= ?x4644 0)))
  3.2886 +(let (($x4654 (or $x4645 $x4647 $x4653)))
  3.2887 +(let (($x4655 (not $x4654)))
  3.2888 +(let (($x4640 (<= (+ b_Infinity$ ?x4418) 0)))
  3.2889 +(let (($x7886 (not $x4640)))
  3.2890 +(let ((@x8816 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or (not $x5977) $x1914 $x7886)) @x8812 (unit-resolution (def-axiom (or $x3737 $x1915)) @x8092 $x1915) $x7886)))
  3.2891 +(let ((@x7414 (rewrite (= (or $x3586 (or $x1909 $x4640 $x4655)) (or $x3586 $x1909 $x4640 $x4655)))))
  3.2892 +(let ((@x7415 (mp ((_ quant-inst ?v0!20) (or $x3586 (or $x1909 $x4640 $x4655))) @x7414 (or $x3586 $x1909 $x4640 $x4655))))
  3.2893 +(let ((@x8817 (unit-resolution @x7415 @x4545 (unit-resolution (def-axiom (or $x3737 $x1910)) @x8092 $x1910) (or $x4640 $x4655))))
  3.2894 +(let ((@x8826 (unit-resolution @x8817 @x8816 $x4655)))
  3.2895 +(let ((@x6085 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4653 $x4391)) (unit-resolution (def-axiom (or $x4654 $x4652)) @x8826 $x4652) $x4391)))
  3.2896 +(let (($x7707 (<= ?x4651 0)))
  3.2897 +(let ((@x8177 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4653 $x7707)) (unit-resolution (def-axiom (or $x4654 $x4652)) @x8826 $x4652) $x7707)))
  3.2898 +(let (($x4689 (fun_app$ v_b_Visited_G_2$ ?x4641)))
  3.2899 +(let ((@x6032 (monotonicity (symm (hypothesis $x266) (= ?x265 v_b_Visited_G_2$)) (= (fun_app$ ?x265 ?x4641) $x4689))))
  3.2900 +(let ((@x6036 (monotonicity (symm @x6032 (= $x4689 (fun_app$ ?x265 ?x4641))) (= (not $x4689) (not (fun_app$ ?x265 ?x4641))))))
  3.2901 +(let (($x5978 (fun_app$ ?x265 ?x4641)))
  3.2902 +(let (($x5985 (= ?x4641 v_b_v_G_1$)))
  3.2903 +(let (($x5988 (or $x5985 $x4646)))
  3.2904 +(let (($x5991 (= $x5978 $x5988)))
  3.2905 +(let (($x5994 (or $x4114 $x5991)))
  3.2906 +(let ((@x5993 (monotonicity (rewrite (= (ite $x5985 true $x4646) $x5988)) (= (= $x5978 (ite $x5985 true $x4646)) $x5991))))
  3.2907 +(let ((@x5998 (monotonicity @x5993 (= (or $x4114 (= $x5978 (ite $x5985 true $x4646))) $x5994))))
  3.2908 +(let ((@x6001 (trans @x5998 (rewrite (= $x5994 $x5994)) (= (or $x4114 (= $x5978 (ite $x5985 true $x4646))) $x5994))))
  3.2909 +(let ((@x6002 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true (?v1!7 ?v0!20)) (or $x4114 (= $x5978 (ite $x5985 true $x4646)))) @x6001 $x5994)))
  3.2910 +(let ((@x6025 (unit-resolution (def-axiom (or (not $x5991) $x5978 (not $x5988))) (unit-resolution (def-axiom (or $x5988 $x4647)) (hypothesis $x4646) $x5988) (or (not $x5991) $x5978))))
  3.2911 +(let ((@x6038 (unit-resolution (unit-resolution @x6025 (unit-resolution @x6002 @x3473 $x5991) $x5978) (mp (hypothesis (not $x4689)) @x6036 (not $x5978)) false)))
  3.2912 +(let ((@x8986 (unit-resolution (lemma @x6038 (or $x4689 $x2935 $x4647)) (unit-resolution (def-axiom (or $x3809 $x266)) @x6181 $x266) (or $x4689 $x4647))))
  3.2913 +(let ((@x8987 (unit-resolution @x8986 (unit-resolution (def-axiom (or $x4654 $x4646)) @x8826 $x4646) $x4689)))
  3.2914 +(let ((?x4697 (v_b_SP_G_2$ ?x4641)))
  3.2915 +(let ((?x4700 (* (- 1) ?x4697)))
  3.2916 +(let ((?x4868 (+ ?x1911 ?x4700)))
  3.2917 +(let (($x9248 (<= ?x4868 0)))
  3.2918 +(let (($x8507 (not $x9248)))
  3.2919 +(let ((?x4701 (+ ?x4642 ?x4700)))
  3.2920 +(let (($x4708 (>= ?x4701 0)))
  3.2921 +(let ((@x8348 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1) (or $x8507 (not $x4708) $x4645 (not $x5977))) @x8812 (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3691 $x4708)) @x6892 $x4708) (unit-resolution (def-axiom (or $x4654 (not $x4645))) @x8826 (not $x4645)) $x8507)))
  3.2922 +(let ((?x8311 (+ ?x1911 ?x4650 ?x4700)))
  3.2923 +(let (($x8266 (>= ?x8311 0)))
  3.2924 +(let ((@x10143 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1) (or $x8266 (not $x4391) (not $x4708) (not $x5977))) (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3691 $x4708)) @x6892 $x4708) (hypothesis $x4391) (hypothesis $x5977) $x8266)))
  3.2925 +(let (($x8534 (<= ?x8311 0)))
  3.2926 +(let (($x5038 (<= ?x4701 0)))
  3.2927 +(let (($x5863 (= ?x4642 ?x4697)))
  3.2928 +(let ((@x10149 (symm (commutativity (= $x5863 (= ?x4697 ?x4642))) (= (= ?x4697 ?x4642) $x5863))))
  3.2929 +(let (($x4698 (= ?x4697 ?x4642)))
  3.2930 +(let ((@x7939 (rewrite (= (or $x3700 (or (not $x4689) $x4698)) (or $x3700 (not $x4689) $x4698)))))
  3.2931 +(let ((@x7943 (mp ((_ quant-inst (?v1!7 ?v0!20)) (or $x3700 (or (not $x4689) $x4698))) @x7939 (or $x3700 (not $x4689) $x4698))))
  3.2932 +(let ((@x7980 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x5863) $x5038)) (mp (unit-resolution @x7943 @x7616 (hypothesis $x4689) $x4698) @x10149 $x5863) $x5038)))
  3.2933 +(let (($x8014 (<= ?x4419 0)))
  3.2934 +(let (($x8221 (or $x3691 $x8014)))
  3.2935 +(let ((@x8001 (monotonicity (rewrite (= (+ ?x4393 ?x1912) (+ ?x1912 ?x4393))) (= (>= (+ ?x4393 ?x1912) 0) (>= (+ ?x1912 ?x4393) 0)))))
  3.2936 +(let ((@x8035 (trans @x8001 (rewrite (= (>= (+ ?x1912 ?x4393) 0) $x8014)) (= (>= (+ ?x4393 ?x1912) 0) $x8014))))
  3.2937 +(let ((@x8178 (trans (monotonicity @x8035 (= (or $x3691 (>= (+ ?x4393 ?x1912) 0)) $x8221)) (rewrite (= $x8221 $x8221)) (= (or $x3691 (>= (+ ?x4393 ?x1912) 0)) $x8221))))
  3.2938 +(let ((@x8659 (unit-resolution (mp ((_ quant-inst ?v0!20) (or $x3691 (>= (+ ?x4393 ?x1912) 0))) @x8178 $x8221) @x6892 $x8014)))
  3.2939 +(let ((@x8083 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1) (or $x8534 (not $x7707) (not $x5038) (not $x8014))) @x8659 (hypothesis $x7707) @x7980 $x8534)))
  3.2940 +(let (($x9251 (= ?x8311 0)))
  3.2941 +(let (($x8749 (not $x9251)))
  3.2942 +(let (($x4690 (not $x4689)))
  3.2943 +(let (($x8567 (or $x3734 $x9248 $x4690 $x8749)))
  3.2944 +(let (($x4857 (>= (+ ?x4697 ?x1912) 0)))
  3.2945 +(let (($x4861 (or $x4857 $x4690 (not (= (+ ?x4697 ?x1912 ?x4649) 0)))))
  3.2946 +(let (($x8927 (or $x3734 $x4861)))
  3.2947 +(let ((@x8955 (monotonicity (rewrite (= (+ ?x4697 ?x1912 ?x4649) (+ ?x1912 ?x4649 ?x4697))) (= (= (+ ?x4697 ?x1912 ?x4649) 0) (= (+ ?x1912 ?x4649 ?x4697) 0)))))
  3.2948 +(let ((@x8627 (trans @x8955 (rewrite (= (= (+ ?x1912 ?x4649 ?x4697) 0) $x9251)) (= (= (+ ?x4697 ?x1912 ?x4649) 0) $x9251))))
  3.2949 +(let ((@x8965 (monotonicity (rewrite (= (+ ?x4697 ?x1912) (+ ?x1912 ?x4697))) (= $x4857 (>= (+ ?x1912 ?x4697) 0)))))
  3.2950 +(let ((@x8985 (trans @x8965 (rewrite (= (>= (+ ?x1912 ?x4697) 0) $x9248)) (= $x4857 $x9248))))
  3.2951 +(let ((@x9087 (monotonicity @x8985 (monotonicity @x8627 (= (not (= (+ ?x4697 ?x1912 ?x4649) 0)) $x8749)) (= $x4861 (or $x9248 $x4690 $x8749)))))
  3.2952 +(let ((@x8874 (trans (monotonicity @x9087 (= $x8927 (or $x3734 (or $x9248 $x4690 $x8749)))) (rewrite (= (or $x3734 (or $x9248 $x4690 $x8749)) $x8567)) (= $x8927 $x8567))))
  3.2953 +(let ((@x8397 (unit-resolution (mp ((_ quant-inst (?v1!7 ?v0!20)) $x8927) @x8874 $x8567) (hypothesis $x3729) (hypothesis $x4689) (or $x9248 $x8749))))
  3.2954 +(let ((@x5592 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x9251 (not $x8534) (not $x8266))) (unit-resolution @x8397 (hypothesis $x8507) $x8749) @x8083 @x10143 false)))
  3.2955 +(let ((@x8013 (unit-resolution (lemma @x5592 (or $x9248 $x3734 $x4690 (not $x7707) (not $x4391) (not $x5977))) @x8348 (unit-resolution (def-axiom (or $x3737 $x3729)) @x8092 $x3729) @x8987 @x8177 @x6085 @x8812 false)))
  3.2956 +(let ((@x3278 (def-axiom (or $x3746 $x2811 $x3740))))
  3.2957 +(let ((@x8433 (unit-resolution @x3278 (unit-resolution (def-axiom (or $x3749 $x3743)) @x9296 $x3743) $x3743)))
  3.2958 +(let (($x3378 (not $x1896)))
  3.2959 +(let ((@x3380 (def-axiom (or $x2806 $x3378))))
  3.2960 +(let ((@x8434 (unit-resolution @x3380 (unit-resolution @x8433 (lemma @x8013 $x3737) $x2811) $x3378)))
  3.2961 +(let ((?x6619 (fun_app$c v_b_SP_G_1$ ?v1!18)))
  3.2962 +(let (($x6615 (= ?x1892 ?x6619)))
  3.2963 +(let (($x7618 (not $x6615)))
  3.2964 +(let ((@x7591 (hypothesis $x2811)))
  3.2965 +(let ((@x7607 (unit-resolution (def-axiom (or $x2806 $x1883)) @x7591 $x1883)))
  3.2966 +(let ((@x7571 (hypothesis $x3378)))
  3.2967 +(let (($x1889 (not $x1888)))
  3.2968 +(let ((@x7592 (unit-resolution (def-axiom (or $x2806 $x1889)) @x7591 $x1889)))
  3.2969 +(let ((?x7110 (pair$ v_b_v_G_1$ ?v0!19)))
  3.2970 +(let ((?x7111 (b_G$ ?x7110)))
  3.2971 +(let ((?x7100 (* (- 1) ?x7111)))
  3.2972 +(let ((?x7554 (+ ?x1885 ?x7100)))
  3.2973 +(let (($x7556 (>= ?x7554 0)))
  3.2974 +(let (($x7003 (= ?x1885 ?x7111)))
  3.2975 +(let (($x7243 (= ?v1!18 v_b_v_G_1$)))
  3.2976 +(let (($x7246 (fun_app$ v_b_Visited_G_1$ ?v1!18)))
  3.2977 +(let (($x6211 (not $x7246)))
  3.2978 +(let (($x7248 (>= (+ ?x1885 ?x6619 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!19))) 0)))
  3.2979 +(let (($x7499 (not $x7248)))
  3.2980 +(let ((?x6721 (* (- 1) ?x6619)))
  3.2981 +(let ((?x5600 (+ ?x1892 ?x6721)))
  3.2982 +(let (($x7353 (>= ?x5600 0)))
  3.2983 +(let ((@x8658 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7618 $x7353)) (hypothesis $x6615) $x7353)))
  3.2984 +(let (($x7076 (<= (+ ?x1893 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!19))) 0)))
  3.2985 +(let (($x7084 (or $x3691 $x7076)))
  3.2986 +(let (($x7081 (= (or $x3691 (>= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1894) 0)) $x7084)))
  3.2987 +(let ((@x7078 (rewrite (= (>= (+ ?x1894 (fun_app$c v_b_SP_G_1$ ?v0!19)) 0) $x7076))))
  3.2988 +(let (($x7048 (>= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1894) 0)))
  3.2989 +(let (($x7069 (= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1894) (+ ?x1894 (fun_app$c v_b_SP_G_1$ ?v0!19)))))
  3.2990 +(let ((@x7073 (monotonicity (rewrite $x7069) (= $x7048 (>= (+ ?x1894 (fun_app$c v_b_SP_G_1$ ?v0!19)) 0)))))
  3.2991 +(let ((@x7090 (trans (monotonicity (trans @x7073 @x7078 (= $x7048 $x7076)) $x7081) (rewrite (= $x7084 $x7084)) $x7081)))
  3.2992 +(let ((@x7496 (unit-resolution (mp ((_ quant-inst ?v0!19) (or $x3691 $x7048)) @x7090 $x7084) @x6892 $x7076)))
  3.2993 +(let ((@x7501 (lemma ((_ th-lemma arith farkas 1 -1 -1 1) (hypothesis $x7248) @x7571 @x7496 (hypothesis $x7353) false) (or $x7499 $x1896 (not $x7353)))))
  3.2994 +(let ((@x6992 (rewrite (= (or $x3578 (or $x6211 $x1888 $x7248)) (or $x3578 $x6211 $x1888 $x7248)))))
  3.2995 +(let ((@x7051 (mp ((_ quant-inst ?v0!19 ?v1!18) (or $x3578 (or $x6211 $x1888 $x7248))) @x6992 (or $x3578 $x6211 $x1888 $x7248))))
  3.2996 +(let ((@x8673 (unit-resolution (unit-resolution @x7051 @x4223 (hypothesis $x1889) (or $x6211 $x7248)) (unit-resolution @x7501 @x8658 @x7571 $x7499) $x6211)))
  3.2997 +(let (($x7222 (or $x7243 $x7246)))
  3.2998 +(let (($x6667 (fun_app$ ?x265 ?v1!18)))
  3.2999 +(let (($x6740 (= $x6667 $x7222)))
  3.3000 +(let (($x6746 (or $x4114 $x6740)))
  3.3001 +(let ((@x6743 (monotonicity (rewrite (= (ite $x7243 true $x7246) $x7222)) (= (= $x6667 (ite $x7243 true $x7246)) $x6740))))
  3.3002 +(let ((@x6845 (monotonicity @x6743 (= (or $x4114 (= $x6667 (ite $x7243 true $x7246))) $x6746))))
  3.3003 +(let ((@x4954 (trans @x6845 (rewrite (= $x6746 $x6746)) (= (or $x4114 (= $x6667 (ite $x7243 true $x7246))) $x6746))))
  3.3004 +(let ((@x6537 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v1!18) (or $x4114 (= $x6667 (ite $x7243 true $x7246)))) @x4954 $x6746)))
  3.3005 +(let ((@x8675 (mp (hypothesis $x1883) (symm (monotonicity @x5875 (= $x6667 $x1883)) (= $x1883 $x6667)) $x6667)))
  3.3006 +(let ((@x8676 (unit-resolution (def-axiom (or (not $x6740) (not $x6667) $x7222)) @x8675 (unit-resolution @x6537 @x3473 $x6740) $x7222)))
  3.3007 +(let ((@x4955 (def-axiom (or (not $x7222) $x7243 $x7246))))
  3.3008 +(let ((@x7000 (unit-resolution (hypothesis (not $x7003)) (monotonicity (monotonicity (hypothesis $x7243) (= ?x1884 ?x7110)) $x7003) false)))
  3.3009 +(let ((@x7002 (lemma @x7000 (or (not $x7243) $x7003))))
  3.3010 +(let ((@x7011 ((_ th-lemma arith triangle-eq) (or (not $x7003) $x7556))))
  3.3011 +(let ((@x8679 (unit-resolution @x7011 (unit-resolution @x7002 (unit-resolution @x4955 @x8676 @x8673 $x7243) $x7003) $x7556)))
  3.3012 +(let (($x7102 (<= (+ b_Infinity$ ?x7100) 0)))
  3.3013 +(let ((?x7171 (+ ?x257 ?x1894 ?x7111)))
  3.3014 +(let (($x7252 (>= ?x7171 0)))
  3.3015 +(let (($x7576 (not $x7252)))
  3.3016 +(let (($x7366 (<= (+ ?x257 ?x6721) 0)))
  3.3017 +(let (($x8449 (or $x3665 $x7246 $x7366)))
  3.3018 +(let (($x7357 (>= (+ ?x6619 ?x1173) 0)))
  3.3019 +(let (($x7358 (or $x7246 $x7357)))
  3.3020 +(let (($x8450 (or $x3665 $x7358)))
  3.3021 +(let ((@x8441 (monotonicity (rewrite (= (+ ?x6619 ?x1173) (+ ?x1173 ?x6619))) (= $x7357 (>= (+ ?x1173 ?x6619) 0)))))
  3.3022 +(let ((@x8445 (trans @x8441 (rewrite (= (>= (+ ?x1173 ?x6619) 0) $x7366)) (= $x7357 $x7366))))
  3.3023 +(let ((@x8454 (monotonicity (monotonicity @x8445 (= $x7358 (or $x7246 $x7366))) (= $x8450 (or $x3665 (or $x7246 $x7366))))))
  3.3024 +(let ((@x8458 (trans @x8454 (rewrite (= (or $x3665 (or $x7246 $x7366)) $x8449)) (= $x8450 $x8449))))
  3.3025 +(let ((@x8681 (unit-resolution (mp ((_ quant-inst ?v1!18) $x8450) @x8458 $x8449) (unit-resolution (def-axiom (or $x3809 $x3660)) @x6181 $x3660) @x8673 $x7366)))
  3.3026 +(let ((@x8685 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 1) (or $x7576 $x1896 (not $x7353) (not $x7366) (not $x7556))) @x8681 @x8679 @x7571 @x8658 $x7576)))
  3.3027 +(let ((@x8686 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x7171 0)) $x7252)) @x8685 (not (= ?x7171 0)))))
  3.3028 +(let (($x7117 (>= (+ ?x257 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!19)) ?x7111) 0)))
  3.3029 +(let (($x7161 (not $x7117)))
  3.3030 +(let ((@x8688 ((_ th-lemma arith assign-bounds -1 -1 1 -1 1) (or $x7161 (not $x7076) $x1896 (not $x7353) (not $x7366) (not $x7556)))))
  3.3031 +(let (($x7174 (= ?x7171 0)))
  3.3032 +(let (($x7184 (or $x7102 $x7117 $x7174)))
  3.3033 +(let (($x7186 (or $x3675 $x7102 $x7117 $x7174)))
  3.3034 +(let (($x7104 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1173 ?x7100) 0)))
  3.3035 +(let (($x7165 (or $x7102 $x7104 (= (+ ?x257 ?x7111 ?x1894) 0))))
  3.3036 +(let (($x7187 (or $x3675 $x7165)))
  3.3037 +(let ((@x7183 (monotonicity (rewrite (= (+ ?x257 ?x7111 ?x1894) ?x7171)) (= (= (+ ?x257 ?x7111 ?x1894) 0) $x7174))))
  3.3038 +(let ((@x7119 (rewrite (= (<= (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v0!19) ?x7100) 0) $x7117))))
  3.3039 +(let (($x7112 (= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1173 ?x7100) (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v0!19) ?x7100))))
  3.3040 +(let ((@x7115 (monotonicity (rewrite $x7112) (= $x7104 (<= (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v0!19) ?x7100) 0)))))
  3.3041 +(let ((@x7205 (monotonicity (monotonicity (trans @x7115 @x7119 (= $x7104 $x7117)) @x7183 (= $x7165 $x7184)) (= $x7187 (or $x3675 $x7184)))))
  3.3042 +(let ((@x7250 (mp ((_ quant-inst ?v0!19) $x7187) (trans @x7205 (rewrite (= (or $x3675 $x7184) $x7186)) (= $x7187 $x7186)) $x7186)))
  3.3043 +(let ((@x8690 (unit-resolution (unit-resolution @x7250 @x6588 $x7184) (unit-resolution @x8688 @x8681 @x8679 @x7571 @x8658 @x7496 $x7161) @x8686 $x7102)))
  3.3044 +(let ((@x8693 (lemma ((_ th-lemma arith farkas -1 1 1) @x8690 @x8679 (hypothesis $x1889) false) (or $x7618 $x1888 $x1896 $x2791))))
  3.3045 +(let ((@x7245 (mp ((_ quant-inst ?v1!18) (or $x3700 (or $x2791 $x6615))) (rewrite (= (or $x3700 (or $x2791 $x6615)) (or $x3700 $x2791 $x6615))) (or $x3700 $x2791 $x6615))))
  3.3046 +(let ((@x8285 (unit-resolution @x7245 @x7616 @x7607 (unit-resolution @x8693 @x7592 @x7571 @x7607 $x7618) false)))
  3.3047 +(unit-resolution (lemma @x8285 (or $x2806 $x1896)) @x8434 (unit-resolution @x8433 (lemma @x8013 $x3737) $x2811) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  3.3048 +
     4.1 --- a/src/HOL/SMT_Examples/Boogie_Dijkstra.certs2	Thu Sep 18 00:02:45 2014 +0200
     4.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     4.3 @@ -1,3045 +0,0 @@
     4.4 -9d6b81d96fb21c8c08e3f1fd649ce37bdafb5f92 3044 0
     4.5 -unsat
     4.6 -((set-logic AUFLIA)
     4.7 -(declare-fun ?v0!19 () B_Vertex$)
     4.8 -(declare-fun ?v1!18 () B_Vertex$)
     4.9 -(declare-fun ?v0!20 () B_Vertex$)
    4.10 -(declare-fun ?v0!17 () B_Vertex$)
    4.11 -(declare-fun ?v1!16 () B_Vertex$)
    4.12 -(declare-fun ?v0!15 () B_Vertex$)
    4.13 -(declare-fun ?v0!14 () B_Vertex$)
    4.14 -(declare-fun ?v0!13 () B_Vertex$)
    4.15 -(declare-fun ?v0!12 () B_Vertex$)
    4.16 -(declare-fun ?v0!11 () B_Vertex$)
    4.17 -(declare-fun ?v1!10 () B_Vertex$)
    4.18 -(declare-fun ?v1!9 (B_Vertex$) B_Vertex$)
    4.19 -(declare-fun ?v0!8 () B_Vertex$)
    4.20 -(declare-fun ?v1!7 (B_Vertex$) B_Vertex$)
    4.21 -(declare-fun ?v1!6 (B_Vertex$) B_Vertex$)
    4.22 -(declare-fun ?v0!5 () B_Vertex$)
    4.23 -(declare-fun ?v0!4 () B_Vertex$)
    4.24 -(declare-fun ?v1!3 () B_Vertex$)
    4.25 -(declare-fun ?v0!2 () B_Vertex$)
    4.26 -(declare-fun ?v1!1 () B_Vertex$)
    4.27 -(declare-fun ?v0!0 () B_Vertex$)
    4.28 -(proof
    4.29 -(let ((?x1893 (v_b_SP_G_2$ ?v0!19)))
    4.30 -(let ((?x1894 (* (- 1) ?x1893)))
    4.31 -(let ((?x1892 (v_b_SP_G_2$ ?v1!18)))
    4.32 -(let ((?x1884 (pair$ ?v1!18 ?v0!19)))
    4.33 -(let ((?x1885 (b_G$ ?x1884)))
    4.34 -(let (($x1896 (>= (+ ?x1885 ?x1892 ?x1894) 0)))
    4.35 -(let (($x1888 (<= (+ b_Infinity$ (* (- 1) ?x1885)) 0)))
    4.36 -(let (($x1883 (fun_app$ v_b_Visited_G_2$ ?v1!18)))
    4.37 -(let (($x2791 (not $x1883)))
    4.38 -(let (($x2806 (or $x2791 $x1888 $x1896)))
    4.39 -(let (($x2811 (not $x2806)))
    4.40 -(let (($x3729 (forall ((?v1 B_Vertex$) )(!(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
    4.41 -(let ((?x1912 (* (- 1) ?x1911)))
    4.42 -(let ((?x273 (v_b_SP_G_2$ ?v1)))
    4.43 -(let (($x2242 (= (+ ?x273 ?x1912 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
    4.44 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
    4.45 -(let (($x300 (not $x291)))
    4.46 -(or (>= (+ ?x273 ?x1912) 0) $x300 (not $x2242)))))))) :pattern ( (v_b_SP_G_2$ ?v1) ) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!20) )))
    4.47 -))
    4.48 -(let (($x3734 (not $x3729)))
    4.49 -(let (($x1914 (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?v0!20))) 0)))
    4.50 -(let (($x1909 (= ?v0!20 b_Source$)))
    4.51 -(let (($x3720 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x303 (v_b_SP_G_2$ ?v0)))
    4.52 -(let ((?x1263 (* (- 1) ?x303)))
    4.53 -(let ((?x273 (v_b_SP_G_2$ ?v1)))
    4.54 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
    4.55 -(let (($x1282 (>= (+ ?x155 ?x273 ?x1263) 0)))
    4.56 -(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
    4.57 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
    4.58 -(let (($x300 (not $x291)))
    4.59 -(or $x300 $x922 $x1282))))))))) :pattern ( (pair$ ?v1 ?v0) )))
    4.60 -))
    4.61 -(let (($x3725 (not $x3720)))
    4.62 -(let (($x3737 (or $x3725 $x1909 $x1914 $x3734)))
    4.63 -(let ((?x4393 (fun_app$c v_b_SP_G_1$ ?v0!20)))
    4.64 -(let ((?x4418 (* (- 1) ?x4393)))
    4.65 -(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
    4.66 -(let ((?x4419 (+ ?x1911 ?x4418)))
    4.67 -(let (($x5977 (>= ?x4419 0)))
    4.68 -(let (($x4400 (= ?x1911 ?x4393)))
    4.69 -(let ((?x4434 (pair$ v_b_v_G_1$ ?v0!20)))
    4.70 -(let ((?x4435 (b_G$ ?x4434)))
    4.71 -(let ((?x4436 (* (- 1) ?x4435)))
    4.72 -(let ((?x3104 (v_b_SP_G_2$ v_b_v_G_1$)))
    4.73 -(let ((?x3105 (* (- 1) ?x3104)))
    4.74 -(let ((?x4546 (+ ?x1911 ?x3105 ?x4436)))
    4.75 -(let (($x4569 (<= ?x4546 0)))
    4.76 -(let (($x3740 (not $x3737)))
    4.77 -(let ((@x8092 (hypothesis $x3740)))
    4.78 -(let ((@x3222 (def-axiom (or $x3737 $x3720))))
    4.79 -(let (($x4161 (>= ?x3104 0)))
    4.80 -(let (($x3703 (forall ((?v0 B_Vertex$) )(!(let ((?x273 (v_b_SP_G_2$ ?v0)))
    4.81 -(>= ?x273 0)) :pattern ( (v_b_SP_G_2$ ?v0) )))
    4.82 -))
    4.83 -(let (($x3743 (or $x2811 $x3740)))
    4.84 -(let (($x3746 (not $x3743)))
    4.85 -(let (($x3712 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x1262 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
    4.86 -(let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0)))
    4.87 -(let (($x2768 (not $x301)))
    4.88 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
    4.89 -(or $x291 $x2768 $x1262))))) :pattern ( (v_b_SP_G_2$ ?v1) (v_b_SP_G_2$ ?v0) )))
    4.90 -))
    4.91 -(let (($x3717 (not $x3712)))
    4.92 -(let (($x3749 (or $x3717 $x3746)))
    4.93 -(let (($x3752 (not $x3749)))
    4.94 -(let (($x1869 (>= (+ (v_b_SP_G_2$ ?v1!16) (* (- 1) (v_b_SP_G_2$ ?v0!17))) 0)))
    4.95 -(let (($x1862 (fun_app$ v_b_Visited_G_2$ ?v0!17)))
    4.96 -(let (($x2745 (not $x1862)))
    4.97 -(let (($x1860 (fun_app$ v_b_Visited_G_2$ ?v1!16)))
    4.98 -(let (($x2760 (or $x1860 $x2745 $x1869)))
    4.99 -(let (($x2765 (not $x2760)))
   4.100 -(let (($x3755 (or $x2765 $x3752)))
   4.101 -(let (($x3758 (not $x3755)))
   4.102 -(let (($x3708 (not $x3703)))
   4.103 -(let (($x3761 (or $x3708 $x3758)))
   4.104 -(let (($x3764 (not $x3761)))
   4.105 -(let ((?x1846 (v_b_SP_G_2$ ?v0!15)))
   4.106 -(let (($x1847 (>= ?x1846 0)))
   4.107 -(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.108 -(let (($x3904 (>= ?x257 0)))
   4.109 -(let (($x3556 (forall ((?v0 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.110 -(>= ?x174 0)) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   4.111 -))
   4.112 -(let (($x1848 (not $x1847)))
   4.113 -(let (($x3767 (or $x1848 $x3764)))
   4.114 -(let (($x3770 (not $x3767)))
   4.115 -(let ((?x296 (v_b_SP_G_2$ b_Source$)))
   4.116 -(let (($x297 (= ?x296 0)))
   4.117 -(let (($x773 (not $x297)))
   4.118 -(let (($x3773 (or $x773 $x3770)))
   4.119 -(let (($x3776 (not $x3773)))
   4.120 -(let (($x3779 (or $x773 $x3776)))
   4.121 -(let (($x3782 (not $x3779)))
   4.122 -(let (($x3695 (forall ((?v0 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.123 -(let ((?x273 (v_b_SP_G_2$ ?v0)))
   4.124 -(let (($x278 (= ?x273 ?x174)))
   4.125 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v0)))
   4.126 -(let (($x300 (not $x291)))
   4.127 -(or $x300 $x278)))))) :pattern ( (fun_app$ v_b_Visited_G_2$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   4.128 -))
   4.129 -(let (($x3700 (not $x3695)))
   4.130 -(let (($x3785 (or $x3700 $x3782)))
   4.131 -(let (($x3788 (not $x3785)))
   4.132 -(let ((?x1827 (fun_app$c v_b_SP_G_1$ ?v0!14)))
   4.133 -(let ((?x1826 (v_b_SP_G_2$ ?v0!14)))
   4.134 -(let (($x1828 (= ?x1826 ?x1827)))
   4.135 -(let (($x1829 (or (not (fun_app$ v_b_Visited_G_2$ ?v0!14)) $x1828)))
   4.136 -(let (($x1830 (not $x1829)))
   4.137 -(let (($x3791 (or $x1830 $x3788)))
   4.138 -(let (($x3794 (not $x3791)))
   4.139 -(let (($x3686 (forall ((?v0 B_Vertex$) )(!(>= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) )))
   4.140 -))
   4.141 -(let (($x3691 (not $x3686)))
   4.142 -(let (($x3797 (or $x3691 $x3794)))
   4.143 -(let (($x3800 (not $x3797)))
   4.144 -(let ((?x1809 (v_b_SP_G_2$ ?v0!13)))
   4.145 -(let ((?x1810 (* (- 1) ?x1809)))
   4.146 -(let ((?x1808 (fun_app$c v_b_SP_G_1$ ?v0!13)))
   4.147 -(let ((?x1811 (+ ?x1808 ?x1810)))
   4.148 -(let (($x1812 (>= ?x1811 0)))
   4.149 -(let (($x1813 (not $x1812)))
   4.150 -(let (($x3803 (or $x1813 $x3800)))
   4.151 -(let (($x3806 (not $x3803)))
   4.152 -(let (($x3678 (forall ((?v0 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.153 -(let ((?x273 (v_b_SP_G_2$ ?v0)))
   4.154 -(let (($x278 (= ?x273 ?x174)))
   4.155 -(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.156 -(let ((?x1173 (* (- 1) ?x257)))
   4.157 -(let (($x1175 (<= (+ ?x174 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
   4.158 -(let (($x1169 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
   4.159 -(let (($x2717 (or $x1169 $x1175)))
   4.160 -(let (($x2718 (not $x2717)))
   4.161 -(or $x2718 $x278)))))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) )))
   4.162 -))
   4.163 -(let (($x3683 (not $x3678)))
   4.164 -(let (($x3670 (forall ((?v0 B_Vertex$) )(!(let ((?x273 (v_b_SP_G_2$ ?v0)))
   4.165 -(let ((?x1186 (* (- 1) ?x273)))
   4.166 -(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   4.167 -(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.168 -(let (($x1185 (= (+ ?x257 ?x268 ?x1186) 0)))
   4.169 -(let (($x1175 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x257) (* (- 1) ?x268)) 0)))
   4.170 -(let (($x1169 (<= (+ b_Infinity$ (* (- 1) ?x268)) 0)))
   4.171 -(or $x1169 $x1175 $x1185)))))))) :pattern ( (pair$ v_b_v_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) ) :pattern ( (v_b_SP_G_2$ ?v0) )))
   4.172 -))
   4.173 -(let (($x3675 (not $x3670)))
   4.174 -(let ((?x263 (fun_upd$ v_b_Visited_G_1$)))
   4.175 -(let ((?x264 (fun_app$b ?x263 v_b_v_G_1$)))
   4.176 -(let ((?x265 (fun_app$a ?x264 true)))
   4.177 -(let (($x266 (= v_b_Visited_G_2$ ?x265)))
   4.178 -(let (($x2935 (not $x266)))
   4.179 -(let (($x3660 (forall ((?v0 B_Vertex$) )(!(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.180 -(let ((?x1173 (* (- 1) ?x257)))
   4.181 -(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.182 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.183 -(or $x178 (>= (+ ?x174 ?x1173) 0)))))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   4.184 -))
   4.185 -(let (($x3665 (not $x3660)))
   4.186 -(let ((?x1173 (* (- 1) ?x257)))
   4.187 -(let ((?x1212 (+ b_Infinity$ ?x1173)))
   4.188 -(let (($x1213 (<= ?x1212 0)))
   4.189 -(let (($x255 (fun_app$ v_b_Visited_G_1$ v_b_v_G_1$)))
   4.190 -(let ((?x1775 (fun_app$c v_b_SP_G_1$ ?v0!12)))
   4.191 -(let ((?x1776 (* (- 1) ?x1775)))
   4.192 -(let ((?x1777 (+ b_Infinity$ ?x1776)))
   4.193 -(let (($x1778 (<= ?x1777 0)))
   4.194 -(let (($x1773 (fun_app$ v_b_Visited_G_1$ ?v0!12)))
   4.195 -(let (($x3809 (or $x1773 $x1778 $x255 $x1213 $x3665 $x2935 $x3675 $x3683 $x3806)))
   4.196 -(let (($x3812 (not $x3809)))
   4.197 -(let ((?x245 (fun_app$c v_b_SP_G_3$ b_Source$)))
   4.198 -(let (($x246 (= ?x245 0)))
   4.199 -(let (($x3622 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   4.200 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.201 -(let (($x1140 (>= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
   4.202 -(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   4.203 -(let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
   4.204 -(or $x1099 $x922 $x1140)))))) :pattern ( (pair$ ?v1 ?v0) )))
   4.205 -))
   4.206 -(let (($x3627 (not $x3622)))
   4.207 -(let (($x3630 (or $x3627 $x246)))
   4.208 -(let (($x3633 (not $x3630)))
   4.209 -(let ((?x1734 (fun_app$c v_b_SP_G_3$ ?v0!11)))
   4.210 -(let ((?x1735 (* (- 1) ?x1734)))
   4.211 -(let ((?x1726 (pair$ ?v1!10 ?v0!11)))
   4.212 -(let ((?x1727 (b_G$ ?x1726)))
   4.213 -(let ((?x1721 (fun_app$c v_b_SP_G_3$ ?v1!10)))
   4.214 -(let ((?x2206 (+ ?x1721 ?x1727 ?x1735)))
   4.215 -(let (($x2209 (>= ?x2206 0)))
   4.216 -(let (($x1730 (<= (+ b_Infinity$ (* (- 1) ?x1727)) 0)))
   4.217 -(let (($x1724 (<= (+ b_Infinity$ (* (- 1) ?x1721)) 0)))
   4.218 -(let (($x2645 (or $x1724 $x1730 $x2209)))
   4.219 -(let (($x2650 (not $x2645)))
   4.220 -(let (($x3636 (or $x2650 $x3633)))
   4.221 -(let (($x3639 (not $x3636)))
   4.222 -(let (($x3614 (forall ((?v0 B_Vertex$) )(!(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
   4.223 -(let ((?x2191 (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
   4.224 -(let (($x2192 (= ?x2191 0)))
   4.225 -(let (($x2176 (<= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
   4.226 -(let (($x2617 (not (or $x2176 (not $x2192)))))
   4.227 -(let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
   4.228 -(let (($x127 (= ?v0 b_Source$)))
   4.229 -(or $x127 $x1099 $x2617)))))))) :pattern ( (fun_app$c v_b_SP_G_3$ ?v0) )))
   4.230 -))
   4.231 -(let (($x3619 (not $x3614)))
   4.232 -(let (($x3642 (or $x3619 $x3639)))
   4.233 -(let (($x3645 (not $x3642)))
   4.234 -(let (($x3600 (forall ((?v1 B_Vertex$) )(!(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
   4.235 -(let ((?x1662 (* (- 1) ?x1661)))
   4.236 -(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   4.237 -(let (($x2148 (= (+ ?x230 ?x1662 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
   4.238 -(or (>= (+ ?x230 ?x1662) 0) (not $x2148)))))) :pattern ( (fun_app$c v_b_SP_G_3$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!8) )))
   4.239 -))
   4.240 -(let (($x3605 (not $x3600)))
   4.241 -(let (($x1664 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0!8))) 0)))
   4.242 -(let (($x1659 (= ?v0!8 b_Source$)))
   4.243 -(let (($x3608 (or $x1659 $x1664 $x3605)))
   4.244 -(let (($x3611 (not $x3608)))
   4.245 -(let (($x3648 (or $x3611 $x3645)))
   4.246 -(let (($x3651 (not $x3648)))
   4.247 -(let (($x220 (= v_b_oldSP_G_1$ v_b_oldSP_G_0$)))
   4.248 -(let (($x2709 (not $x220)))
   4.249 -(let (($x217 (= v_b_SP_G_3$ v_b_SP_G_1$)))
   4.250 -(let (($x2708 (not $x217)))
   4.251 -(let (($x215 (= v_b_v_G_2$ v_b_v_G_0$)))
   4.252 -(let (($x2707 (not $x215)))
   4.253 -(let (($x212 (= v_b_Visited_G_3$ v_b_Visited_G_1$)))
   4.254 -(let (($x2706 (not $x212)))
   4.255 -(let (($x3590 (forall ((?v0 B_Vertex$) )(!(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   4.256 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.257 -(or $x178 $x1002))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v0) ) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   4.258 -))
   4.259 -(let (($x3595 (not $x3590)))
   4.260 -(let (($x3654 (or $x3595 $x2706 $x2707 $x2708 $x2709 $x3651)))
   4.261 -(let (($x3657 (not $x3654)))
   4.262 -(let (($x3815 (or $x3657 $x3812)))
   4.263 -(let (($x3818 (not $x3815)))
   4.264 -(let (($x3581 (forall ((?v0 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.265 -(let ((?x2128 (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
   4.266 -(let (($x2129 (= ?x2128 0)))
   4.267 -(let (($x2113 (<= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0)))) 0)))
   4.268 -(let (($x2551 (not (or $x2113 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0))) (not $x2129)))))
   4.269 -(let (($x1002 (<= (+ b_Infinity$ (* (- 1) ?x174)) 0)))
   4.270 -(let (($x127 (= ?v0 b_Source$)))
   4.271 -(or $x127 $x1002 $x2551)))))))) :pattern ( (fun_app$c v_b_SP_G_1$ ?v0) )))
   4.272 -))
   4.273 -(let (($x3586 (not $x3581)))
   4.274 -(let (($x3573 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.275 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.276 -(let (($x990 (>= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   4.277 -(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   4.278 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.279 -(let (($x179 (not $x178)))
   4.280 -(or $x179 $x922 $x990))))))) :pattern ( (pair$ ?v1 ?v0) )))
   4.281 -))
   4.282 -(let (($x3578 (not $x3573)))
   4.283 -(let (($x3565 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.284 -(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   4.285 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.286 -(or $x178 (not (fun_app$ v_b_Visited_G_1$ ?v0)) $x1015)))) :pattern ( (fun_app$ v_b_Visited_G_1$ ?v1) (fun_app$ v_b_Visited_G_1$ ?v0) )))
   4.287 -))
   4.288 -(let (($x3570 (not $x3565)))
   4.289 -(let (($x3561 (not $x3556)))
   4.290 -(let ((?x172 (fun_app$c v_b_SP_G_1$ b_Source$)))
   4.291 -(let (($x173 (= ?x172 0)))
   4.292 -(let (($x2952 (not $x173)))
   4.293 -(let (($x3547 (forall ((?v0 B_Vertex$) )(!(let ((?x128 (v_b_SP_G_0$ ?v0)))
   4.294 -(let ((?x2090 (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
   4.295 -(let (($x2091 (= ?x2090 0)))
   4.296 -(let (($x2075 (<= (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0)))) 0)))
   4.297 -(let (($x2478 (not (or $x2075 (not (v_b_Visited_G_0$ (?v1!6 ?v0))) (not $x2091)))))
   4.298 -(let (($x947 (<= (+ b_Infinity$ (* (- 1) ?x128)) 0)))
   4.299 -(let (($x127 (= ?v0 b_Source$)))
   4.300 -(or $x127 $x947 $x2478)))))))) :pattern ( (v_b_SP_G_0$ ?v0) )))
   4.301 -))
   4.302 -(let (($x3552 (not $x3547)))
   4.303 -(let (($x3821 (or $x3552 $x2952 $x3561 $x3570 $x3578 $x3586 $x3818)))
   4.304 -(let (($x3824 (not $x3821)))
   4.305 -(let (($x3533 (forall ((?v1 B_Vertex$) )(!(let ((?x1540 (v_b_SP_G_0$ ?v0!5)))
   4.306 -(let ((?x1541 (* (- 1) ?x1540)))
   4.307 -(let ((?x128 (v_b_SP_G_0$ ?v1)))
   4.308 -(let (($x136 (v_b_Visited_G_0$ ?v1)))
   4.309 -(let (($x137 (not $x136)))
   4.310 -(or (>= (+ ?x128 ?x1541) 0) $x137 (not (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))) :pattern ( (v_b_SP_G_0$ ?v1) ) :pattern ( (v_b_Visited_G_0$ ?v1) ) :pattern ( (pair$ ?v1 ?v0!5) )))
   4.311 -))
   4.312 -(let (($x3538 (not $x3533)))
   4.313 -(let ((?x1540 (v_b_SP_G_0$ ?v0!5)))
   4.314 -(let ((?x1541 (* (- 1) ?x1540)))
   4.315 -(let ((?x1542 (+ b_Infinity$ ?x1541)))
   4.316 -(let (($x1543 (<= ?x1542 0)))
   4.317 -(let (($x1538 (= ?v0!5 b_Source$)))
   4.318 -(let (($x3541 (or $x1538 $x1543 $x3538)))
   4.319 -(let (($x1539 (not $x1538)))
   4.320 -(let ((@x6246 (unit-resolution (def-axiom (or $x3541 $x1539)) (hypothesis (not $x3541)) $x1539)))
   4.321 -(let (($x5625 (= b_Infinity$ ?x1540)))
   4.322 -(let (($x6457 (not $x5625)))
   4.323 -(let (($x1544 (not $x1543)))
   4.324 -(let ((@x6514 (unit-resolution (def-axiom (or $x3541 $x1544)) (hypothesis (not $x3541)) $x1544)))
   4.325 -(let ((@x5778 (symm (commutativity (= $x5625 (= ?x1540 b_Infinity$))) (= (= ?x1540 b_Infinity$) $x5625))))
   4.326 -(let (($x5616 (= ?x1540 b_Infinity$)))
   4.327 -(let (($x3493 (forall ((?v0 B_Vertex$) )(!(let (($x127 (= ?v0 b_Source$)))
   4.328 -(or $x127 (= (v_b_SP_G_0$ ?v0) b_Infinity$))) :pattern ( (v_b_SP_G_0$ ?v0) )))
   4.329 -))
   4.330 -(let (($x360 (forall ((?v0 B_Vertex$) )(let (($x127 (= ?v0 b_Source$)))
   4.331 -(or $x127 (= (v_b_SP_G_0$ ?v0) b_Infinity$))))
   4.332 -))
   4.333 -(let (($x127 (= ?0 b_Source$)))
   4.334 -(let (($x357 (or $x127 (= (v_b_SP_G_0$ ?0) b_Infinity$))))
   4.335 -(let (($x138 (forall ((?v0 B_Vertex$) )(let (($x136 (v_b_Visited_G_0$ ?v0)))
   4.336 -(not $x136)))
   4.337 -))
   4.338 -(let (($x354 (forall ((?v0 B_Vertex$) )(let (($x127 (= ?v0 b_Source$)))
   4.339 -(let (($x132 (not $x127)))
   4.340 -(or $x132 (= (v_b_SP_G_0$ ?v0) 0)))))
   4.341 -))
   4.342 -(let (($x890 (and $x354 $x360 $x138)))
   4.343 -(let (($x1329 (forall ((?v0 B_Vertex$) )(let (($x1323 (exists ((?v1 B_Vertex$) )(let ((?x303 (v_b_SP_G_2$ ?v0)))
   4.344 -(let ((?x1263 (* (- 1) ?x303)))
   4.345 -(let ((?x273 (v_b_SP_G_2$ ?v1)))
   4.346 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.347 -(let (($x1306 (= (+ ?x155 ?x273 ?x1263) 0)))
   4.348 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.349 -(let (($x1262 (>= (+ ?x273 ?x1263) 0)))
   4.350 -(let (($x1309 (not $x1262)))
   4.351 -(and $x1309 $x291 $x1306))))))))))
   4.352 -))
   4.353 -(let (($x127 (= ?v0 b_Source$)))
   4.354 -(let (($x132 (not $x127)))
   4.355 -(let (($x1300 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))))
   4.356 -(or (not $x1300) $x1323))))))
   4.357 -))
   4.358 -(let (($x1289 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x303 (v_b_SP_G_2$ ?v0)))
   4.359 -(let ((?x1263 (* (- 1) ?x303)))
   4.360 -(let ((?x273 (v_b_SP_G_2$ ?v1)))
   4.361 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.362 -(let (($x1282 (>= (+ ?x155 ?x273 ?x1263) 0)))
   4.363 -(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   4.364 -(let (($x923 (not $x922)))
   4.365 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.366 -(let (($x1276 (and $x291 $x923)))
   4.367 -(let (($x1279 (not $x1276)))
   4.368 -(or $x1279 $x1282))))))))))))
   4.369 -))
   4.370 -(let (($x1292 (not $x1289)))
   4.371 -(let (($x1332 (or $x1292 $x1329)))
   4.372 -(let (($x1335 (and $x1289 $x1332)))
   4.373 -(let (($x1270 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1262 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
   4.374 -(let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0)))
   4.375 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.376 -(let (($x300 (not $x291)))
   4.377 -(let (($x302 (and $x300 $x301)))
   4.378 -(let (($x664 (not $x302)))
   4.379 -(or $x664 $x1262))))))))
   4.380 -))
   4.381 -(let (($x1273 (not $x1270)))
   4.382 -(let (($x1338 (or $x1273 $x1335)))
   4.383 -(let (($x1341 (and $x1270 $x1338)))
   4.384 -(let (($x1256 (forall ((?v0 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v0)))
   4.385 -(>= ?x273 0)))
   4.386 -))
   4.387 -(let (($x1259 (not $x1256)))
   4.388 -(let (($x1344 (or $x1259 $x1341)))
   4.389 -(let (($x1347 (and $x1256 $x1344)))
   4.390 -(let (($x1350 (or $x773 $x1347)))
   4.391 -(let (($x1353 (and $x297 $x1350)))
   4.392 -(let (($x652 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.393 -(let ((?x273 (v_b_SP_G_2$ ?v0)))
   4.394 -(let (($x278 (= ?x273 ?x174)))
   4.395 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v0)))
   4.396 -(let (($x300 (not $x291)))
   4.397 -(or $x300 $x278)))))))
   4.398 -))
   4.399 -(let (($x785 (not $x652)))
   4.400 -(let (($x1356 (or $x785 $x1353)))
   4.401 -(let (($x1359 (and $x652 $x1356)))
   4.402 -(let (($x1247 (forall ((?v0 B_Vertex$) )(>= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) (v_b_SP_G_2$ ?v0))) 0))
   4.403 -))
   4.404 -(let (($x1250 (not $x1247)))
   4.405 -(let (($x1362 (or $x1250 $x1359)))
   4.406 -(let (($x1365 (and $x1247 $x1362)))
   4.407 -(let (($x1199 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.408 -(let ((?x273 (v_b_SP_G_2$ ?v0)))
   4.409 -(let (($x278 (= ?x273 ?x174)))
   4.410 -(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.411 -(let ((?x1173 (* (- 1) ?x257)))
   4.412 -(let (($x1175 (<= (+ ?x174 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
   4.413 -(let (($x1169 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
   4.414 -(let (($x1179 (and (not $x1169) (not $x1175))))
   4.415 -(or $x1179 $x278))))))))))
   4.416 -))
   4.417 -(let (($x1193 (forall ((?v0 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v0)))
   4.418 -(let ((?x1186 (* (- 1) ?x273)))
   4.419 -(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   4.420 -(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.421 -(let (($x1185 (= (+ ?x257 ?x268 ?x1186) 0)))
   4.422 -(let (($x1175 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x257) (* (- 1) ?x268)) 0)))
   4.423 -(let (($x1179 (and (not (<= (+ b_Infinity$ (* (- 1) ?x268)) 0)) (not $x1175))))
   4.424 -(let (($x1182 (not $x1179)))
   4.425 -(or $x1182 $x1185))))))))))
   4.426 -))
   4.427 -(let (($x1209 (forall ((?v0 B_Vertex$) )(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.428 -(let ((?x1173 (* (- 1) ?x257)))
   4.429 -(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.430 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.431 -(or $x178 (>= (+ ?x174 ?x1173) 0)))))))
   4.432 -))
   4.433 -(let (($x1214 (not $x1213)))
   4.434 -(let (($x256 (not $x255)))
   4.435 -(let (($x1080 (exists ((?v0 B_Vertex$) )(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   4.436 -(let (($x1003 (not $x1002)))
   4.437 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.438 -(let (($x179 (not $x178)))
   4.439 -(and $x179 $x1003))))))
   4.440 -))
   4.441 -(let (($x1235 (and $x1080 $x256 $x1214 $x1209 $x266 $x1193 $x1199)))
   4.442 -(let (($x1240 (not $x1235)))
   4.443 -(let (($x1368 (or $x1240 $x1365)))
   4.444 -(let (($x1146 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   4.445 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.446 -(let (($x1140 (>= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
   4.447 -(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   4.448 -(let (($x923 (not $x922)))
   4.449 -(let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
   4.450 -(let (($x1100 (not $x1099)))
   4.451 -(let (($x1134 (and $x1100 $x923)))
   4.452 -(let (($x1137 (not $x1134)))
   4.453 -(or $x1137 $x1140)))))))))))
   4.454 -))
   4.455 -(let (($x1149 (not $x1146)))
   4.456 -(let (($x1152 (or $x1149 $x246)))
   4.457 -(let (($x1155 (and $x1146 $x1152)))
   4.458 -(let (($x1128 (forall ((?v0 B_Vertex$) )(let (($x1122 (exists ((?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   4.459 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.460 -(and (not (>= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)) (= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))))
   4.461 -))
   4.462 -(let (($x1099 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
   4.463 -(let (($x1100 (not $x1099)))
   4.464 -(let (($x127 (= ?v0 b_Source$)))
   4.465 -(let (($x132 (not $x127)))
   4.466 -(let (($x1103 (and $x132 $x1100)))
   4.467 -(let (($x1106 (not $x1103)))
   4.468 -(or $x1106 $x1122)))))))))
   4.469 -))
   4.470 -(let (($x1131 (not $x1128)))
   4.471 -(let (($x1158 (or $x1131 $x1155)))
   4.472 -(let (($x1161 (and $x1128 $x1158)))
   4.473 -(let (($x1083 (not $x1080)))
   4.474 -(let (($x1089 (and $x1083 $x212 $x215 $x217 $x220)))
   4.475 -(let (($x1094 (not $x1089)))
   4.476 -(let (($x1164 (or $x1094 $x1161)))
   4.477 -(let (($x1371 (and $x1164 $x1368)))
   4.478 -(let (($x1037 (forall ((?v0 B_Vertex$) )(let (($x1031 (exists ((?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.479 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.480 -(let (($x1012 (= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   4.481 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.482 -(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   4.483 -(let (($x1017 (not $x1015)))
   4.484 -(and $x1017 $x178 $x1012))))))))
   4.485 -))
   4.486 -(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   4.487 -(let (($x1003 (not $x1002)))
   4.488 -(let (($x127 (= ?v0 b_Source$)))
   4.489 -(let (($x132 (not $x127)))
   4.490 -(let (($x1006 (and $x132 $x1003)))
   4.491 -(let (($x1009 (not $x1006)))
   4.492 -(or $x1009 $x1031)))))))))
   4.493 -))
   4.494 -(let (($x997 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.495 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.496 -(let (($x990 (>= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   4.497 -(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   4.498 -(let (($x923 (not $x922)))
   4.499 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.500 -(let (($x983 (and $x178 $x923)))
   4.501 -(let (($x986 (not $x983)))
   4.502 -(or $x986 $x990))))))))))
   4.503 -))
   4.504 -(let (($x1045 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.505 -(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
   4.506 -(let (($x180 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.507 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.508 -(let (($x179 (not $x178)))
   4.509 -(let (($x181 (and $x179 $x180)))
   4.510 -(let (($x403 (not $x181)))
   4.511 -(or $x403 $x1015)))))))))
   4.512 -))
   4.513 -(let (($x1051 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.514 -(>= ?x174 0)))
   4.515 -))
   4.516 -(let (($x980 (forall ((?v0 B_Vertex$) )(let (($x974 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.517 -(let ((?x128 (v_b_SP_G_0$ ?v1)))
   4.518 -(let (($x957 (= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x155) 0)))
   4.519 -(let (($x136 (v_b_Visited_G_0$ ?v1)))
   4.520 -(let (($x907 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
   4.521 -(let (($x960 (not $x907)))
   4.522 -(and $x960 $x136 $x957))))))))
   4.523 -))
   4.524 -(let (($x127 (= ?v0 b_Source$)))
   4.525 -(let (($x132 (not $x127)))
   4.526 -(let (($x951 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))))
   4.527 -(let (($x954 (not $x951)))
   4.528 -(or $x954 $x974)))))))
   4.529 -))
   4.530 -(let (($x1069 (and $x980 $x173 $x1051 $x1045 $x997 $x1037)))
   4.531 -(let (($x1074 (not $x1069)))
   4.532 -(let (($x1374 (or $x1074 $x1371)))
   4.533 -(let (($x1377 (and $x980 $x1374)))
   4.534 -(let (($x939 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.535 -(let ((?x128 (v_b_SP_G_0$ ?v1)))
   4.536 -(let (($x933 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x155) 0)))
   4.537 -(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
   4.538 -(let (($x923 (not $x922)))
   4.539 -(let (($x136 (v_b_Visited_G_0$ ?v1)))
   4.540 -(let (($x926 (and $x136 $x923)))
   4.541 -(let (($x929 (not $x926)))
   4.542 -(or $x929 $x933))))))))))
   4.543 -))
   4.544 -(let (($x942 (not $x939)))
   4.545 -(let (($x1380 (or $x942 $x1377)))
   4.546 -(let (($x1383 (and $x939 $x1380)))
   4.547 -(let (($x914 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x907 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
   4.548 -(let (($x148 (v_b_Visited_G_0$ ?v0)))
   4.549 -(let (($x136 (v_b_Visited_G_0$ ?v1)))
   4.550 -(let (($x137 (not $x136)))
   4.551 -(let (($x149 (and $x137 $x148)))
   4.552 -(let (($x382 (not $x149)))
   4.553 -(or $x382 $x907))))))))
   4.554 -))
   4.555 -(let (($x917 (not $x914)))
   4.556 -(let (($x1386 (or $x917 $x1383)))
   4.557 -(let (($x1389 (and $x914 $x1386)))
   4.558 -(let (($x899 (forall ((?v0 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v0)))
   4.559 -(>= ?x128 0)))
   4.560 -))
   4.561 -(let (($x902 (not $x899)))
   4.562 -(let (($x1392 (or $x902 $x1389)))
   4.563 -(let (($x1395 (and $x899 $x1392)))
   4.564 -(let ((?x144 (v_b_SP_G_0$ b_Source$)))
   4.565 -(let (($x145 (= ?x144 0)))
   4.566 -(let (($x869 (not $x145)))
   4.567 -(let (($x1398 (or $x869 $x1395)))
   4.568 -(let (($x1401 (and $x145 $x1398)))
   4.569 -(let (($x1407 (not (or (not $x890) $x1401))))
   4.570 -(let (($x320 (forall ((?v0 B_Vertex$) )(let (($x318 (exists ((?v1 B_Vertex$) )(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.571 -(let (($x316 (and $x291 (= (v_b_SP_G_2$ ?v0) (+ (v_b_SP_G_2$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))))
   4.572 -(let ((?x303 (v_b_SP_G_2$ ?v0)))
   4.573 -(let ((?x273 (v_b_SP_G_2$ ?v1)))
   4.574 -(let (($x314 (< ?x273 ?x303)))
   4.575 -(and $x314 $x316)))))))
   4.576 -))
   4.577 -(let (($x127 (= ?v0 b_Source$)))
   4.578 -(let (($x132 (not $x127)))
   4.579 -(let (($x313 (and $x132 (< (v_b_SP_G_2$ ?v0) b_Infinity$))))
   4.580 -(=> $x313 $x318))))))
   4.581 -))
   4.582 -(let (($x321 (and $x320 false)))
   4.583 -(let (($x322 (=> $x321 true)))
   4.584 -(let (($x323 (and $x320 $x322)))
   4.585 -(let (($x311 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.586 -(let ((?x273 (v_b_SP_G_2$ ?v1)))
   4.587 -(let ((?x308 (+ ?x273 ?x155)))
   4.588 -(let ((?x303 (v_b_SP_G_2$ ?v0)))
   4.589 -(let (($x156 (< ?x155 b_Infinity$)))
   4.590 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.591 -(let (($x307 (and $x291 $x156)))
   4.592 -(=> $x307 (<= ?x303 ?x308))))))))))
   4.593 -))
   4.594 -(let (($x324 (=> $x311 $x323)))
   4.595 -(let (($x306 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1)))
   4.596 -(let ((?x303 (v_b_SP_G_2$ ?v0)))
   4.597 -(let (($x304 (<= ?x303 ?x273)))
   4.598 -(let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0)))
   4.599 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.600 -(let (($x300 (not $x291)))
   4.601 -(let (($x302 (and $x300 $x301)))
   4.602 -(=> $x302 $x304)))))))))
   4.603 -))
   4.604 -(let (($x326 (=> $x306 (and $x311 $x324))))
   4.605 -(let (($x299 (forall ((?v0 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v0)))
   4.606 -(<= 0 ?x273)))
   4.607 -))
   4.608 -(let (($x328 (=> $x299 (and $x306 $x326))))
   4.609 -(let (($x330 (=> $x297 (and $x299 $x328))))
   4.610 -(let (($x293 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.611 -(let ((?x273 (v_b_SP_G_2$ ?v0)))
   4.612 -(let (($x278 (= ?x273 ?x174)))
   4.613 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v0)))
   4.614 -(=> $x291 $x278))))))
   4.615 -))
   4.616 -(let (($x295 (and $x293 (and true true))))
   4.617 -(let (($x332 (=> $x295 (and $x297 $x330))))
   4.618 -(let (($x290 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.619 -(let ((?x273 (v_b_SP_G_2$ ?v0)))
   4.620 -(<= ?x273 ?x174))))
   4.621 -))
   4.622 -(let (($x334 (=> $x290 (and $x293 $x332))))
   4.623 -(let (($x280 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.624 -(let ((?x273 (v_b_SP_G_2$ ?v0)))
   4.625 -(let (($x278 (= ?x273 ?x174)))
   4.626 -(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   4.627 -(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.628 -(let ((?x270 (+ ?x257 ?x268)))
   4.629 -(let (($x272 (and (< ?x268 b_Infinity$) (< ?x270 ?x174))))
   4.630 -(let (($x277 (not $x272)))
   4.631 -(=> $x277 $x278))))))))))
   4.632 -))
   4.633 -(let (($x276 (forall ((?v0 B_Vertex$) )(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   4.634 -(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.635 -(let ((?x270 (+ ?x257 ?x268)))
   4.636 -(let ((?x273 (v_b_SP_G_2$ ?v0)))
   4.637 -(let (($x274 (= ?x273 ?x270)))
   4.638 -(let (($x272 (and (< ?x268 b_Infinity$) (< ?x270 (fun_app$c v_b_SP_G_1$ ?v0)))))
   4.639 -(=> $x272 $x274))))))))
   4.640 -))
   4.641 -(let (($x261 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.642 -(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.643 -(let (($x259 (<= ?x257 ?x174)))
   4.644 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.645 -(let (($x179 (not $x178)))
   4.646 -(=> $x179 $x259)))))))
   4.647 -))
   4.648 -(let (($x258 (< ?x257 b_Infinity$)))
   4.649 -(let (($x209 (exists ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.650 -(let (($x191 (< ?x174 b_Infinity$)))
   4.651 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.652 -(let (($x179 (not $x178)))
   4.653 -(and $x179 $x191))))))
   4.654 -))
   4.655 -(let (($x286 (and $x209 (and $x256 (and $x258 (and $x261 (and $x266 (and $x276 $x280))))))))
   4.656 -(let (($x287 (and true $x286)))
   4.657 -(let (($x288 (and true $x287)))
   4.658 -(let (($x336 (=> $x288 (and $x290 $x334))))
   4.659 -(let (($x248 (and $x246 (=> $x246 true))))
   4.660 -(let (($x244 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.661 -(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   4.662 -(let ((?x235 (+ ?x230 ?x155)))
   4.663 -(let ((?x233 (fun_app$c v_b_SP_G_3$ ?v0)))
   4.664 -(let (($x156 (< ?x155 b_Infinity$)))
   4.665 -(let (($x231 (< ?x230 b_Infinity$)))
   4.666 -(let (($x241 (and $x231 $x156)))
   4.667 -(=> $x241 (<= ?x233 ?x235))))))))))
   4.668 -))
   4.669 -(let (($x249 (=> $x244 $x248)))
   4.670 -(let (($x240 (forall ((?v0 B_Vertex$) )(let (($x238 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.671 -(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   4.672 -(let ((?x235 (+ ?x230 ?x155)))
   4.673 -(let ((?x233 (fun_app$c v_b_SP_G_3$ ?v0)))
   4.674 -(let (($x234 (< ?x230 ?x233)))
   4.675 -(and $x234 (= ?x233 ?x235))))))))
   4.676 -))
   4.677 -(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
   4.678 -(let (($x231 (< ?x230 b_Infinity$)))
   4.679 -(let (($x127 (= ?v0 b_Source$)))
   4.680 -(let (($x132 (not $x127)))
   4.681 -(let (($x232 (and $x132 $x231)))
   4.682 -(=> $x232 $x238))))))))
   4.683 -))
   4.684 -(let (($x251 (=> $x240 (and $x244 $x249))))
   4.685 -(let (($x225 (and true (and $x212 (and $x215 (and $x217 (and $x220 true)))))))
   4.686 -(let (($x226 (and true $x225)))
   4.687 -(let (($x210 (not $x209)))
   4.688 -(let (($x228 (and true (and $x210 $x226))))
   4.689 -(let (($x229 (and true $x228)))
   4.690 -(let (($x253 (=> $x229 (and $x240 $x251))))
   4.691 -(let (($x199 (forall ((?v0 B_Vertex$) )(let (($x197 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.692 -(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.693 -(let ((?x187 (+ ?x174 ?x155)))
   4.694 -(let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.695 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.696 -(let (($x193 (< ?x174 ?x182)))
   4.697 -(and $x193 (and $x178 (= ?x182 ?x187))))))))))
   4.698 -))
   4.699 -(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.700 -(let (($x191 (< ?x174 b_Infinity$)))
   4.701 -(let (($x127 (= ?v0 b_Source$)))
   4.702 -(let (($x132 (not $x127)))
   4.703 -(let (($x192 (and $x132 $x191)))
   4.704 -(=> $x192 $x197))))))))
   4.705 -))
   4.706 -(let (($x200 (and $x199 true)))
   4.707 -(let (($x190 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.708 -(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.709 -(let ((?x187 (+ ?x174 ?x155)))
   4.710 -(let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.711 -(let (($x156 (< ?x155 b_Infinity$)))
   4.712 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.713 -(let (($x186 (and $x178 $x156)))
   4.714 -(=> $x186 (<= ?x182 ?x187))))))))))
   4.715 -))
   4.716 -(let (($x185 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.717 -(let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.718 -(let (($x183 (<= ?x182 ?x174)))
   4.719 -(let (($x180 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.720 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.721 -(let (($x179 (not $x178)))
   4.722 -(let (($x181 (and $x179 $x180)))
   4.723 -(=> $x181 $x183)))))))))
   4.724 -))
   4.725 -(let (($x176 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.726 -(<= 0 ?x174)))
   4.727 -))
   4.728 -(let (($x205 (and true (and $x173 (and $x176 (and $x185 (and $x190 $x200)))))))
   4.729 -(let (($x206 (and true $x205)))
   4.730 -(let (($x170 (forall ((?v0 B_Vertex$) )(let (($x168 (exists ((?v1 B_Vertex$) )(let (($x136 (v_b_Visited_G_0$ ?v1)))
   4.731 -(let (($x166 (and $x136 (= (v_b_SP_G_0$ ?v0) (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))))
   4.732 -(and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?v0)) $x166))))
   4.733 -))
   4.734 -(let (($x127 (= ?v0 b_Source$)))
   4.735 -(let (($x132 (not $x127)))
   4.736 -(let (($x163 (and $x132 (< (v_b_SP_G_0$ ?v0) b_Infinity$))))
   4.737 -(=> $x163 $x168))))))
   4.738 -))
   4.739 -(let (($x338 (=> (and $x170 $x206) (and $x253 $x336))))
   4.740 -(let (($x161 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x150 (v_b_SP_G_0$ ?v0)))
   4.741 -(let (($x159 (<= ?x150 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))
   4.742 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.743 -(let (($x156 (< ?x155 b_Infinity$)))
   4.744 -(let (($x136 (v_b_Visited_G_0$ ?v1)))
   4.745 -(let (($x157 (and $x136 $x156)))
   4.746 -(=> $x157 $x159))))))))
   4.747 -))
   4.748 -(let (($x340 (=> $x161 (and $x170 $x338))))
   4.749 -(let (($x153 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v1)))
   4.750 -(let ((?x150 (v_b_SP_G_0$ ?v0)))
   4.751 -(let (($x151 (<= ?x150 ?x128)))
   4.752 -(let (($x148 (v_b_Visited_G_0$ ?v0)))
   4.753 -(let (($x136 (v_b_Visited_G_0$ ?v1)))
   4.754 -(let (($x137 (not $x136)))
   4.755 -(let (($x149 (and $x137 $x148)))
   4.756 -(=> $x149 $x151)))))))))
   4.757 -))
   4.758 -(let (($x342 (=> $x153 (and $x161 $x340))))
   4.759 -(let (($x147 (forall ((?v0 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v0)))
   4.760 -(<= 0 ?x128)))
   4.761 -))
   4.762 -(let (($x344 (=> $x147 (and $x153 $x342))))
   4.763 -(let (($x346 (=> $x145 (and $x147 $x344))))
   4.764 -(let (($x135 (forall ((?v0 B_Vertex$) )(let (($x127 (= ?v0 b_Source$)))
   4.765 -(let (($x132 (not $x127)))
   4.766 -(=> $x132 (= (v_b_SP_G_0$ ?v0) b_Infinity$)))))
   4.767 -))
   4.768 -(let (($x131 (forall ((?v0 B_Vertex$) )(let (($x127 (= ?v0 b_Source$)))
   4.769 -(=> $x127 (= (v_b_SP_G_0$ ?v0) 0))))
   4.770 -))
   4.771 -(let (($x142 (and true (and $x131 (and $x135 (and $x138 true))))))
   4.772 -(let (($x143 (and true $x142)))
   4.773 -(let (($x348 (=> $x143 (and $x145 $x346))))
   4.774 -(let (($x349 (not $x348)))
   4.775 -(let (($x710 (forall ((?v0 B_Vertex$) )(let (($x698 (exists ((?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1)))
   4.776 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.777 -(let ((?x671 (+ ?x155 ?x273)))
   4.778 -(let ((?x303 (v_b_SP_G_2$ ?v0)))
   4.779 -(let (($x689 (= ?x303 ?x671)))
   4.780 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.781 -(let (($x692 (and $x291 $x689)))
   4.782 -(let (($x314 (< ?x273 ?x303)))
   4.783 -(and $x314 $x692))))))))))
   4.784 -))
   4.785 -(let (($x127 (= ?v0 b_Source$)))
   4.786 -(let (($x132 (not $x127)))
   4.787 -(let (($x313 (and $x132 (< (v_b_SP_G_2$ ?v0) b_Infinity$))))
   4.788 -(or (not $x313) $x698))))))
   4.789 -))
   4.790 -(let (($x686 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1)))
   4.791 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.792 -(let ((?x671 (+ ?x155 ?x273)))
   4.793 -(let ((?x303 (v_b_SP_G_2$ ?v0)))
   4.794 -(let (($x674 (<= ?x303 ?x671)))
   4.795 -(or (not (and (fun_app$ v_b_Visited_G_2$ ?v1) (< ?x155 b_Infinity$))) $x674)))))))
   4.796 -))
   4.797 -(let (($x738 (or (not $x686) $x710)))
   4.798 -(let (($x743 (and $x686 $x738)))
   4.799 -(let (($x668 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1)))
   4.800 -(let ((?x303 (v_b_SP_G_2$ ?v0)))
   4.801 -(let (($x304 (<= ?x303 ?x273)))
   4.802 -(let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0)))
   4.803 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.804 -(let (($x300 (not $x291)))
   4.805 -(let (($x302 (and $x300 $x301)))
   4.806 -(let (($x664 (not $x302)))
   4.807 -(or $x664 $x304))))))))))
   4.808 -))
   4.809 -(let (($x750 (or (not $x668) $x743)))
   4.810 -(let (($x755 (and $x668 $x750)))
   4.811 -(let (($x762 (or (not $x299) $x755)))
   4.812 -(let (($x767 (and $x299 $x762)))
   4.813 -(let (($x774 (or $x773 $x767)))
   4.814 -(let (($x779 (and $x297 $x774)))
   4.815 -(let (($x786 (or $x785 $x779)))
   4.816 -(let (($x791 (and $x652 $x786)))
   4.817 -(let (($x798 (or (not $x290) $x791)))
   4.818 -(let (($x803 (and $x290 $x798)))
   4.819 -(let (($x617 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.820 -(let ((?x273 (v_b_SP_G_2$ ?v0)))
   4.821 -(let (($x278 (= ?x273 ?x174)))
   4.822 -(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   4.823 -(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.824 -(let ((?x270 (+ ?x257 ?x268)))
   4.825 -(let (($x272 (and (< ?x268 b_Infinity$) (< ?x270 ?x174))))
   4.826 -(or $x272 $x278)))))))))
   4.827 -))
   4.828 -(let (($x611 (forall ((?v0 B_Vertex$) )(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
   4.829 -(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.830 -(let ((?x270 (+ ?x257 ?x268)))
   4.831 -(let ((?x273 (v_b_SP_G_2$ ?v0)))
   4.832 -(let (($x274 (= ?x273 ?x270)))
   4.833 -(let (($x272 (and (< ?x268 b_Infinity$) (< ?x270 (fun_app$c v_b_SP_G_1$ ?v0)))))
   4.834 -(let (($x277 (not $x272)))
   4.835 -(or $x277 $x274)))))))))
   4.836 -))
   4.837 -(let (($x620 (and $x611 $x617)))
   4.838 -(let (($x623 (and $x266 $x620)))
   4.839 -(let (($x605 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.840 -(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
   4.841 -(let (($x259 (<= ?x257 ?x174)))
   4.842 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.843 -(or $x178 $x259))))))
   4.844 -))
   4.845 -(let (($x626 (and $x605 $x623)))
   4.846 -(let (($x629 (and $x258 $x626)))
   4.847 -(let (($x632 (and $x256 $x629)))
   4.848 -(let (($x635 (and $x209 $x632)))
   4.849 -(let (($x810 (or (not $x635) $x803)))
   4.850 -(let (($x557 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   4.851 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.852 -(let ((?x521 (+ ?x155 ?x230)))
   4.853 -(let ((?x233 (fun_app$c v_b_SP_G_3$ ?v0)))
   4.854 -(let (($x545 (<= ?x233 ?x521)))
   4.855 -(or (not (and (< ?x230 b_Infinity$) (< ?x155 b_Infinity$))) $x545)))))))
   4.856 -))
   4.857 -(let (($x573 (or (not $x557) $x246)))
   4.858 -(let (($x578 (and $x557 $x573)))
   4.859 -(let (($x542 (forall ((?v0 B_Vertex$) )(let (($x530 (exists ((?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
   4.860 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.861 -(let ((?x521 (+ ?x155 ?x230)))
   4.862 -(let ((?x233 (fun_app$c v_b_SP_G_3$ ?v0)))
   4.863 -(let (($x524 (= ?x233 ?x521)))
   4.864 -(let (($x234 (< ?x230 ?x233)))
   4.865 -(and $x234 $x524))))))))
   4.866 -))
   4.867 -(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
   4.868 -(let (($x231 (< ?x230 b_Infinity$)))
   4.869 -(let (($x127 (= ?v0 b_Source$)))
   4.870 -(let (($x132 (not $x127)))
   4.871 -(let (($x232 (and $x132 $x231)))
   4.872 -(or (not $x232) $x530))))))))
   4.873 -))
   4.874 -(let (($x585 (or (not $x542) $x578)))
   4.875 -(let (($x590 (and $x542 $x585)))
   4.876 -(let (($x597 (or (not (and $x210 (and $x212 (and $x215 (and $x217 $x220))))) $x590)))
   4.877 -(let (($x815 (and $x597 $x810)))
   4.878 -(let (($x449 (forall ((?v0 B_Vertex$) )(let (($x437 (exists ((?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.879 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.880 -(let ((?x410 (+ ?x155 ?x174)))
   4.881 -(let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.882 -(let (($x428 (= ?x182 ?x410)))
   4.883 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.884 -(let (($x431 (and $x178 $x428)))
   4.885 -(let (($x193 (< ?x174 ?x182)))
   4.886 -(and $x193 $x431))))))))))
   4.887 -))
   4.888 -(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.889 -(let (($x191 (< ?x174 b_Infinity$)))
   4.890 -(let (($x127 (= ?v0 b_Source$)))
   4.891 -(let (($x132 (not $x127)))
   4.892 -(let (($x192 (and $x132 $x191)))
   4.893 -(or (not $x192) $x437))))))))
   4.894 -))
   4.895 -(let (($x425 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.896 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.897 -(let ((?x410 (+ ?x155 ?x174)))
   4.898 -(let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.899 -(let (($x413 (<= ?x182 ?x410)))
   4.900 -(or (not (and (fun_app$ v_b_Visited_G_1$ ?v1) (< ?x155 b_Infinity$))) $x413)))))))
   4.901 -))
   4.902 -(let (($x459 (and $x425 $x449)))
   4.903 -(let (($x407 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
   4.904 -(let ((?x182 (fun_app$c v_b_SP_G_1$ ?v0)))
   4.905 -(let (($x183 (<= ?x182 ?x174)))
   4.906 -(let (($x180 (fun_app$ v_b_Visited_G_1$ ?v0)))
   4.907 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
   4.908 -(let (($x179 (not $x178)))
   4.909 -(let (($x181 (and $x179 $x180)))
   4.910 -(let (($x403 (not $x181)))
   4.911 -(or $x403 $x183))))))))))
   4.912 -))
   4.913 -(let (($x462 (and $x407 $x459)))
   4.914 -(let (($x465 (and $x176 $x462)))
   4.915 -(let (($x468 (and $x173 $x465)))
   4.916 -(let (($x400 (forall ((?v0 B_Vertex$) )(let (($x168 (exists ((?v1 B_Vertex$) )(let (($x136 (v_b_Visited_G_0$ ?v1)))
   4.917 -(let (($x166 (and $x136 (= (v_b_SP_G_0$ ?v0) (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0)))))))
   4.918 -(and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?v0)) $x166))))
   4.919 -))
   4.920 -(let (($x127 (= ?v0 b_Source$)))
   4.921 -(let (($x132 (not $x127)))
   4.922 -(let (($x163 (and $x132 (< (v_b_SP_G_0$ ?v0) b_Infinity$))))
   4.923 -(or (not $x163) $x168))))))
   4.924 -))
   4.925 -(let (($x482 (and $x400 $x468)))
   4.926 -(let (($x822 (or (not $x482) $x815)))
   4.927 -(let (($x827 (and $x400 $x822)))
   4.928 -(let (($x393 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x150 (v_b_SP_G_0$ ?v0)))
   4.929 -(let (($x159 (<= ?x150 (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?v0))))))
   4.930 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
   4.931 -(let (($x156 (< ?x155 b_Infinity$)))
   4.932 -(let (($x136 (v_b_Visited_G_0$ ?v1)))
   4.933 -(let (($x157 (and $x136 $x156)))
   4.934 -(or (not $x157) $x159))))))))
   4.935 -))
   4.936 -(let (($x834 (or (not $x393) $x827)))
   4.937 -(let (($x839 (and $x393 $x834)))
   4.938 -(let (($x386 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v1)))
   4.939 -(let ((?x150 (v_b_SP_G_0$ ?v0)))
   4.940 -(let (($x151 (<= ?x150 ?x128)))
   4.941 -(let (($x148 (v_b_Visited_G_0$ ?v0)))
   4.942 -(let (($x136 (v_b_Visited_G_0$ ?v1)))
   4.943 -(let (($x137 (not $x136)))
   4.944 -(let (($x149 (and $x137 $x148)))
   4.945 -(let (($x382 (not $x149)))
   4.946 -(or $x382 $x151))))))))))
   4.947 -))
   4.948 -(let (($x846 (or (not $x386) $x839)))
   4.949 -(let (($x851 (and $x386 $x846)))
   4.950 -(let (($x858 (or (not $x147) $x851)))
   4.951 -(let (($x863 (and $x147 $x858)))
   4.952 -(let (($x870 (or $x869 $x863)))
   4.953 -(let (($x875 (and $x145 $x870)))
   4.954 -(let (($x882 (or (not (and $x354 (and $x360 $x138))) $x875)))
   4.955 -(let (($x1323 (exists ((?v1 B_Vertex$) )(let ((?x303 (v_b_SP_G_2$ ?0)))
   4.956 -(let ((?x1263 (* (- 1) ?x303)))
   4.957 -(let ((?x273 (v_b_SP_G_2$ ?v1)))
   4.958 -(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
   4.959 -(let (($x1306 (= (+ ?x155 ?x273 ?x1263) 0)))
   4.960 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.961 -(let (($x1262 (>= (+ ?x273 ?x1263) 0)))
   4.962 -(let (($x1309 (not $x1262)))
   4.963 -(and $x1309 $x291 $x1306))))))))))
   4.964 -))
   4.965 -(let (($x132 (not $x127)))
   4.966 -(let (($x1300 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_2$ ?0))) 0)))))
   4.967 -(let (($x698 (exists ((?v1 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v1)))
   4.968 -(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
   4.969 -(let ((?x671 (+ ?x155 ?x273)))
   4.970 -(let ((?x303 (v_b_SP_G_2$ ?0)))
   4.971 -(let (($x689 (= ?x303 ?x671)))
   4.972 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
   4.973 -(let (($x692 (and $x291 $x689)))
   4.974 -(let (($x314 (< ?x273 ?x303)))
   4.975 -(and $x314 $x692))))))))))
   4.976 -))
   4.977 -(let (($x705 (or (not (and $x132 (< (v_b_SP_G_2$ ?0) b_Infinity$))) $x698)))
   4.978 -(let ((?x303 (v_b_SP_G_2$ ?1)))
   4.979 -(let ((?x1263 (* (- 1) ?x303)))
   4.980 -(let ((?x273 (v_b_SP_G_2$ ?0)))
   4.981 -(let ((?x155 (b_G$ (pair$ ?0 ?1))))
   4.982 -(let (($x1306 (= (+ ?x155 ?x273 ?x1263) 0)))
   4.983 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?0)))
   4.984 -(let (($x1262 (>= (+ ?x273 ?x1263) 0)))
   4.985 -(let (($x1309 (not $x1262)))
   4.986 -(let (($x1318 (and $x1309 $x291 $x1306)))
   4.987 -(let ((?x671 (+ ?x155 ?x273)))
   4.988 -(let (($x689 (= ?x303 ?x671)))
   4.989 -(let (($x692 (and $x291 $x689)))
   4.990 -(let (($x314 (< ?x273 ?x303)))
   4.991 -(let (($x695 (and $x314 $x692)))
   4.992 -(let ((@x1317 (monotonicity (rewrite (= $x314 $x1309)) (monotonicity (rewrite (= $x689 $x1306)) (= $x692 (and $x291 $x1306))) (= $x695 (and $x1309 (and $x291 $x1306))))))
   4.993 -(let ((@x1322 (trans @x1317 (rewrite (= (and $x1309 (and $x291 $x1306)) $x1318)) (= $x695 $x1318))))
   4.994 -(let (($x1298 (= (< ?x273 b_Infinity$) (not (<= (+ b_Infinity$ (* (- 1) ?x273)) 0)))))
   4.995 -(let ((@x1302 (monotonicity (rewrite $x1298) (= (and $x132 (< ?x273 b_Infinity$)) $x1300))))
   4.996 -(let ((@x1305 (monotonicity @x1302 (= (not (and $x132 (< ?x273 b_Infinity$))) (not $x1300)))))
   4.997 -(let ((@x1328 (monotonicity @x1305 (quant-intro @x1322 (= $x698 $x1323)) (= $x705 (or (not $x1300) $x1323)))))
   4.998 -(let (($x1282 (>= (+ ?x155 ?x273 ?x1263) 0)))
   4.999 -(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  4.1000 -(let (($x923 (not $x922)))
  4.1001 -(let (($x1276 (and $x291 $x923)))
  4.1002 -(let (($x1279 (not $x1276)))
  4.1003 -(let (($x1286 (or $x1279 $x1282)))
  4.1004 -(let (($x674 (<= ?x303 ?x671)))
  4.1005 -(let (($x681 (or (not (and $x291 (< ?x155 b_Infinity$))) $x674)))
  4.1006 -(let ((@x925 (rewrite (= (< ?x155 b_Infinity$) $x923))))
  4.1007 -(let ((@x1281 (monotonicity (monotonicity @x925 (= (and $x291 (< ?x155 b_Infinity$)) $x1276)) (= (not (and $x291 (< ?x155 b_Infinity$))) $x1279))))
  4.1008 -(let ((@x1291 (quant-intro (monotonicity @x1281 (rewrite (= $x674 $x1282)) (= $x681 $x1286)) (= $x686 $x1289))))
  4.1009 -(let ((@x1334 (monotonicity (monotonicity @x1291 (= (not $x686) $x1292)) (quant-intro @x1328 (= $x710 $x1329)) (= $x738 $x1332))))
  4.1010 -(let (($x301 (fun_app$ v_b_Visited_G_2$ ?1)))
  4.1011 -(let (($x300 (not $x291)))
  4.1012 -(let (($x302 (and $x300 $x301)))
  4.1013 -(let (($x664 (not $x302)))
  4.1014 -(let (($x1267 (or $x664 $x1262)))
  4.1015 -(let (($x304 (<= ?x303 ?x273)))
  4.1016 -(let (($x665 (or $x664 $x304)))
  4.1017 -(let ((@x1272 (quant-intro (monotonicity (rewrite (= $x304 $x1262)) (= $x665 $x1267)) (= $x668 $x1270))))
  4.1018 -(let ((@x1340 (monotonicity (monotonicity @x1272 (= (not $x668) $x1273)) (monotonicity @x1291 @x1334 (= $x743 $x1335)) (= $x750 $x1338))))
  4.1019 -(let ((@x1258 (quant-intro (rewrite (= (<= 0 ?x273) (>= ?x273 0))) (= $x299 $x1256))))
  4.1020 -(let ((@x1346 (monotonicity (monotonicity @x1258 (= (not $x299) $x1259)) (monotonicity @x1272 @x1340 (= $x755 $x1341)) (= $x762 $x1344))))
  4.1021 -(let ((@x1352 (monotonicity (monotonicity @x1258 @x1346 (= $x767 $x1347)) (= $x774 $x1350))))
  4.1022 -(let ((@x1361 (monotonicity (monotonicity (monotonicity @x1352 (= $x779 $x1353)) (= $x786 $x1356)) (= $x791 $x1359))))
  4.1023 -(let (($x1243 (>= (+ (fun_app$c v_b_SP_G_1$ ?0) (* (- 1) ?x273)) 0)))
  4.1024 -(let ((@x1249 (quant-intro (rewrite (= (<= ?x273 (fun_app$c v_b_SP_G_1$ ?0)) $x1243)) (= $x290 $x1247))))
  4.1025 -(let ((@x1364 (monotonicity (monotonicity @x1249 (= (not $x290) $x1250)) @x1361 (= $x798 $x1362))))
  4.1026 -(let (($x1232 (and $x1080 (and $x256 (and $x1214 (and $x1209 (and $x266 (and $x1193 $x1199))))))))
  4.1027 -(let (($x1230 (= $x632 (and $x256 (and $x1214 (and $x1209 (and $x266 (and $x1193 $x1199))))))))
  4.1028 -(let ((?x174 (fun_app$c v_b_SP_G_1$ ?0)))
  4.1029 -(let (($x278 (= ?x273 ?x174)))
  4.1030 -(let (($x1175 (<= (+ ?x174 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?0)))) 0)))
  4.1031 -(let (($x1169 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?0)))) 0)))
  4.1032 -(let (($x1179 (and (not $x1169) (not $x1175))))
  4.1033 -(let (($x1196 (or $x1179 $x278)))
  4.1034 -(let (($x272 (and (< (b_G$ (pair$ v_b_v_G_1$ ?0)) b_Infinity$) (< (+ ?x257 (b_G$ (pair$ v_b_v_G_1$ ?0))) ?x174))))
  4.1035 -(let (($x614 (or $x272 $x278)))
  4.1036 -(let ((@x1178 (rewrite (= (< (+ ?x257 (b_G$ (pair$ v_b_v_G_1$ ?0))) ?x174) (not $x1175)))))
  4.1037 -(let ((@x1172 (rewrite (= (< (b_G$ (pair$ v_b_v_G_1$ ?0)) b_Infinity$) (not $x1169)))))
  4.1038 -(let ((@x1198 (monotonicity (monotonicity @x1172 @x1178 (= $x272 $x1179)) (= $x614 $x1196))))
  4.1039 -(let (($x1185 (= (+ ?x257 (b_G$ (pair$ v_b_v_G_1$ ?0)) (* (- 1) ?x273)) 0)))
  4.1040 -(let (($x1182 (not $x1179)))
  4.1041 -(let (($x1190 (or $x1182 $x1185)))
  4.1042 -(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?0))))
  4.1043 -(let ((?x270 (+ ?x257 ?x268)))
  4.1044 -(let (($x274 (= ?x273 ?x270)))
  4.1045 -(let (($x277 (not $x272)))
  4.1046 -(let (($x608 (or $x277 $x274)))
  4.1047 -(let ((@x1184 (monotonicity (monotonicity @x1172 @x1178 (= $x272 $x1179)) (= $x277 $x1182))))
  4.1048 -(let ((@x1195 (quant-intro (monotonicity @x1184 (rewrite (= $x274 $x1185)) (= $x608 $x1190)) (= $x611 $x1193))))
  4.1049 -(let ((@x1219 (monotonicity @x1195 (quant-intro @x1198 (= $x617 $x1199)) (= $x620 (and $x1193 $x1199)))))
  4.1050 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?0)))
  4.1051 -(let (($x1206 (or $x178 (>= (+ ?x174 ?x1173) 0))))
  4.1052 -(let (($x259 (<= ?x257 ?x174)))
  4.1053 -(let (($x602 (or $x178 $x259)))
  4.1054 -(let ((@x1208 (monotonicity (rewrite (= $x259 (>= (+ ?x174 ?x1173) 0))) (= $x602 $x1206))))
  4.1055 -(let ((@x1225 (monotonicity (quant-intro @x1208 (= $x605 $x1209)) (monotonicity @x1219 (= $x623 (and $x266 (and $x1193 $x1199)))) (= $x626 (and $x1209 (and $x266 (and $x1193 $x1199)))))))
  4.1056 -(let ((@x1228 (monotonicity (rewrite (= $x258 $x1214)) @x1225 (= $x629 (and $x1214 (and $x1209 (and $x266 (and $x1193 $x1199))))))))
  4.1057 -(let (($x1002 (<= (+ b_Infinity$ (* (- 1) ?x174)) 0)))
  4.1058 -(let (($x1003 (not $x1002)))
  4.1059 -(let (($x179 (not $x178)))
  4.1060 -(let (($x1077 (and $x179 $x1003)))
  4.1061 -(let ((@x1079 (monotonicity (rewrite (= (< ?x174 b_Infinity$) $x1003)) (= (and $x179 (< ?x174 b_Infinity$)) $x1077))))
  4.1062 -(let ((@x1234 (monotonicity (quant-intro @x1079 (= $x209 $x1080)) (monotonicity @x1228 $x1230) (= $x635 $x1232))))
  4.1063 -(let ((@x1242 (monotonicity (trans @x1234 (rewrite (= $x1232 $x1235)) (= $x635 $x1235)) (= (not $x635) $x1240))))
  4.1064 -(let ((@x1370 (monotonicity @x1242 (monotonicity @x1249 @x1364 (= $x803 $x1365)) (= $x810 $x1368))))
  4.1065 -(let ((?x230 (fun_app$c v_b_SP_G_3$ ?0)))
  4.1066 -(let (($x1140 (>= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?1))) 0)))
  4.1067 -(let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
  4.1068 -(let (($x1100 (not $x1099)))
  4.1069 -(let (($x1134 (and $x1100 $x923)))
  4.1070 -(let (($x1137 (not $x1134)))
  4.1071 -(let (($x1143 (or $x1137 $x1140)))
  4.1072 -(let ((?x521 (+ ?x155 ?x230)))
  4.1073 -(let ((?x233 (fun_app$c v_b_SP_G_3$ ?1)))
  4.1074 -(let (($x545 (<= ?x233 ?x521)))
  4.1075 -(let (($x552 (or (not (and (< ?x230 b_Infinity$) (< ?x155 b_Infinity$))) $x545)))
  4.1076 -(let ((@x1136 (monotonicity (rewrite (= (< ?x230 b_Infinity$) $x1100)) @x925 (= (and (< ?x230 b_Infinity$) (< ?x155 b_Infinity$)) $x1134))))
  4.1077 -(let ((@x1139 (monotonicity @x1136 (= (not (and (< ?x230 b_Infinity$) (< ?x155 b_Infinity$))) $x1137))))
  4.1078 -(let ((@x1148 (quant-intro (monotonicity @x1139 (rewrite (= $x545 $x1140)) (= $x552 $x1143)) (= $x557 $x1146))))
  4.1079 -(let ((@x1154 (monotonicity (monotonicity @x1148 (= (not $x557) $x1149)) (= $x573 $x1152))))
  4.1080 -(let (($x1122 (exists ((?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  4.1081 -(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  4.1082 -(and (not (>= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?0))) 0)) (= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?0))) 0)))))
  4.1083 -))
  4.1084 -(let (($x1103 (and $x132 $x1100)))
  4.1085 -(let (($x1106 (not $x1103)))
  4.1086 -(let (($x1125 (or $x1106 $x1122)))
  4.1087 -(let (($x530 (exists ((?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  4.1088 -(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  4.1089 -(let ((?x521 (+ ?x155 ?x230)))
  4.1090 -(let ((?x233 (fun_app$c v_b_SP_G_3$ ?0)))
  4.1091 -(let (($x524 (= ?x233 ?x521)))
  4.1092 -(let (($x234 (< ?x230 ?x233)))
  4.1093 -(and $x234 $x524))))))))
  4.1094 -))
  4.1095 -(let (($x537 (or (not (and $x132 (< ?x230 b_Infinity$))) $x530)))
  4.1096 -(let (($x1119 (and (not (>= (+ ?x230 (* (- 1) ?x233)) 0)) (= (+ ?x155 ?x230 (* (- 1) ?x233)) 0))))
  4.1097 -(let (($x524 (= ?x233 ?x521)))
  4.1098 -(let (($x234 (< ?x230 ?x233)))
  4.1099 -(let (($x527 (and $x234 $x524)))
  4.1100 -(let ((@x1121 (monotonicity (rewrite (= $x234 (not (>= (+ ?x230 (* (- 1) ?x233)) 0)))) (rewrite (= $x524 (= (+ ?x155 ?x230 (* (- 1) ?x233)) 0))) (= $x527 $x1119))))
  4.1101 -(let ((@x1105 (monotonicity (rewrite (= (< ?x230 b_Infinity$) $x1100)) (= (and $x132 (< ?x230 b_Infinity$)) $x1103))))
  4.1102 -(let ((@x1127 (monotonicity (monotonicity @x1105 (= (not (and $x132 (< ?x230 b_Infinity$))) $x1106)) (quant-intro @x1121 (= $x530 $x1122)) (= $x537 $x1125))))
  4.1103 -(let ((@x1133 (monotonicity (quant-intro @x1127 (= $x542 $x1128)) (= (not $x542) $x1131))))
  4.1104 -(let ((@x1160 (monotonicity @x1133 (monotonicity @x1148 @x1154 (= $x578 $x1155)) (= $x585 $x1158))))
  4.1105 -(let ((@x1091 (rewrite (= (and $x1083 (and $x212 (and $x215 (and $x217 $x220)))) $x1089))))
  4.1106 -(let (($x493 (and $x212 (and $x215 (and $x217 $x220)))))
  4.1107 -(let (($x507 (and $x210 $x493)))
  4.1108 -(let ((@x1088 (monotonicity (monotonicity (quant-intro @x1079 (= $x209 $x1080)) (= $x210 $x1083)) (= $x507 (and $x1083 $x493)))))
  4.1109 -(let ((@x1096 (monotonicity (trans @x1088 @x1091 (= $x507 $x1089)) (= (not $x507) $x1094))))
  4.1110 -(let ((@x1166 (monotonicity @x1096 (monotonicity (quant-intro @x1127 (= $x542 $x1128)) @x1160 (= $x590 $x1161)) (= $x597 $x1164))))
  4.1111 -(let (($x1070 (= (and $x980 (and $x173 (and $x1051 (and $x1045 (and $x997 $x1037))))) $x1069)))
  4.1112 -(let (($x1067 (= $x482 (and $x980 (and $x173 (and $x1051 (and $x1045 (and $x997 $x1037))))))))
  4.1113 -(let (($x1031 (exists ((?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
  4.1114 -(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  4.1115 -(let (($x1012 (= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?0))) 0)))
  4.1116 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
  4.1117 -(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?0))) 0)))
  4.1118 -(let (($x1017 (not $x1015)))
  4.1119 -(and $x1017 $x178 $x1012))))))))
  4.1120 -))
  4.1121 -(let (($x1006 (and $x132 $x1003)))
  4.1122 -(let (($x1009 (not $x1006)))
  4.1123 -(let (($x1034 (or $x1009 $x1031)))
  4.1124 -(let (($x437 (exists ((?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
  4.1125 -(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  4.1126 -(let ((?x410 (+ ?x155 ?x174)))
  4.1127 -(let ((?x182 (fun_app$c v_b_SP_G_1$ ?0)))
  4.1128 -(let (($x428 (= ?x182 ?x410)))
  4.1129 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
  4.1130 -(let (($x431 (and $x178 $x428)))
  4.1131 -(let (($x193 (< ?x174 ?x182)))
  4.1132 -(and $x193 $x431))))))))))
  4.1133 -))
  4.1134 -(let (($x444 (or (not (and $x132 (< ?x174 b_Infinity$))) $x437)))
  4.1135 -(let (($x1012 (= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?1))) 0)))
  4.1136 -(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?1))) 0)))
  4.1137 -(let (($x1017 (not $x1015)))
  4.1138 -(let (($x1026 (and $x1017 $x178 $x1012)))
  4.1139 -(let ((?x410 (+ ?x155 ?x174)))
  4.1140 -(let ((?x182 (fun_app$c v_b_SP_G_1$ ?1)))
  4.1141 -(let (($x428 (= ?x182 ?x410)))
  4.1142 -(let (($x431 (and $x178 $x428)))
  4.1143 -(let (($x193 (< ?x174 ?x182)))
  4.1144 -(let (($x434 (and $x193 $x431)))
  4.1145 -(let ((@x1025 (monotonicity (rewrite (= $x193 $x1017)) (monotonicity (rewrite (= $x428 $x1012)) (= $x431 (and $x178 $x1012))) (= $x434 (and $x1017 (and $x178 $x1012))))))
  4.1146 -(let ((@x1030 (trans @x1025 (rewrite (= (and $x1017 (and $x178 $x1012)) $x1026)) (= $x434 $x1026))))
  4.1147 -(let ((@x1008 (monotonicity (rewrite (= (< ?x174 b_Infinity$) $x1003)) (= (and $x132 (< ?x174 b_Infinity$)) $x1006))))
  4.1148 -(let ((@x1036 (monotonicity (monotonicity @x1008 (= (not (and $x132 (< ?x174 b_Infinity$))) $x1009)) (quant-intro @x1030 (= $x437 $x1031)) (= $x444 $x1034))))
  4.1149 -(let (($x990 (>= (+ ?x155 ?x174 (* (- 1) ?x182)) 0)))
  4.1150 -(let (($x983 (and $x178 $x923)))
  4.1151 -(let (($x986 (not $x983)))
  4.1152 -(let (($x994 (or $x986 $x990)))
  4.1153 -(let (($x413 (<= ?x182 ?x410)))
  4.1154 -(let (($x420 (or (not (and $x178 (< ?x155 b_Infinity$))) $x413)))
  4.1155 -(let ((@x988 (monotonicity (monotonicity @x925 (= (and $x178 (< ?x155 b_Infinity$)) $x983)) (= (not (and $x178 (< ?x155 b_Infinity$))) $x986))))
  4.1156 -(let ((@x999 (quant-intro (monotonicity @x988 (rewrite (= $x413 $x990)) (= $x420 $x994)) (= $x425 $x997))))
  4.1157 -(let ((@x1056 (monotonicity @x999 (quant-intro @x1036 (= $x449 $x1037)) (= $x459 (and $x997 $x1037)))))
  4.1158 -(let (($x180 (fun_app$ v_b_Visited_G_1$ ?1)))
  4.1159 -(let (($x181 (and $x179 $x180)))
  4.1160 -(let (($x403 (not $x181)))
  4.1161 -(let (($x1042 (or $x403 $x1015)))
  4.1162 -(let (($x183 (<= ?x182 ?x174)))
  4.1163 -(let (($x404 (or $x403 $x183)))
  4.1164 -(let ((@x1047 (quant-intro (monotonicity (rewrite (= $x183 $x1015)) (= $x404 $x1042)) (= $x407 $x1045))))
  4.1165 -(let ((@x1053 (quant-intro (rewrite (= (<= 0 ?x174) (>= ?x174 0))) (= $x176 $x1051))))
  4.1166 -(let ((@x1062 (monotonicity @x1053 (monotonicity @x1047 @x1056 (= $x462 (and $x1045 (and $x997 $x1037)))) (= $x465 (and $x1051 (and $x1045 (and $x997 $x1037)))))))
  4.1167 -(let ((@x1065 (monotonicity @x1062 (= $x468 (and $x173 (and $x1051 (and $x1045 (and $x997 $x1037))))))))
  4.1168 -(let (($x974 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  4.1169 -(let ((?x128 (v_b_SP_G_0$ ?v1)))
  4.1170 -(let (($x957 (= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?0)) ?x155) 0)))
  4.1171 -(let (($x136 (v_b_Visited_G_0$ ?v1)))
  4.1172 -(let (($x907 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?0))) 0)))
  4.1173 -(let (($x960 (not $x907)))
  4.1174 -(and $x960 $x136 $x957))))))))
  4.1175 -))
  4.1176 -(let (($x951 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?0))) 0)))))
  4.1177 -(let (($x954 (not $x951)))
  4.1178 -(let (($x977 (or $x954 $x974)))
  4.1179 -(let (($x168 (exists ((?v1 B_Vertex$) )(let (($x136 (v_b_Visited_G_0$ ?v1)))
  4.1180 -(let (($x166 (and $x136 (= (v_b_SP_G_0$ ?0) (+ (v_b_SP_G_0$ ?v1) (b_G$ (pair$ ?v1 ?0)))))))
  4.1181 -(and (< (v_b_SP_G_0$ ?v1) (v_b_SP_G_0$ ?0)) $x166))))
  4.1182 -))
  4.1183 -(let (($x397 (or (not (and $x132 (< (v_b_SP_G_0$ ?0) b_Infinity$))) $x168)))
  4.1184 -(let (($x957 (= (+ (v_b_SP_G_0$ ?0) (* (- 1) (v_b_SP_G_0$ ?1)) ?x155) 0)))
  4.1185 -(let (($x136 (v_b_Visited_G_0$ ?0)))
  4.1186 -(let (($x907 (>= (+ (v_b_SP_G_0$ ?0) (* (- 1) (v_b_SP_G_0$ ?1))) 0)))
  4.1187 -(let (($x960 (not $x907)))
  4.1188 -(let (($x969 (and $x960 $x136 $x957)))
  4.1189 -(let (($x167 (and (< (v_b_SP_G_0$ ?0) (v_b_SP_G_0$ ?1)) (and $x136 (= (v_b_SP_G_0$ ?1) (+ (v_b_SP_G_0$ ?0) ?x155))))))
  4.1190 -(let (($x964 (= (and $x136 (= (v_b_SP_G_0$ ?1) (+ (v_b_SP_G_0$ ?0) ?x155))) (and $x136 $x957))))
  4.1191 -(let ((@x959 (rewrite (= (= (v_b_SP_G_0$ ?1) (+ (v_b_SP_G_0$ ?0) ?x155)) $x957))))
  4.1192 -(let ((@x968 (monotonicity (rewrite (= (< (v_b_SP_G_0$ ?0) (v_b_SP_G_0$ ?1)) $x960)) (monotonicity @x959 $x964) (= $x167 (and $x960 (and $x136 $x957))))))
  4.1193 -(let ((@x973 (trans @x968 (rewrite (= (and $x960 (and $x136 $x957)) $x969)) (= $x167 $x969))))
  4.1194 -(let (($x949 (= (< (v_b_SP_G_0$ ?0) b_Infinity$) (not (<= (+ b_Infinity$ (* (- 1) (v_b_SP_G_0$ ?0))) 0)))))
  4.1195 -(let ((@x953 (monotonicity (rewrite $x949) (= (and $x132 (< (v_b_SP_G_0$ ?0) b_Infinity$)) $x951))))
  4.1196 -(let ((@x956 (monotonicity @x953 (= (not (and $x132 (< (v_b_SP_G_0$ ?0) b_Infinity$))) $x954))))
  4.1197 -(let ((@x982 (quant-intro (monotonicity @x956 (quant-intro @x973 (= $x168 $x974)) (= $x397 $x977)) (= $x400 $x980))))
  4.1198 -(let ((@x1076 (monotonicity (trans (monotonicity @x982 @x1065 $x1067) (rewrite $x1070) (= $x482 $x1069)) (= (not $x482) $x1074))))
  4.1199 -(let ((@x1376 (monotonicity @x1076 (monotonicity @x1166 @x1370 (= $x815 $x1371)) (= $x822 $x1374))))
  4.1200 -(let (($x933 (>= (+ (v_b_SP_G_0$ ?0) (* (- 1) (v_b_SP_G_0$ ?1)) ?x155) 0)))
  4.1201 -(let (($x926 (and $x136 $x923)))
  4.1202 -(let (($x929 (not $x926)))
  4.1203 -(let (($x936 (or $x929 $x933)))
  4.1204 -(let ((?x150 (v_b_SP_G_0$ ?1)))
  4.1205 -(let (($x159 (<= ?x150 (+ (v_b_SP_G_0$ ?0) ?x155))))
  4.1206 -(let (($x390 (or (not (and $x136 (< ?x155 b_Infinity$))) $x159)))
  4.1207 -(let ((@x931 (monotonicity (monotonicity @x925 (= (and $x136 (< ?x155 b_Infinity$)) $x926)) (= (not (and $x136 (< ?x155 b_Infinity$))) $x929))))
  4.1208 -(let ((@x941 (quant-intro (monotonicity @x931 (rewrite (= $x159 $x933)) (= $x390 $x936)) (= $x393 $x939))))
  4.1209 -(let ((@x1382 (monotonicity (monotonicity @x941 (= (not $x393) $x942)) (monotonicity @x982 @x1376 (= $x827 $x1377)) (= $x834 $x1380))))
  4.1210 -(let (($x148 (v_b_Visited_G_0$ ?1)))
  4.1211 -(let (($x137 (not $x136)))
  4.1212 -(let (($x149 (and $x137 $x148)))
  4.1213 -(let (($x382 (not $x149)))
  4.1214 -(let (($x911 (or $x382 $x907)))
  4.1215 -(let ((?x128 (v_b_SP_G_0$ ?0)))
  4.1216 -(let (($x151 (<= ?x150 ?x128)))
  4.1217 -(let (($x383 (or $x382 $x151)))
  4.1218 -(let ((@x916 (quant-intro (monotonicity (rewrite (= $x151 $x907)) (= $x383 $x911)) (= $x386 $x914))))
  4.1219 -(let ((@x1388 (monotonicity (monotonicity @x916 (= (not $x386) $x917)) (monotonicity @x941 @x1382 (= $x839 $x1383)) (= $x846 $x1386))))
  4.1220 -(let ((@x901 (quant-intro (rewrite (= (<= 0 ?x128) (>= ?x128 0))) (= $x147 $x899))))
  4.1221 -(let ((@x1394 (monotonicity (monotonicity @x901 (= (not $x147) $x902)) (monotonicity @x916 @x1388 (= $x851 $x1389)) (= $x858 $x1392))))
  4.1222 -(let ((@x1400 (monotonicity (monotonicity @x901 @x1394 (= $x863 $x1395)) (= $x870 $x1398))))
  4.1223 -(let ((@x895 (monotonicity (rewrite (= (and $x354 (and $x360 $x138)) $x890)) (= (not (and $x354 (and $x360 $x138))) (not $x890)))))
  4.1224 -(let ((@x1406 (monotonicity @x895 (monotonicity @x1400 (= $x875 $x1401)) (= $x882 (or (not $x890) $x1401)))))
  4.1225 -(let (($x318 (exists ((?v1 B_Vertex$) )(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  4.1226 -(let (($x316 (and $x291 (= (v_b_SP_G_2$ ?0) (+ (v_b_SP_G_2$ ?v1) (b_G$ (pair$ ?v1 ?0)))))))
  4.1227 -(let ((?x303 (v_b_SP_G_2$ ?0)))
  4.1228 -(let ((?x273 (v_b_SP_G_2$ ?v1)))
  4.1229 -(let (($x314 (< ?x273 ?x303)))
  4.1230 -(and $x314 $x316)))))))
  4.1231 -))
  4.1232 -(let (($x313 (and $x132 (< ?x273 b_Infinity$))))
  4.1233 -(let (($x319 (=> $x313 $x318)))
  4.1234 -(let ((@x691 (monotonicity (rewrite (= (+ ?x273 ?x155) ?x671)) (= (= ?x303 (+ ?x273 ?x155)) $x689))))
  4.1235 -(let ((@x697 (monotonicity (monotonicity @x691 (= (and $x291 (= ?x303 (+ ?x273 ?x155))) $x692)) (= (and $x314 (and $x291 (= ?x303 (+ ?x273 ?x155)))) $x695))))
  4.1236 -(let ((@x703 (monotonicity (quant-intro @x697 (= $x318 $x698)) (= $x319 (=> $x313 $x698)))))
  4.1237 -(let ((@x712 (quant-intro (trans @x703 (rewrite (= (=> $x313 $x698) $x705)) (= $x319 $x705)) (= $x320 $x710))))
  4.1238 -(let ((@x719 (trans (monotonicity @x712 (= $x321 (and $x710 false))) (rewrite (= (and $x710 false) false)) (= $x321 false))))
  4.1239 -(let ((@x726 (trans (monotonicity @x719 (= $x322 (=> false true))) (rewrite (= (=> false true) true)) (= $x322 true))))
  4.1240 -(let ((@x733 (trans (monotonicity @x712 @x726 (= $x323 (and $x710 true))) (rewrite (= (and $x710 true) $x710)) (= $x323 $x710))))
  4.1241 -(let (($x156 (< ?x155 b_Infinity$)))
  4.1242 -(let (($x307 (and $x291 $x156)))
  4.1243 -(let (($x310 (=> $x307 (<= ?x303 (+ ?x273 ?x155)))))
  4.1244 -(let ((@x676 (monotonicity (rewrite (= (+ ?x273 ?x155) ?x671)) (= (<= ?x303 (+ ?x273 ?x155)) $x674))))
  4.1245 -(let ((@x685 (trans (monotonicity @x676 (= $x310 (=> $x307 $x674))) (rewrite (= (=> $x307 $x674) $x681)) (= $x310 $x681))))
  4.1246 -(let ((@x736 (monotonicity (quant-intro @x685 (= $x311 $x686)) @x733 (= $x324 (=> $x686 $x710)))))
  4.1247 -(let ((@x745 (monotonicity (quant-intro @x685 (= $x311 $x686)) (trans @x736 (rewrite (= (=> $x686 $x710) $x738)) (= $x324 $x738)) (= (and $x311 $x324) $x743))))
  4.1248 -(let ((@x748 (monotonicity (quant-intro (rewrite (= (=> $x302 $x304) $x665)) (= $x306 $x668)) @x745 (= $x326 (=> $x668 $x743)))))
  4.1249 -(let ((@x757 (monotonicity (quant-intro (rewrite (= (=> $x302 $x304) $x665)) (= $x306 $x668)) (trans @x748 (rewrite (= (=> $x668 $x743) $x750)) (= $x326 $x750)) (= (and $x306 $x326) $x755))))
  4.1250 -(let ((@x766 (trans (monotonicity @x757 (= $x328 (=> $x299 $x755))) (rewrite (= (=> $x299 $x755) $x762)) (= $x328 $x762))))
  4.1251 -(let ((@x772 (monotonicity (monotonicity @x766 (= (and $x299 $x328) $x767)) (= $x330 (=> $x297 $x767)))))
  4.1252 -(let ((@x781 (monotonicity (trans @x772 (rewrite (= (=> $x297 $x767) $x774)) (= $x330 $x774)) (= (and $x297 $x330) $x779))))
  4.1253 -(let ((@x654 (quant-intro (rewrite (= (=> $x291 $x278) (or $x300 $x278))) (= $x293 $x652))))
  4.1254 -(let ((@x659 (monotonicity @x654 (rewrite (= (and true true) true)) (= $x295 (and $x652 true)))))
  4.1255 -(let ((@x784 (monotonicity (trans @x659 (rewrite (= (and $x652 true) $x652)) (= $x295 $x652)) @x781 (= $x332 (=> $x652 $x779)))))
  4.1256 -(let ((@x793 (monotonicity @x654 (trans @x784 (rewrite (= (=> $x652 $x779) $x786)) (= $x332 $x786)) (= (and $x293 $x332) $x791))))
  4.1257 -(let ((@x802 (trans (monotonicity @x793 (= $x334 (=> $x290 $x791))) (rewrite (= (=> $x290 $x791) $x798)) (= $x334 $x798))))
  4.1258 -(let (($x633 (= (and $x256 (and $x258 (and $x261 (and $x266 (and $x276 $x280))))) $x632)))
  4.1259 -(let ((@x622 (monotonicity (quant-intro (rewrite (= (=> $x272 $x274) $x608)) (= $x276 $x611)) (quant-intro (rewrite (= (=> $x277 $x278) $x614)) (= $x280 $x617)) (= (and $x276 $x280) $x620))))
  4.1260 -(let ((@x628 (monotonicity (quant-intro (rewrite (= (=> $x179 $x259) $x602)) (= $x261 $x605)) (monotonicity @x622 (= (and $x266 (and $x276 $x280)) $x623)) (= (and $x261 (and $x266 (and $x276 $x280))) $x626))))
  4.1261 -(let ((@x631 (monotonicity @x628 (= (and $x258 (and $x261 (and $x266 (and $x276 $x280)))) $x629))))
  4.1262 -(let ((@x640 (monotonicity (monotonicity (monotonicity @x631 $x633) (= $x286 $x635)) (= $x287 (and true $x635)))))
  4.1263 -(let ((@x646 (monotonicity (trans @x640 (rewrite (= (and true $x635) $x635)) (= $x287 $x635)) (= $x288 (and true $x635)))))
  4.1264 -(let ((@x808 (monotonicity (trans @x646 (rewrite (= (and true $x635) $x635)) (= $x288 $x635)) (monotonicity @x802 (= (and $x290 $x334) $x803)) (= $x336 (=> $x635 $x803)))))
  4.1265 -(let ((@x564 (monotonicity (rewrite (= (=> $x246 true) true)) (= $x248 (and $x246 true)))))
  4.1266 -(let (($x231 (< ?x230 b_Infinity$)))
  4.1267 -(let (($x241 (and $x231 $x156)))
  4.1268 -(let (($x243 (=> $x241 (<= ?x233 (+ ?x230 ?x155)))))
  4.1269 -(let ((@x547 (monotonicity (rewrite (= (+ ?x230 ?x155) ?x521)) (= (<= ?x233 (+ ?x230 ?x155)) $x545))))
  4.1270 -(let ((@x556 (trans (monotonicity @x547 (= $x243 (=> $x241 $x545))) (rewrite (= (=> $x241 $x545) $x552)) (= $x243 $x552))))
  4.1271 -(let ((@x571 (monotonicity (quant-intro @x556 (= $x244 $x557)) (trans @x564 (rewrite (= (and $x246 true) $x246)) (= $x248 $x246)) (= $x249 (=> $x557 $x246)))))
  4.1272 -(let ((@x580 (monotonicity (quant-intro @x556 (= $x244 $x557)) (trans @x571 (rewrite (= (=> $x557 $x246) $x573)) (= $x249 $x573)) (= (and $x244 $x249) $x578))))
  4.1273 -(let (($x238 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  4.1274 -(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  4.1275 -(let ((?x235 (+ ?x230 ?x155)))
  4.1276 -(let ((?x233 (fun_app$c v_b_SP_G_3$ ?0)))
  4.1277 -(let (($x234 (< ?x230 ?x233)))
  4.1278 -(and $x234 (= ?x233 ?x235))))))))
  4.1279 -))
  4.1280 -(let (($x232 (and $x132 $x231)))
  4.1281 -(let (($x239 (=> $x232 $x238)))
  4.1282 -(let ((@x526 (monotonicity (rewrite (= (+ ?x230 ?x155) ?x521)) (= (= ?x233 (+ ?x230 ?x155)) $x524))))
  4.1283 -(let ((@x532 (quant-intro (monotonicity @x526 (= (and $x234 (= ?x233 (+ ?x230 ?x155))) $x527)) (= $x238 $x530))))
  4.1284 -(let ((@x541 (trans (monotonicity @x532 (= $x239 (=> $x232 $x530))) (rewrite (= (=> $x232 $x530) $x537)) (= $x239 $x537))))
  4.1285 -(let ((@x583 (monotonicity (quant-intro @x541 (= $x240 $x542)) @x580 (= $x251 (=> $x542 $x578)))))
  4.1286 -(let ((@x592 (monotonicity (quant-intro @x541 (= $x240 $x542)) (trans @x583 (rewrite (= (=> $x542 $x578) $x585)) (= $x251 $x585)) (= (and $x240 $x251) $x590))))
  4.1287 -(let (($x491 (= (and $x215 (and $x217 (and $x220 true))) (and $x215 (and $x217 $x220)))))
  4.1288 -(let ((@x489 (monotonicity (rewrite (= (and $x220 true) $x220)) (= (and $x217 (and $x220 true)) (and $x217 $x220)))))
  4.1289 -(let ((@x495 (monotonicity (monotonicity @x489 $x491) (= (and $x212 (and $x215 (and $x217 (and $x220 true)))) $x493))))
  4.1290 -(let ((@x502 (trans (monotonicity @x495 (= $x225 (and true $x493))) (rewrite (= (and true $x493) $x493)) (= $x225 $x493))))
  4.1291 -(let ((@x506 (trans (monotonicity @x502 (= $x226 (and true $x493))) (rewrite (= (and true $x493) $x493)) (= $x226 $x493))))
  4.1292 -(let ((@x512 (monotonicity (monotonicity @x506 (= (and $x210 $x226) $x507)) (= $x228 (and true $x507)))))
  4.1293 -(let ((@x518 (monotonicity (trans @x512 (rewrite (= (and true $x507) $x507)) (= $x228 $x507)) (= $x229 (and true $x507)))))
  4.1294 -(let ((@x595 (monotonicity (trans @x518 (rewrite (= (and true $x507) $x507)) (= $x229 $x507)) @x592 (= $x253 (=> $x507 $x590)))))
  4.1295 -(let ((@x817 (monotonicity (trans @x595 (rewrite (= (=> $x507 $x590) $x597)) (= $x253 $x597)) (trans @x808 (rewrite (= (=> $x635 $x803) $x810)) (= $x336 $x810)) (= (and $x253 $x336) $x815))))
  4.1296 -(let (($x197 (exists ((?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?0))))
  4.1297 -(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
  4.1298 -(let ((?x187 (+ ?x174 ?x155)))
  4.1299 -(let ((?x182 (fun_app$c v_b_SP_G_1$ ?0)))
  4.1300 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
  4.1301 -(let (($x193 (< ?x174 ?x182)))
  4.1302 -(and $x193 (and $x178 (= ?x182 ?x187))))))))))
  4.1303 -))
  4.1304 -(let (($x191 (< ?x174 b_Infinity$)))
  4.1305 -(let (($x192 (and $x132 $x191)))
  4.1306 -(let (($x198 (=> $x192 $x197)))
  4.1307 -(let ((@x430 (monotonicity (rewrite (= (+ ?x174 ?x155) ?x410)) (= (= ?x182 (+ ?x174 ?x155)) $x428))))
  4.1308 -(let ((@x436 (monotonicity (monotonicity @x430 (= (and $x178 (= ?x182 (+ ?x174 ?x155))) $x431)) (= (and $x193 (and $x178 (= ?x182 (+ ?x174 ?x155)))) $x434))))
  4.1309 -(let ((@x442 (monotonicity (quant-intro @x436 (= $x197 $x437)) (= $x198 (=> $x192 $x437)))))
  4.1310 -(let ((@x451 (quant-intro (trans @x442 (rewrite (= (=> $x192 $x437) $x444)) (= $x198 $x444)) (= $x199 $x449))))
  4.1311 -(let ((@x458 (trans (monotonicity @x451 (= $x200 (and $x449 true))) (rewrite (= (and $x449 true) $x449)) (= $x200 $x449))))
  4.1312 -(let (($x186 (and $x178 $x156)))
  4.1313 -(let (($x189 (=> $x186 (<= ?x182 (+ ?x174 ?x155)))))
  4.1314 -(let ((@x415 (monotonicity (rewrite (= (+ ?x174 ?x155) ?x410)) (= (<= ?x182 (+ ?x174 ?x155)) $x413))))
  4.1315 -(let ((@x424 (trans (monotonicity @x415 (= $x189 (=> $x186 $x413))) (rewrite (= (=> $x186 $x413) $x420)) (= $x189 $x420))))
  4.1316 -(let ((@x461 (monotonicity (quant-intro @x424 (= $x190 $x425)) @x458 (= (and $x190 $x200) $x459))))
  4.1317 -(let ((@x464 (monotonicity (quant-intro (rewrite (= (=> $x181 $x183) $x404)) (= $x185 $x407)) @x461 (= (and $x185 (and $x190 $x200)) $x462))))
  4.1318 -(let ((@x470 (monotonicity (monotonicity @x464 (= (and $x176 (and $x185 (and $x190 $x200))) $x465)) (= (and $x173 (and $x176 (and $x185 (and $x190 $x200)))) $x468))))
  4.1319 -(let ((@x477 (trans (monotonicity @x470 (= $x205 (and true $x468))) (rewrite (= (and true $x468) $x468)) (= $x205 $x468))))
  4.1320 -(let ((@x481 (trans (monotonicity @x477 (= $x206 (and true $x468))) (rewrite (= (and true $x468) $x468)) (= $x206 $x468))))
  4.1321 -(let ((@x402 (quant-intro (rewrite (= (=> (and $x132 (< ?x128 b_Infinity$)) $x168) $x397)) (= $x170 $x400))))
  4.1322 -(let ((@x820 (monotonicity (monotonicity @x402 @x481 (= (and $x170 $x206) $x482)) @x817 (= $x338 (=> $x482 $x815)))))
  4.1323 -(let ((@x829 (monotonicity @x402 (trans @x820 (rewrite (= (=> $x482 $x815) $x822)) (= $x338 $x822)) (= (and $x170 $x338) $x827))))
  4.1324 -(let ((@x395 (quant-intro (rewrite (= (=> (and $x136 $x156) $x159) $x390)) (= $x161 $x393))))
  4.1325 -(let ((@x838 (trans (monotonicity @x395 @x829 (= $x340 (=> $x393 $x827))) (rewrite (= (=> $x393 $x827) $x834)) (= $x340 $x834))))
  4.1326 -(let ((@x844 (monotonicity (quant-intro (rewrite (= (=> $x149 $x151) $x383)) (= $x153 $x386)) (monotonicity @x395 @x838 (= (and $x161 $x340) $x839)) (= $x342 (=> $x386 $x839)))))
  4.1327 -(let ((@x853 (monotonicity (quant-intro (rewrite (= (=> $x149 $x151) $x383)) (= $x153 $x386)) (trans @x844 (rewrite (= (=> $x386 $x839) $x846)) (= $x342 $x846)) (= (and $x153 $x342) $x851))))
  4.1328 -(let ((@x862 (trans (monotonicity @x853 (= $x344 (=> $x147 $x851))) (rewrite (= (=> $x147 $x851) $x858)) (= $x344 $x858))))
  4.1329 -(let ((@x868 (monotonicity (monotonicity @x862 (= (and $x147 $x344) $x863)) (= $x346 (=> $x145 $x863)))))
  4.1330 -(let ((@x877 (monotonicity (trans @x868 (rewrite (= (=> $x145 $x863) $x870)) (= $x346 $x870)) (= (and $x145 $x346) $x875))))
  4.1331 -(let (($x368 (and $x354 (and $x360 $x138))))
  4.1332 -(let (($x371 (and true $x368)))
  4.1333 -(let ((@x362 (quant-intro (rewrite (= (=> $x132 (= ?x128 b_Infinity$)) $x357)) (= $x135 $x360))))
  4.1334 -(let ((@x367 (monotonicity @x362 (rewrite (= (and $x138 true) $x138)) (= (and $x135 (and $x138 true)) (and $x360 $x138)))))
  4.1335 -(let ((@x356 (quant-intro (rewrite (= (=> $x127 (= ?x128 0)) (or $x132 (= ?x128 0)))) (= $x131 $x354))))
  4.1336 -(let ((@x370 (monotonicity @x356 @x367 (= (and $x131 (and $x135 (and $x138 true))) $x368))))
  4.1337 -(let ((@x377 (trans (monotonicity @x370 (= $x142 $x371)) (rewrite (= $x371 $x368)) (= $x142 $x368))))
  4.1338 -(let ((@x381 (trans (monotonicity @x377 (= $x143 $x371)) (rewrite (= $x371 $x368)) (= $x143 $x368))))
  4.1339 -(let ((@x886 (trans (monotonicity @x381 @x877 (= $x348 (=> $x368 $x875))) (rewrite (= (=> $x368 $x875) $x882)) (= $x348 $x882))))
  4.1340 -(let ((@x1411 (trans (monotonicity @x886 (= $x349 (not $x882))) (monotonicity @x1406 (= (not $x882) $x1407)) (= $x349 $x1407))))
  4.1341 -(let ((@x1413 (not-or-elim (mp (asserted $x349) @x1411 $x1407) $x890)))
  4.1342 -(let ((@x1463 (mp~ (and-elim @x1413 $x360) (nnf-pos (refl (~ $x357 $x357)) (~ $x360 $x360)) $x360)))
  4.1343 -(let ((@x3498 (mp @x1463 (quant-intro (refl (= $x357 $x357)) (= $x360 $x3493)) $x3493)))
  4.1344 -(let ((@x6489 (rewrite (= (or (not $x3493) (or $x1538 $x5616)) (or (not $x3493) $x1538 $x5616)))))
  4.1345 -(let ((@x5602 (mp ((_ quant-inst ?v0!5) (or (not $x3493) (or $x1538 $x5616))) @x6489 (or (not $x3493) $x1538 $x5616))))
  4.1346 -(let ((@x5777 (unit-resolution (hypothesis $x6457) (mp (unit-resolution @x5602 @x3498 (hypothesis $x1539) $x5616) @x5778 $x5625) false)))
  4.1347 -(let ((@x5735 (unit-resolution (lemma @x5777 (or $x5625 $x1538)) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x6457 $x1543)) @x6514 $x6457) @x6246 false)))
  4.1348 -(let (($x3544 (not $x3541)))
  4.1349 -(let (($x3827 (or $x3544 $x3824)))
  4.1350 -(let (($x3830 (not $x3827)))
  4.1351 -(let (($x3524 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
  4.1352 -(let ((?x128 (v_b_SP_G_0$ ?v1)))
  4.1353 -(let (($x933 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x155) 0)))
  4.1354 -(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  4.1355 -(let (($x136 (v_b_Visited_G_0$ ?v1)))
  4.1356 -(let (($x137 (not $x136)))
  4.1357 -(or $x137 $x922 $x933))))))) :pattern ( (pair$ ?v1 ?v0) )))
  4.1358 -))
  4.1359 -(let (($x3529 (not $x3524)))
  4.1360 -(let (($x3833 (or $x3529 $x3830)))
  4.1361 -(let (($x3836 (not $x3833)))
  4.1362 -(let ((?x1522 (v_b_SP_G_0$ ?v0!4)))
  4.1363 -(let ((?x1523 (* (- 1) ?x1522)))
  4.1364 -(let ((?x1521 (v_b_SP_G_0$ ?v1!3)))
  4.1365 -(let ((?x1513 (pair$ ?v1!3 ?v0!4)))
  4.1366 -(let ((?x1514 (b_G$ ?x1513)))
  4.1367 -(let ((?x2045 (+ ?x1514 ?x1521 ?x1523)))
  4.1368 -(let (($x2048 (>= ?x2045 0)))
  4.1369 -(let (($x1517 (<= (+ b_Infinity$ (* (- 1) ?x1514)) 0)))
  4.1370 -(let (($x1512 (v_b_Visited_G_0$ ?v1!3)))
  4.1371 -(let (($x2394 (not $x1512)))
  4.1372 -(let (($x2409 (or $x2394 $x1517 $x2048)))
  4.1373 -(let (($x3500 (forall ((?v0 B_Vertex$) )(!(let (($x136 (v_b_Visited_G_0$ ?v0)))
  4.1374 -(not $x136)) :pattern ( (v_b_Visited_G_0$ ?v0) )))
  4.1375 -))
  4.1376 -(let ((@x1468 (mp~ (and-elim @x1413 $x138) (nnf-pos (refl (~ $x137 $x137)) (~ $x138 $x138)) $x138)))
  4.1377 -(let ((@x3505 (mp @x1468 (quant-intro (refl (= $x137 $x137)) (= $x138 $x3500)) $x3500)))
  4.1378 -(let ((@x3073 (unit-resolution ((_ quant-inst ?v1!3) (or (not $x3500) $x2394)) @x3505 (hypothesis $x1512) false)))
  4.1379 -(let (($x2414 (not $x2409)))
  4.1380 -(let (($x3839 (or $x2414 $x3836)))
  4.1381 -(let (($x3842 (not $x3839)))
  4.1382 -(let (($x3515 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x907 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
  4.1383 -(let (($x136 (v_b_Visited_G_0$ ?v1)))
  4.1384 -(or $x136 (not (v_b_Visited_G_0$ ?v0)) $x907))) :pattern ( (v_b_Visited_G_0$ ?v1) (v_b_Visited_G_0$ ?v0) )))
  4.1385 -))
  4.1386 -(let (($x3520 (not $x3515)))
  4.1387 -(let (($x3845 (or $x3520 $x3842)))
  4.1388 -(let (($x3848 (not $x3845)))
  4.1389 -(let (($x1498 (>= (+ (v_b_SP_G_0$ ?v1!1) (* (- 1) (v_b_SP_G_0$ ?v0!2))) 0)))
  4.1390 -(let (($x1491 (v_b_Visited_G_0$ ?v0!2)))
  4.1391 -(let (($x2348 (not $x1491)))
  4.1392 -(let (($x1489 (v_b_Visited_G_0$ ?v1!1)))
  4.1393 -(let (($x2363 (or $x1489 $x2348 $x1498)))
  4.1394 -(let (($x2368 (not $x2363)))
  4.1395 -(let (($x3851 (or $x2368 $x3848)))
  4.1396 -(let (($x3854 (not $x3851)))
  4.1397 -(let (($x3506 (forall ((?v0 B_Vertex$) )(!(let ((?x128 (v_b_SP_G_0$ ?v0)))
  4.1398 -(>= ?x128 0)) :pattern ( (v_b_SP_G_0$ ?v0) )))
  4.1399 -))
  4.1400 -(let (($x3511 (not $x3506)))
  4.1401 -(let (($x3857 (or $x3511 $x3854)))
  4.1402 -(let (($x3860 (not $x3857)))
  4.1403 -(let ((?x1475 (v_b_SP_G_0$ ?v0!0)))
  4.1404 -(let (($x1476 (>= ?x1475 0)))
  4.1405 -(let (($x1477 (not $x1476)))
  4.1406 -(let ((@x5848 (hypothesis $x1477)))
  4.1407 -(let (($x5440 (<= ?x1475 0)))
  4.1408 -(let (($x86 (<= b_Infinity$ 0)))
  4.1409 -(let (($x87 (not $x86)))
  4.1410 -(let ((@x90 (mp (asserted (< 0 b_Infinity$)) (rewrite (= (< 0 b_Infinity$) $x87)) $x87)))
  4.1411 -(let (($x5734 (= b_Infinity$ ?x1475)))
  4.1412 -(let ((@x4994 (symm (commutativity (= $x5734 (= ?x1475 b_Infinity$))) (= (= ?x1475 b_Infinity$) $x5734))))
  4.1413 -(let (($x5461 (= ?x1475 b_Infinity$)))
  4.1414 -(let (($x5589 (= ?v0!0 b_Source$)))
  4.1415 -(let (($x4695 (not $x5589)))
  4.1416 -(let ((@x5096 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1475 0)) $x1476)) @x5848 (not (= ?x1475 0)))))
  4.1417 -(let (($x3487 (forall ((?v0 B_Vertex$) )(!(let (($x127 (= ?v0 b_Source$)))
  4.1418 -(let (($x132 (not $x127)))
  4.1419 -(or $x132 (= (v_b_SP_G_0$ ?v0) 0)))) :pattern ( (v_b_SP_G_0$ ?v0) )))
  4.1420 -))
  4.1421 -(let ((@x3491 (quant-intro (refl (= (or $x132 (= ?x128 0)) (or $x132 (= ?x128 0)))) (= $x354 $x3487))))
  4.1422 -(let ((@x1457 (nnf-pos (refl (~ (or $x132 (= ?x128 0)) (or $x132 (= ?x128 0)))) (~ $x354 $x354))))
  4.1423 -(let ((@x3492 (mp (mp~ (and-elim @x1413 $x354) @x1457 $x354) @x3491 $x3487)))
  4.1424 -(let (($x5571 (= (or (not $x3487) (or $x4695 (= ?x1475 0))) (or (not $x3487) $x4695 (= ?x1475 0)))))
  4.1425 -(let ((@x5058 (mp ((_ quant-inst ?v0!0) (or (not $x3487) (or $x4695 (= ?x1475 0)))) (rewrite $x5571) (or (not $x3487) $x4695 (= ?x1475 0)))))
  4.1426 -(let ((@x5156 (rewrite (= (or (not $x3493) (or $x5589 $x5461)) (or (not $x3493) $x5589 $x5461)))))
  4.1427 -(let ((@x5542 (mp ((_ quant-inst ?v0!0) (or (not $x3493) (or $x5589 $x5461))) @x5156 (or (not $x3493) $x5589 $x5461))))
  4.1428 -(let ((@x5003 (mp (unit-resolution @x5542 @x3498 (unit-resolution @x5058 @x3492 @x5096 $x4695) $x5461) @x4994 $x5734)))
  4.1429 -(let ((@x5457 ((_ th-lemma arith triangle-eq) (or (not $x5734) (<= (+ b_Infinity$ (* (- 1) ?x1475)) 0)))))
  4.1430 -(let ((@x5462 (unit-resolution @x5457 @x5003 (<= (+ b_Infinity$ (* (- 1) ?x1475)) 0))))
  4.1431 -(let ((@x5446 (lemma ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x5440) @x5462 @x90 false) (or (not $x5440) $x1476))))
  4.1432 -(let ((@x6353 (unit-resolution @x5446 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x5440 $x1476)) @x5848 $x5440) @x5848 false)))
  4.1433 -(let (($x3863 (or $x1477 $x3860)))
  4.1434 -(let (($x3866 (not $x3863)))
  4.1435 -(let (($x3869 (or $x869 $x3866)))
  4.1436 -(let (($x3872 (not $x3869)))
  4.1437 -(let (($x5983 (not $x3487)))
  4.1438 -(let (($x3194 (or $x5983 $x145)))
  4.1439 -(let ((@x5448 (monotonicity (rewrite (= (= b_Source$ b_Source$) true)) (= (not (= b_Source$ b_Source$)) (not true)))))
  4.1440 -(let ((@x5820 (trans @x5448 (rewrite (= (not true) false)) (= (not (= b_Source$ b_Source$)) false))))
  4.1441 -(let ((@x5657 (monotonicity @x5820 (= (or (not (= b_Source$ b_Source$)) $x145) (or false $x145)))))
  4.1442 -(let ((@x5707 (trans @x5657 (rewrite (= (or false $x145) $x145)) (= (or (not (= b_Source$ b_Source$)) $x145) $x145))))
  4.1443 -(let ((@x5373 (monotonicity @x5707 (= (or $x5983 (or (not (= b_Source$ b_Source$)) $x145)) $x3194))))
  4.1444 -(let ((@x5431 (trans @x5373 (rewrite (= $x3194 $x3194)) (= (or $x5983 (or (not (= b_Source$ b_Source$)) $x145)) $x3194))))
  4.1445 -(let ((@x5763 (mp ((_ quant-inst b_Source$) (or $x5983 (or (not (= b_Source$ b_Source$)) $x145))) @x5431 $x3194)))
  4.1446 -(let (($x3875 (or $x869 $x3872)))
  4.1447 -(let (($x2848 (forall ((?v1 B_Vertex$) )(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
  4.1448 -(let ((?x1912 (* (- 1) ?x1911)))
  4.1449 -(let ((?x273 (v_b_SP_G_2$ ?v1)))
  4.1450 -(let (($x2242 (= (+ ?x273 ?x1912 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
  4.1451 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  4.1452 -(let (($x300 (not $x291)))
  4.1453 -(or (>= (+ ?x273 ?x1912) 0) $x300 (not $x2242)))))))))
  4.1454 -))
  4.1455 -(let (($x2833 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x303 (v_b_SP_G_2$ ?v0)))
  4.1456 -(let ((?x1263 (* (- 1) ?x303)))
  4.1457 -(let ((?x273 (v_b_SP_G_2$ ?v1)))
  4.1458 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
  4.1459 -(let (($x1282 (>= (+ ?x155 ?x273 ?x1263) 0)))
  4.1460 -(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  4.1461 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  4.1462 -(let (($x300 (not $x291)))
  4.1463 -(or $x300 $x922 $x1282))))))))))
  4.1464 -))
  4.1465 -(let (($x2857 (not (or (not $x2833) $x1909 $x1914 (not $x2848)))))
  4.1466 -(let (($x2862 (or $x2811 $x2857)))
  4.1467 -(let (($x2788 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x1262 (>= (+ (v_b_SP_G_2$ ?v1) (* (- 1) (v_b_SP_G_2$ ?v0))) 0)))
  4.1468 -(let (($x301 (fun_app$ v_b_Visited_G_2$ ?v0)))
  4.1469 -(let (($x2768 (not $x301)))
  4.1470 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  4.1471 -(or $x291 $x2768 $x1262))))))
  4.1472 -))
  4.1473 -(let (($x2871 (not (or (not $x2788) (not $x2862)))))
  4.1474 -(let (($x2876 (or $x2765 $x2871)))
  4.1475 -(let (($x2884 (not (or $x1259 (not $x2876)))))
  4.1476 -(let (($x2889 (or $x1848 $x2884)))
  4.1477 -(let (($x2897 (not (or $x773 (not $x2889)))))
  4.1478 -(let (($x2902 (or $x773 $x2897)))
  4.1479 -(let (($x2910 (not (or $x785 (not $x2902)))))
  4.1480 -(let (($x2915 (or $x1830 $x2910)))
  4.1481 -(let (($x2923 (not (or $x1250 (not $x2915)))))
  4.1482 -(let (($x2928 (or $x1813 $x2923)))
  4.1483 -(let (($x2742 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
  4.1484 -(let ((?x273 (v_b_SP_G_2$ ?v0)))
  4.1485 -(let (($x278 (= ?x273 ?x174)))
  4.1486 -(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
  4.1487 -(let ((?x1173 (* (- 1) ?x257)))
  4.1488 -(let (($x1175 (<= (+ ?x174 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
  4.1489 -(let (($x1169 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0)))) 0)))
  4.1490 -(let (($x2717 (or $x1169 $x1175)))
  4.1491 -(let (($x2718 (not $x2717)))
  4.1492 -(or $x2718 $x278)))))))))))
  4.1493 -))
  4.1494 -(let (($x2736 (forall ((?v0 B_Vertex$) )(let ((?x273 (v_b_SP_G_2$ ?v0)))
  4.1495 -(let ((?x1186 (* (- 1) ?x273)))
  4.1496 -(let ((?x268 (b_G$ (pair$ v_b_v_G_1$ ?v0))))
  4.1497 -(let ((?x257 (fun_app$c v_b_SP_G_1$ v_b_v_G_1$)))
  4.1498 -(let (($x1185 (= (+ ?x257 ?x268 ?x1186) 0)))
  4.1499 -(let (($x1175 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0) (* (- 1) ?x257) (* (- 1) ?x268)) 0)))
  4.1500 -(let (($x1169 (<= (+ b_Infinity$ (* (- 1) ?x268)) 0)))
  4.1501 -(or $x1169 $x1175 $x1185)))))))))
  4.1502 -))
  4.1503 -(let (($x2939 (or $x1773 $x1778 $x255 $x1213 (not $x1209) $x2935 (not $x2736) (not $x2742) (not $x2928))))
  4.1504 -(let (($x2940 (not $x2939)))
  4.1505 -(let (($x2672 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  4.1506 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
  4.1507 -(let (($x1140 (>= (+ ?x155 ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ ?v0))) 0)))
  4.1508 -(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  4.1509 -(let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
  4.1510 -(or $x1099 $x922 $x1140)))))))
  4.1511 -))
  4.1512 -(let (($x2680 (not (or (not $x2672) $x246))))
  4.1513 -(let (($x2685 (or $x2650 $x2680)))
  4.1514 -(let (($x2628 (forall ((?v0 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
  4.1515 -(let ((?x2191 (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
  4.1516 -(let (($x2192 (= ?x2191 0)))
  4.1517 -(let (($x2176 (<= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
  4.1518 -(let (($x2617 (not (or $x2176 (not $x2192)))))
  4.1519 -(let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
  4.1520 -(let (($x127 (= ?v0 b_Source$)))
  4.1521 -(or $x127 $x1099 $x2617)))))))))
  4.1522 -))
  4.1523 -(let (($x2694 (not (or (not $x2628) (not $x2685)))))
  4.1524 -(let (($x2591 (forall ((?v1 B_Vertex$) )(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  4.1525 -(let ((?x1662 (* (- 1) ?x1661)))
  4.1526 -(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  4.1527 -(let (($x2148 (= (+ ?x230 ?x1662 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
  4.1528 -(or (>= (+ ?x230 ?x1662) 0) (not $x2148)))))))
  4.1529 -))
  4.1530 -(let (($x2599 (not (or $x1659 $x1664 (not $x2591)))))
  4.1531 -(let (($x2699 (or $x2599 $x2694)))
  4.1532 -(let (($x2576 (forall ((?v0 B_Vertex$) )(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  4.1533 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
  4.1534 -(or $x178 $x1002))))
  4.1535 -))
  4.1536 -(let (($x2712 (not (or (not $x2576) $x2706 $x2707 $x2708 $x2709 (not $x2699)))))
  4.1537 -(let (($x2945 (or $x2712 $x2940)))
  4.1538 -(let (($x2562 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
  4.1539 -(let ((?x2128 (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
  4.1540 -(let (($x2129 (= ?x2128 0)))
  4.1541 -(let (($x2113 (<= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0)))) 0)))
  4.1542 -(let (($x2551 (not (or $x2113 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?v0))) (not $x2129)))))
  4.1543 -(let (($x1002 (<= (+ b_Infinity$ (* (- 1) ?x174)) 0)))
  4.1544 -(let (($x127 (= ?v0 b_Source$)))
  4.1545 -(or $x127 $x1002 $x2551)))))))))
  4.1546 -))
  4.1547 -(let (($x2534 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
  4.1548 -(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
  4.1549 -(let (($x990 (>= (+ ?x155 ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  4.1550 -(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  4.1551 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
  4.1552 -(let (($x179 (not $x178)))
  4.1553 -(or $x179 $x922 $x990))))))))
  4.1554 -))
  4.1555 -(let (($x2512 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v1)))
  4.1556 -(let (($x1015 (>= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  4.1557 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v1)))
  4.1558 -(or $x178 (not (fun_app$ v_b_Visited_G_1$ ?v0)) $x1015)))))
  4.1559 -))
  4.1560 -(let (($x2489 (forall ((?v0 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v0)))
  4.1561 -(let ((?x2090 (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
  4.1562 -(let (($x2091 (= ?x2090 0)))
  4.1563 -(let (($x2075 (<= (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0)))) 0)))
  4.1564 -(let (($x2478 (not (or $x2075 (not (v_b_Visited_G_0$ (?v1!6 ?v0))) (not $x2091)))))
  4.1565 -(let (($x947 (<= (+ b_Infinity$ (* (- 1) ?x128)) 0)))
  4.1566 -(let (($x127 (= ?v0 b_Source$)))
  4.1567 -(or $x127 $x947 $x2478)))))))))
  4.1568 -))
  4.1569 -(let (($x2958 (or (not $x2489) $x2952 (not $x1051) (not $x2512) (not $x2534) (not $x2562) (not $x2945))))
  4.1570 -(let (($x2959 (not $x2958)))
  4.1571 -(let (($x2451 (forall ((?v1 B_Vertex$) )(let ((?x1540 (v_b_SP_G_0$ ?v0!5)))
  4.1572 -(let ((?x1541 (* (- 1) ?x1540)))
  4.1573 -(let ((?x128 (v_b_SP_G_0$ ?v1)))
  4.1574 -(let (($x136 (v_b_Visited_G_0$ ?v1)))
  4.1575 -(let (($x137 (not $x136)))
  4.1576 -(or (>= (+ ?x128 ?x1541) 0) $x137 (not (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))))
  4.1577 -))
  4.1578 -(let (($x2459 (not (or $x1538 $x1543 (not $x2451)))))
  4.1579 -(let (($x2964 (or $x2459 $x2959)))
  4.1580 -(let (($x2436 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x155 (b_G$ (pair$ ?v1 ?v0))))
  4.1581 -(let ((?x128 (v_b_SP_G_0$ ?v1)))
  4.1582 -(let (($x933 (>= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?v0)) ?x155) 0)))
  4.1583 -(let (($x922 (<= (+ b_Infinity$ (* (- 1) ?x155)) 0)))
  4.1584 -(let (($x136 (v_b_Visited_G_0$ ?v1)))
  4.1585 -(let (($x137 (not $x136)))
  4.1586 -(or $x137 $x922 $x933))))))))
  4.1587 -))
  4.1588 -(let (($x2973 (not (or (not $x2436) (not $x2964)))))
  4.1589 -(let (($x2978 (or $x2414 $x2973)))
  4.1590 -(let (($x2391 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x907 (>= (+ (v_b_SP_G_0$ ?v1) (* (- 1) (v_b_SP_G_0$ ?v0))) 0)))
  4.1591 -(let (($x136 (v_b_Visited_G_0$ ?v1)))
  4.1592 -(or $x136 (not (v_b_Visited_G_0$ ?v0)) $x907))))
  4.1593 -))
  4.1594 -(let (($x2987 (not (or (not $x2391) (not $x2978)))))
  4.1595 -(let (($x2992 (or $x2368 $x2987)))
  4.1596 -(let (($x3000 (not (or $x902 (not $x2992)))))
  4.1597 -(let (($x3005 (or $x1477 $x3000)))
  4.1598 -(let (($x3013 (not (or $x869 (not $x3005)))))
  4.1599 -(let (($x3018 (or $x869 $x3013)))
  4.1600 -(let (($x2837 (or (>= (+ ?x273 (* (- 1) ?x1911)) 0) $x300 (not (= (+ ?x273 (* (- 1) ?x1911) (b_G$ (pair$ ?0 ?v0!20))) 0)))))
  4.1601 -(let ((@x3736 (monotonicity (quant-intro (refl (= $x2837 $x2837)) (= $x2848 $x3729)) (= (not $x2848) $x3734))))
  4.1602 -(let ((@x3724 (quant-intro (refl (= (or $x300 $x922 $x1282) (or $x300 $x922 $x1282))) (= $x2833 $x3720))))
  4.1603 -(let ((@x3739 (monotonicity (monotonicity @x3724 (= (not $x2833) $x3725)) @x3736 (= (or (not $x2833) $x1909 $x1914 (not $x2848)) $x3737))))
  4.1604 -(let ((@x3748 (monotonicity (monotonicity (monotonicity @x3739 (= $x2857 $x3740)) (= $x2862 $x3743)) (= (not $x2862) $x3746))))
  4.1605 -(let ((@x3716 (quant-intro (refl (= (or $x291 (not $x301) $x1262) (or $x291 (not $x301) $x1262))) (= $x2788 $x3712))))
  4.1606 -(let ((@x3751 (monotonicity (monotonicity @x3716 (= (not $x2788) $x3717)) @x3748 (= (or (not $x2788) (not $x2862)) $x3749))))
  4.1607 -(let ((@x3760 (monotonicity (monotonicity (monotonicity @x3751 (= $x2871 $x3752)) (= $x2876 $x3755)) (= (not $x2876) $x3758))))
  4.1608 -(let ((@x3707 (quant-intro (refl (= (>= ?x273 0) (>= ?x273 0))) (= $x1256 $x3703))))
  4.1609 -(let ((@x3763 (monotonicity (monotonicity @x3707 (= $x1259 $x3708)) @x3760 (= (or $x1259 (not $x2876)) $x3761))))
  4.1610 -(let ((@x3772 (monotonicity (monotonicity (monotonicity @x3763 (= $x2884 $x3764)) (= $x2889 $x3767)) (= (not $x2889) $x3770))))
  4.1611 -(let ((@x3778 (monotonicity (monotonicity @x3772 (= (or $x773 (not $x2889)) $x3773)) (= $x2897 $x3776))))
  4.1612 -(let ((@x3784 (monotonicity (monotonicity @x3778 (= $x2902 $x3779)) (= (not $x2902) $x3782))))
  4.1613 -(let ((@x3699 (quant-intro (refl (= (or $x300 $x278) (or $x300 $x278))) (= $x652 $x3695))))
  4.1614 -(let ((@x3787 (monotonicity (monotonicity @x3699 (= $x785 $x3700)) @x3784 (= (or $x785 (not $x2902)) $x3785))))
  4.1615 -(let ((@x3796 (monotonicity (monotonicity (monotonicity @x3787 (= $x2910 $x3788)) (= $x2915 $x3791)) (= (not $x2915) $x3794))))
  4.1616 -(let ((@x3693 (monotonicity (quant-intro (refl (= $x1243 $x1243)) (= $x1247 $x3686)) (= $x1250 $x3691))))
  4.1617 -(let ((@x3802 (monotonicity (monotonicity @x3693 @x3796 (= (or $x1250 (not $x2915)) $x3797)) (= $x2923 $x3800))))
  4.1618 -(let ((@x3808 (monotonicity (monotonicity @x3802 (= $x2928 $x3803)) (= (not $x2928) $x3806))))
  4.1619 -(let ((@x3680 (refl (= (or (not (or $x1169 $x1175)) $x278) (or (not (or $x1169 $x1175)) $x278)))))
  4.1620 -(let ((@x3685 (monotonicity (quant-intro @x3680 (= $x2742 $x3678)) (= (not $x2742) $x3683))))
  4.1621 -(let ((@x3674 (quant-intro (refl (= (or $x1169 $x1175 $x1185) (or $x1169 $x1175 $x1185))) (= $x2736 $x3670))))
  4.1622 -(let ((@x3667 (monotonicity (quant-intro (refl (= $x1206 $x1206)) (= $x1209 $x3660)) (= (not $x1209) $x3665))))
  4.1623 -(let ((@x3811 (monotonicity @x3667 (monotonicity @x3674 (= (not $x2736) $x3675)) @x3685 @x3808 (= $x2939 $x3809))))
  4.1624 -(let ((@x3626 (quant-intro (refl (= (or $x1099 $x922 $x1140) (or $x1099 $x922 $x1140))) (= $x2672 $x3622))))
  4.1625 -(let ((@x3632 (monotonicity (monotonicity @x3626 (= (not $x2672) $x3627)) (= (or (not $x2672) $x246) $x3630))))
  4.1626 -(let ((@x3641 (monotonicity (monotonicity (monotonicity @x3632 (= $x2680 $x3633)) (= $x2685 $x3636)) (= (not $x2685) $x3639))))
  4.1627 -(let ((?x2191 (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?0) ?0))))))
  4.1628 -(let (($x2192 (= ?x2191 0)))
  4.1629 -(let (($x2176 (<= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?0)))) 0)))
  4.1630 -(let (($x2617 (not (or $x2176 (not $x2192)))))
  4.1631 -(let (($x2623 (or $x127 $x1099 $x2617)))
  4.1632 -(let ((@x3621 (monotonicity (quant-intro (refl (= $x2623 $x2623)) (= $x2628 $x3614)) (= (not $x2628) $x3619))))
  4.1633 -(let ((@x3647 (monotonicity (monotonicity @x3621 @x3641 (= (or (not $x2628) (not $x2685)) $x3642)) (= $x2694 $x3645))))
  4.1634 -(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  4.1635 -(let ((?x1662 (* (- 1) ?x1661)))
  4.1636 -(let (($x2148 (= (+ ?x230 ?x1662 (b_G$ (pair$ ?0 ?v0!8))) 0)))
  4.1637 -(let (($x2580 (or (>= (+ ?x230 ?x1662) 0) (not $x2148))))
  4.1638 -(let ((@x3607 (monotonicity (quant-intro (refl (= $x2580 $x2580)) (= $x2591 $x3600)) (= (not $x2591) $x3605))))
  4.1639 -(let ((@x3613 (monotonicity (monotonicity @x3607 (= (or $x1659 $x1664 (not $x2591)) $x3608)) (= $x2599 $x3611))))
  4.1640 -(let ((@x3653 (monotonicity (monotonicity @x3613 @x3647 (= $x2699 $x3648)) (= (not $x2699) $x3651))))
  4.1641 -(let ((@x3594 (quant-intro (refl (= (or $x178 $x1002) (or $x178 $x1002))) (= $x2576 $x3590))))
  4.1642 -(let ((@x3656 (monotonicity (monotonicity @x3594 (= (not $x2576) $x3595)) @x3653 (= (or (not $x2576) $x2706 $x2707 $x2708 $x2709 (not $x2699)) $x3654))))
  4.1643 -(let ((@x3817 (monotonicity (monotonicity @x3656 (= $x2712 $x3657)) (monotonicity @x3811 (= $x2940 $x3812)) (= $x2945 $x3815))))
  4.1644 -(let ((?x2128 (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?0) ?0))))))
  4.1645 -(let (($x2129 (= ?x2128 0)))
  4.1646 -(let (($x2113 (<= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?0)))) 0)))
  4.1647 -(let (($x2551 (not (or $x2113 (not (fun_app$ v_b_Visited_G_1$ (?v1!7 ?0))) (not $x2129)))))
  4.1648 -(let (($x2557 (or $x127 $x1002 $x2551)))
  4.1649 -(let ((@x3588 (monotonicity (quant-intro (refl (= $x2557 $x2557)) (= $x2562 $x3581)) (= (not $x2562) $x3586))))
  4.1650 -(let ((@x3577 (quant-intro (refl (= (or $x179 $x922 $x990) (or $x179 $x922 $x990))) (= $x2534 $x3573))))
  4.1651 -(let ((@x3569 (quant-intro (refl (= (or $x178 (not $x180) $x1015) (or $x178 (not $x180) $x1015))) (= $x2512 $x3565))))
  4.1652 -(let ((@x3560 (quant-intro (refl (= (>= ?x174 0) (>= ?x174 0))) (= $x1051 $x3556))))
  4.1653 -(let ((?x2090 (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?0) ?0))))))
  4.1654 -(let (($x2091 (= ?x2090 0)))
  4.1655 -(let (($x2075 (<= (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?0)))) 0)))
  4.1656 -(let (($x2478 (not (or $x2075 (not (v_b_Visited_G_0$ (?v1!6 ?0))) (not $x2091)))))
  4.1657 -(let (($x947 (<= (+ b_Infinity$ (* (- 1) ?x128)) 0)))
  4.1658 -(let (($x2484 (or $x127 $x947 $x2478)))
  4.1659 -(let ((@x3554 (monotonicity (quant-intro (refl (= $x2484 $x2484)) (= $x2489 $x3547)) (= (not $x2489) $x3552))))
  4.1660 -(let ((@x3823 (monotonicity @x3554 (monotonicity @x3560 (= (not $x1051) $x3561)) (monotonicity @x3569 (= (not $x2512) $x3570)) (monotonicity @x3577 (= (not $x2534) $x3578)) @x3588 (monotonicity @x3817 (= (not $x2945) $x3818)) (= $x2958 $x3821))))
  4.1661 -(let (($x2440 (or (>= (+ ?x128 ?x1541) 0) $x137 (not (= (+ ?x128 ?x1541 (b_G$ (pair$ ?0 ?v0!5))) 0)))))
  4.1662 -(let ((@x3540 (monotonicity (quant-intro (refl (= $x2440 $x2440)) (= $x2451 $x3533)) (= (not $x2451) $x3538))))
  4.1663 -(let ((@x3546 (monotonicity (monotonicity @x3540 (= (or $x1538 $x1543 (not $x2451)) $x3541)) (= $x2459 $x3544))))
  4.1664 -(let ((@x3829 (monotonicity @x3546 (monotonicity @x3823 (= $x2959 $x3824)) (= $x2964 $x3827))))
  4.1665 -(let ((@x3528 (quant-intro (refl (= (or $x137 $x922 $x933) (or $x137 $x922 $x933))) (= $x2436 $x3524))))
  4.1666 -(let ((@x3835 (monotonicity (monotonicity @x3528 (= (not $x2436) $x3529)) (monotonicity @x3829 (= (not $x2964) $x3830)) (= (or (not $x2436) (not $x2964)) $x3833))))
  4.1667 -(let ((@x3844 (monotonicity (monotonicity (monotonicity @x3835 (= $x2973 $x3836)) (= $x2978 $x3839)) (= (not $x2978) $x3842))))
  4.1668 -(let ((@x3519 (quant-intro (refl (= (or $x136 (not $x148) $x907) (or $x136 (not $x148) $x907))) (= $x2391 $x3515))))
  4.1669 -(let ((@x3847 (monotonicity (monotonicity @x3519 (= (not $x2391) $x3520)) @x3844 (= (or (not $x2391) (not $x2978)) $x3845))))
  4.1670 -(let ((@x3856 (monotonicity (monotonicity (monotonicity @x3847 (= $x2987 $x3848)) (= $x2992 $x3851)) (= (not $x2992) $x3854))))
  4.1671 -(let ((@x3510 (quant-intro (refl (= (>= ?x128 0) (>= ?x128 0))) (= $x899 $x3506))))
  4.1672 -(let ((@x3859 (monotonicity (monotonicity @x3510 (= $x902 $x3511)) @x3856 (= (or $x902 (not $x2992)) $x3857))))
  4.1673 -(let ((@x3868 (monotonicity (monotonicity (monotonicity @x3859 (= $x3000 $x3860)) (= $x3005 $x3863)) (= (not $x3005) $x3866))))
  4.1674 -(let ((@x3874 (monotonicity (monotonicity @x3868 (= (or $x869 (not $x3005)) $x3869)) (= $x3013 $x3872))))
  4.1675 -(let (($x2251 (forall ((?v1 B_Vertex$) )(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
  4.1676 -(let ((?x1912 (* (- 1) ?x1911)))
  4.1677 -(let ((?x273 (v_b_SP_G_2$ ?v1)))
  4.1678 -(let (($x2242 (= (+ ?x273 ?x1912 (b_G$ (pair$ ?v1 ?v0!20))) 0)))
  4.1679 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  4.1680 -(let (($x2245 (and (not (>= (+ ?x273 ?x1912) 0)) $x291 $x2242)))
  4.1681 -(not $x2245))))))))
  4.1682 -))
  4.1683 -(let (($x1915 (not $x1914)))
  4.1684 -(let (($x1910 (not $x1909)))
  4.1685 -(let (($x2260 (and $x1289 $x1910 $x1915 $x2251)))
  4.1686 -(let (($x1891 (not (and $x1883 (not $x1888)))))
  4.1687 -(let (($x1897 (or $x1891 $x1896)))
  4.1688 -(let (($x1898 (not $x1897)))
  4.1689 -(let (($x2265 (or $x1898 $x2260)))
  4.1690 -(let (($x2268 (and $x1270 $x2265)))
  4.1691 -(let (($x1864 (not (and (not $x1860) $x1862))))
  4.1692 -(let (($x1870 (or $x1864 $x1869)))
  4.1693 -(let (($x1871 (not $x1870)))
  4.1694 -(let (($x2271 (or $x1871 $x2268)))
  4.1695 -(let (($x2274 (and $x1256 $x2271)))
  4.1696 -(let (($x2277 (or $x1848 $x2274)))
  4.1697 -(let (($x2280 (and $x297 $x2277)))
  4.1698 -(let (($x2283 (or $x773 $x2280)))
  4.1699 -(let (($x2286 (and $x652 $x2283)))
  4.1700 -(let (($x2289 (or $x1830 $x2286)))
  4.1701 -(let (($x2292 (and $x1247 $x2289)))
  4.1702 -(let (($x2295 (or $x1813 $x2292)))
  4.1703 -(let (($x1779 (not $x1778)))
  4.1704 -(let (($x1774 (not $x1773)))
  4.1705 -(let (($x2301 (and $x1774 $x1779 $x256 $x1214 $x1209 $x266 $x1193 $x1199 $x2295)))
  4.1706 -(let (($x1749 (not $x246)))
  4.1707 -(let (($x1752 (and $x1146 $x1749)))
  4.1708 -(let (($x1733 (not (and (not $x1724) (not $x1730)))))
  4.1709 -(let (($x2212 (or $x1733 $x2209)))
  4.1710 -(let (($x2215 (not $x2212)))
  4.1711 -(let (($x2218 (or $x2215 $x1752)))
  4.1712 -(let (($x2203 (forall ((?v0 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
  4.1713 -(let ((?x2191 (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!9 ?v0) ?v0))))))
  4.1714 -(let (($x2192 (= ?x2191 0)))
  4.1715 -(let (($x2176 (<= (+ ?x230 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0)))) 0)))
  4.1716 -(let (($x2197 (and (not $x2176) $x2192)))
  4.1717 -(let (($x1099 (<= (+ b_Infinity$ (* (- 1) ?x230)) 0)))
  4.1718 -(let (($x1100 (not $x1099)))
  4.1719 -(let (($x127 (= ?v0 b_Source$)))
  4.1720 -(let (($x132 (not $x127)))
  4.1721 -(let (($x1103 (and $x132 $x1100)))
  4.1722 -(let (($x1106 (not $x1103)))
  4.1723 -(or $x1106 $x2197)))))))))))))
  4.1724 -))
  4.1725 -(let (($x2221 (and $x2203 $x2218)))
  4.1726 -(let (($x2157 (forall ((?v1 B_Vertex$) )(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  4.1727 -(let ((?x1662 (* (- 1) ?x1661)))
  4.1728 -(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  4.1729 -(let (($x2148 (= (+ ?x230 ?x1662 (b_G$ (pair$ ?v1 ?v0!8))) 0)))
  4.1730 -(let (($x2151 (and (not (>= (+ ?x230 ?x1662) 0)) $x2148)))
  4.1731 -(not $x2151)))))))
  4.1732 -))
  4.1733 -(let (($x1665 (not $x1664)))
  4.1734 -(let (($x1660 (not $x1659)))
  4.1735 -(let (($x2163 (and $x1660 $x1665 $x2157)))
  4.1736 -(let (($x2224 (or $x2163 $x2221)))
  4.1737 -(let (($x1641 (forall ((?v0 B_Vertex$) )(let (($x1002 (<= (+ b_Infinity$ (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0))) 0)))
  4.1738 -(let (($x1003 (not $x1002)))
  4.1739 -(let (($x178 (fun_app$ v_b_Visited_G_1$ ?v0)))
  4.1740 -(let (($x179 (not $x178)))
  4.1741 -(let (($x1077 (and $x179 $x1003)))
  4.1742 -(not $x1077)))))))
  4.1743 -))
  4.1744 -(let (($x2230 (and $x1641 $x212 $x215 $x217 $x220 $x2224)))
  4.1745 -(let (($x2306 (or $x2230 $x2301)))
  4.1746 -(let (($x2140 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
  4.1747 -(let ((?x2128 (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ (?v1!7 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!7 ?v0) ?v0))))))
  4.1748 -(let (($x2129 (= ?x2128 0)))
  4.1749 -(let ((?x1613 (?v1!7 ?v0)))
  4.1750 -(let (($x1618 (fun_app$ v_b_Visited_G_1$ ?x1613)))
  4.1751 -(let (($x2134 (and (not (<= (+ ?x174 (* (- 1) (fun_app$c v_b_SP_G_1$ ?x1613))) 0)) $x1618 $x2129)))
  4.1752 -(let (($x1002 (<= (+ b_Infinity$ (* (- 1) ?x174)) 0)))
  4.1753 -(let (($x1003 (not $x1002)))
  4.1754 -(let (($x127 (= ?v0 b_Source$)))
  4.1755 -(let (($x132 (not $x127)))
  4.1756 -(let (($x1006 (and $x132 $x1003)))
  4.1757 -(let (($x1009 (not $x1006)))
  4.1758 -(or $x1009 $x2134))))))))))))))
  4.1759 -))
  4.1760 -(let (($x2102 (forall ((?v0 B_Vertex$) )(let ((?x128 (v_b_SP_G_0$ ?v0)))
  4.1761 -(let ((?x2090 (+ ?x128 (* (- 1) (v_b_SP_G_0$ (?v1!6 ?v0))) (* (- 1) (b_G$ (pair$ (?v1!6 ?v0) ?v0))))))
  4.1762 -(let (($x2091 (= ?x2090 0)))
  4.1763 -(let ((?x1578 (?v1!6 ?v0)))
  4.1764 -(let (($x1583 (v_b_Visited_G_0$ ?x1578)))
  4.1765 -(let (($x2096 (and (not (<= (+ ?x128 (* (- 1) (v_b_SP_G_0$ ?x1578))) 0)) $x1583 $x2091)))
  4.1766 -(let (($x127 (= ?v0 b_Source$)))
  4.1767 -(let (($x132 (not $x127)))
  4.1768 -(let (($x951 (and $x132 (not (<= (+ b_Infinity$ (* (- 1) ?x128)) 0)))))
  4.1769 -(let (($x954 (not $x951)))
  4.1770 -(or $x954 $x2096))))))))))))
  4.1771 -))
  4.1772 -(let (($x2315 (and $x2102 $x173 $x1051 $x1045 $x997 $x2140 $x2306)))
  4.1773 -(let (($x1567 (forall ((?v1 B_Vertex$) )(let ((?x1540 (v_b_SP_G_0$ ?v0!5)))
  4.1774 -(let ((?x1541 (* (- 1) ?x1540)))
  4.1775 -(let ((?x128 (v_b_SP_G_0$ ?v1)))
  4.1776 -(let (($x136 (v_b_Visited_G_0$ ?v1)))
  4.1777 -(let (($x1554 (and (not (>= (+ ?x128 ?x1541) 0)) $x136 (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0))))
  4.1778 -(not $x1554)))))))
  4.1779 -))
  4.1780 -(let (($x2062 (and $x1539 $x1544 $x1567)))
  4.1781 -(let (($x2320 (or $x2062 $x2315)))
  4.1782 -(let (($x2323 (and $x939 $x2320)))
  4.1783 -(let (($x1520 (not (and $x1512 (not $x1517)))))
  4.1784 -(let (($x2051 (or $x1520 $x2048)))
  4.1785 -(let (($x2054 (not $x2051)))
  4.1786 -(let (($x2326 (or $x2054 $x2323)))
  4.1787 -(let (($x2329 (and $x914 $x2326)))
  4.1788 -(let (($x1493 (not (and (not $x1489) $x1491))))
  4.1789 -(let (($x1499 (or $x1493 $x1498)))
  4.1790 -(let (($x1500 (not $x1499)))
  4.1791 -(let (($x2332 (or $x1500 $x2329)))
  4.1792 -(let (($x2335 (and $x899 $x2332)))
  4.1793 -(let (($x2338 (or $x1477 $x2335)))
  4.1794 -(let (($x2341 (and $x145 $x2338)))
  4.1795 -(let (($x2344 (or $x869 $x2341)))
  4.1796 -(let ((@x2942 (rewrite (= (and $x1774 $x1779 $x256 $x1214 $x1209 $x266 $x2736 $x2742 $x2928) $x2940))))
  4.1797 -(let (($x2242 (= (+ ?x273 (* (- 1) ?x1911) (b_G$ (pair$ ?0 ?v0!20))) 0)))
  4.1798 -(let (($x2245 (and (not (>= (+ ?x273 (* (- 1) ?x1911)) 0)) $x291 $x2242)))
  4.1799 -(let (($x2248 (not $x2245)))
  4.1800 -(let ((@x2843 (monotonicity (rewrite (= $x2245 (not $x2837))) (= $x2248 (not (not $x2837))))))
  4.1801 -(let ((@x2850 (quant-intro (trans @x2843 (rewrite (= (not (not $x2837)) $x2837)) (= $x2248 $x2837)) (= $x2251 $x2848))))
  4.1802 -(let ((@x2820 (monotonicity (rewrite (= $x1276 (not (or $x300 $x922)))) (= $x1279 (not (not (or $x300 $x922)))))))
  4.1803 -(let ((@x2824 (trans @x2820 (rewrite (= (not (not (or $x300 $x922))) (or $x300 $x922))) (= $x1279 (or $x300 $x922)))))
  4.1804 -(let ((@x2832 (trans (monotonicity @x2824 (= $x1286 (or (or $x300 $x922) $x1282))) (rewrite (= (or (or $x300 $x922) $x1282) (or $x300 $x922 $x1282))) (= $x1286 (or $x300 $x922 $x1282)))))
  4.1805 -(let ((@x2853 (monotonicity (quant-intro @x2832 (= $x1289 $x2833)) @x2850 (= $x2260 (and $x2833 $x1910 $x1915 $x2848)))))
  4.1806 -(let ((@x2861 (trans @x2853 (rewrite (= (and $x2833 $x1910 $x1915 $x2848) $x2857)) (= $x2260 $x2857))))
  4.1807 -(let ((@x2798 (monotonicity (rewrite (= (and $x1883 (not $x1888)) (not (or $x2791 $x1888)))) (= $x1891 (not (not (or $x2791 $x1888)))))))
  4.1808 -(let ((@x2802 (trans @x2798 (rewrite (= (not (not (or $x2791 $x1888))) (or $x2791 $x1888))) (= $x1891 (or $x2791 $x1888)))))
  4.1809 -(let ((@x2810 (trans (monotonicity @x2802 (= $x1897 (or (or $x2791 $x1888) $x1896))) (rewrite (= (or (or $x2791 $x1888) $x1896) $x2806)) (= $x1897 $x2806))))
  4.1810 -(let ((@x2864 (monotonicity (monotonicity @x2810 (= $x1898 $x2811)) @x2861 (= $x2265 $x2862))))
  4.1811 -(let ((@x2785 (rewrite (= (or (or $x291 (not $x301)) $x1262) (or $x291 (not $x301) $x1262)))))
  4.1812 -(let ((@x2777 (rewrite (= (not (not (or $x291 (not $x301)))) (or $x291 (not $x301))))))
  4.1813 -(let ((@x2775 (monotonicity (rewrite (= $x302 (not (or $x291 (not $x301))))) (= $x664 (not (not (or $x291 (not $x301))))))))
  4.1814 -(let ((@x2782 (monotonicity (trans @x2775 @x2777 (= $x664 (or $x291 (not $x301)))) (= $x1267 (or (or $x291 (not $x301)) $x1262)))))
  4.1815 -(let ((@x2790 (quant-intro (trans @x2782 @x2785 (= $x1267 (or $x291 (not $x301) $x1262))) (= $x1270 $x2788))))
  4.1816 -(let ((@x2875 (trans (monotonicity @x2790 @x2864 (= $x2268 (and $x2788 $x2862))) (rewrite (= (and $x2788 $x2862) $x2871)) (= $x2268 $x2871))))
  4.1817 -(let ((@x2752 (monotonicity (rewrite (= (and (not $x1860) $x1862) (not (or $x1860 $x2745)))) (= $x1864 (not (not (or $x1860 $x2745)))))))
  4.1818 -(let ((@x2756 (trans @x2752 (rewrite (= (not (not (or $x1860 $x2745))) (or $x1860 $x2745))) (= $x1864 (or $x1860 $x2745)))))
  4.1819 -(let ((@x2764 (trans (monotonicity @x2756 (= $x1870 (or (or $x1860 $x2745) $x1869))) (rewrite (= (or (or $x1860 $x2745) $x1869) $x2760)) (= $x1870 $x2760))))
  4.1820 -(let ((@x2878 (monotonicity (monotonicity @x2764 (= $x1871 $x2765)) @x2875 (= $x2271 $x2876))))
  4.1821 -(let ((@x2888 (trans (monotonicity @x2878 (= $x2274 (and $x1256 $x2876))) (rewrite (= (and $x1256 $x2876) $x2884)) (= $x2274 $x2884))))
  4.1822 -(let ((@x2894 (monotonicity (monotonicity @x2888 (= $x2277 $x2889)) (= $x2280 (and $x297 $x2889)))))
  4.1823 -(let ((@x2904 (monotonicity (trans @x2894 (rewrite (= (and $x297 $x2889) $x2897)) (= $x2280 $x2897)) (= $x2283 $x2902))))
  4.1824 -(let ((@x2914 (trans (monotonicity @x2904 (= $x2286 (and $x652 $x2902))) (rewrite (= (and $x652 $x2902) $x2910)) (= $x2286 $x2910))))
  4.1825 -(let ((@x2920 (monotonicity (monotonicity @x2914 (= $x2289 $x2915)) (= $x2292 (and $x1247 $x2915)))))
  4.1826 -(let ((@x2930 (monotonicity (trans @x2920 (rewrite (= (and $x1247 $x2915) $x2923)) (= $x2292 $x2923)) (= $x2295 $x2928))))
  4.1827 -(let ((@x2741 (monotonicity (rewrite (= $x1179 (not (or $x1169 $x1175)))) (= $x1196 (or (not (or $x1169 $x1175)) $x278)))))
  4.1828 -(let ((@x2723 (monotonicity (rewrite (= $x1179 (not (or $x1169 $x1175)))) (= $x1182 (not (not (or $x1169 $x1175)))))))
  4.1829 -(let ((@x2727 (trans @x2723 (rewrite (= (not (not (or $x1169 $x1175))) (or $x1169 $x1175))) (= $x1182 (or $x1169 $x1175)))))
  4.1830 -(let ((@x2735 (trans (monotonicity @x2727 (= $x1190 (or (or $x1169 $x1175) $x1185))) (rewrite (= (or (or $x1169 $x1175) $x1185) (or $x1169 $x1175 $x1185))) (= $x1190 (or $x1169 $x1175 $x1185)))))
  4.1831 -(let ((@x2933 (monotonicity (quant-intro @x2735 (= $x1193 $x2736)) (quant-intro @x2741 (= $x1199 $x2742)) @x2930 (= $x2301 (and $x1774 $x1779 $x256 $x1214 $x1209 $x266 $x2736 $x2742 $x2928)))))
  4.1832 -(let ((@x2659 (monotonicity (rewrite (= $x1134 (not (or $x1099 $x922)))) (= $x1137 (not (not (or $x1099 $x922)))))))
  4.1833 -(let ((@x2663 (trans @x2659 (rewrite (= (not (not (or $x1099 $x922))) (or $x1099 $x922))) (= $x1137 (or $x1099 $x922)))))
  4.1834 -(let ((@x2671 (trans (monotonicity @x2663 (= $x1143 (or (or $x1099 $x922) $x1140))) (rewrite (= (or (or $x1099 $x922) $x1140) (or $x1099 $x922 $x1140))) (= $x1143 (or $x1099 $x922 $x1140)))))
  4.1835 -(let ((@x2677 (monotonicity (quant-intro @x2671 (= $x1146 $x2672)) (= $x1752 (and $x2672 $x1749)))))
  4.1836 -(let ((@x2637 (monotonicity (rewrite (= (and (not $x1724) (not $x1730)) (not (or $x1724 $x1730)))) (= $x1733 (not (not (or $x1724 $x1730)))))))
  4.1837 -(let ((@x2641 (trans @x2637 (rewrite (= (not (not (or $x1724 $x1730))) (or $x1724 $x1730))) (= $x1733 (or $x1724 $x1730)))))
  4.1838 -(let ((@x2649 (trans (monotonicity @x2641 (= $x2212 (or (or $x1724 $x1730) $x2209))) (rewrite (= (or (or $x1724 $x1730) $x2209) $x2645)) (= $x2212 $x2645))))
  4.1839 -(let ((@x2687 (monotonicity (monotonicity @x2649 (= $x2215 $x2650)) (trans @x2677 (rewrite (= (and $x2672 $x1749) $x2680)) (= $x1752 $x2680)) (= $x2218 $x2685))))
  4.1840 -(let ((@x2610 (monotonicity (rewrite (= $x1103 (not (or $x127 $x1099)))) (= $x1106 (not (not (or $x127 $x1099)))))))
  4.1841 -(let ((@x2614 (trans @x2610 (rewrite (= (not (not (or $x127 $x1099))) (or $x127 $x1099))) (= $x1106 (or $x127 $x1099)))))
  4.1842 -(let ((@x2622 (monotonicity @x2614 (rewrite (= (and (not $x2176) $x2192) $x2617)) (= (or $x1106 (and (not $x2176) $x2192)) (or (or $x127 $x1099) $x2617)))))
  4.1843 -(let ((@x2627 (trans @x2622 (rewrite (= (or (or $x127 $x1099) $x2617) $x2623)) (= (or $x1106 (and (not $x2176) $x2192)) $x2623))))
  4.1844 -(let ((@x2690 (monotonicity (quant-intro @x2627 (= $x2203 $x2628)) @x2687 (= $x2221 (and $x2628 $x2685)))))
  4.1845 -(let (($x2151 (and (not (>= (+ ?x230 ?x1662) 0)) $x2148)))
  4.1846 -(let (($x2154 (not $x2151)))
  4.1847 -(let ((@x2586 (monotonicity (rewrite (= $x2151 (not $x2580))) (= $x2154 (not (not $x2580))))))
  4.1848 -(let ((@x2593 (quant-intro (trans @x2586 (rewrite (= (not (not $x2580)) $x2580)) (= $x2154 $x2580)) (= $x2157 $x2591))))
  4.1849 -(let ((@x2603 (trans (monotonicity @x2593 (= $x2163 (and $x1660 $x1665 $x2591))) (rewrite (= (and $x1660 $x1665 $x2591) $x2599)) (= $x2163 $x2599))))
  4.1850 -(let ((@x2701 (monotonicity @x2603 (trans @x2690 (rewrite (= (and $x2628 $x2685) $x2694)) (= $x2221 $x2694)) (= $x2224 $x2699))))
  4.1851 -(let ((@x2571 (monotonicity (rewrite (= $x1077 (not (or $x178 $x1002)))) (= (not $x1077) (not (not (or $x178 $x1002)))))))
  4.1852 -(let ((@x2575 (trans @x2571 (rewrite (= (not (not (or $x178 $x1002))) (or $x178 $x1002))) (= (not $x1077) (or $x178 $x1002)))))
  4.1853 -(let ((@x2704 (monotonicity (quant-intro @x2575 (= $x1641 $x2576)) @x2701 (= $x2230 (and $x2576 $x212 $x215 $x217 $x220 $x2699)))))
  4.1854 -(let ((@x2716 (trans @x2704 (rewrite (= (and $x2576 $x212 $x215 $x217 $x220 $x2699) $x2712)) (= $x2230 $x2712))))
  4.1855 -(let ((?x1613 (?v1!7 ?0)))
  4.1856 -(let (($x1618 (fun_app$ v_b_Visited_G_1$ ?x1613)))
  4.1857 -(let (($x2134 (and (not $x2113) $x1618 $x2129)))
  4.1858 -(let (($x2137 (or $x1009 $x2134)))
  4.1859 -(let ((@x2543 (monotonicity (rewrite (= $x1006 (not (or $x127 $x1002)))) (= $x1009 (not (not (or $x127 $x1002)))))))
  4.1860 -(let ((@x2547 (trans @x2543 (rewrite (= (not (not (or $x127 $x1002))) (or $x127 $x1002))) (= $x1009 (or $x127 $x1002)))))
  4.1861 -(let ((@x2556 (monotonicity @x2547 (rewrite (= $x2134 $x2551)) (= $x2137 (or (or $x127 $x1002) $x2551)))))
  4.1862 -(let ((@x2561 (trans @x2556 (rewrite (= (or (or $x127 $x1002) $x2551) $x2557)) (= $x2137 $x2557))))
  4.1863 -(let ((@x2521 (monotonicity (rewrite (= $x983 (not (or $x179 $x922)))) (= $x986 (not (not (or $x179 $x922)))))))
  4.1864 -(let ((@x2525 (trans @x2521 (rewrite (= (not (not (or $x179 $x922))) (or $x179 $x922))) (= $x986 (or $x179 $x922)))))
  4.1865 -(let ((@x2533 (trans (monotonicity @x2525 (= $x994 (or (or $x179 $x922) $x990))) (rewrite (= (or (or $x179 $x922) $x990) (or $x179 $x922 $x990))) (= $x994 (or $x179 $x922 $x990)))))
  4.1866 -(let ((@x2509 (rewrite (= (or (or $x178 (not $x180)) $x1015) (or $x178 (not $x180) $x1015)))))
  4.1867 -(let ((@x2501 (rewrite (= (not (not (or $x178 (not $x180)))) (or $x178 (not $x180))))))
  4.1868 -(let ((@x2499 (monotonicity (rewrite (= $x181 (not (or $x178 (not $x180))))) (= $x403 (not (not (or $x178 (not $x180))))))))
  4.1869 -(let ((@x2506 (monotonicity (trans @x2499 @x2501 (= $x403 (or $x178 (not $x180)))) (= $x1042 (or (or $x178 (not $x180)) $x1015)))))
  4.1870 -(let ((@x2514 (quant-intro (trans @x2506 @x2509 (= $x1042 (or $x178 (not $x180) $x1015))) (= $x1045 $x2512))))
  4.1871 -(let ((?x1578 (?v1!6 ?0)))
  4.1872 -(let (($x1583 (v_b_Visited_G_0$ ?x1578)))
  4.1873 -(let (($x2096 (and (not $x2075) $x1583 $x2091)))
  4.1874 -(let (($x2099 (or $x954 $x2096)))
  4.1875 -(let ((@x2470 (monotonicity (rewrite (= $x951 (not (or $x127 $x947)))) (= $x954 (not (not (or $x127 $x947)))))))
  4.1876 -(let ((@x2474 (trans @x2470 (rewrite (= (not (not (or $x127 $x947))) (or $x127 $x947))) (= $x954 (or $x127 $x947)))))
  4.1877 -(let ((@x2483 (monotonicity @x2474 (rewrite (= $x2096 $x2478)) (= $x2099 (or (or $x127 $x947) $x2478)))))
  4.1878 -(let ((@x2488 (trans @x2483 (rewrite (= (or (or $x127 $x947) $x2478) $x2484)) (= $x2099 $x2484))))
  4.1879 -(let ((@x2950 (monotonicity (quant-intro @x2488 (= $x2102 $x2489)) @x2514 (quant-intro @x2533 (= $x997 $x2534)) (quant-intro @x2561 (= $x2140 $x2562)) (monotonicity @x2716 (trans @x2933 @x2942 (= $x2301 $x2940)) (= $x2306 $x2945)) (= $x2315 (and $x2489 $x173 $x1051 $x2512 $x2534 $x2562 $x2945)))))
  4.1880 -(let ((@x2963 (trans @x2950 (rewrite (= (and $x2489 $x173 $x1051 $x2512 $x2534 $x2562 $x2945) $x2959)) (= $x2315 $x2959))))
  4.1881 -(let (($x1554 (and (not (>= (+ ?x128 ?x1541) 0)) $x136 (= (+ ?x128 ?x1541 (b_G$ (pair$ ?0 ?v0!5))) 0))))
  4.1882 -(let (($x1564 (not $x1554)))
  4.1883 -(let ((@x2446 (monotonicity (rewrite (= $x1554 (not $x2440))) (= $x1564 (not (not $x2440))))))
  4.1884 -(let ((@x2453 (quant-intro (trans @x2446 (rewrite (= (not (not $x2440)) $x2440)) (= $x1564 $x2440)) (= $x1567 $x2451))))
  4.1885 -(let ((@x2463 (trans (monotonicity @x2453 (= $x2062 (and $x1539 $x1544 $x2451))) (rewrite (= (and $x1539 $x1544 $x2451) $x2459)) (= $x2062 $x2459))))
  4.1886 -(let ((@x2423 (monotonicity (rewrite (= $x926 (not (or $x137 $x922)))) (= $x929 (not (not (or $x137 $x922)))))))
  4.1887 -(let ((@x2427 (trans @x2423 (rewrite (= (not (not (or $x137 $x922))) (or $x137 $x922))) (= $x929 (or $x137 $x922)))))
  4.1888 -(let ((@x2435 (trans (monotonicity @x2427 (= $x936 (or (or $x137 $x922) $x933))) (rewrite (= (or (or $x137 $x922) $x933) (or $x137 $x922 $x933))) (= $x936 (or $x137 $x922 $x933)))))
  4.1889 -(let ((@x2969 (monotonicity (quant-intro @x2435 (= $x939 $x2436)) (monotonicity @x2463 @x2963 (= $x2320 $x2964)) (= $x2323 (and $x2436 $x2964)))))
  4.1890 -(let ((@x2401 (monotonicity (rewrite (= (and $x1512 (not $x1517)) (not (or $x2394 $x1517)))) (= $x1520 (not (not (or $x2394 $x1517)))))))
  4.1891 -(let ((@x2405 (trans @x2401 (rewrite (= (not (not (or $x2394 $x1517))) (or $x2394 $x1517))) (= $x1520 (or $x2394 $x1517)))))
  4.1892 -(let ((@x2413 (trans (monotonicity @x2405 (= $x2051 (or (or $x2394 $x1517) $x2048))) (rewrite (= (or (or $x2394 $x1517) $x2048) $x2409)) (= $x2051 $x2409))))
  4.1893 -(let ((@x2980 (monotonicity (monotonicity @x2413 (= $x2054 $x2414)) (trans @x2969 (rewrite (= (and $x2436 $x2964) $x2973)) (= $x2323 $x2973)) (= $x2326 $x2978))))
  4.1894 -(let ((@x2388 (rewrite (= (or (or $x136 (not $x148)) $x907) (or $x136 (not $x148) $x907)))))
  4.1895 -(let ((@x2380 (rewrite (= (not (not (or $x136 (not $x148)))) (or $x136 (not $x148))))))
  4.1896 -(let ((@x2378 (monotonicity (rewrite (= $x149 (not (or $x136 (not $x148))))) (= $x382 (not (not (or $x136 (not $x148))))))))
  4.1897 -(let ((@x2385 (monotonicity (trans @x2378 @x2380 (= $x382 (or $x136 (not $x148)))) (= $x911 (or (or $x136 (not $x148)) $x907)))))
  4.1898 -(let ((@x2393 (quant-intro (trans @x2385 @x2388 (= $x911 (or $x136 (not $x148) $x907))) (= $x914 $x2391))))
  4.1899 -(let ((@x2991 (trans (monotonicity @x2393 @x2980 (= $x2329 (and $x2391 $x2978))) (rewrite (= (and $x2391 $x2978) $x2987)) (= $x2329 $x2987))))
  4.1900 -(let ((@x2355 (monotonicity (rewrite (= (and (not $x1489) $x1491) (not (or $x1489 $x2348)))) (= $x1493 (not (not (or $x1489 $x2348)))))))
  4.1901 -(let ((@x2359 (trans @x2355 (rewrite (= (not (not (or $x1489 $x2348))) (or $x1489 $x2348))) (= $x1493 (or $x1489 $x2348)))))
  4.1902 -(let ((@x2367 (trans (monotonicity @x2359 (= $x1499 (or (or $x1489 $x2348) $x1498))) (rewrite (= (or (or $x1489 $x2348) $x1498) $x2363)) (= $x1499 $x2363))))
  4.1903 -(let ((@x2994 (monotonicity (monotonicity @x2367 (= $x1500 $x2368)) @x2991 (= $x2332 $x2992))))
  4.1904 -(let ((@x3004 (trans (monotonicity @x2994 (= $x2335 (and $x899 $x2992))) (rewrite (= (and $x899 $x2992) $x3000)) (= $x2335 $x3000))))
  4.1905 -(let ((@x3010 (monotonicity (monotonicity @x3004 (= $x2338 $x3005)) (= $x2341 (and $x145 $x3005)))))
  4.1906 -(let ((@x3020 (monotonicity (trans @x3010 (rewrite (= (and $x145 $x3005) $x3013)) (= $x2341 $x3013)) (= $x2344 $x3018))))
  4.1907 -(let (($x1938 (forall ((?v1 B_Vertex$) )(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
  4.1908 -(let ((?x1912 (* (- 1) ?x1911)))
  4.1909 -(let ((?x273 (v_b_SP_G_2$ ?v1)))
  4.1910 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  4.1911 -(let (($x1925 (and (not (>= (+ ?x273 ?x1912) 0)) $x291 (= (+ (b_G$ (pair$ ?v1 ?v0!20)) ?x273 ?x1912) 0))))
  4.1912 -(not $x1925)))))))
  4.1913 -))
  4.1914 -(let (($x1932 (not (not (and $x1910 $x1915)))))
  4.1915 -(let (($x1942 (and $x1932 $x1938)))
  4.1916 -(let (($x1947 (and $x1289 $x1942)))
  4.1917 -(let (($x1951 (or $x1898 $x1947)))
  4.1918 -(let (($x1955 (and $x1270 $x1951)))
  4.1919 -(let (($x1959 (or $x1871 $x1955)))
  4.1920 -(let (($x1963 (and $x1256 $x1959)))
  4.1921 -(let (($x1967 (or $x1848 $x1963)))
  4.1922 -(let (($x1842 (not $x773)))
  4.1923 -(let (($x1971 (and $x1842 $x1967)))
  4.1924 -(let (($x1975 (or $x773 $x1971)))
  4.1925 -(let (($x1979 (and $x652 $x1975)))
  4.1926 -(let (($x1983 (or $x1830 $x1979)))
  4.1927 -(let (($x1987 (and $x1247 $x1983)))
  4.1928 -(let (($x1991 (or $x1813 $x1987)))
  4.1929 -(let (($x1801 (and (and $x1774 $x1779) $x256 $x1214 $x1209 $x266 $x1193 $x1199)))
  4.1930 -(let (($x1995 (and $x1801 $x1991)))
  4.1931 -(let (($x1739 (not (or $x1733 (>= (+ ?x1727 ?x1721 ?x1735) 0)))))
  4.1932 -(let (($x1756 (or $x1739 $x1752)))
  4.1933 -(let (($x1713 (forall ((?v0 B_Vertex$) )(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v0)))
  4.1934 -(let ((?x1097 (* (- 1) ?x230)))
  4.1935 -(let ((?x1699 (fun_app$c v_b_SP_G_3$ (?v1!9 ?v0))))
  4.1936 -(let ((?x1704 (b_G$ (pair$ (?v1!9 ?v0) ?v0))))
  4.1937 -(let (($x1706 (= (+ ?x1704 ?x1699 ?x1097) 0)))
  4.1938 -(let (($x1707 (and (not (>= (+ ?x1699 ?x1097) 0)) $x1706)))
  4.1939 -(let (($x1099 (<= (+ b_Infinity$ ?x1097) 0)))
  4.1940 -(let (($x1100 (not $x1099)))
  4.1941 -(let (($x127 (= ?v0 b_Source$)))
  4.1942 -(let (($x132 (not $x127)))
  4.1943 -(let (($x1103 (and $x132 $x1100)))
  4.1944 -(let (($x1106 (not $x1103)))
  4.1945 -(or $x1106 $x1707))))))))))))))
  4.1946 -))
  4.1947 -(let (($x1760 (and $x1713 $x1756)))
  4.1948 -(let (($x1687 (forall ((?v1 B_Vertex$) )(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  4.1949 -(let ((?x1662 (* (- 1) ?x1661)))
  4.1950 -(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  4.1951 -(let (($x1675 (and (not (>= (+ ?x230 ?x1662) 0)) (= (+ (b_G$ (pair$ ?v1 ?v0!8)) ?x230 ?x1662) 0))))
  4.1952 -(not $x1675))))))
  4.1953 -))
  4.1954 -(let (($x1681 (not (not (and $x1660 $x1665)))))
  4.1955 -(let (($x1691 (and $x1681 $x1687)))
  4.1956 -(let (($x1764 (or $x1691 $x1760)))
  4.1957 -(let (($x1652 (and $x1641 $x212 $x215 $x217 $x220)))
  4.1958 -(let (($x1768 (and $x1652 $x1764)))
  4.1959 -(let (($x1999 (or $x1768 $x1995)))
  4.1960 -(let (($x1629 (forall ((?v0 B_Vertex$) )(let ((?x174 (fun_app$c v_b_SP_G_1$ ?v0)))
  4.1961 -(let ((?x1000 (* (- 1) ?x174)))
  4.1962 -(let ((?x1613 (?v1!7 ?v0)))
  4.1963 -(let ((?x1614 (fun_app$c v_b_SP_G_1$ ?x1613)))
  4.1964 -(let ((?x1620 (b_G$ (pair$ ?x1613 ?v0))))
  4.1965 -(let (($x1622 (= (+ ?x1620 ?x1614 ?x1000) 0)))
  4.1966 -(let (($x1618 (fun_app$ v_b_Visited_G_1$ ?x1613)))
  4.1967 -(let (($x1623 (and (not (>= (+ ?x1614 ?x1000) 0)) $x1618 $x1622)))
  4.1968 -(let (($x1002 (<= (+ b_Infinity$ ?x1000) 0)))
  4.1969 -(let (($x1003 (not $x1002)))
  4.1970 -(let (($x127 (= ?v0 b_Source$)))
  4.1971 -(let (($x132 (not $x127)))
  4.1972 -(let (($x1006 (and $x132 $x1003)))
  4.1973 -(let (($x1009 (not $x1006)))
  4.1974 -(or $x1009 $x1623))))))))))))))))
  4.1975 -))
  4.1976 -(let (($x1594 (forall ((?v0 B_Vertex$) )(let ((?x1585 (b_G$ (pair$ (?v1!6 ?v0) ?v0))))
  4.1977 -(let ((?x128 (v_b_SP_G_0$ ?v0)))
  4.1978 -(let ((?x945 (* (- 1) ?x128)))
  4.1979 -(let ((?x1578 (?v1!6 ?v0)))
  4.1980 -(let ((?x1579 (v_b_SP_G_0$ ?x1578)))
  4.1981 -(let (($x1587 (= (+ ?x1579 ?x945 ?x1585) 0)))
  4.1982 -(let (($x1583 (v_b_Visited_G_0$ ?x1578)))
  4.1983 -(let (($x1588 (and (not (>= (+ ?x1579 ?x945) 0)) $x1583 $x1587)))
  4.1984 -(let (($x127 (= ?v0 b_Source$)))
  4.1985 -(let (($x132 (not $x127)))
  4.1986 -(let (($x951 (and $x132 (not (<= (+ b_Infinity$ ?x945) 0)))))
  4.1987 -(let (($x954 (not $x951)))
  4.1988 -(or $x954 $x1588))))))))))))))
  4.1989 -))
  4.1990 -(let (($x1632 (and $x1594 $x173 $x1051 $x1045 $x997 $x1629)))
  4.1991 -(let (($x2003 (and $x1632 $x1999)))
  4.1992 -(let (($x1561 (not (not (and $x1539 $x1544)))))
  4.1993 -(let (($x1571 (and $x1561 $x1567)))
  4.1994 -(let (($x2007 (or $x1571 $x2003)))
  4.1995 -(let (($x2011 (and $x939 $x2007)))
  4.1996 -(let (($x1527 (not (or $x1520 (>= (+ ?x1521 ?x1523 ?x1514) 0)))))
  4.1997 -(let (($x2015 (or $x1527 $x2011)))
  4.1998 -(let (($x2019 (and $x914 $x2015)))
  4.1999 -(let (($x2023 (or $x1500 $x2019)))
  4.2000 -(let (($x2027 (and $x899 $x2023)))
  4.2001 -(let (($x2031 (or $x1477 $x2027)))
  4.2002 -(let (($x1471 (not $x869)))
  4.2003 -(let (($x2035 (and $x1471 $x2031)))
  4.2004 -(let (($x2039 (or $x869 $x2035)))
  4.2005 -(let (($x1925 (and (not (>= (+ ?x273 (* (- 1) ?x1911)) 0)) $x291 (= (+ (b_G$ (pair$ ?0 ?v0!20)) ?x273 (* (- 1) ?x1911)) 0))))
  4.2006 -(let (($x1935 (not $x1925)))
  4.2007 -(let (($x2243 (= (= (+ (b_G$ (pair$ ?0 ?v0!20)) ?x273 (* (- 1) ?x1911)) 0) $x2242)))
  4.2008 -(let (($x2240 (= (+ (b_G$ (pair$ ?0 ?v0!20)) ?x273 (* (- 1) ?x1911)) (+ ?x273 (* (- 1) ?x1911) (b_G$ (pair$ ?0 ?v0!20))))))
  4.2009 -(let ((@x2250 (monotonicity (monotonicity (monotonicity (rewrite $x2240) $x2243) (= $x1925 $x2245)) (= $x1935 $x2248))))
  4.2010 -(let ((@x2256 (monotonicity (rewrite (= $x1932 (and $x1910 $x1915))) (quant-intro @x2250 (= $x1938 $x2251)) (= $x1942 (and (and $x1910 $x1915) $x2251)))))
  4.2011 -(let ((@x2264 (trans (monotonicity @x2256 (= $x1947 (and $x1289 (and (and $x1910 $x1915) $x2251)))) (rewrite (= (and $x1289 (and (and $x1910 $x1915) $x2251)) $x2260)) (= $x1947 $x2260))))
  4.2012 -(let ((@x2273 (monotonicity (monotonicity (monotonicity @x2264 (= $x1951 $x2265)) (= $x1955 $x2268)) (= $x1959 $x2271))))
  4.2013 -(let ((@x2282 (monotonicity (rewrite (= $x1842 $x297)) (monotonicity (monotonicity @x2273 (= $x1963 $x2274)) (= $x1967 $x2277)) (= $x1971 $x2280))))
  4.2014 -(let ((@x2291 (monotonicity (monotonicity (monotonicity @x2282 (= $x1975 $x2283)) (= $x1979 $x2286)) (= $x1983 $x2289))))
  4.2015 -(let ((@x2300 (monotonicity (monotonicity (monotonicity @x2291 (= $x1987 $x2292)) (= $x1991 $x2295)) (= $x1995 (and $x1801 $x2295)))))
  4.2016 -(let ((@x2211 (monotonicity (rewrite (= (+ ?x1727 ?x1721 ?x1735) ?x2206)) (= (>= (+ ?x1727 ?x1721 ?x1735) 0) $x2209))))
  4.2017 -(let ((@x2214 (monotonicity @x2211 (= (or $x1733 (>= (+ ?x1727 ?x1721 ?x1735) 0)) $x2212))))
  4.2018 -(let (($x2197 (and (not $x2176) $x2192)))
  4.2019 -(let (($x2200 (or $x1106 $x2197)))
  4.2020 -(let ((?x1097 (* (- 1) ?x230)))
  4.2021 -(let ((?x1699 (fun_app$c v_b_SP_G_3$ (?v1!9 ?0))))
  4.2022 -(let ((?x1704 (b_G$ (pair$ (?v1!9 ?0) ?0))))
  4.2023 -(let (($x1706 (= (+ ?x1704 ?x1699 ?x1097) 0)))
  4.2024 -(let (($x1707 (and (not (>= (+ ?x1699 ?x1097) 0)) $x1706)))
  4.2025 -(let (($x1710 (or $x1106 $x1707)))
  4.2026 -(let ((@x2189 (monotonicity (rewrite (= (+ ?x1704 ?x1699 ?x1097) (+ ?x1097 ?x1699 ?x1704))) (= $x1706 (= (+ ?x1097 ?x1699 ?x1704) 0)))))
  4.2027 -(let ((@x2196 (trans @x2189 (rewrite (= (= (+ ?x1097 ?x1699 ?x1704) 0) $x2192)) (= $x1706 $x2192))))
  4.2028 -(let ((@x2173 (monotonicity (rewrite (= (+ ?x1699 ?x1097) (+ ?x1097 ?x1699))) (= (>= (+ ?x1699 ?x1097) 0) (>= (+ ?x1097 ?x1699) 0)))))
  4.2029 -(let ((@x2180 (trans @x2173 (rewrite (= (>= (+ ?x1097 ?x1699) 0) $x2176)) (= (>= (+ ?x1699 ?x1097) 0) $x2176))))
  4.2030 -(let ((@x2199 (monotonicity (monotonicity @x2180 (= (not (>= (+ ?x1699 ?x1097) 0)) (not $x2176))) @x2196 (= $x1707 $x2197))))
  4.2031 -(let ((@x2223 (monotonicity (quant-intro (monotonicity @x2199 (= $x1710 $x2200)) (= $x1713 $x2203)) (monotonicity (monotonicity @x2214 (= $x1739 $x2215)) (= $x1756 $x2218)) (= $x1760 $x2221))))
  4.2032 -(let (($x1675 (and (not (>= (+ ?x230 ?x1662) 0)) (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x230 ?x1662) 0))))
  4.2033 -(let (($x1684 (not $x1675)))
  4.2034 -(let (($x2146 (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x230 ?x1662) (+ ?x230 ?x1662 (b_G$ (pair$ ?0 ?v0!8))))))
  4.2035 -(let ((@x2150 (monotonicity (rewrite $x2146) (= (= (+ (b_G$ (pair$ ?0 ?v0!8)) ?x230 ?x1662) 0) $x2148))))
  4.2036 -(let ((@x2159 (quant-intro (monotonicity (monotonicity @x2150 (= $x1675 $x2151)) (= $x1684 $x2154)) (= $x1687 $x2157))))
  4.2037 -(let ((@x2162 (monotonicity (rewrite (= $x1681 (and $x1660 $x1665))) @x2159 (= $x1691 (and (and $x1660 $x1665) $x2157)))))
  4.2038 -(let ((@x2167 (trans @x2162 (rewrite (= (and (and $x1660 $x1665) $x2157) $x2163)) (= $x1691 $x2163))))
  4.2039 -(let ((@x2229 (monotonicity (monotonicity @x2167 @x2223 (= $x1764 $x2224)) (= $x1768 (and $x1652 $x2224)))))
  4.2040 -(let ((@x2308 (monotonicity (trans @x2229 (rewrite (= (and $x1652 $x2224) $x2230)) (= $x1768 $x2230)) (trans @x2300 (rewrite (= (and $x1801 $x2295) $x2301)) (= $x1995 $x2301)) (= $x1999 $x2306))))
  4.2041 -(let ((?x1000 (* (- 1) ?x174)))
  4.2042 -(let ((?x1614 (fun_app$c v_b_SP_G_1$ ?x1613)))
  4.2043 -(let ((?x1620 (b_G$ (pair$ ?x1613 ?0))))
  4.2044 -(let (($x1622 (= (+ ?x1620 ?x1614 ?x1000) 0)))
  4.2045 -(let (($x1623 (and (not (>= (+ ?x1614 ?x1000) 0)) $x1618 $x1622)))
  4.2046 -(let (($x1626 (or $x1009 $x1623)))
  4.2047 -(let ((@x2126 (monotonicity (rewrite (= (+ ?x1620 ?x1614 ?x1000) (+ ?x1000 ?x1614 ?x1620))) (= $x1622 (= (+ ?x1000 ?x1614 ?x1620) 0)))))
  4.2048 -(let ((@x2133 (trans @x2126 (rewrite (= (= (+ ?x1000 ?x1614 ?x1620) 0) $x2129)) (= $x1622 $x2129))))
  4.2049 -(let ((@x2110 (monotonicity (rewrite (= (+ ?x1614 ?x1000) (+ ?x1000 ?x1614))) (= (>= (+ ?x1614 ?x1000) 0) (>= (+ ?x1000 ?x1614) 0)))))
  4.2050 -(let ((@x2117 (trans @x2110 (rewrite (= (>= (+ ?x1000 ?x1614) 0) $x2113)) (= (>= (+ ?x1614 ?x1000) 0) $x2113))))
  4.2051 -(let ((@x2136 (monotonicity (monotonicity @x2117 (= (not (>= (+ ?x1614 ?x1000) 0)) (not $x2113))) @x2133 (= $x1623 $x2134))))
  4.2052 -(let (($x1587 (= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128) (b_G$ (pair$ ?x1578 ?0))) 0)))
  4.2053 -(let (($x1588 (and (not (>= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128)) 0)) $x1583 $x1587)))
  4.2054 -(let (($x1591 (or $x954 $x1588)))
  4.2055 -(let (($x2086 (= (+ (* (- 1) ?x128) (v_b_SP_G_0$ ?x1578) (b_G$ (pair$ ?x1578 ?0))) 0)))
  4.2056 -(let (($x2084 (= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128) (b_G$ (pair$ ?x1578 ?0))) (+ (* (- 1) ?x128) (v_b_SP_G_0$ ?x1578) (b_G$ (pair$ ?x1578 ?0))))))
  4.2057 -(let ((@x2095 (trans (monotonicity (rewrite $x2084) (= $x1587 $x2086)) (rewrite (= $x2086 $x2091)) (= $x1587 $x2091))))
  4.2058 -(let (($x2081 (= (not (>= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128)) 0)) (not $x2075))))
  4.2059 -(let (($x1581 (>= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128)) 0)))
  4.2060 -(let (($x2068 (= (+ (v_b_SP_G_0$ ?x1578) (* (- 1) ?x128)) (+ (* (- 1) ?x128) (v_b_SP_G_0$ ?x1578)))))
  4.2061 -(let ((@x2072 (monotonicity (rewrite $x2068) (= $x1581 (>= (+ (* (- 1) ?x128) (v_b_SP_G_0$ ?x1578)) 0)))))
  4.2062 -(let ((@x2079 (trans @x2072 (rewrite (= (>= (+ (* (- 1) ?x128) (v_b_SP_G_0$ ?x1578)) 0) $x2075)) (= $x1581 $x2075))))
  4.2063 -(let ((@x2101 (monotonicity (monotonicity (monotonicity @x2079 $x2081) @x2095 (= $x1588 $x2096)) (= $x1591 $x2099))))
  4.2064 -(let ((@x2311 (monotonicity (quant-intro @x2101 (= $x1594 $x2102)) (quant-intro (monotonicity @x2136 (= $x1626 $x2137)) (= $x1629 $x2140)) (= $x1632 (and $x2102 $x173 $x1051 $x1045 $x997 $x2140)))))
  4.2065 -(let ((@x2314 (monotonicity @x2311 @x2308 (= $x2003 (and (and $x2102 $x173 $x1051 $x1045 $x997 $x2140) $x2306)))))
  4.2066 -(let ((@x2319 (trans @x2314 (rewrite (= (and (and $x2102 $x173 $x1051 $x1045 $x997 $x2140) $x2306) $x2315)) (= $x2003 $x2315))))
  4.2067 -(let ((@x2061 (monotonicity (rewrite (= $x1561 (and $x1539 $x1544))) (= $x1571 (and (and $x1539 $x1544) $x1567)))))
  4.2068 -(let ((@x2066 (trans @x2061 (rewrite (= (and (and $x1539 $x1544) $x1567) $x2062)) (= $x1571 $x2062))))
  4.2069 -(let ((@x2325 (monotonicity (monotonicity @x2066 @x2319 (= $x2007 $x2320)) (= $x2011 $x2323))))
  4.2070 -(let ((@x2050 (monotonicity (rewrite (= (+ ?x1521 ?x1523 ?x1514) ?x2045)) (= (>= (+ ?x1521 ?x1523 ?x1514) 0) $x2048))))
  4.2071 -(let ((@x2053 (monotonicity @x2050 (= (or $x1520 (>= (+ ?x1521 ?x1523 ?x1514) 0)) $x2051))))
  4.2072 -(let ((@x2328 (monotonicity (monotonicity @x2053 (= $x1527 $x2054)) @x2325 (= $x2015 $x2326))))
  4.2073 -(let ((@x2337 (monotonicity (monotonicity (monotonicity @x2328 (= $x2019 $x2329)) (= $x2023 $x2332)) (= $x2027 $x2335))))
  4.2074 -(let ((@x2343 (monotonicity (rewrite (= $x1471 $x145)) (monotonicity @x2337 (= $x2031 $x2338)) (= $x2035 $x2341))))
  4.2075 -(let (($x1926 (exists ((?v1 B_Vertex$) )(let ((?x1911 (v_b_SP_G_2$ ?v0!20)))
  4.2076 -(let ((?x1912 (* (- 1) ?x1911)))
  4.2077 -(let ((?x273 (v_b_SP_G_2$ ?v1)))
  4.2078 -(let (($x291 (fun_app$ v_b_Visited_G_2$ ?v1)))
  4.2079 -(and (not (>= (+ ?x273 ?x1912) 0)) $x291 (= (+ (b_G$ (pair$ ?v1 ?v0!20)) ?x273 ?x1912) 0)))))))
  4.2080 -))
  4.2081 -(let ((@x1944 (nnf-neg (refl (~ $x1932 $x1932)) (nnf-neg (refl (~ $x1935 $x1935)) (~ (not $x1926) $x1938)) (~ (not (or (not (and $x1910 $x1915)) $x1926)) $x1942))))
  4.2082 -(let ((@x1946 (trans (sk (~ (not $x1329) (not (or (not (and $x1910 $x1915)) $x1926)))) @x1944 (~ (not $x1329) $x1942))))
  4.2083 -(let ((@x1907 (nnf-neg (nnf-pos (refl (~ $x1286 $x1286)) (~ $x1289 $x1289)) (~ (not $x1292) $x1289))))
  4.2084 -(let ((@x1954 (nnf-neg (sk (~ $x1292 $x1898)) (nnf-neg @x1907 @x1946 (~ (not $x1332) $x1947)) (~ (not $x1335) $x1951))))
  4.2085 -(let ((@x1880 (nnf-neg (nnf-pos (refl (~ $x1267 $x1267)) (~ $x1270 $x1270)) (~ (not $x1273) $x1270))))
  4.2086 -(let ((@x1962 (nnf-neg (sk (~ $x1273 $x1871)) (nnf-neg @x1880 @x1954 (~ (not $x1338) $x1955)) (~ (not $x1341) $x1959))))
  4.2087 -(let ((@x1857 (nnf-neg (nnf-pos (refl (~ (>= ?x273 0) (>= ?x273 0))) (~ $x1256 $x1256)) (~ (not $x1259) $x1256))))
  4.2088 -(let ((@x1970 (nnf-neg (sk (~ $x1259 $x1848)) (nnf-neg @x1857 @x1962 (~ (not $x1344) $x1963)) (~ (not $x1347) $x1967))))
  4.2089 -(let ((@x1978 (nnf-neg (refl (~ $x773 $x773)) (nnf-neg (refl (~ $x1842 $x1842)) @x1970 (~ (not $x1350) $x1971)) (~ (not $x1353) $x1975))))
  4.2090 -(let ((@x1839 (nnf-neg (nnf-pos (refl (~ (or $x300 $x278) (or $x300 $x278))) (~ $x652 $x652)) (~ (not $x785) $x652))))
  4.2091 -(let ((@x1986 (nnf-neg (sk (~ $x785 $x1830)) (nnf-neg @x1839 @x1978 (~ (not $x1356) $x1979)) (~ (not $x1359) $x1983))))
  4.2092 -(let ((@x1822 (nnf-neg (nnf-pos (refl (~ $x1243 $x1243)) (~ $x1247 $x1247)) (~ (not $x1250) $x1247))))
  4.2093 -(let ((@x1994 (nnf-neg (sk (~ $x1250 $x1813)) (nnf-neg @x1822 @x1986 (~ (not $x1362) $x1987)) (~ (not $x1365) $x1991))))
  4.2094 -(let ((@x1803 (monotonicity (sk (~ $x1080 (and $x1774 $x1779))) (refl (~ $x256 $x256)) (refl (~ $x1214 $x1214)) (nnf-pos (refl (~ $x1206 $x1206)) (~ $x1209 $x1209)) (refl (~ $x266 $x266)) (nnf-pos (refl (~ $x1190 $x1190)) (~ $x1193 $x1193)) (nnf-pos (refl (~ $x1196 $x1196)) (~ $x1199 $x1199)) (~ $x1235 $x1801))))
  4.2095 -(let ((@x1998 (nnf-neg (nnf-neg @x1803 (~ (not $x1240) $x1801)) @x1994 (~ (not $x1368) $x1995))))
  4.2096 -(let ((@x1748 (nnf-neg (nnf-pos (refl (~ $x1143 $x1143)) (~ $x1146 $x1146)) (~ (not $x1149) $x1146))))
  4.2097 -(let ((@x1759 (nnf-neg (sk (~ $x1149 $x1739)) (nnf-neg @x1748 (refl (~ $x1749 $x1749)) (~ (not $x1152) $x1752)) (~ (not $x1155) $x1756))))
  4.2098 -(let ((@x1715 (nnf-pos (monotonicity (refl (~ $x1106 $x1106)) (sk (~ $x1122 $x1707)) (~ $x1125 $x1710)) (~ $x1128 $x1713))))
  4.2099 -(let ((@x1763 (nnf-neg (nnf-neg @x1715 (~ (not $x1131) $x1713)) @x1759 (~ (not $x1158) $x1760))))
  4.2100 -(let (($x1676 (exists ((?v1 B_Vertex$) )(let ((?x1661 (fun_app$c v_b_SP_G_3$ ?v0!8)))
  4.2101 -(let ((?x1662 (* (- 1) ?x1661)))
  4.2102 -(let ((?x230 (fun_app$c v_b_SP_G_3$ ?v1)))
  4.2103 -(and (not (>= (+ ?x230 ?x1662) 0)) (= (+ (b_G$ (pair$ ?v1 ?v0!8)) ?x230 ?x1662) 0))))))
  4.2104 -))
  4.2105 -(let ((@x1693 (nnf-neg (refl (~ $x1681 $x1681)) (nnf-neg (refl (~ $x1684 $x1684)) (~ (not $x1676) $x1687)) (~ (not (or (not (and $x1660 $x1665)) $x1676)) $x1691))))
  4.2106 -(let ((@x1695 (trans (sk (~ $x1131 (not (or (not (and $x1660 $x1665)) $x1676)))) @x1693 (~ $x1131 $x1691))))
  4.2107 -(let ((@x1654 (monotonicity (nnf-neg (refl (~ (not $x1077) (not $x1077))) (~ $x1083 $x1641)) (refl (~ $x212 $x212)) (refl (~ $x215 $x215)) (refl (~ $x217 $x217)) (refl (~ $x220 $x220)) (~ $x1089 $x1652))))
  4.2108 -(let ((@x1771 (nnf-neg (nnf-neg @x1654 (~ (not $x1094) $x1652)) (nnf-neg @x1695 @x1763 (~ (not $x1161) $x1764)) (~ (not $x1164) $x1768))))
  4.2109 -(let ((@x1631 (nnf-pos (monotonicity (refl (~ $x1009 $x1009)) (sk (~ $x1031 $x1623)) (~ $x1034 $x1626)) (~ $x1037 $x1629))))
  4.2110 -(let ((@x1596 (nnf-pos (monotonicity (refl (~ $x954 $x954)) (sk (~ $x974 $x1588)) (~ $x977 $x1591)) (~ $x980 $x1594))))
  4.2111 -(let ((@x1634 (monotonicity @x1596 (refl (~ $x173 $x173)) (nnf-pos (refl (~ (>= ?x174 0) (>= ?x174 0))) (~ $x1051 $x1051)) (nnf-pos (refl (~ $x1042 $x1042)) (~ $x1045 $x1045)) (nnf-pos (refl (~ $x994 $x994)) (~ $x997 $x997)) @x1631 (~ $x1069 $x1632))))
  4.2112 -(let ((@x2006 (nnf-neg (nnf-neg @x1634 (~ (not $x1074) $x1632)) (nnf-neg @x1771 @x1998 (~ (not $x1371) $x1999)) (~ (not $x1374) $x2003))))
  4.2113 -(let (($x1555 (exists ((?v1 B_Vertex$) )(let ((?x1540 (v_b_SP_G_0$ ?v0!5)))
  4.2114 -(let ((?x1541 (* (- 1) ?x1540)))
  4.2115 -(let ((?x128 (v_b_SP_G_0$ ?v1)))
  4.2116 -(let (($x136 (v_b_Visited_G_0$ ?v1)))
  4.2117 -(and (not (>= (+ ?x128 ?x1541) 0)) $x136 (= (+ ?x128 ?x1541 (b_G$ (pair$ ?v1 ?v0!5))) 0)))))))
  4.2118 -))
  4.2119 -(let ((@x1573 (nnf-neg (refl (~ $x1561 $x1561)) (nnf-neg (refl (~ $x1564 $x1564)) (~ (not $x1555) $x1567)) (~ (not (or (not (and $x1539 $x1544)) $x1555)) $x1571))))
  4.2120 -(let ((@x1575 (trans (sk (~ (not $x980) (not (or (not (and $x1539 $x1544)) $x1555)))) @x1573 (~ (not $x980) $x1571))))
  4.2121 -(let ((@x1536 (nnf-neg (nnf-pos (refl (~ $x936 $x936)) (~ $x939 $x939)) (~ (not $x942) $x939))))
  4.2122 -(let ((@x2014 (nnf-neg @x1536 (nnf-neg @x1575 @x2006 (~ (not $x1377) $x2007)) (~ (not $x1380) $x2011))))
  4.2123 -(let ((@x1509 (nnf-neg (nnf-pos (refl (~ $x911 $x911)) (~ $x914 $x914)) (~ (not $x917) $x914))))
  4.2124 -(let ((@x2022 (nnf-neg @x1509 (nnf-neg (sk (~ $x942 $x1527)) @x2014 (~ (not $x1383) $x2015)) (~ (not $x1386) $x2019))))
  4.2125 -(let ((@x1486 (nnf-neg (nnf-pos (refl (~ (>= ?x128 0) (>= ?x128 0))) (~ $x899 $x899)) (~ (not $x902) $x899))))
  4.2126 -(let ((@x2030 (nnf-neg @x1486 (nnf-neg (sk (~ $x917 $x1500)) @x2022 (~ (not $x1389) $x2023)) (~ (not $x1392) $x2027))))
  4.2127 -(let ((@x2038 (nnf-neg (refl (~ $x1471 $x1471)) (nnf-neg (sk (~ $x902 $x1477)) @x2030 (~ (not $x1395) $x2031)) (~ (not $x1398) $x2035))))
  4.2128 -(let ((@x2042 (mp~ (not-or-elim (mp (asserted $x349) @x1411 $x1407) (not $x1401)) (nnf-neg (refl (~ $x869 $x869)) @x2038 (~ (not $x1401) $x2039)) $x2039)))
  4.2129 -(let ((@x3878 (mp (mp (mp @x2042 (monotonicity @x2343 (= $x2039 $x2344)) $x2344) @x3020 $x3018) (monotonicity @x3874 (= $x3018 $x3875)) $x3875)))
  4.2130 -(let ((@x4209 (unit-resolution @x3878 (lemma (unit-resolution @x5763 @x3492 (hypothesis $x869) false) $x145) $x3872)))
  4.2131 -(let ((@x4211 (unit-resolution (def-axiom (or $x3866 $x1477 $x3860)) (unit-resolution (def-axiom (or $x3869 $x3863)) @x4209 $x3863) (lemma @x6353 $x1476) $x3860)))
  4.2132 -(let ((@x6165 (unit-resolution ((_ quant-inst ?v0!2) (or (not $x3500) $x2348)) @x3505 (hypothesis $x1491) false)))
  4.2133 -(let ((@x4215 (unit-resolution (def-axiom (or $x3854 $x2368 $x3848)) (unit-resolution (def-axiom (or $x2363 $x1491)) (lemma @x6165 $x2348) $x2363) (unit-resolution (def-axiom (or $x3857 $x3851)) @x4211 $x3851) $x3848)))
  4.2134 -(let ((@x4217 (unit-resolution (def-axiom (or $x3842 $x2414 $x3836)) (unit-resolution (def-axiom (or $x3845 $x3839)) @x4215 $x3839) (unit-resolution (def-axiom (or $x2409 $x1512)) (lemma @x3073 $x2394) $x2409) $x3836)))
  4.2135 -(let ((@x4219 (unit-resolution (def-axiom (or $x3830 $x3544 $x3824)) (unit-resolution (def-axiom (or $x3833 $x3827)) @x4217 $x3827) (lemma @x5735 $x3541) $x3824)))
  4.2136 -(let ((@x5955 (unit-resolution (def-axiom (or $x3821 $x3556)) @x4219 $x3556)))
  4.2137 -(let (($x4373 (or $x3561 $x3904)))
  4.2138 -(let ((@x4363 ((_ quant-inst v_b_v_G_1$) $x4373)))
  4.2139 -(let ((@x5049 (unit-resolution @x4363 @x5955 $x3904)))
  4.2140 -(let ((?x5210 (pair$ v_b_v_G_1$ ?v0!15)))
  4.2141 -(let ((?x5018 (b_G$ ?x5210)))
  4.2142 -(let ((?x4456 (* (- 1) ?x1846)))
  4.2143 -(let ((?x6267 (+ ?x257 ?x4456 ?x5018)))
  4.2144 -(let (($x5853 (<= ?x6267 0)))
  4.2145 -(let (($x6128 (= ?x6267 0)))
  4.2146 -(let (($x6822 (>= (+ ?x257 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!15)) ?x5018) 0)))
  4.2147 -(let (($x4911 (<= (+ b_Infinity$ (* (- 1) ?x5018)) 0)))
  4.2148 -(let (($x6706 (or $x4911 $x6822)))
  4.2149 -(let (($x6711 (not $x6706)))
  4.2150 -(let ((@x5703 (hypothesis $x1848)))
  4.2151 -(let (($x5745 (or (not (>= (+ ?x1846 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!15))) 0)) $x1847)))
  4.2152 -(let ((?x4480 (fun_app$c v_b_SP_G_1$ ?v0!15)))
  4.2153 -(let (($x5850 (>= ?x4480 0)))
  4.2154 -(let ((@x5698 ((_ th-lemma arith farkas -1 1 1) @x5703 (hypothesis (>= (+ ?x1846 (* (- 1) ?x4480)) 0)) (unit-resolution ((_ quant-inst ?v0!15) (or $x3561 $x5850)) @x5955 $x5850) false)))
  4.2155 -(let ((@x6183 (unit-resolution (lemma @x5698 $x5745) @x5703 (not (>= (+ ?x1846 (* (- 1) ?x4480)) 0)))))
  4.2156 -(let ((@x6242 ((_ th-lemma arith triangle-eq) (or (not (= ?x1846 ?x4480)) (>= (+ ?x1846 (* (- 1) ?x4480)) 0)))))
  4.2157 -(let ((@x4529 (unit-resolution (def-axiom (or $x3821 $x173)) @x4219 $x173)))
  4.2158 -(let ((@x5142 (hypothesis $x3657)))
  4.2159 -(let ((@x4265 (unit-resolution (def-axiom (or $x3654 $x217)) @x5142 $x217)))
  4.2160 -(let ((?x5667 (fun_app$c v_b_SP_G_1$ ?v1!10)))
  4.2161 -(let ((?x5152 (fun_app$c v_b_SP_G_1$ ?v0!11)))
  4.2162 -(let ((?x5630 (* (- 1) ?x5152)))
  4.2163 -(let (($x4072 (>= (+ ?x1727 ?x5630 ?x5667) 0)))
  4.2164 -(let (($x5699 (fun_app$ v_b_Visited_G_1$ ?v1!10)))
  4.2165 -(let (($x1725 (not $x1724)))
  4.2166 -(let ((@x4170 (hypothesis $x2650)))
  4.2167 -(let (($x4150 (>= (+ ?x1721 (* (- 1) ?x5667)) 0)))
  4.2168 -(let ((@x4195 (monotonicity (symm (hypothesis $x217) (= v_b_SP_G_1$ v_b_SP_G_3$)) (= ?x5667 ?x1721))))
  4.2169 -(let ((@x4203 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1721 ?x5667)) $x4150)) (symm @x4195 (= ?x1721 ?x5667)) $x4150)))
  4.2170 -(let (($x4167 (or (not (<= (+ b_Infinity$ (* (- 1) ?x5667)) 0)) (not $x4150) $x1724)))
  4.2171 -(let ((@x4163 ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x4150) (hypothesis (<= (+ b_Infinity$ (* (- 1) ?x5667)) 0)) (hypothesis $x1725) false)))
  4.2172 -(let ((@x4204 (unit-resolution (lemma @x4163 $x4167) @x4203 (unit-resolution (def-axiom (or $x2645 $x1725)) @x4170 $x1725) (not (<= (+ b_Infinity$ (* (- 1) ?x5667)) 0)))))
  4.2173 -(let (($x6045 (<= (+ b_Infinity$ (* (- 1) ?x5667)) 0)))
  4.2174 -(let (($x5247 (or $x5699 $x6045)))
  4.2175 -(let ((@x3048 (mp ((_ quant-inst ?v1!10) (or $x3595 $x5247)) (rewrite (= (or $x3595 $x5247) (or $x3595 $x5699 $x6045))) (or $x3595 $x5699 $x6045))))
  4.2176 -(let ((@x4206 (unit-resolution (unit-resolution @x3048 (hypothesis $x3590) $x5247) @x4204 $x5699)))
  4.2177 -(let ((@x4223 (unit-resolution (def-axiom (or $x3821 $x3573)) @x4219 $x3573)))
  4.2178 -(let (($x5758 (not $x5699)))
  4.2179 -(let (($x4064 (or $x3578 $x5758 $x1730 $x4072)))
  4.2180 -(let (($x5845 (or $x5758 $x1730 (>= (+ ?x1727 ?x5667 ?x5630) 0))))
  4.2181 -(let (($x4065 (or $x3578 $x5845)))
  4.2182 -(let ((@x4061 (monotonicity (rewrite (= (+ ?x1727 ?x5667 ?x5630) (+ ?x1727 ?x5630 ?x5667))) (= (>= (+ ?x1727 ?x5667 ?x5630) 0) $x4072))))
  4.2183 -(let ((@x4102 (monotonicity (monotonicity @x4061 (= $x5845 (or $x5758 $x1730 $x4072))) (= $x4065 (or $x3578 (or $x5758 $x1730 $x4072))))))
  4.2184 -(let ((@x4106 (trans @x4102 (rewrite (= (or $x3578 (or $x5758 $x1730 $x4072)) $x4064)) (= $x4065 $x4064))))
  4.2185 -(let ((@x4225 (unit-resolution (mp ((_ quant-inst ?v0!11 ?v1!10) $x4065) @x4106 $x4064) @x4223 (unit-resolution (def-axiom (or $x2645 (not $x1730))) @x4170 (not $x1730)) (or $x5758 $x4072))))
  4.2186 -(let ((@x4228 (monotonicity (symm (hypothesis $x217) (= v_b_SP_G_1$ v_b_SP_G_3$)) (= ?x5152 ?x1734))))
  4.2187 -(let ((@x4234 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1734 ?x5152)) (<= (+ ?x1734 ?x5630) 0))) (symm @x4228 (= ?x1734 ?x5152)) (<= (+ ?x1734 ?x5630) 0))))
  4.2188 -(let ((@x4235 ((_ th-lemma arith farkas -1 -1 1 1) @x4234 (unit-resolution (def-axiom (or $x2645 (not $x2209))) @x4170 (not $x2209)) @x4203 (unit-resolution @x4225 @x4206 $x4072) false)))
  4.2189 -(let ((@x4885 (unit-resolution (lemma @x4235 (or $x2645 $x3595 $x2708)) @x4265 (unit-resolution (def-axiom (or $x3654 $x3590)) @x5142 $x3590) $x2645)))
  4.2190 -(let (($x4595 (<= (+ ?x1661 (* (- 1) (fun_app$c v_b_SP_G_3$ (?v1!7 ?v0!8)))) 0)))
  4.2191 -(let ((?x3922 (?v1!7 ?v0!8)))
  4.2192 -(let ((?x3910 (fun_app$c v_b_SP_G_1$ ?x3922)))
  4.2193 -(let ((?x3989 (* (- 1) ?x3910)))
  4.2194 -(let ((?x3142 (fun_app$c v_b_SP_G_1$ ?v0!8)))
  4.2195 -(let (($x3936 (<= (+ ?x3142 ?x3989) 0)))
  4.2196 -(let (($x4266 (not $x3936)))
  4.2197 -(let ((?x3945 (pair$ ?x3922 ?v0!8)))
  4.2198 -(let ((?x3946 (b_G$ ?x3945)))
  4.2199 -(let ((?x3031 (* (- 1) ?x3946)))
  4.2200 -(let ((?x3056 (+ ?x3142 ?x3989 ?x3031)))
  4.2201 -(let (($x3032 (= ?x3056 0)))
  4.2202 -(let (($x3033 (not $x3032)))
  4.2203 -(let (($x3034 (or $x3936 (not (fun_app$ v_b_Visited_G_1$ ?x3922)) $x3033)))
  4.2204 -(let (($x3049 (not $x3034)))
  4.2205 -(let ((@x3978 (hypothesis $x1665)))
  4.2206 -(let ((?x3144 (* (- 1) ?x3142)))
  4.2207 -(let ((?x3984 (+ ?x1661 ?x3144)))
  4.2208 -(let (($x3969 (>= ?x3984 0)))
  4.2209 -(let ((@x4544 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1661 ?x3142)) $x3969)) (monotonicity @x4265 (= ?x1661 ?x3142)) $x3969)))
  4.2210 -(let ((@x3973 ((_ th-lemma arith farkas 1 -1 1) (hypothesis $x3969) (hypothesis (<= (+ b_Infinity$ ?x3144) 0)) @x3978 false)))
  4.2211 -(let ((@x4027 (lemma @x3973 (or (not (<= (+ b_Infinity$ ?x3144) 0)) (not $x3969) $x1664))))
  4.2212 -(let ((@x4552 (unit-resolution @x4027 @x4544 @x3978 (not (<= (+ b_Infinity$ ?x3144) 0)))))
  4.2213 -(let ((@x3425 (def-axiom (or $x3630 $x1749))))
  4.2214 -(let ((@x4543 (unit-resolution @x3425 (trans (monotonicity @x4265 (= ?x245 ?x172)) @x4529 $x246) $x3630)))
  4.2215 -(let ((@x3134 (def-axiom (or $x3639 $x2650 $x3633))))
  4.2216 -(let ((@x3138 (def-axiom (or $x3642 $x3636))))
  4.2217 -(let ((@x3120 (def-axiom (or $x3651 $x3611 $x3645))))
  4.2218 -(let ((@x4905 (unit-resolution @x3120 (unit-resolution @x3138 (unit-resolution @x3134 @x4543 @x4885 $x3639) $x3642) (unit-resolution (def-axiom (or $x3654 $x3648)) @x5142 $x3648) $x3611)))
  4.2219 -(let ((@x4545 (unit-resolution (def-axiom (or $x3821 $x3581)) @x4219 $x3581)))
  4.2220 -(let (($x4738 (= (or $x3586 (or $x1659 (<= (+ b_Infinity$ ?x3144) 0) $x3049)) (or $x3586 $x1659 (<= (+ b_Infinity$ ?x3144) 0) $x3049))))
  4.2221 -(let ((@x4737 ((_ quant-inst ?v0!8) (or $x3586 (or $x1659 (<= (+ b_Infinity$ ?x3144) 0) $x3049)))))
  4.2222 -(let ((@x5209 (mp @x4737 (rewrite $x4738) (or $x3586 $x1659 (<= (+ b_Infinity$ ?x3144) 0) $x3049))))
  4.2223 -(let ((@x4406 (unit-resolution @x5209 @x4545 (unit-resolution (def-axiom (or $x3608 $x1660)) @x4905 $x1660) @x4552 $x3049)))
  4.2224 -(let ((?x3126 (fun_app$c v_b_SP_G_3$ ?x3922)))
  4.2225 -(let ((?x4327 (+ ?x3126 ?x3989)))
  4.2226 -(let (($x4402 (<= ?x4327 0)))
  4.2227 -(let ((@x4541 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x3126 ?x3910)) $x4402)) (monotonicity @x4265 (= ?x3126 ?x3910)) $x4402)))
  4.2228 -(let ((@x4852 ((_ th-lemma arith farkas 1 -1 -1 1) (hypothesis $x3969) (hypothesis $x4595) (hypothesis $x4402) (hypothesis $x4266) false)))
  4.2229 -(let ((@x4542 (unit-resolution (lemma @x4852 (or (not $x4595) (not $x3969) (not $x4402) $x3936)) @x4544 @x4541 (unit-resolution (def-axiom (or $x3034 $x4266)) @x4406 $x4266) (not $x4595))))
  4.2230 -(let ((?x5182 (* (- 1) ?x3126)))
  4.2231 -(let ((?x4179 (+ ?x1661 ?x5182 ?x3031)))
  4.2232 -(let (($x5089 (= ?x4179 0)))
  4.2233 -(let (($x3918 (>= ?x4179 0)))
  4.2234 -(let (($x5284 (>= ?x3056 0)))
  4.2235 -(let ((@x4264 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x3033 $x5284)) (unit-resolution (def-axiom (or $x3034 $x3032)) @x4406 $x3032) $x5284)))
  4.2236 -(let ((@x5267 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 1) (or $x3918 (not $x5284) (not $x3969) (not $x4402))) @x4264 @x4544 @x4541 $x3918)))
  4.2237 -(let (($x3917 (<= ?x4179 0)))
  4.2238 -(let (($x4407 (>= ?x4327 0)))
  4.2239 -(let ((@x4549 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x3126 ?x3910)) $x4407)) (monotonicity @x4265 (= ?x3126 ?x3910)) $x4407)))
  4.2240 -(let (($x3979 (<= ?x3984 0)))
  4.2241 -(let ((@x6239 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x1661 ?x3142)) $x3979)) (monotonicity @x4265 (= ?x1661 ?x3142)) $x3979)))
  4.2242 -(let (($x5179 (<= ?x3056 0)))
  4.2243 -(let ((@x3960 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x3033 $x5179)) (unit-resolution (def-axiom (or $x3034 $x3032)) @x4406 $x3032) $x5179)))
  4.2244 -(let ((@x4631 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 1) (or $x3917 (not $x5179) (not $x3979) (not $x4407))) @x3960 @x6239 @x4549 $x3917)))
  4.2245 -(let ((@x4760 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x5089 (not $x3917) (not $x3918))) @x4631 @x5267 $x5089)))
  4.2246 -(let (($x4746 (not $x5089)))
  4.2247 -(let (($x4181 (or $x4595 $x4746)))
  4.2248 -(let (($x3184 (or $x3605 $x4595 $x4746)))
  4.2249 -(let (($x5980 (>= (+ ?x3126 ?x1662) 0)))
  4.2250 -(let (($x5913 (or $x5980 (not (= (+ ?x3126 ?x1662 ?x3946) 0)))))
  4.2251 -(let (($x3976 (or $x3605 $x5913)))
  4.2252 -(let ((@x4178 (monotonicity (rewrite (= (+ ?x3126 ?x1662 ?x3946) (+ ?x1662 ?x3126 ?x3946))) (= (= (+ ?x3126 ?x1662 ?x3946) 0) (= (+ ?x1662 ?x3126 ?x3946) 0)))))
  4.2253 -(let ((@x4745 (trans @x4178 (rewrite (= (= (+ ?x1662 ?x3126 ?x3946) 0) $x5089)) (= (= (+ ?x3126 ?x1662 ?x3946) 0) $x5089))))
  4.2254 -(let ((@x5181 (monotonicity (rewrite (= (+ ?x3126 ?x1662) (+ ?x1662 ?x3126))) (= $x5980 (>= (+ ?x1662 ?x3126) 0)))))
  4.2255 -(let ((@x4634 (trans @x5181 (rewrite (= (>= (+ ?x1662 ?x3126) 0) $x4595)) (= $x5980 $x4595))))
  4.2256 -(let ((@x4184 (monotonicity @x4634 (monotonicity @x4745 (= (not (= (+ ?x3126 ?x1662 ?x3946) 0)) $x4746)) (= $x5913 $x4181))))
  4.2257 -(let ((@x3916 (trans (monotonicity @x4184 (= $x3976 (or $x3605 $x4181))) (rewrite (= (or $x3605 $x4181) $x3184)) (= $x3976 $x3184))))
  4.2258 -(let ((@x5060 (unit-resolution (mp ((_ quant-inst (?v1!7 ?v0!8)) $x3976) @x3916 $x3184) (unit-resolution (def-axiom (or $x3608 $x3600)) @x4905 $x3600) $x4181)))
  4.2259 -(let ((@x6153 (unit-resolution (lemma (unit-resolution @x5060 @x4760 @x4542 false) (or $x3654 $x1664)) @x5142 $x1664)))
  4.2260 -(let ((@x6273 (unit-resolution @x3120 (unit-resolution (def-axiom (or $x3608 $x1665)) @x6153 $x3608) (unit-resolution (def-axiom (or $x3654 $x3648)) @x5142 $x3648) $x3645)))
  4.2261 -(let ((@x5939 (unit-resolution @x3425 (unit-resolution @x3134 (unit-resolution @x3138 @x6273 $x3636) @x4885 $x3633) $x1749)))
  4.2262 -(let ((@x5914 (unit-resolution @x5939 (trans (monotonicity @x4265 (= ?x245 ?x172)) @x4529 $x246) false)))
  4.2263 -(let ((@x6386 (unit-resolution (def-axiom (or $x3818 $x3657 $x3812)) (unit-resolution (def-axiom (or $x3821 $x3815)) @x4219 $x3815) $x3815)))
  4.2264 -(let ((@x6181 (unit-resolution @x6386 (lemma @x5914 $x3654) $x3812)))
  4.2265 -(let ((@x5944 (unit-resolution (def-axiom (or $x3809 $x3678)) @x6181 $x3678)))
  4.2266 -(let (($x4481 (= ?x1846 ?x4480)))
  4.2267 -(let (($x3188 (or $x3683 $x6711 $x4481)))
  4.2268 -(let (($x5285 (or (not (or $x4911 (<= (+ ?x4480 ?x1173 (* (- 1) ?x5018)) 0))) $x4481)))
  4.2269 -(let (($x6363 (or $x3683 $x5285)))
  4.2270 -(let (($x5370 (<= (+ ?x4480 ?x1173 (* (- 1) ?x5018)) 0)))
  4.2271 -(let ((@x4465 (rewrite (= (+ ?x4480 ?x1173 (* (- 1) ?x5018)) (+ ?x1173 ?x4480 (* (- 1) ?x5018))))))
  4.2272 -(let ((@x6818 (monotonicity @x4465 (= $x5370 (<= (+ ?x1173 ?x4480 (* (- 1) ?x5018)) 0)))))
  4.2273 -(let ((@x6705 (trans @x6818 (rewrite (= (<= (+ ?x1173 ?x4480 (* (- 1) ?x5018)) 0) $x6822)) (= $x5370 $x6822))))
  4.2274 -(let ((@x5840 (monotonicity (monotonicity @x6705 (= (or $x4911 $x5370) $x6706)) (= (not (or $x4911 $x5370)) $x6711))))
  4.2275 -(let ((@x6545 (monotonicity (monotonicity @x5840 (= $x5285 (or $x6711 $x4481))) (= $x6363 (or $x3683 (or $x6711 $x4481))))))
  4.2276 -(let ((@x4811 (trans @x6545 (rewrite (= (or $x3683 (or $x6711 $x4481)) $x3188)) (= $x6363 $x3188))))
  4.2277 -(let ((@x6726 (unit-resolution (mp ((_ quant-inst ?v0!15) $x6363) @x4811 $x3188) @x5944 (unit-resolution @x6242 @x6183 (not $x4481)) $x6711)))
  4.2278 -(let ((@x6470 (unit-resolution (def-axiom (or $x6706 (not $x4911))) (hypothesis $x6711) (not $x4911))))
  4.2279 -(let ((@x6494 (unit-resolution (def-axiom (or $x6706 (not $x6822))) (hypothesis $x6711) (not $x6822))))
  4.2280 -(let (($x6511 (or $x4911 $x6822 $x6128)))
  4.2281 -(let ((@x6588 (unit-resolution (def-axiom (or $x3809 $x3670)) @x6181 $x3670)))
  4.2282 -(let (($x6235 (or $x3675 $x4911 $x6822 $x6128)))
  4.2283 -(let (($x6510 (or $x4911 $x5370 (= (+ ?x257 ?x5018 ?x4456) 0))))
  4.2284 -(let (($x6263 (or $x3675 $x6510)))
  4.2285 -(let ((@x6480 (monotonicity (rewrite (= (+ ?x257 ?x5018 ?x4456) ?x6267)) (= (= (+ ?x257 ?x5018 ?x4456) 0) $x6128))))
  4.2286 -(let ((@x4472 (monotonicity (monotonicity @x6705 @x6480 (= $x6510 $x6511)) (= $x6263 (or $x3675 $x6511)))))
  4.2287 -(let ((@x5852 (mp ((_ quant-inst ?v0!15) $x6263) (trans @x4472 (rewrite (= (or $x3675 $x6511) $x6235)) (= $x6263 $x6235)) $x6235)))
  4.2288 -(let ((@x6501 (unit-resolution (unit-resolution @x5852 @x6588 $x6511) @x6494 @x6470 (hypothesis (not $x6128)) false)))
  4.2289 -(let ((@x4608 (lemma @x6501 (or $x6706 $x6128))))
  4.2290 -(let ((@x6959 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6128) $x5853)) (unit-resolution @x4608 @x6726 $x6128) $x5853)))
  4.2291 -(let (($x6603 (>= ?x5018 0)))
  4.2292 -(let (($x6582 (<= ?x5018 0)))
  4.2293 -(let (($x6583 (not $x6582)))
  4.2294 -(let (($x6156 (= v_b_v_G_1$ ?v0!15)))
  4.2295 -(let (($x5538 (not $x6156)))
  4.2296 -(let ((@x7337 (symm (commutativity (= $x6156 (= ?v0!15 v_b_v_G_1$))) (= (= ?v0!15 v_b_v_G_1$) $x6156))))
  4.2297 -(let (($x6631 (= ?v0!15 v_b_v_G_1$)))
  4.2298 -(let (($x7483 (not $x6631)))
  4.2299 -(let (($x6269 (fun_app$ v_b_Visited_G_1$ ?v0!15)))
  4.2300 -(let (($x7698 (or $x6631 $x6269)))
  4.2301 -(let (($x6630 (fun_app$ ?x265 ?v0!15)))
  4.2302 -(let (($x7702 (= $x6630 $x7698)))
  4.2303 -(let (($x3468 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(!(let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
  4.2304 -(= $x67 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))) :pattern ( (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3) )))
  4.2305 -))
  4.2306 -(let (($x77 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
  4.2307 -(= $x67 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))))
  4.2308 -))
  4.2309 -(let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?3) ?2) ?1) ?0)))
  4.2310 -(let (($x74 (= $x67 (ite (= ?0 ?2) ?1 (fun_app$ ?3 ?0)))))
  4.2311 -(let (($x72 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) (?v3 B_Vertex$) )(let (($x67 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
  4.2312 -(= $x67 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))))
  4.2313 -))
  4.2314 -(let ((@x76 (rewrite (= (= $x67 (ite (= ?0 ?2) ?1 (fun_app$ ?3 ?0))) $x74))))
  4.2315 -(let ((@x1443 (mp~ (mp (asserted $x72) (quant-intro @x76 (= $x72 $x77)) $x77) (nnf-pos (refl (~ $x74 $x74)) (~ $x77 $x77)) $x77)))
  4.2316 -(let ((@x3473 (mp @x1443 (quant-intro (refl (= $x74 $x74)) (= $x77 $x3468)) $x3468)))
  4.2317 -(let (($x4114 (not $x3468)))
  4.2318 -(let (($x6435 (or $x4114 $x7702)))
  4.2319 -(let ((@x5925 (monotonicity (rewrite (= (ite $x6631 true $x6269) $x7698)) (= (= $x6630 (ite $x6631 true $x6269)) $x7702))))
  4.2320 -(let ((@x6213 (monotonicity @x5925 (= (or $x4114 (= $x6630 (ite $x6631 true $x6269))) $x6435))))
  4.2321 -(let ((@x7487 (trans @x6213 (rewrite (= $x6435 $x6435)) (= (or $x4114 (= $x6630 (ite $x6631 true $x6269))) $x6435))))
  4.2322 -(let ((@x7488 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!15) (or $x4114 (= $x6630 (ite $x6631 true $x6269)))) @x7487 $x6435)))
  4.2323 -(let ((@x5875 (symm (unit-resolution (def-axiom (or $x3809 $x266)) @x6181 $x266) (= ?x265 v_b_Visited_G_2$))))
  4.2324 -(let ((@x7321 (symm (monotonicity @x5875 (= $x6630 (fun_app$ v_b_Visited_G_2$ ?v0!15))) (= (fun_app$ v_b_Visited_G_2$ ?v0!15) $x6630))))
  4.2325 -(let ((@x7322 (monotonicity @x7321 (= (not (fun_app$ v_b_Visited_G_2$ ?v0!15)) (not $x6630)))))
  4.2326 -(let (($x4415 (fun_app$ v_b_Visited_G_2$ ?v0!15)))
  4.2327 -(let (($x4479 (not $x4415)))
  4.2328 -(let ((?x5054 (b_G$ (pair$ v_b_v_G_1$ ?v0!13))))
  4.2329 -(let ((?x4706 (+ ?x257 ?x1810 ?x5054)))
  4.2330 -(let (($x4687 (= ?x4706 0)))
  4.2331 -(let (($x5187 (>= (+ ?x257 (* (- 1) ?x1808) ?x5054) 0)))
  4.2332 -(let (($x5051 (<= (+ b_Infinity$ (* (- 1) ?x5054)) 0)))
  4.2333 -(let (($x5186 (or $x5051 $x5187)))
  4.2334 -(let (($x5221 (not $x5186)))
  4.2335 -(let ((@x5744 (monotonicity (commutativity (= (= ?x1808 ?x1809) (= ?x1809 ?x1808))) (= (not (= ?x1808 ?x1809)) (not (= ?x1809 ?x1808))))))
  4.2336 -(let (($x5690 (not (= ?x1808 ?x1809))))
  4.2337 -(let ((@x5726 (mp (unit-resolution ((_ th-lemma arith triangle-eq) (or $x5690 $x1812)) (hypothesis $x1813) $x5690) @x5744 (not (= ?x1809 ?x1808)))))
  4.2338 -(let (($x5270 (= ?x1809 ?x1808)))
  4.2339 -(let (($x5230 (or $x5221 $x5270)))
  4.2340 -(let ((@x4739 (hypothesis $x3678)))
  4.2341 -(let (($x5327 (or $x3683 $x5221 $x5270)))
  4.2342 -(let (($x5333 (or (not (or $x5051 (<= (+ ?x1808 ?x1173 (* (- 1) ?x5054)) 0))) $x5270)))
  4.2343 -(let (($x5268 (or $x3683 $x5333)))
  4.2344 -(let (($x5095 (<= (+ ?x1808 ?x1173 (* (- 1) ?x5054)) 0)))
  4.2345 -(let ((@x5120 (rewrite (= (+ ?x1808 ?x1173 (* (- 1) ?x5054)) (+ ?x1173 ?x1808 (* (- 1) ?x5054))))))
  4.2346 -(let ((@x5127 (monotonicity @x5120 (= $x5095 (<= (+ ?x1173 ?x1808 (* (- 1) ?x5054)) 0)))))
  4.2347 -(let ((@x4705 (trans @x5127 (rewrite (= (<= (+ ?x1173 ?x1808 (* (- 1) ?x5054)) 0) $x5187)) (= $x5095 $x5187))))
  4.2348 -(let ((@x5229 (monotonicity (monotonicity @x4705 (= (or $x5051 $x5095) $x5186)) (= (not (or $x5051 $x5095)) $x5221))))
  4.2349 -(let ((@x5269 (monotonicity (monotonicity @x5229 (= $x5333 $x5230)) (= $x5268 (or $x3683 $x5230)))))
  4.2350 -(let ((@x5432 (mp ((_ quant-inst ?v0!13) $x5268) (trans @x5269 (rewrite (= (or $x3683 $x5230) $x5327)) (= $x5268 $x5327)) $x5327)))
  4.2351 -(let ((@x5729 (unit-resolution (def-axiom (or $x5186 (not $x5051))) (unit-resolution (unit-resolution @x5432 @x4739 $x5230) @x5726 $x5221) (not $x5051))))
  4.2352 -(let ((@x5749 (unit-resolution (def-axiom (or $x5186 (not $x5187))) (unit-resolution (unit-resolution @x5432 @x4739 $x5230) @x5726 $x5221) (not $x5187))))
  4.2353 -(let (($x5211 (or $x5051 $x5187 $x4687)))
  4.2354 -(let ((@x5807 (hypothesis $x3670)))
  4.2355 -(let (($x5189 (or $x3675 $x5051 $x5187 $x4687)))
  4.2356 -(let (($x5102 (or $x5051 $x5095 (= (+ ?x257 ?x5054 ?x1810) 0))))
  4.2357 -(let (($x5163 (or $x3675 $x5102)))
  4.2358 -(let ((@x5164 (monotonicity (rewrite (= (+ ?x257 ?x5054 ?x1810) ?x4706)) (= (= (+ ?x257 ?x5054 ?x1810) 0) $x4687))))
  4.2359 -(let ((@x5215 (monotonicity (monotonicity @x4705 @x5164 (= $x5102 $x5211)) (= $x5163 (or $x3675 $x5211)))))
  4.2360 -(let ((@x5376 (mp ((_ quant-inst ?v0!13) $x5163) (trans @x5215 (rewrite (= (or $x3675 $x5211) $x5189)) (= $x5163 $x5189)) $x5189)))
  4.2361 -(let ((@x5714 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4687) (>= ?x4706 0))) (unit-resolution (unit-resolution @x5376 @x5807 $x5211) @x5749 @x5729 $x4687) (>= ?x4706 0))))
  4.2362 -(let ((@x5723 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (<= ?x1811 0) $x1812)) (hypothesis $x1813) (<= ?x1811 0))))
  4.2363 -(let ((@x6888 (unit-resolution (lemma ((_ th-lemma arith farkas 1 -1 1) @x5723 @x5749 @x5714 false) (or $x1812 $x3675 $x3683)) @x6588 @x5944 $x1812)))
  4.2364 -(let ((@x6891 (unit-resolution (def-axiom (or $x3806 $x1813 $x3800)) @x6888 (unit-resolution (def-axiom (or $x3809 $x3803)) @x6181 $x3803) $x3800)))
  4.2365 -(let (($x6050 (= ?v0!14 v_b_v_G_1$)))
  4.2366 -(let (($x5678 (fun_app$ v_b_Visited_G_1$ ?v0!14)))
  4.2367 -(let (($x4963 (or $x6050 $x5678)))
  4.2368 -(let (($x6049 (fun_app$ ?x265 ?v0!14)))
  4.2369 -(let (($x6452 (= $x6049 $x4963)))
  4.2370 -(let (($x5869 (or $x4114 $x6452)))
  4.2371 -(let ((@x6355 (monotonicity (rewrite (= (ite $x6050 true $x5678) $x4963)) (= (= $x6049 (ite $x6050 true $x5678)) $x6452))))
  4.2372 -(let ((@x5854 (monotonicity @x6355 (= (or $x4114 (= $x6049 (ite $x6050 true $x5678))) $x5869))))
  4.2373 -(let ((@x6366 (trans @x5854 (rewrite (= $x5869 $x5869)) (= (or $x4114 (= $x6049 (ite $x6050 true $x5678))) $x5869))))
  4.2374 -(let ((@x6233 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!14) (or $x4114 (= $x6049 (ite $x6050 true $x5678)))) @x6366 $x5869)))
  4.2375 -(let ((@x6372 (symm (monotonicity @x5875 (= $x6049 (fun_app$ v_b_Visited_G_2$ ?v0!14))) (= (fun_app$ v_b_Visited_G_2$ ?v0!14) $x6049))))
  4.2376 -(let (($x1824 (fun_app$ v_b_Visited_G_2$ ?v0!14)))
  4.2377 -(let ((@x4837 (mp (unit-resolution (def-axiom (or $x1829 $x1824)) (hypothesis $x1830) $x1824) @x6372 $x6049)))
  4.2378 -(let ((@x5037 (unit-resolution (def-axiom (or (not $x6452) (not $x6049) $x4963)) @x4837 (unit-resolution @x6233 @x3473 $x6452) $x4963)))
  4.2379 -(let (($x4290 (not $x5678)))
  4.2380 -(let ((?x5658 (* (- 1) ?x1827)))
  4.2381 -(let ((?x4907 (+ ?x257 ?x5658)))
  4.2382 -(let (($x6523 (>= ?x4907 0)))
  4.2383 -(let (($x6556 (not $x6523)))
  4.2384 -(let (($x4887 (>= (+ ?x257 ?x5658 (b_G$ (pair$ v_b_v_G_1$ ?v0!14))) 0)))
  4.2385 -(let (($x4812 (not $x4887)))
  4.2386 -(let (($x4783 (<= (+ b_Infinity$ (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) 0)))
  4.2387 -(let (($x5110 (or $x4783 $x4887)))
  4.2388 -(let (($x5079 (not $x5110)))
  4.2389 -(let ((@x5065 (unit-resolution (def-axiom (or $x1829 (not $x1828))) (hypothesis $x1830) (not $x1828))))
  4.2390 -(let (($x4844 (or $x3683 $x5079 $x1828)))
  4.2391 -(let (($x4891 (<= (+ ?x1827 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) 0)))
  4.2392 -(let (($x5552 (or (not (or $x4783 $x4891)) $x1828)))
  4.2393 -(let (($x4766 (or $x3683 $x5552)))
  4.2394 -(let (($x4493 (<= (+ ?x1173 ?x1827 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) 0)))
  4.2395 -(let (($x5019 (= (+ ?x1827 ?x1173 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))) (+ ?x1173 ?x1827 (* (- 1) (b_G$ (pair$ v_b_v_G_1$ ?v0!14)))))))
  4.2396 -(let ((@x5288 (trans (monotonicity (rewrite $x5019) (= $x4891 $x4493)) (rewrite (= $x4493 $x4887)) (= $x4891 $x4887))))
  4.2397 -(let ((@x5082 (monotonicity (monotonicity @x5288 (= (or $x4783 $x4891) $x5110)) (= (not (or $x4783 $x4891)) $x5079))))
  4.2398 -(let ((@x5868 (monotonicity (monotonicity @x5082 (= $x5552 (or $x5079 $x1828))) (= $x4766 (or $x3683 (or $x5079 $x1828))))))
  4.2399 -(let ((@x5811 (trans @x5868 (rewrite (= (or $x3683 (or $x5079 $x1828)) $x4844)) (= $x4766 $x4844))))
  4.2400 -(let ((@x6433 (unit-resolution (def-axiom (or $x5110 $x4812)) (unit-resolution (mp ((_ quant-inst ?v0!14) $x4766) @x5811 $x4844) @x5944 @x5065 $x5079) $x4812)))
  4.2401 -(let ((?x6047 (pair$ v_b_v_G_1$ ?v0!14)))
  4.2402 -(let ((?x6491 (b_G$ ?x6047)))
  4.2403 -(let (($x5826 (>= ?x6491 0)))
  4.2404 -(let ((@x6283 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6491 0)) $x5826)) (hypothesis (not $x5826)) (not (= ?x6491 0)))))
  4.2405 -(let (($x5742 (= v_b_v_G_1$ ?v0!14)))
  4.2406 -(let (($x5751 (<= ?x6491 0)))
  4.2407 -(let ((@x6302 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x5826 $x5751)) (hypothesis (not $x5826)) $x5751)))
  4.2408 -(let (($x5738 (or $x5742 (not $x5751))))
  4.2409 -(let (($x3480 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(let (($x84 (= ?v0 ?v1)))
  4.2410 -(or $x84 (not (<= (b_G$ (pair$ ?v0 ?v1)) 0)))) :pattern ( (pair$ ?v0 ?v1) )))
  4.2411 -))
  4.2412 -(let (($x120 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x84 (= ?v0 ?v1)))
  4.2413 -(or $x84 (not (<= (b_G$ (pair$ ?v0 ?v1)) 0)))))
  4.2414 -))
  4.2415 -(let (($x84 (= ?1 ?0)))
  4.2416 -(let (($x117 (or $x84 (not (<= (b_G$ (pair$ ?1 ?0)) 0)))))
  4.2417 -(let (($x105 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x29 (pair$ ?v0 ?v1)))
  4.2418 -(let ((?x85 (b_G$ ?x29)))
  4.2419 -(let (($x102 (< 0 ?x85)))
  4.2420 -(=> (not (= ?v0 ?v1)) $x102)))))
  4.2421 -))
  4.2422 -(let (($x110 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let ((?x29 (pair$ ?v0 ?v1)))
  4.2423 -(let ((?x85 (b_G$ ?x29)))
  4.2424 -(let (($x102 (< 0 ?x85)))
  4.2425 -(let (($x84 (= ?v0 ?v1)))
  4.2426 -(or $x84 $x102))))))
  4.2427 -))
  4.2428 -(let ((?x29 (pair$ ?1 ?0)))
  4.2429 -(let ((?x85 (b_G$ ?x29)))
  4.2430 -(let (($x102 (< 0 ?x85)))
  4.2431 -(let ((@x119 (monotonicity (rewrite (= $x102 (not (<= ?x85 0)))) (= (or $x84 $x102) $x117))))
  4.2432 -(let ((@x112 (quant-intro (rewrite (= (=> (not $x84) $x102) (or $x84 $x102))) (= $x105 $x110))))
  4.2433 -(let ((@x125 (mp (asserted $x105) (trans @x112 (quant-intro @x119 (= $x110 $x120)) (= $x105 $x120)) $x120)))
  4.2434 -(let ((@x3485 (mp (mp~ @x125 (nnf-pos (refl (~ $x117 $x117)) (~ $x120 $x120)) $x120) (quant-intro (refl (= $x117 $x117)) (= $x120 $x3480)) $x3480)))
  4.2435 -(let ((@x5780 (mp ((_ quant-inst v_b_v_G_1$ ?v0!14) (or (not $x3480) $x5738)) (rewrite (= (or (not $x3480) $x5738) (or (not $x3480) $x5742 (not $x5751)))) (or (not $x3480) $x5742 (not $x5751)))))
  4.2436 -(let (($x5739 (= ?x6491 0)))
  4.2437 -(let (($x5781 (or (not $x5742) $x5739)))
  4.2438 -(let (($x3474 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(!(or (not (= ?v0 ?v1)) (= (b_G$ (pair$ ?v0 ?v1)) 0)) :pattern ( (pair$ ?v0 ?v1) )))
  4.2439 -))
  4.2440 -(let (($x99 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(or (not (= ?v0 ?v1)) (= (b_G$ (pair$ ?v0 ?v1)) 0)))
  4.2441 -))
  4.2442 -(let ((@x3476 (refl (= (or (not $x84) (= ?x85 0)) (or (not $x84) (= ?x85 0))))))
  4.2443 -(let ((@x1447 (refl (~ (or (not $x84) (= ?x85 0)) (or (not $x84) (= ?x85 0))))))
  4.2444 -(let (($x93 (forall ((?v0 B_Vertex$) (?v1 B_Vertex$) )(let (($x84 (= ?v0 ?v1)))
  4.2445 -(=> $x84 (= (b_G$ (pair$ ?v0 ?v1)) 0))))
  4.2446 -))
  4.2447 -(let ((@x98 (rewrite (= (=> $x84 (= ?x85 0)) (or (not $x84) (= ?x85 0))))))
  4.2448 -(let ((@x1448 (mp~ (mp (asserted $x93) (quant-intro @x98 (= $x93 $x99)) $x99) (nnf-pos @x1447 (~ $x99 $x99)) $x99)))
  4.2449 -(let ((@x3479 (mp @x1448 (quant-intro @x3476 (= $x99 $x3474)) $x3474)))
  4.2450 -(let ((@x5817 (mp ((_ quant-inst v_b_v_G_1$ ?v0!14) (or (not $x3474) $x5781)) (rewrite (= (or (not $x3474) $x5781) (or (not $x3474) (not $x5742) $x5739))) (or (not $x3474) (not $x5742) $x5739))))
  4.2451 -(let ((@x6306 (unit-resolution (unit-resolution @x5817 @x3479 $x5781) (unit-resolution (unit-resolution @x5780 @x3485 $x5738) @x6302 $x5742) @x6283 false)))
  4.2452 -(let ((@x6555 ((_ th-lemma arith farkas 1 -1 1) (lemma @x6306 $x5826) (hypothesis $x4812) (hypothesis $x6523) false)))
  4.2453 -(let ((@x6225 (unit-resolution (def-axiom (or $x3809 $x256)) @x6181 $x256)))
  4.2454 -(let ((@x5748 (unit-resolution (def-axiom (or $x3821 $x3565)) @x4219 $x3565)))
  4.2455 -(let ((@x6018 (rewrite (= (or $x3570 (or $x255 $x4290 $x6523)) (or $x3570 $x255 $x4290 $x6523)))))
  4.2456 -(let ((@x6055 (mp ((_ quant-inst ?v0!14 v_b_v_G_1$) (or $x3570 (or $x255 $x4290 $x6523))) @x6018 (or $x3570 $x255 $x4290 $x6523))))
  4.2457 -(let ((@x6222 (unit-resolution @x6055 @x5748 @x6225 (hypothesis $x5678) (hypothesis $x6556) false)))
  4.2458 -(let ((@x5057 (unit-resolution (lemma @x6222 (or $x4290 $x6523)) (unit-resolution (lemma @x6555 (or $x6556 $x4887)) @x6433 $x6556) $x4290)))
  4.2459 -(let ((@x6293 (monotonicity (unit-resolution (def-axiom (or (not $x4963) $x6050 $x5678)) @x5057 @x5037 $x6050) (= ?x1827 ?x257))))
  4.2460 -(let (($x3052 (= ?x3104 ?x257)))
  4.2461 -(let ((?x3130 (pair$ v_b_v_G_1$ v_b_v_G_1$)))
  4.2462 -(let ((?x3096 (b_G$ ?x3130)))
  4.2463 -(let (($x3079 (>= ?x3096 0)))
  4.2464 -(let (($x3088 (<= (+ b_Infinity$ (* (- 1) ?x3096)) 0)))
  4.2465 -(let (($x4242 (or $x3088 $x3079)))
  4.2466 -(let (($x4785 (= ?x3096 0)))
  4.2467 -(let (($x3151 (not $x3474)))
  4.2468 -(let (($x4816 (or $x3151 $x4785)))
  4.2469 -(let ((@x4770 (monotonicity (rewrite (= (= v_b_v_G_1$ v_b_v_G_1$) true)) (= (not (= v_b_v_G_1$ v_b_v_G_1$)) (not true)))))
  4.2470 -(let ((@x4775 (trans @x4770 (rewrite (= (not true) false)) (= (not (= v_b_v_G_1$ v_b_v_G_1$)) false))))
  4.2471 -(let ((@x4767 (monotonicity @x4775 (= (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4785) (or false $x4785)))))
  4.2472 -(let ((@x4773 (trans @x4767 (rewrite (= (or false $x4785) $x4785)) (= (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4785) $x4785))))
  4.2473 -(let ((@x4820 (monotonicity @x4773 (= (or $x3151 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4785)) $x4816))))
  4.2474 -(let ((@x4821 (trans @x4820 (rewrite (= $x4816 $x4816)) (= (or $x3151 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4785)) $x4816))))
  4.2475 -(let ((@x4822 (mp ((_ quant-inst v_b_v_G_1$ v_b_v_G_1$) (or $x3151 (or (not (= v_b_v_G_1$ v_b_v_G_1$)) $x4785))) @x4821 $x4816)))
  4.2476 -(let ((@x4849 (lemma (unit-resolution @x4822 @x3479 (hypothesis (not $x4785)) false) $x4785)))
  4.2477 -(let ((@x6019 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4785) $x3079)) @x4849 $x3079)))
  4.2478 -(let ((@x4316 (def-axiom (or $x4242 (not $x3079)))))
  4.2479 -(let (($x4245 (not $x4242)))
  4.2480 -(let (($x3975 (or $x3683 $x4245 $x3052)))
  4.2481 -(let (($x3053 (or (not (or $x3088 (<= (+ ?x257 ?x1173 (* (- 1) ?x3096)) 0))) $x3052)))
  4.2482 -(let (($x3958 (or $x3683 $x3053)))
  4.2483 -(let (($x3103 (<= (+ ?x257 ?x1173 (* (- 1) ?x3096)) 0)))
  4.2484 -(let ((@x4023 (monotonicity (rewrite (= (+ ?x257 ?x1173 (* (- 1) ?x3096)) (* (- 1) ?x3096))) (= $x3103 (<= (* (- 1) ?x3096) 0)))))
  4.2485 -(let ((@x4044 (trans @x4023 (rewrite (= (<= (* (- 1) ?x3096) 0) $x3079)) (= $x3103 $x3079))))
  4.2486 -(let ((@x4247 (monotonicity (monotonicity @x4044 (= (or $x3088 $x3103) $x4242)) (= (not (or $x3088 $x3103)) $x4245))))
  4.2487 -(let ((@x4254 (monotonicity (monotonicity @x4247 (= $x3053 (or $x4245 $x3052))) (= $x3958 (or $x3683 (or $x4245 $x3052))))))
  4.2488 -(let ((@x4258 (trans @x4254 (rewrite (= (or $x3683 (or $x4245 $x3052)) $x3975)) (= $x3958 $x3975))))
  4.2489 -(let ((@x4259 (mp ((_ quant-inst v_b_v_G_1$) $x3958) @x4258 $x3975)))
  4.2490 -(let ((@x6268 (monotonicity (unit-resolution (def-axiom (or (not $x4963) $x6050 $x5678)) @x5057 @x5037 $x6050) (= ?x1826 ?x3104))))
  4.2491 -(let ((@x6107 (trans @x6268 (unit-resolution @x4259 @x5944 (unit-resolution @x4316 @x6019 $x4242) $x3052) (= ?x1826 ?x257))))
  4.2492 -(let ((@x6162 (unit-resolution @x5065 (trans @x6107 (symm @x6293 (= ?x257 ?x1827)) $x1828) false)))
  4.2493 -(let ((@x7615 (unit-resolution (def-axiom (or $x3794 $x1830 $x3788)) (lemma @x6162 $x1829) (unit-resolution (def-axiom (or $x3797 $x3791)) @x6891 $x3791) $x3788)))
  4.2494 -(let ((@x7616 (unit-resolution (def-axiom (or $x3785 $x3695)) @x7615 $x3695)))
  4.2495 -(let ((@x7443 (mp ((_ quant-inst ?v0!15) (or $x3700 (or $x4479 $x4481))) (rewrite (= (or $x3700 (or $x4479 $x4481)) (or $x3700 $x4479 $x4481))) (or $x3700 $x4479 $x4481))))
  4.2496 -(let ((@x7323 (mp (unit-resolution @x7443 @x7616 (unit-resolution @x6242 @x6183 (not $x4481)) $x4479) @x7322 (not $x6630))))
  4.2497 -(let ((@x7334 (unit-resolution (def-axiom (or (not $x7702) $x6630 (not $x7698))) @x7323 (unit-resolution @x7488 @x3473 $x7702) (not $x7698))))
  4.2498 -(let ((@x7344 (mp (unit-resolution (def-axiom (or $x7698 $x7483)) @x7334 $x7483) (monotonicity @x7337 (= $x7483 $x5538)) $x5538)))
  4.2499 -(let (($x5470 (or $x6156 $x6583)))
  4.2500 -(let ((@x6577 (mp ((_ quant-inst v_b_v_G_1$ ?v0!15) (or (not $x3480) $x5470)) (rewrite (= (or (not $x3480) $x5470) (or (not $x3480) $x6156 $x6583))) (or (not $x3480) $x6156 $x6583))))
  4.2501 -(let ((@x7345 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x6603 $x6582)) (unit-resolution (unit-resolution @x6577 @x3485 $x5470) @x7344 $x6583) $x6603)))
  4.2502 -(let (($x4153 (<= ?x296 0)))
  4.2503 -(let ((?x4058 (* (- 1) ?x296)))
  4.2504 -(let ((?x4124 (+ ?x172 ?x4058)))
  4.2505 -(let (($x4125 (>= ?x4124 0)))
  4.2506 -(let ((@x6892 (unit-resolution (def-axiom (or $x3797 $x3686)) @x6891 $x3686)))
  4.2507 -(let (($x4878 (or $x3691 $x4125)))
  4.2508 -(let ((@x4880 ((_ quant-inst b_Source$) $x4878)))
  4.2509 -(let (($x3198 (<= ?x172 0)))
  4.2510 -(let ((@x4532 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x2952 $x3198)) @x4529 $x3198)))
  4.2511 -(let ((@x6899 (unit-resolution ((_ th-lemma arith assign-bounds -1 1) (or $x4153 (not $x3198) (not $x4125))) @x4532 (or $x4153 (not $x4125)))))
  4.2512 -(let ((@x6900 (unit-resolution @x6899 (unit-resolution @x4880 @x6892 $x4125) $x4153)))
  4.2513 -(let (($x3887 (= v_b_v_G_1$ b_Source$)))
  4.2514 -(let (($x5313 (not $x3887)))
  4.2515 -(let ((@x5202 (hypothesis $x773)))
  4.2516 -(let ((?x4565 (pair$ b_Source$ b_Source$)))
  4.2517 -(let ((?x4566 (b_G$ ?x4565)))
  4.2518 -(let ((?x4567 (* (- 1) ?x4566)))
  4.2519 -(let ((?x4041 (pair$ v_b_v_G_1$ b_Source$)))
  4.2520 -(let ((?x4042 (b_G$ ?x4041)))
  4.2521 -(let ((@x4671 (monotonicity (symm (hypothesis $x3887) (= b_Source$ v_b_v_G_1$)) (= ?x4565 ?x4041))))
  4.2522 -(let ((@x4659 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x4042 ?x4566)) (>= (+ ?x4042 ?x4567) 0))) (monotonicity (symm @x4671 (= ?x4041 ?x4565)) (= ?x4042 ?x4566)) (>= (+ ?x4042 ?x4567) 0))))
  4.2523 -(let ((?x4049 (* (- 1) ?x4042)))
  4.2524 -(let ((?x5672 (+ ?x3096 ?x4049)))
  4.2525 -(let (($x5674 (>= ?x5672 0)))
  4.2526 -(let ((@x4664 (monotonicity (monotonicity (hypothesis $x3887) (= ?x3130 ?x4041)) (= ?x3096 ?x4042))))
  4.2527 -(let (($x4315 (not $x3079)))
  4.2528 -(let ((@x4728 (trans (monotonicity (hypothesis $x3887) (= ?x257 ?x172)) @x4529 (= ?x257 0))))
  4.2529 -(let ((@x4830 (monotonicity (monotonicity (hypothesis $x3887) (= ?x3104 ?x296)) @x4728 (= $x3052 $x297))))
  4.2530 -(let ((@x4736 (mp @x5202 (monotonicity (symm @x4830 (= $x297 $x3052)) (= $x773 (not $x3052))) (not $x3052))))
  4.2531 -(let ((@x5369 (unit-resolution @x4316 (unit-resolution (unit-resolution @x4259 @x4739 (or $x4245 $x3052)) @x4736 $x4245) $x4315)))
  4.2532 -(let (($x4601 (= ?x4566 0)))
  4.2533 -(let (($x4613 (or $x3151 $x4601)))
  4.2534 -(let ((@x4604 (monotonicity @x5820 (= (or (not (= b_Source$ b_Source$)) $x4601) (or false $x4601)))))
  4.2535 -(let ((@x4630 (trans @x4604 (rewrite (= (or false $x4601) $x4601)) (= (or (not (= b_Source$ b_Source$)) $x4601) $x4601))))
  4.2536 -(let ((@x4617 (monotonicity @x4630 (= (or $x3151 (or (not (= b_Source$ b_Source$)) $x4601)) $x4613))))
  4.2537 -(let ((@x4620 (trans @x4617 (rewrite (= $x4613 $x4613)) (= (or $x3151 (or (not (= b_Source$ b_Source$)) $x4601)) $x4613))))
  4.2538 -(let ((@x4621 (mp ((_ quant-inst b_Source$ b_Source$) (or $x3151 (or (not (= b_Source$ b_Source$)) $x4601))) @x4620 $x4613)))
  4.2539 -(let ((@x5180 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4601) (>= ?x4566 0))) (unit-resolution @x4621 @x3479 $x4601) (>= ?x4566 0))))
  4.2540 -(let ((@x5283 ((_ th-lemma arith farkas 1 -1 1 1) @x5180 @x5369 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x3096 ?x4042)) $x5674)) @x4664 $x5674) @x4659 false)))
  4.2541 -(let (($x5310 (<= ?x4042 0)))
  4.2542 -(let ((?x4076 (+ ?x257 ?x4058 ?x4042)))
  4.2543 -(let (($x4096 (<= ?x4076 0)))
  4.2544 -(let (($x4079 (= ?x4076 0)))
  4.2545 -(let (($x4053 (<= (+ ?x172 ?x1173 ?x4049) 0)))
  4.2546 -(let (($x4051 (<= (+ b_Infinity$ ?x4049) 0)))
  4.2547 -(let (($x4054 (or $x4051 $x4053)))
  4.2548 -(let (($x4055 (not $x4054)))
  4.2549 -(let ((@x5609 (symm (monotonicity @x4529 (= (= ?x296 ?x172) $x297)) (= $x297 (= ?x296 ?x172)))))
  4.2550 -(let ((@x5618 (mp @x5202 (monotonicity @x5609 (= $x773 (not (= ?x296 ?x172)))) (not (= ?x296 ?x172)))))
  4.2551 -(let (($x4056 (= ?x296 ?x172)))
  4.2552 -(let (($x4057 (or $x4055 $x4056)))
  4.2553 -(let (($x4295 (or $x3683 $x4055 $x4056)))
  4.2554 -(let ((@x4884 (mp ((_ quant-inst b_Source$) (or $x3683 $x4057)) (rewrite (= (or $x3683 $x4057) $x4295)) $x4295)))
  4.2555 -(let ((@x5791 (unit-resolution (def-axiom (or $x4054 (not $x4051))) (hypothesis $x4055) (not $x4051))))
  4.2556 -(let ((@x5806 (unit-resolution (def-axiom (or $x4054 (not $x4053))) (hypothesis $x4055) (not $x4053))))
  4.2557 -(let (($x4082 (or $x4051 $x4053 $x4079)))
  4.2558 -(let (($x4085 (or $x3675 $x4051 $x4053 $x4079)))
  4.2559 -(let (($x4075 (or $x4051 $x4053 (= (+ ?x257 ?x4042 ?x4058) 0))))
  4.2560 -(let (($x4086 (or $x3675 $x4075)))
  4.2561 -(let ((@x4081 (monotonicity (rewrite (= (+ ?x257 ?x4042 ?x4058) ?x4076)) (= (= (+ ?x257 ?x4042 ?x4058) 0) $x4079))))
  4.2562 -(let ((@x4090 (monotonicity (monotonicity @x4081 (= $x4075 $x4082)) (= $x4086 (or $x3675 $x4082)))))
  4.2563 -(let ((@x4095 (mp ((_ quant-inst b_Source$) $x4086) (trans @x4090 (rewrite (= (or $x3675 $x4082) $x4085)) (= $x4086 $x4085)) $x4085)))
  4.2564 -(let ((@x5789 (unit-resolution (unit-resolution @x4095 @x5807 $x4082) @x5806 @x5791 (hypothesis (not $x4079)) false)))
  4.2565 -(let ((@x5623 (unit-resolution (lemma @x5789 (or $x4054 $x4079 $x3675)) (unit-resolution (unit-resolution @x4884 @x4739 $x4057) @x5618 $x4055) @x5807 $x4079)))
  4.2566 -(let ((@x5923 (hypothesis $x4096)))
  4.2567 -(let ((@x5933 ((_ th-lemma arith farkas -1 1 -1 1) (hypothesis $x3904) (hypothesis $x4153) (hypothesis (not $x5310)) @x5923 false)))
  4.2568 -(let ((@x5938 (lemma @x5933 (or $x5310 (not $x3904) (not $x4153) (not $x4096)))))
  4.2569 -(let ((@x5596 (unit-resolution @x5938 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4079) $x4096)) @x5623 $x4096) (hypothesis $x4153) @x5049 $x5310)))
  4.2570 -(let (($x5886 (= (or (not $x3480) (or $x3887 (not $x5310))) (or (not $x3480) $x3887 (not $x5310)))))
  4.2571 -(let ((@x5952 (mp ((_ quant-inst v_b_v_G_1$ b_Source$) (or (not $x3480) (or $x3887 (not $x5310)))) (rewrite $x5886) (or (not $x3480) $x3887 (not $x5310)))))
  4.2572 -(let ((@x5597 (unit-resolution @x5952 @x3485 @x5596 (unit-resolution (lemma @x5283 (or $x5313 $x3683 $x297)) @x5202 @x4739 $x5313) false)))
  4.2573 -(let ((@x6788 (unit-resolution (lemma @x5597 (or $x297 (not $x4153) $x3675 $x3683)) @x6900 @x6588 @x5944 $x297)))
  4.2574 -(let ((@x7810 (unit-resolution (def-axiom (or $x3782 $x773 $x3776)) (unit-resolution (def-axiom (or $x3785 $x3779)) @x7615 $x3779) @x6788 $x3776)))
  4.2575 -(let ((@x3347 (def-axiom (or $x3770 $x1848 $x3764))))
  4.2576 -(let ((@x9293 (unit-resolution @x3347 (unit-resolution (def-axiom (or $x3773 $x3767)) @x7810 $x3767) $x3767)))
  4.2577 -(let ((@x9294 (unit-resolution @x9293 (lemma ((_ th-lemma arith farkas 1 1 -1 1) @x5703 @x7345 @x6959 @x5049 false) $x1847) $x3764)))
  4.2578 -(let ((@x3367 (def-axiom (or $x3761 $x3703))))
  4.2579 -(let (($x4335 (or $x3708 $x4161)))
  4.2580 -(let ((@x4337 ((_ quant-inst v_b_v_G_1$) $x4335)))
  4.2581 -(let (($x4126 (fun_app$ v_b_Visited_G_2$ v_b_v_G_1$)))
  4.2582 -(let (($x3136 (fun_app$ ?x265 v_b_v_G_1$)))
  4.2583 -(let (($x3461 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(!(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2) :pattern ( (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) )))
  4.2584 -))
  4.2585 -(let (($x57 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2))
  4.2586 -))
  4.2587 -(let (($x54 (= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?2) ?1) ?0) ?1) ?0)))
  4.2588 -(let (($x52 (forall ((?v0 B_Vertex_bool_fun$) (?v1 B_Vertex$) (?v2 Bool) )(= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v1) ?v2))
  4.2589 -))
  4.2590 -(let (($x51 (= (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?2) ?1) ?0) ?1) ?0)))
  4.2591 -(let ((@x62 (mp (asserted $x52) (quant-intro (rewrite (= $x51 $x54)) (= $x52 $x57)) $x57)))
  4.2592 -(let ((@x3466 (mp (mp~ @x62 (nnf-pos (refl (~ $x54 $x54)) (~ $x57 $x57)) $x57) (quant-intro (refl (= $x54 $x54)) (= $x57 $x3461)) $x3461)))
  4.2593 -(let (($x6140 (or (not $x3461) $x3136)))
  4.2594 -(let ((@x6106 (monotonicity (rewrite (= (= $x3136 true) $x3136)) (= (or (not $x3461) (= $x3136 true)) $x6140))))
  4.2595 -(let ((@x5837 (trans @x6106 (rewrite (= $x6140 $x6140)) (= (or (not $x3461) (= $x3136 true)) $x6140))))
  4.2596 -(let ((@x5928 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true) (or (not $x3461) (= $x3136 true))) @x5837 $x6140)))
  4.2597 -(let ((@x7482 (mp (unit-resolution @x5928 @x3466 $x3136) (monotonicity @x5875 (= $x3136 $x4126)) $x4126)))
  4.2598 -(let (($x4570 (>= ?x4546 0)))
  4.2599 -(let ((@x5420 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x4570 $x4569)) (hypothesis (not $x4569)) $x4570)))
  4.2600 -(let (($x4438 (<= (+ b_Infinity$ ?x4436) 0)))
  4.2601 -(let (($x4127 (not $x4126)))
  4.2602 -(let (($x5352 (or $x3725 $x4127 $x4438 $x4569)))
  4.2603 -(let (($x5336 (>= (+ ?x4435 ?x3104 (* (- 1) ?x1911)) 0)))
  4.2604 -(let (($x5339 (or $x4127 $x4438 $x5336)))
  4.2605 -(let (($x5353 (or $x3725 $x5339)))
  4.2606 -(let ((@x5341 (rewrite (= (+ ?x4435 ?x3104 (* (- 1) ?x1911)) (+ (* (- 1) ?x1911) ?x3104 ?x4435)))))
  4.2607 -(let ((@x5344 (monotonicity @x5341 (= $x5336 (>= (+ (* (- 1) ?x1911) ?x3104 ?x4435) 0)))))
  4.2608 -(let ((@x5348 (trans @x5344 (rewrite (= (>= (+ (* (- 1) ?x1911) ?x3104 ?x4435) 0) $x4569)) (= $x5336 $x4569))))
  4.2609 -(let ((@x5357 (monotonicity (monotonicity @x5348 (= $x5339 (or $x4127 $x4438 $x4569))) (= $x5353 (or $x3725 (or $x4127 $x4438 $x4569))))))
  4.2610 -(let ((@x5361 (trans @x5357 (rewrite (= (or $x3725 (or $x4127 $x4438 $x4569)) $x5352)) (= $x5353 $x5352))))
  4.2611 -(let ((@x5424 (unit-resolution (mp ((_ quant-inst ?v0!20 v_b_v_G_1$) $x5353) @x5361 $x5352) (hypothesis $x3720) (hypothesis $x4126) (hypothesis (not $x4569)) $x4438)))
  4.2612 -(let ((@x5428 (lemma ((_ th-lemma arith farkas 1 1 1 1) @x5424 (hypothesis $x4161) @x5420 (hypothesis $x1915) false) (or $x4569 (not $x4161) $x1914 $x3725 $x4127))))
  4.2613 -(let ((@x7692 (unit-resolution (unit-resolution @x5428 @x7482 (or $x4569 (not $x4161) $x1914 $x3725)) (unit-resolution @x4337 (unit-resolution @x3367 @x9294 $x3703) $x4161) (or $x4569 $x1914 $x3725))))
  4.2614 -(let ((@x7751 (unit-resolution @x7692 (unit-resolution (def-axiom (or $x3737 $x1915)) @x8092 $x1915) (unit-resolution @x3222 @x8092 $x3720) $x4569)))
  4.2615 -(let (($x5386 (= v_b_v_G_1$ ?v0!20)))
  4.2616 -(let (($x5390 (not $x5386)))
  4.2617 -(let ((@x9325 (symm (commutativity (= $x5386 (= ?v0!20 v_b_v_G_1$))) (= (= ?v0!20 v_b_v_G_1$) $x5386))))
  4.2618 -(let (($x5240 (= ?v0!20 v_b_v_G_1$)))
  4.2619 -(let (($x9145 (not $x5240)))
  4.2620 -(let (($x4609 (fun_app$ v_b_Visited_G_1$ ?v0!20)))
  4.2621 -(let (($x9130 (or $x5240 $x4609)))
  4.2622 -(let (($x5237 (fun_app$ ?x265 ?v0!20)))
  4.2623 -(let (($x9133 (= $x5237 $x9130)))
  4.2624 -(let (($x9136 (or $x4114 $x9133)))
  4.2625 -(let ((@x9135 (monotonicity (rewrite (= (ite $x5240 true $x4609) $x9130)) (= (= $x5237 (ite $x5240 true $x4609)) $x9133))))
  4.2626 -(let ((@x9140 (monotonicity @x9135 (= (or $x4114 (= $x5237 (ite $x5240 true $x4609))) $x9136))))
  4.2627 -(let ((@x9143 (trans @x9140 (rewrite (= $x9136 $x9136)) (= (or $x4114 (= $x5237 (ite $x5240 true $x4609))) $x9136))))
  4.2628 -(let ((@x9144 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!20) (or $x4114 (= $x5237 (ite $x5240 true $x4609)))) @x9143 $x9136)))
  4.2629 -(let ((@x9316 (symm (monotonicity @x5875 (= $x5237 (fun_app$ v_b_Visited_G_2$ ?v0!20))) (= (fun_app$ v_b_Visited_G_2$ ?v0!20) $x5237))))
  4.2630 -(let ((@x9318 (monotonicity @x9316 (= (not (fun_app$ v_b_Visited_G_2$ ?v0!20)) (not $x5237)))))
  4.2631 -(let (($x4278 (fun_app$ v_b_Visited_G_2$ ?v0!20)))
  4.2632 -(let (($x4279 (not $x4278)))
  4.2633 -(let (($x4403 (or $x4279 $x4400)))
  4.2634 -(let ((@x8012 (mp ((_ quant-inst ?v0!20) (or $x3700 $x4403)) (rewrite (= (or $x3700 $x4403) (or $x3700 $x4279 $x4400))) (or $x3700 $x4279 $x4400))))
  4.2635 -(let ((@x9292 (unit-resolution (unit-resolution @x8012 @x7616 $x4403) (hypothesis (not $x4400)) $x4279)))
  4.2636 -(let ((@x9320 (unit-resolution (def-axiom (or (not $x9133) $x5237 (not $x9130))) (mp @x9292 @x9318 (not $x5237)) (unit-resolution @x9144 @x3473 $x9133) (not $x9130))))
  4.2637 -(let ((@x9328 (mp (unit-resolution (def-axiom (or $x9130 $x9145)) @x9320 $x9145) (monotonicity @x9325 (= $x9145 $x5390)) $x5390)))
  4.2638 -(let (($x5387 (<= ?x4435 0)))
  4.2639 -(let (($x5391 (= ?x4435 0)))
  4.2640 -(let ((?x3106 (+ ?x257 ?x3096 ?x3105)))
  4.2641 -(let (($x4239 (<= ?x3106 0)))
  4.2642 -(let ((?x3884 (+ ?x257 ?x3105)))
  4.2643 -(let (($x3885 (<= ?x3884 0)))
  4.2644 -(let (($x6004 (= ?x257 ?x3104)))
  4.2645 -(let ((@x7828 (mp (unit-resolution @x4259 @x5944 (unit-resolution @x4316 @x6019 $x4242) $x3052) (symm (commutativity (= $x6004 $x3052)) (= $x3052 $x6004)) $x6004)))
  4.2646 -(let (($x4177 (<= ?x3096 0)))
  4.2647 -(let ((@x6933 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4785) $x4177)) @x4849 $x4177)))
  4.2648 -(let ((@x7838 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x4239 (not $x3885) (not $x4177))) @x6933 (or $x4239 (not $x3885)))))
  4.2649 -(let ((@x7839 (unit-resolution @x7838 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6004) $x3885)) @x7828 $x3885) $x4239)))
  4.2650 -(let (($x3044 (>= ?x3106 0)))
  4.2651 -(let (($x3886 (>= ?x3884 0)))
  4.2652 -(let (($x5927 (or $x3691 $x3886)))
  4.2653 -(let ((@x5941 ((_ quant-inst v_b_v_G_1$) $x5927)))
  4.2654 -(let ((@x6925 (unit-resolution @x5941 @x6892 $x3886)))
  4.2655 -(let ((@x6929 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x3044 $x4315 (not $x3886))) @x6019 (or $x3044 (not $x3886)))))
  4.2656 -(let ((@x6930 (unit-resolution @x6929 @x6925 $x3044)))
  4.2657 -(let ((?x4381 (+ ?x1911 ?x3105)))
  4.2658 -(let (($x7049 (<= ?x4381 0)))
  4.2659 -(let (($x7135 (= ?x4546 0)))
  4.2660 -(let ((?x1912 (* (- 1) ?x1911)))
  4.2661 -(let ((?x4487 (+ ?x257 ?x1912 ?x4435)))
  4.2662 -(let (($x4507 (<= ?x4487 0)))
  4.2663 -(let (($x5673 (= ?x4487 0)))
  4.2664 -(let (($x6827 (>= (+ ?x257 ?x4418 ?x4435) 0)))
  4.2665 -(let (($x6723 (or $x4438 $x6827)))
  4.2666 -(let (($x6684 (not $x6723)))
  4.2667 -(let (($x6831 (or $x6684 $x4400)))
  4.2668 -(let (($x6789 (or $x3683 $x6684 $x4400)))
  4.2669 -(let (($x4443 (or (not (or $x4438 (<= (+ ?x4393 ?x1173 ?x4436) 0))) $x4400)))
  4.2670 -(let (($x6790 (or $x3683 $x4443)))
  4.2671 -(let ((@x6945 (monotonicity (rewrite (= (+ ?x4393 ?x1173 ?x4436) (+ ?x1173 ?x4393 ?x4436))) (= (<= (+ ?x4393 ?x1173 ?x4436) 0) (<= (+ ?x1173 ?x4393 ?x4436) 0)))))
  4.2672 -(let ((@x6725 (trans @x6945 (rewrite (= (<= (+ ?x1173 ?x4393 ?x4436) 0) $x6827)) (= (<= (+ ?x4393 ?x1173 ?x4436) 0) $x6827))))
  4.2673 -(let ((@x6730 (monotonicity @x6725 (= (or $x4438 (<= (+ ?x4393 ?x1173 ?x4436) 0)) $x6723))))
  4.2674 -(let ((@x6830 (monotonicity @x6730 (= (not (or $x4438 (<= (+ ?x4393 ?x1173 ?x4436) 0))) $x6684))))
  4.2675 -(let ((@x6829 (monotonicity (monotonicity @x6830 (= $x4443 $x6831)) (= $x6790 (or $x3683 $x6831)))))
  4.2676 -(let ((@x6824 (mp ((_ quant-inst ?v0!20) $x6790) (trans @x6829 (rewrite (= (or $x3683 $x6831) $x6789)) (= $x6790 $x6789)) $x6789)))
  4.2677 -(let ((@x9281 (unit-resolution (unit-resolution @x6824 @x5944 $x6831) (hypothesis (not $x4400)) $x6684)))
  4.2678 -(let ((@x7436 (unit-resolution (def-axiom (or $x6723 (not $x4438))) (hypothesis $x6684) (not $x4438))))
  4.2679 -(let ((@x7494 (unit-resolution (def-axiom (or $x6723 (not $x6827))) (hypothesis $x6684) (not $x6827))))
  4.2680 -(let (($x6621 (or $x4438 $x6827 $x5673)))
  4.2681 -(let (($x6987 (or $x3675 $x4438 $x6827 $x5673)))
  4.2682 -(let (($x4440 (<= (+ ?x4393 ?x1173 ?x4436) 0)))
  4.2683 -(let (($x4486 (or $x4438 $x4440 (= (+ ?x257 ?x4435 ?x1912) 0))))
  4.2684 -(let (($x6624 (or $x3675 $x4486)))
  4.2685 -(let ((@x5324 (monotonicity (rewrite (= (+ ?x257 ?x4435 ?x1912) ?x4487)) (= (= (+ ?x257 ?x4435 ?x1912) 0) $x5673))))
  4.2686 -(let ((@x6996 (monotonicity (monotonicity @x6725 @x5324 (= $x4486 $x6621)) (= $x6624 (or $x3675 $x6621)))))
  4.2687 -(let ((@x7057 (mp ((_ quant-inst ?v0!20) $x6624) (trans @x6996 (rewrite (= (or $x3675 $x6621) $x6987)) (= $x6624 $x6987)) $x6987)))
  4.2688 -(let ((@x7649 (unit-resolution (unit-resolution @x7057 @x6588 $x6621) @x7494 @x7436 (hypothesis (not $x5673)) false)))
  4.2689 -(let ((@x7699 (lemma @x7649 (or $x6723 $x5673))))
  4.2690 -(let ((@x9285 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x5673) $x4507)) (unit-resolution @x7699 @x9281 $x5673) $x4507)))
  4.2691 -(let ((@x9287 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or (not $x4507) $x4570 (not $x3886))) @x6925 (or (not $x4507) $x4570))))
  4.2692 -(let ((@x7251 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7135 (not $x4569) (not $x4570))) (hypothesis $x4569) (or $x7135 (not $x4570)))))
  4.2693 -(let (($x7151 (not $x7135)))
  4.2694 -(let (($x7157 (or $x3734 $x7049 $x4127 $x7151)))
  4.2695 -(let (($x4516 (>= (+ ?x3104 ?x1912) 0)))
  4.2696 -(let (($x4528 (or $x4516 $x4127 (not (= (+ ?x3104 ?x1912 ?x4435) 0)))))
  4.2697 -(let (($x7317 (or $x3734 $x4528)))
  4.2698 -(let ((@x7137 (monotonicity (rewrite (= (+ ?x3104 ?x1912 ?x4435) (+ ?x1912 ?x3104 ?x4435))) (= (= (+ ?x3104 ?x1912 ?x4435) 0) (= (+ ?x1912 ?x3104 ?x4435) 0)))))
  4.2699 -(let ((@x7149 (trans @x7137 (rewrite (= (= (+ ?x1912 ?x3104 ?x4435) 0) $x7135)) (= (= (+ ?x3104 ?x1912 ?x4435) 0) $x7135))))
  4.2700 -(let ((@x7063 (monotonicity (rewrite (= (+ ?x3104 ?x1912) (+ ?x1912 ?x3104))) (= $x4516 (>= (+ ?x1912 ?x3104) 0)))))
  4.2701 -(let ((@x7144 (trans @x7063 (rewrite (= (>= (+ ?x1912 ?x3104) 0) $x7049)) (= $x4516 $x7049))))
  4.2702 -(let ((@x7156 (monotonicity @x7144 (monotonicity @x7149 (= (not (= (+ ?x3104 ?x1912 ?x4435) 0)) $x7151)) (= $x4528 (or $x7049 $x4127 $x7151)))))
  4.2703 -(let ((@x7313 (trans (monotonicity @x7156 (= $x7317 (or $x3734 (or $x7049 $x4127 $x7151)))) (rewrite (= (or $x3734 (or $x7049 $x4127 $x7151)) $x7157)) (= $x7317 $x7157))))
  4.2704 -(let ((@x7502 (unit-resolution (mp ((_ quant-inst v_b_v_G_1$) $x7317) @x7313 $x7157) (hypothesis $x3729) @x7482 (or $x7049 $x7151))))
  4.2705 -(let ((@x9290 (unit-resolution @x7502 (unit-resolution @x7251 (unit-resolution @x9287 @x9285 $x4570) $x7135) $x7049)))
  4.2706 -(let (($x4382 (>= ?x4381 0)))
  4.2707 -(let (($x6813 (= ?v1!16 v_b_v_G_1$)))
  4.2708 -(let (($x7202 (= v_b_v_G_1$ ?v1!16)))
  4.2709 -(let ((?x6481 (pair$ v_b_v_G_1$ ?v1!16)))
  4.2710 -(let ((?x6374 (b_G$ ?x6481)))
  4.2711 -(let (($x7203 (<= ?x6374 0)))
  4.2712 -(let ((?x1866 (v_b_SP_G_2$ ?v0!17)))
  4.2713 -(let ((?x6890 (+ ?x1866 ?x3105)))
  4.2714 -(let (($x6886 (<= ?x6890 0)))
  4.2715 -(let ((?x4496 (fun_app$c v_b_SP_G_1$ ?v0!17)))
  4.2716 -(let ((?x6307 (* (- 1) ?x4496)))
  4.2717 -(let ((?x5972 (+ ?x257 ?x6307)))
  4.2718 -(let (($x7220 (>= ?x5972 0)))
  4.2719 -(let (($x3187 (fun_app$ v_b_Visited_G_1$ ?v0!17)))
  4.2720 -(let (($x4478 (= ?v0!17 v_b_v_G_1$)))
  4.2721 -(let (($x4499 (or $x4478 $x3187)))
  4.2722 -(let (($x4471 (fun_app$ ?x265 ?v0!17)))
  4.2723 -(let (($x4593 (= $x4471 $x4499)))
  4.2724 -(let (($x4712 (or $x4114 $x4593)))
  4.2725 -(let ((@x4495 (monotonicity (rewrite (= (ite $x4478 true $x3187) $x4499)) (= (= $x4471 (ite $x4478 true $x3187)) $x4593))))
  4.2726 -(let ((@x5371 (monotonicity @x4495 (= (or $x4114 (= $x4471 (ite $x4478 true $x3187))) $x4712))))
  4.2727 -(let ((@x5958 (trans @x5371 (rewrite (= $x4712 $x4712)) (= (or $x4114 (= $x4471 (ite $x4478 true $x3187))) $x4712))))
  4.2728 -(let ((@x6125 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v0!17) (or $x4114 (= $x4471 (ite $x4478 true $x3187)))) @x5958 $x4712)))
  4.2729 -(let ((@x8166 (mp (unit-resolution (def-axiom (or $x2760 $x1862)) (hypothesis $x2765) $x1862) (symm (monotonicity @x5875 (= $x4471 $x1862)) (= $x1862 $x4471)) $x4471)))
  4.2730 -(let ((@x8237 (unit-resolution (def-axiom (or (not $x4593) (not $x4471) $x4499)) @x8166 (unit-resolution @x6125 @x3473 $x4593) $x4499)))
  4.2731 -(let (($x6485 (not $x4478)))
  4.2732 -(let (($x8046 (<= (+ ?x257 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!16))) 0)))
  4.2733 -(let (($x6814 (fun_app$ v_b_Visited_G_1$ ?v1!16)))
  4.2734 -(let (($x8334 (or $x6813 $x6814)))
  4.2735 -(let (($x6812 (fun_app$ ?x265 ?v1!16)))
  4.2736 -(let (($x7683 (= $x6812 $x8334)))
  4.2737 -(let (($x6622 (or $x4114 $x7683)))
  4.2738 -(let ((@x6719 (monotonicity (rewrite (= (ite $x6813 true $x6814) $x8334)) (= (= $x6812 (ite $x6813 true $x6814)) $x7683))))
  4.2739 -(let ((@x8777 (monotonicity @x6719 (= (or $x4114 (= $x6812 (ite $x6813 true $x6814))) $x6622))))
  4.2740 -(let ((@x8650 (trans @x8777 (rewrite (= $x6622 $x6622)) (= (or $x4114 (= $x6812 (ite $x6813 true $x6814))) $x6622))))
  4.2741 -(let ((@x8651 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v1!16) (or $x4114 (= $x6812 (ite $x6813 true $x6814)))) @x8650 $x6622)))
  4.2742 -(let ((@x8121 (monotonicity (symm (monotonicity @x5875 (= $x6812 $x1860)) (= $x1860 $x6812)) (= (not $x1860) (not $x6812)))))
  4.2743 -(let (($x1861 (not $x1860)))
  4.2744 -(let ((@x7803 (hypothesis $x2765)))
  4.2745 -(let ((@x8141 (mp (unit-resolution (def-axiom (or $x2760 $x1861)) @x7803 $x1861) @x8121 (not $x6812))))
  4.2746 -(let ((@x8147 (unit-resolution (def-axiom (or (not $x7683) $x6812 (not $x8334))) @x8141 (unit-resolution @x8651 @x3473 $x7683) (not $x8334))))
  4.2747 -(let (($x8156 (or $x6814 $x8046)))
  4.2748 -(let (($x8160 (or $x3665 $x6814 $x8046)))
  4.2749 -(let (($x6666 (>= (+ (fun_app$c v_b_SP_G_1$ ?v1!16) ?x1173) 0)))
  4.2750 -(let (($x6673 (or $x6814 $x6666)))
  4.2751 -(let (($x8163 (or $x3665 $x6673)))
  4.2752 -(let ((@x7990 (rewrite (= (>= (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v1!16)) 0) $x8046))))
  4.2753 -(let (($x8213 (= (+ (fun_app$c v_b_SP_G_1$ ?v1!16) ?x1173) (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v1!16)))))
  4.2754 -(let ((@x8047 (monotonicity (rewrite $x8213) (= $x6666 (>= (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v1!16)) 0)))))
  4.2755 -(let ((@x8089 (monotonicity (monotonicity (trans @x8047 @x7990 (= $x6666 $x8046)) (= $x6673 $x8156)) (= $x8163 (or $x3665 $x8156)))))
  4.2756 -(let ((@x8093 (mp ((_ quant-inst ?v1!16) $x8163) (trans @x8089 (rewrite (= (or $x3665 $x8156) $x8160)) (= $x8163 $x8160)) $x8160)))
  4.2757 -(let ((@x8217 (unit-resolution @x8093 (unit-resolution (def-axiom (or $x3809 $x3660)) @x6181 $x3660) $x8156)))
  4.2758 -(let ((@x8239 (unit-resolution @x8217 (unit-resolution (def-axiom (or $x8334 (not $x6814))) @x8147 (not $x6814)) $x8046)))
  4.2759 -(let (($x3386 (not $x1869)))
  4.2760 -(let ((@x3390 (def-axiom (or $x2760 $x3386))))
  4.2761 -(let ((@x8240 (unit-resolution @x3390 @x7803 $x3386)))
  4.2762 -(let ((?x6009 (pair$ v_b_v_G_1$ ?v0!17)))
  4.2763 -(let ((?x6010 (b_G$ ?x6009)))
  4.2764 -(let ((?x1867 (* (- 1) ?x1866)))
  4.2765 -(let ((?x6187 (+ ?x257 ?x1867 ?x6010)))
  4.2766 -(let ((@x8743 (monotonicity (monotonicity (hypothesis $x4478) (= ?x6009 ?x3130)) (= ?x6010 ?x3096))))
  4.2767 -(let (($x6889 (= ?x1866 ?x3104)))
  4.2768 -(let ((@x6922 (hypothesis $x4478)))
  4.2769 -(let ((@x6921 (unit-resolution (hypothesis (not $x6889)) (monotonicity @x6922 $x6889) false)))
  4.2770 -(let ((@x6939 (lemma @x6921 (or $x6485 $x6889))))
  4.2771 -(let ((@x6214 ((_ th-lemma arith triangle-eq) (or (not $x6889) $x6886))))
  4.2772 -(let (($x7675 (>= ?x6890 0)))
  4.2773 -(let ((@x8362 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x6889) $x7675)) (unit-resolution @x6939 @x6922 $x6889) $x7675)))
  4.2774 -(let ((@x7970 ((_ th-lemma arith eq-propagate 1 1 1 1 -1 -1) @x8362 (unit-resolution @x6214 (unit-resolution @x6939 @x6922 $x6889) $x6886) @x6019 @x6933 @x6930 @x7839 (= ?x6010 ?x6187))))
  4.2775 -(let ((@x8765 (trans (trans (symm @x7970 (= ?x6187 ?x6010)) @x8743 (= ?x6187 ?x3096)) @x4849 (= ?x6187 0))))
  4.2776 -(let (($x6564 (>= ?x6187 0)))
  4.2777 -(let (($x7274 (not $x6564)))
  4.2778 -(let ((@x7271 (hypothesis $x3386)))
  4.2779 -(let ((?x1865 (v_b_SP_G_2$ ?v1!16)))
  4.2780 -(let ((?x6126 (* (- 1) ?x1865)))
  4.2781 -(let ((?x6400 (+ ?x257 ?x6126 ?x6374)))
  4.2782 -(let (($x6319 (<= ?x6400 0)))
  4.2783 -(let (($x8008 (= ?x6400 0)))
  4.2784 -(let (($x6238 (<= (+ b_Infinity$ (* (- 1) ?x6374)) 0)))
  4.2785 -(let (($x8646 (not $x6238)))
  4.2786 -(let (($x7241 (>= (+ ?x257 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v1!16)) ?x6374) 0)))
  4.2787 -(let (($x7239 (or $x6238 $x7241)))
  4.2788 -(let (($x4416 (not $x7239)))
  4.2789 -(let ((?x6234 (fun_app$c v_b_SP_G_1$ ?v1!16)))
  4.2790 -(let (($x6378 (= ?x1865 ?x6234)))
  4.2791 -(let (($x8565 (not $x6378)))
  4.2792 -(let (($x8664 (>= (+ ?x1865 (* (- 1) ?x6234)) 0)))
  4.2793 -(let (($x8549 (not $x8664)))
  4.2794 -(let ((@x8517 ((_ th-lemma arith assign-bounds -1 -1 -1 -1 1) (or $x8549 (not $x8046) $x1869 (not $x6886) (not $x4177) (not $x3044)))))
  4.2795 -(let ((@x8321 (unit-resolution @x8517 (unit-resolution @x6214 (unit-resolution @x6939 @x6922 $x6889) $x6886) @x6933 @x6930 @x7271 (hypothesis $x8046) $x8549)))
  4.2796 -(let (($x8358 (or $x4416 $x6378)))
  4.2797 -(let (($x8640 (or $x3683 $x4416 $x6378)))
  4.2798 -(let (($x6219 (or (not (or $x6238 (<= (+ ?x6234 ?x1173 (* (- 1) ?x6374)) 0))) $x6378)))
  4.2799 -(let (($x8252 (or $x3683 $x6219)))
  4.2800 -(let (($x6539 (<= (+ ?x6234 ?x1173 (* (- 1) ?x6374)) 0)))
  4.2801 -(let ((@x7664 (rewrite (= (+ ?x6234 ?x1173 (* (- 1) ?x6374)) (+ ?x1173 ?x6234 (* (- 1) ?x6374))))))
  4.2802 -(let ((@x7697 (monotonicity @x7664 (= $x6539 (<= (+ ?x1173 ?x6234 (* (- 1) ?x6374)) 0)))))
  4.2803 -(let ((@x4371 (trans @x7697 (rewrite (= (<= (+ ?x1173 ?x6234 (* (- 1) ?x6374)) 0) $x7241)) (= $x6539 $x7241))))
  4.2804 -(let ((@x8352 (monotonicity (monotonicity @x4371 (= (or $x6238 $x6539) $x7239)) (= (not (or $x6238 $x6539)) $x4416))))
  4.2805 -(let ((@x8173 (monotonicity (monotonicity @x8352 (= $x6219 $x8358)) (= $x8252 (or $x3683 $x8358)))))
  4.2806 -(let ((@x8649 (mp ((_ quant-inst ?v1!16) $x8252) (trans @x8173 (rewrite (= (or $x3683 $x8358) $x8640)) (= $x8252 $x8640)) $x8640)))
  4.2807 -(let ((@x8632 (unit-resolution (unit-resolution @x8649 @x5944 $x8358) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x8565 $x8664)) @x8321 $x8565) $x4416)))
  4.2808 -(let (($x8029 (or $x6238 $x7241 $x8008)))
  4.2809 -(let (($x8118 (or $x3675 $x6238 $x7241 $x8008)))
  4.2810 -(let (($x6399 (or $x6238 $x6539 (= (+ ?x257 ?x6374 ?x6126) 0))))
  4.2811 -(let (($x8113 (or $x3675 $x6399)))
  4.2812 -(let ((@x8010 (monotonicity (rewrite (= (+ ?x257 ?x6374 ?x6126) ?x6400)) (= (= (+ ?x257 ?x6374 ?x6126) 0) $x8008))))
  4.2813 -(let ((@x5909 (monotonicity (monotonicity @x4371 @x8010 (= $x6399 $x8029)) (= $x8113 (or $x3675 $x8029)))))
  4.2814 -(let ((@x7712 (mp ((_ quant-inst ?v1!16) $x8113) (trans @x5909 (rewrite (= (or $x3675 $x8029) $x8118)) (= $x8113 $x8118)) $x8118)))
  4.2815 -(let ((@x8635 (unit-resolution (unit-resolution @x7712 @x6588 $x8029) (unit-resolution (def-axiom (or $x7239 (not $x7241))) @x8632 (not $x7241)) (unit-resolution (def-axiom (or $x7239 $x8646)) @x8632 $x8646) $x8008)))
  4.2816 -(let ((@x7288 (monotonicity (commutativity (= (= v_b_v_G_1$ ?v0!17) $x4478)) (= (not (= v_b_v_G_1$ ?v0!17)) $x6485))))
  4.2817 -(let (($x7176 (= v_b_v_G_1$ ?v0!17)))
  4.2818 -(let (($x7180 (not $x7176)))
  4.2819 -(let (($x7177 (<= ?x6010 0)))
  4.2820 -(let (($x7178 (not $x7177)))
  4.2821 -(let (($x7206 (not $x7203)))
  4.2822 -(let ((@x7267 (monotonicity (symm (commutativity (= $x7202 $x6813)) (= $x6813 $x7202)) (= (not $x6813) (not $x7202)))))
  4.2823 -(let (($x7207 (or $x7202 $x7206)))
  4.2824 -(let ((@x7215 (mp ((_ quant-inst v_b_v_G_1$ ?v1!16) (or (not $x3480) $x7207)) (rewrite (= (or (not $x3480) $x7207) (or (not $x3480) $x7202 $x7206))) (or (not $x3480) $x7202 $x7206))))
  4.2825 -(let ((@x7270 (unit-resolution (unit-resolution @x7215 @x3485 $x7207) (mp (hypothesis (not $x6813)) @x7267 (not $x7202)) $x7206)))
  4.2826 -(let ((@x7278 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x7178 $x7274 $x1869 $x7203 (not $x6319))) (hypothesis $x6319) (hypothesis $x6564) @x7271 @x7270 $x7178)))
  4.2827 -(let ((@x7282 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6010 0)) $x7177)) @x7278 (not (= ?x6010 0)))))
  4.2828 -(let (($x7181 (= ?x6010 0)))
  4.2829 -(let (($x7188 (or $x7180 $x7181)))
  4.2830 -(let ((@x7196 (mp ((_ quant-inst v_b_v_G_1$ ?v0!17) (or $x3151 $x7188)) (rewrite (= (or $x3151 $x7188) (or $x3151 $x7180 $x7181))) (or $x3151 $x7180 $x7181))))
  4.2831 -(let ((@x7289 (mp (unit-resolution (unit-resolution @x7196 @x3479 $x7188) @x7282 $x7180) @x7288 $x6485)))
  4.2832 -(let ((@x5812 (def-axiom (or (not $x4499) $x4478 $x3187))))
  4.2833 -(let (($x7229 (= (or $x3570 (or $x255 (not $x3187) $x7220)) (or $x3570 $x255 (not $x3187) $x7220))))
  4.2834 -(let ((@x7231 (mp ((_ quant-inst ?v0!17 v_b_v_G_1$) (or $x3570 (or $x255 (not $x3187) $x7220))) (rewrite $x7229) (or $x3570 $x255 (not $x3187) $x7220))))
  4.2835 -(let ((@x7291 (unit-resolution @x7231 @x5748 @x6225 (unit-resolution @x5812 @x7289 (hypothesis $x4499) $x3187) $x7220)))
  4.2836 -(let (($x6327 (<= (+ ?x1866 ?x6307) 0)))
  4.2837 -(let (($x6088 (or $x3691 $x6327)))
  4.2838 -(let ((@x6464 (monotonicity (rewrite (= (+ ?x4496 ?x1867) (+ ?x1867 ?x4496))) (= (>= (+ ?x4496 ?x1867) 0) (>= (+ ?x1867 ?x4496) 0)))))
  4.2839 -(let ((@x5905 (trans @x6464 (rewrite (= (>= (+ ?x1867 ?x4496) 0) $x6327)) (= (>= (+ ?x4496 ?x1867) 0) $x6327))))
  4.2840 -(let ((@x5843 (trans (monotonicity @x5905 (= (or $x3691 (>= (+ ?x4496 ?x1867) 0)) $x6088)) (rewrite (= $x6088 $x6088)) (= (or $x3691 (>= (+ ?x4496 ?x1867) 0)) $x6088))))
  4.2841 -(let ((@x7292 (unit-resolution (mp ((_ quant-inst ?v0!17) (or $x3691 (>= (+ ?x4496 ?x1867) 0))) @x5843 $x6088) @x6892 $x6327)))
  4.2842 -(let ((@x7295 (lemma ((_ th-lemma arith farkas 1 1 1 1 1) @x7292 @x7271 @x7270 (hypothesis $x6319) @x7291 false) (or (not $x6319) $x1869 (not $x4499) $x7274 $x6813))))
  4.2843 -(let ((@x8734 (unit-resolution @x7295 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x8008) $x6319)) @x8635 $x6319) (hypothesis $x4499) (hypothesis (not $x6813)) @x7271 $x7274)))
  4.2844 -(let ((@x8324 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x6187 0)) $x6564)) @x8734 (not (= ?x6187 0)))))
  4.2845 -(let ((@x8494 (lemma (unit-resolution @x8324 @x8765 false) (or $x6485 (not $x4499) $x6813 $x1869 (not $x8046)))))
  4.2846 -(let ((@x8211 (unit-resolution @x8494 @x8237 (unit-resolution (def-axiom (or $x8334 (not $x6813))) @x8147 (not $x6813)) @x8240 @x8239 $x6485)))
  4.2847 -(let ((@x8909 (unit-resolution @x7231 @x5748 @x6225 (hypothesis $x3187) (hypothesis (not $x7220)) false)))
  4.2848 -(let ((@x8256 (unit-resolution (lemma @x8909 (or (not $x3187) $x7220)) (unit-resolution @x5812 @x8211 @x8237 $x3187) $x7220)))
  4.2849 -(let ((@x8314 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1) (or $x6886 (not $x7220) (not $x6327) $x4315 (not $x4239))) @x7292 @x7839 @x8256 @x6019 $x6886)))
  4.2850 -(let ((@x8385 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x8565 $x8664)) (unit-resolution @x8517 @x8314 @x6933 @x6930 @x8240 @x8239 $x8549) $x8565)))
  4.2851 -(let ((@x8386 (unit-resolution (def-axiom (or $x7239 $x8646)) (unit-resolution (unit-resolution @x8649 @x5944 $x8358) @x8385 $x4416) $x8646)))
  4.2852 -(let (($x8654 (not $x7241)))
  4.2853 -(let ((@x8390 (unit-resolution (def-axiom (or $x7239 $x8654)) (unit-resolution (unit-resolution @x8649 @x5944 $x8358) @x8385 $x4416) $x8654)))
  4.2854 -(let ((@x8410 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x8008) $x6319)) (unit-resolution (unit-resolution @x7712 @x6588 $x8029) @x8390 @x8386 $x8008) $x6319)))
  4.2855 -(let ((@x8411 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x7203 (not $x6319) $x1869 (not $x6886) (not $x4177) (not $x3044)))))
  4.2856 -(let ((@x8413 (unit-resolution @x7215 @x3485 (unit-resolution @x8411 @x8410 @x6933 @x6930 @x8240 @x8314 $x7203) $x7202)))
  4.2857 -(let ((@x8417 (unit-resolution (unit-resolution (def-axiom (or $x8334 (not $x6813))) @x8147 (not $x6813)) (symm @x8413 $x6813) false)))
  4.2858 -(let ((@x3365 (def-axiom (or $x3758 $x2765 $x3752))))
  4.2859 -(let ((@x9296 (unit-resolution @x3365 (lemma @x8417 $x2760) (unit-resolution (def-axiom (or $x3761 $x3755)) @x9294 $x3755) $x3752)))
  4.2860 -(let ((@x8225 (rewrite (= (or $x3717 (or $x4278 $x4127 $x4382)) (or $x3717 $x4278 $x4127 $x4382)))))
  4.2861 -(let ((@x8229 (mp ((_ quant-inst v_b_v_G_1$ ?v0!20) (or $x3717 (or $x4278 $x4127 $x4382))) @x8225 (or $x3717 $x4278 $x4127 $x4382))))
  4.2862 -(let ((@x9299 (unit-resolution @x8229 (unit-resolution (def-axiom (or $x3749 $x3712)) @x9296 $x3712) @x7482 (or $x4278 $x4382))))
  4.2863 -(let (($x4508 (>= ?x4487 0)))
  4.2864 -(let ((@x9304 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or $x4508 (not $x4569) (not $x3886))) @x6925 (or $x4508 (not $x4569)))))
  4.2865 -(let ((@x9306 ((_ th-lemma arith eq-propagate -1 -1 -1 -1 -1 -1 1 1) (unit-resolution @x9304 (hypothesis $x4569) $x4508) @x9285 (unit-resolution @x9299 @x9292 $x4382) @x9290 @x6019 @x6933 @x6930 @x7839 $x5391)))
  4.2866 -(let (($x5388 (not $x5387)))
  4.2867 -(let (($x5389 (or $x5386 $x5388)))
  4.2868 -(let ((@x7598 (mp ((_ quant-inst v_b_v_G_1$ ?v0!20) (or (not $x3480) $x5389)) (rewrite (= (or (not $x3480) $x5389) (or (not $x3480) $x5386 $x5388))) (or (not $x3480) $x5386 $x5388))))
  4.2869 -(let ((@x9311 (unit-resolution (unit-resolution @x7598 @x3485 $x5389) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x5391) $x5387)) @x9306 $x5387) $x5386)))
  4.2870 -(let ((@x8045 (unit-resolution (lemma (unit-resolution @x9311 @x9328 false) (or $x4400 $x3734 (not $x4569))) (unit-resolution (def-axiom (or $x3737 $x3729)) @x8092 $x3729) @x7751 $x4400)))
  4.2871 -(let ((@x8812 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x4400) $x5977)) @x8045 $x5977)))
  4.2872 -(let ((?x4641 (?v1!7 ?v0!20)))
  4.2873 -(let ((?x4648 (pair$ ?x4641 ?v0!20)))
  4.2874 -(let ((?x4649 (b_G$ ?x4648)))
  4.2875 -(let ((?x4650 (* (- 1) ?x4649)))
  4.2876 -(let ((?x4642 (fun_app$c v_b_SP_G_1$ ?x4641)))
  4.2877 -(let ((?x4643 (* (- 1) ?x4642)))
  4.2878 -(let ((?x4651 (+ ?x4393 ?x4643 ?x4650)))
  4.2879 -(let (($x4391 (>= ?x4651 0)))
  4.2880 -(let (($x4652 (= ?x4651 0)))
  4.2881 -(let (($x4653 (not $x4652)))
  4.2882 -(let (($x4646 (fun_app$ v_b_Visited_G_1$ ?x4641)))
  4.2883 -(let (($x4647 (not $x4646)))
  4.2884 -(let ((?x4644 (+ ?x4393 ?x4643)))
  4.2885 -(let (($x4645 (<= ?x4644 0)))
  4.2886 -(let (($x4654 (or $x4645 $x4647 $x4653)))
  4.2887 -(let (($x4655 (not $x4654)))
  4.2888 -(let (($x4640 (<= (+ b_Infinity$ ?x4418) 0)))
  4.2889 -(let (($x7886 (not $x4640)))
  4.2890 -(let ((@x8816 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1) (or (not $x5977) $x1914 $x7886)) @x8812 (unit-resolution (def-axiom (or $x3737 $x1915)) @x8092 $x1915) $x7886)))
  4.2891 -(let ((@x7414 (rewrite (= (or $x3586 (or $x1909 $x4640 $x4655)) (or $x3586 $x1909 $x4640 $x4655)))))
  4.2892 -(let ((@x7415 (mp ((_ quant-inst ?v0!20) (or $x3586 (or $x1909 $x4640 $x4655))) @x7414 (or $x3586 $x1909 $x4640 $x4655))))
  4.2893 -(let ((@x8817 (unit-resolution @x7415 @x4545 (unit-resolution (def-axiom (or $x3737 $x1910)) @x8092 $x1910) (or $x4640 $x4655))))
  4.2894 -(let ((@x8826 (unit-resolution @x8817 @x8816 $x4655)))
  4.2895 -(let ((@x6085 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4653 $x4391)) (unit-resolution (def-axiom (or $x4654 $x4652)) @x8826 $x4652) $x4391)))
  4.2896 -(let (($x7707 (<= ?x4651 0)))
  4.2897 -(let ((@x8177 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x4653 $x7707)) (unit-resolution (def-axiom (or $x4654 $x4652)) @x8826 $x4652) $x7707)))
  4.2898 -(let (($x4689 (fun_app$ v_b_Visited_G_2$ ?x4641)))
  4.2899 -(let ((@x6032 (monotonicity (symm (hypothesis $x266) (= ?x265 v_b_Visited_G_2$)) (= (fun_app$ ?x265 ?x4641) $x4689))))
  4.2900 -(let ((@x6036 (monotonicity (symm @x6032 (= $x4689 (fun_app$ ?x265 ?x4641))) (= (not $x4689) (not (fun_app$ ?x265 ?x4641))))))
  4.2901 -(let (($x5978 (fun_app$ ?x265 ?x4641)))
  4.2902 -(let (($x5985 (= ?x4641 v_b_v_G_1$)))
  4.2903 -(let (($x5988 (or $x5985 $x4646)))
  4.2904 -(let (($x5991 (= $x5978 $x5988)))
  4.2905 -(let (($x5994 (or $x4114 $x5991)))
  4.2906 -(let ((@x5993 (monotonicity (rewrite (= (ite $x5985 true $x4646) $x5988)) (= (= $x5978 (ite $x5985 true $x4646)) $x5991))))
  4.2907 -(let ((@x5998 (monotonicity @x5993 (= (or $x4114 (= $x5978 (ite $x5985 true $x4646))) $x5994))))
  4.2908 -(let ((@x6001 (trans @x5998 (rewrite (= $x5994 $x5994)) (= (or $x4114 (= $x5978 (ite $x5985 true $x4646))) $x5994))))
  4.2909 -(let ((@x6002 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true (?v1!7 ?v0!20)) (or $x4114 (= $x5978 (ite $x5985 true $x4646)))) @x6001 $x5994)))
  4.2910 -(let ((@x6025 (unit-resolution (def-axiom (or (not $x5991) $x5978 (not $x5988))) (unit-resolution (def-axiom (or $x5988 $x4647)) (hypothesis $x4646) $x5988) (or (not $x5991) $x5978))))
  4.2911 -(let ((@x6038 (unit-resolution (unit-resolution @x6025 (unit-resolution @x6002 @x3473 $x5991) $x5978) (mp (hypothesis (not $x4689)) @x6036 (not $x5978)) false)))
  4.2912 -(let ((@x8986 (unit-resolution (lemma @x6038 (or $x4689 $x2935 $x4647)) (unit-resolution (def-axiom (or $x3809 $x266)) @x6181 $x266) (or $x4689 $x4647))))
  4.2913 -(let ((@x8987 (unit-resolution @x8986 (unit-resolution (def-axiom (or $x4654 $x4646)) @x8826 $x4646) $x4689)))
  4.2914 -(let ((?x4697 (v_b_SP_G_2$ ?x4641)))
  4.2915 -(let ((?x4700 (* (- 1) ?x4697)))
  4.2916 -(let ((?x4868 (+ ?x1911 ?x4700)))
  4.2917 -(let (($x9248 (<= ?x4868 0)))
  4.2918 -(let (($x8507 (not $x9248)))
  4.2919 -(let ((?x4701 (+ ?x4642 ?x4700)))
  4.2920 -(let (($x4708 (>= ?x4701 0)))
  4.2921 -(let ((@x8348 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1) (or $x8507 (not $x4708) $x4645 (not $x5977))) @x8812 (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3691 $x4708)) @x6892 $x4708) (unit-resolution (def-axiom (or $x4654 (not $x4645))) @x8826 (not $x4645)) $x8507)))
  4.2922 -(let ((?x8311 (+ ?x1911 ?x4650 ?x4700)))
  4.2923 -(let (($x8266 (>= ?x8311 0)))
  4.2924 -(let ((@x10143 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1) (or $x8266 (not $x4391) (not $x4708) (not $x5977))) (unit-resolution ((_ quant-inst (?v1!7 ?v0!20)) (or $x3691 $x4708)) @x6892 $x4708) (hypothesis $x4391) (hypothesis $x5977) $x8266)))
  4.2925 -(let (($x8534 (<= ?x8311 0)))
  4.2926 -(let (($x5038 (<= ?x4701 0)))
  4.2927 -(let (($x5863 (= ?x4642 ?x4697)))
  4.2928 -(let ((@x10149 (symm (commutativity (= $x5863 (= ?x4697 ?x4642))) (= (= ?x4697 ?x4642) $x5863))))
  4.2929 -(let (($x4698 (= ?x4697 ?x4642)))
  4.2930 -(let ((@x7939 (rewrite (= (or $x3700 (or (not $x4689) $x4698)) (or $x3700 (not $x4689) $x4698)))))
  4.2931 -(let ((@x7943 (mp ((_ quant-inst (?v1!7 ?v0!20)) (or $x3700 (or (not $x4689) $x4698))) @x7939 (or $x3700 (not $x4689) $x4698))))
  4.2932 -(let ((@x7980 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x5863) $x5038)) (mp (unit-resolution @x7943 @x7616 (hypothesis $x4689) $x4698) @x10149 $x5863) $x5038)))
  4.2933 -(let (($x8014 (<= ?x4419 0)))
  4.2934 -(let (($x8221 (or $x3691 $x8014)))
  4.2935 -(let ((@x8001 (monotonicity (rewrite (= (+ ?x4393 ?x1912) (+ ?x1912 ?x4393))) (= (>= (+ ?x4393 ?x1912) 0) (>= (+ ?x1912 ?x4393) 0)))))
  4.2936 -(let ((@x8035 (trans @x8001 (rewrite (= (>= (+ ?x1912 ?x4393) 0) $x8014)) (= (>= (+ ?x4393 ?x1912) 0) $x8014))))
  4.2937 -(let ((@x8178 (trans (monotonicity @x8035 (= (or $x3691 (>= (+ ?x4393 ?x1912) 0)) $x8221)) (rewrite (= $x8221 $x8221)) (= (or $x3691 (>= (+ ?x4393 ?x1912) 0)) $x8221))))
  4.2938 -(let ((@x8659 (unit-resolution (mp ((_ quant-inst ?v0!20) (or $x3691 (>= (+ ?x4393 ?x1912) 0))) @x8178 $x8221) @x6892 $x8014)))
  4.2939 -(let ((@x8083 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1) (or $x8534 (not $x7707) (not $x5038) (not $x8014))) @x8659 (hypothesis $x7707) @x7980 $x8534)))
  4.2940 -(let (($x9251 (= ?x8311 0)))
  4.2941 -(let (($x8749 (not $x9251)))
  4.2942 -(let (($x4690 (not $x4689)))
  4.2943 -(let (($x8567 (or $x3734 $x9248 $x4690 $x8749)))
  4.2944 -(let (($x4857 (>= (+ ?x4697 ?x1912) 0)))
  4.2945 -(let (($x4861 (or $x4857 $x4690 (not (= (+ ?x4697 ?x1912 ?x4649) 0)))))
  4.2946 -(let (($x8927 (or $x3734 $x4861)))
  4.2947 -(let ((@x8955 (monotonicity (rewrite (= (+ ?x4697 ?x1912 ?x4649) (+ ?x1912 ?x4649 ?x4697))) (= (= (+ ?x4697 ?x1912 ?x4649) 0) (= (+ ?x1912 ?x4649 ?x4697) 0)))))
  4.2948 -(let ((@x8627 (trans @x8955 (rewrite (= (= (+ ?x1912 ?x4649 ?x4697) 0) $x9251)) (= (= (+ ?x4697 ?x1912 ?x4649) 0) $x9251))))
  4.2949 -(let ((@x8965 (monotonicity (rewrite (= (+ ?x4697 ?x1912) (+ ?x1912 ?x4697))) (= $x4857 (>= (+ ?x1912 ?x4697) 0)))))
  4.2950 -(let ((@x8985 (trans @x8965 (rewrite (= (>= (+ ?x1912 ?x4697) 0) $x9248)) (= $x4857 $x9248))))
  4.2951 -(let ((@x9087 (monotonicity @x8985 (monotonicity @x8627 (= (not (= (+ ?x4697 ?x1912 ?x4649) 0)) $x8749)) (= $x4861 (or $x9248 $x4690 $x8749)))))
  4.2952 -(let ((@x8874 (trans (monotonicity @x9087 (= $x8927 (or $x3734 (or $x9248 $x4690 $x8749)))) (rewrite (= (or $x3734 (or $x9248 $x4690 $x8749)) $x8567)) (= $x8927 $x8567))))
  4.2953 -(let ((@x8397 (unit-resolution (mp ((_ quant-inst (?v1!7 ?v0!20)) $x8927) @x8874 $x8567) (hypothesis $x3729) (hypothesis $x4689) (or $x9248 $x8749))))
  4.2954 -(let ((@x5592 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x9251 (not $x8534) (not $x8266))) (unit-resolution @x8397 (hypothesis $x8507) $x8749) @x8083 @x10143 false)))
  4.2955 -(let ((@x8013 (unit-resolution (lemma @x5592 (or $x9248 $x3734 $x4690 (not $x7707) (not $x4391) (not $x5977))) @x8348 (unit-resolution (def-axiom (or $x3737 $x3729)) @x8092 $x3729) @x8987 @x8177 @x6085 @x8812 false)))
  4.2956 -(let ((@x3278 (def-axiom (or $x3746 $x2811 $x3740))))
  4.2957 -(let ((@x8433 (unit-resolution @x3278 (unit-resolution (def-axiom (or $x3749 $x3743)) @x9296 $x3743) $x3743)))
  4.2958 -(let (($x3378 (not $x1896)))
  4.2959 -(let ((@x3380 (def-axiom (or $x2806 $x3378))))
  4.2960 -(let ((@x8434 (unit-resolution @x3380 (unit-resolution @x8433 (lemma @x8013 $x3737) $x2811) $x3378)))
  4.2961 -(let ((?x6619 (fun_app$c v_b_SP_G_1$ ?v1!18)))
  4.2962 -(let (($x6615 (= ?x1892 ?x6619)))
  4.2963 -(let (($x7618 (not $x6615)))
  4.2964 -(let ((@x7591 (hypothesis $x2811)))
  4.2965 -(let ((@x7607 (unit-resolution (def-axiom (or $x2806 $x1883)) @x7591 $x1883)))
  4.2966 -(let ((@x7571 (hypothesis $x3378)))
  4.2967 -(let (($x1889 (not $x1888)))
  4.2968 -(let ((@x7592 (unit-resolution (def-axiom (or $x2806 $x1889)) @x7591 $x1889)))
  4.2969 -(let ((?x7110 (pair$ v_b_v_G_1$ ?v0!19)))
  4.2970 -(let ((?x7111 (b_G$ ?x7110)))
  4.2971 -(let ((?x7100 (* (- 1) ?x7111)))
  4.2972 -(let ((?x7554 (+ ?x1885 ?x7100)))
  4.2973 -(let (($x7556 (>= ?x7554 0)))
  4.2974 -(let (($x7003 (= ?x1885 ?x7111)))
  4.2975 -(let (($x7243 (= ?v1!18 v_b_v_G_1$)))
  4.2976 -(let (($x7246 (fun_app$ v_b_Visited_G_1$ ?v1!18)))
  4.2977 -(let (($x6211 (not $x7246)))
  4.2978 -(let (($x7248 (>= (+ ?x1885 ?x6619 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!19))) 0)))
  4.2979 -(let (($x7499 (not $x7248)))
  4.2980 -(let ((?x6721 (* (- 1) ?x6619)))
  4.2981 -(let ((?x5600 (+ ?x1892 ?x6721)))
  4.2982 -(let (($x7353 (>= ?x5600 0)))
  4.2983 -(let ((@x8658 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x7618 $x7353)) (hypothesis $x6615) $x7353)))
  4.2984 -(let (($x7076 (<= (+ ?x1893 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!19))) 0)))
  4.2985 -(let (($x7084 (or $x3691 $x7076)))
  4.2986 -(let (($x7081 (= (or $x3691 (>= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1894) 0)) $x7084)))
  4.2987 -(let ((@x7078 (rewrite (= (>= (+ ?x1894 (fun_app$c v_b_SP_G_1$ ?v0!19)) 0) $x7076))))
  4.2988 -(let (($x7048 (>= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1894) 0)))
  4.2989 -(let (($x7069 (= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1894) (+ ?x1894 (fun_app$c v_b_SP_G_1$ ?v0!19)))))
  4.2990 -(let ((@x7073 (monotonicity (rewrite $x7069) (= $x7048 (>= (+ ?x1894 (fun_app$c v_b_SP_G_1$ ?v0!19)) 0)))))
  4.2991 -(let ((@x7090 (trans (monotonicity (trans @x7073 @x7078 (= $x7048 $x7076)) $x7081) (rewrite (= $x7084 $x7084)) $x7081)))
  4.2992 -(let ((@x7496 (unit-resolution (mp ((_ quant-inst ?v0!19) (or $x3691 $x7048)) @x7090 $x7084) @x6892 $x7076)))
  4.2993 -(let ((@x7501 (lemma ((_ th-lemma arith farkas 1 -1 -1 1) (hypothesis $x7248) @x7571 @x7496 (hypothesis $x7353) false) (or $x7499 $x1896 (not $x7353)))))
  4.2994 -(let ((@x6992 (rewrite (= (or $x3578 (or $x6211 $x1888 $x7248)) (or $x3578 $x6211 $x1888 $x7248)))))
  4.2995 -(let ((@x7051 (mp ((_ quant-inst ?v0!19 ?v1!18) (or $x3578 (or $x6211 $x1888 $x7248))) @x6992 (or $x3578 $x6211 $x1888 $x7248))))
  4.2996 -(let ((@x8673 (unit-resolution (unit-resolution @x7051 @x4223 (hypothesis $x1889) (or $x6211 $x7248)) (unit-resolution @x7501 @x8658 @x7571 $x7499) $x6211)))
  4.2997 -(let (($x7222 (or $x7243 $x7246)))
  4.2998 -(let (($x6667 (fun_app$ ?x265 ?v1!18)))
  4.2999 -(let (($x6740 (= $x6667 $x7222)))
  4.3000 -(let (($x6746 (or $x4114 $x6740)))
  4.3001 -(let ((@x6743 (monotonicity (rewrite (= (ite $x7243 true $x7246) $x7222)) (= (= $x6667 (ite $x7243 true $x7246)) $x6740))))
  4.3002 -(let ((@x6845 (monotonicity @x6743 (= (or $x4114 (= $x6667 (ite $x7243 true $x7246))) $x6746))))
  4.3003 -(let ((@x4954 (trans @x6845 (rewrite (= $x6746 $x6746)) (= (or $x4114 (= $x6667 (ite $x7243 true $x7246))) $x6746))))
  4.3004 -(let ((@x6537 (mp ((_ quant-inst v_b_Visited_G_1$ v_b_v_G_1$ true ?v1!18) (or $x4114 (= $x6667 (ite $x7243 true $x7246)))) @x4954 $x6746)))
  4.3005 -(let ((@x8675 (mp (hypothesis $x1883) (symm (monotonicity @x5875 (= $x6667 $x1883)) (= $x1883 $x6667)) $x6667)))
  4.3006 -(let ((@x8676 (unit-resolution (def-axiom (or (not $x6740) (not $x6667) $x7222)) @x8675 (unit-resolution @x6537 @x3473 $x6740) $x7222)))
  4.3007 -(let ((@x4955 (def-axiom (or (not $x7222) $x7243 $x7246))))
  4.3008 -(let ((@x7000 (unit-resolution (hypothesis (not $x7003)) (monotonicity (monotonicity (hypothesis $x7243) (= ?x1884 ?x7110)) $x7003) false)))
  4.3009 -(let ((@x7002 (lemma @x7000 (or (not $x7243) $x7003))))
  4.3010 -(let ((@x7011 ((_ th-lemma arith triangle-eq) (or (not $x7003) $x7556))))
  4.3011 -(let ((@x8679 (unit-resolution @x7011 (unit-resolution @x7002 (unit-resolution @x4955 @x8676 @x8673 $x7243) $x7003) $x7556)))
  4.3012 -(let (($x7102 (<= (+ b_Infinity$ ?x7100) 0)))
  4.3013 -(let ((?x7171 (+ ?x257 ?x1894 ?x7111)))
  4.3014 -(let (($x7252 (>= ?x7171 0)))
  4.3015 -(let (($x7576 (not $x7252)))
  4.3016 -(let (($x7366 (<= (+ ?x257 ?x6721) 0)))
  4.3017 -(let (($x8449 (or $x3665 $x7246 $x7366)))
  4.3018 -(let (($x7357 (>= (+ ?x6619 ?x1173) 0)))
  4.3019 -(let (($x7358 (or $x7246 $x7357)))
  4.3020 -(let (($x8450 (or $x3665 $x7358)))
  4.3021 -(let ((@x8441 (monotonicity (rewrite (= (+ ?x6619 ?x1173) (+ ?x1173 ?x6619))) (= $x7357 (>= (+ ?x1173 ?x6619) 0)))))
  4.3022 -(let ((@x8445 (trans @x8441 (rewrite (= (>= (+ ?x1173 ?x6619) 0) $x7366)) (= $x7357 $x7366))))
  4.3023 -(let ((@x8454 (monotonicity (monotonicity @x8445 (= $x7358 (or $x7246 $x7366))) (= $x8450 (or $x3665 (or $x7246 $x7366))))))
  4.3024 -(let ((@x8458 (trans @x8454 (rewrite (= (or $x3665 (or $x7246 $x7366)) $x8449)) (= $x8450 $x8449))))
  4.3025 -(let ((@x8681 (unit-resolution (mp ((_ quant-inst ?v1!18) $x8450) @x8458 $x8449) (unit-resolution (def-axiom (or $x3809 $x3660)) @x6181 $x3660) @x8673 $x7366)))
  4.3026 -(let ((@x8685 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 1) (or $x7576 $x1896 (not $x7353) (not $x7366) (not $x7556))) @x8681 @x8679 @x7571 @x8658 $x7576)))
  4.3027 -(let ((@x8686 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x7171 0)) $x7252)) @x8685 (not (= ?x7171 0)))))
  4.3028 -(let (($x7117 (>= (+ ?x257 (* (- 1) (fun_app$c v_b_SP_G_1$ ?v0!19)) ?x7111) 0)))
  4.3029 -(let (($x7161 (not $x7117)))
  4.3030 -(let ((@x8688 ((_ th-lemma arith assign-bounds -1 -1 1 -1 1) (or $x7161 (not $x7076) $x1896 (not $x7353) (not $x7366) (not $x7556)))))
  4.3031 -(let (($x7174 (= ?x7171 0)))
  4.3032 -(let (($x7184 (or $x7102 $x7117 $x7174)))
  4.3033 -(let (($x7186 (or $x3675 $x7102 $x7117 $x7174)))
  4.3034 -(let (($x7104 (<= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1173 ?x7100) 0)))
  4.3035 -(let (($x7165 (or $x7102 $x7104 (= (+ ?x257 ?x7111 ?x1894) 0))))
  4.3036 -(let (($x7187 (or $x3675 $x7165)))
  4.3037 -(let ((@x7183 (monotonicity (rewrite (= (+ ?x257 ?x7111 ?x1894) ?x7171)) (= (= (+ ?x257 ?x7111 ?x1894) 0) $x7174))))
  4.3038 -(let ((@x7119 (rewrite (= (<= (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v0!19) ?x7100) 0) $x7117))))
  4.3039 -(let (($x7112 (= (+ (fun_app$c v_b_SP_G_1$ ?v0!19) ?x1173 ?x7100) (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v0!19) ?x7100))))
  4.3040 -(let ((@x7115 (monotonicity (rewrite $x7112) (= $x7104 (<= (+ ?x1173 (fun_app$c v_b_SP_G_1$ ?v0!19) ?x7100) 0)))))
  4.3041 -(let ((@x7205 (monotonicity (monotonicity (trans @x7115 @x7119 (= $x7104 $x7117)) @x7183 (= $x7165 $x7184)) (= $x7187 (or $x3675 $x7184)))))
  4.3042 -(let ((@x7250 (mp ((_ quant-inst ?v0!19) $x7187) (trans @x7205 (rewrite (= (or $x3675 $x7184) $x7186)) (= $x7187 $x7186)) $x7186)))
  4.3043 -(let ((@x8690 (unit-resolution (unit-resolution @x7250 @x6588 $x7184) (unit-resolution @x8688 @x8681 @x8679 @x7571 @x8658 @x7496 $x7161) @x8686 $x7102)))
  4.3044 -(let ((@x8693 (lemma ((_ th-lemma arith farkas -1 1 1) @x8690 @x8679 (hypothesis $x1889) false) (or $x7618 $x1888 $x1896 $x2791))))
  4.3045 -(let ((@x7245 (mp ((_ quant-inst ?v1!18) (or $x3700 (or $x2791 $x6615))) (rewrite (= (or $x3700 (or $x2791 $x6615)) (or $x3700 $x2791 $x6615))) (or $x3700 $x2791 $x6615))))
  4.3046 -(let ((@x8285 (unit-resolution @x7245 @x7616 @x7607 (unit-resolution @x8693 @x7592 @x7571 @x7607 $x7618) false)))
  4.3047 -(unit-resolution (lemma @x8285 (or $x2806 $x1896)) @x8434 (unit-resolution @x8433 (lemma @x8013 $x3737) $x2811) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
  4.3048 -
     5.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     5.2 +++ b/src/HOL/SMT_Examples/Boogie_Max.certs	Thu Sep 18 00:03:46 2014 +0200
     5.3 @@ -0,0 +1,780 @@
     5.4 +9c420ec314a920506e90cf4b4e40b4ee3ab35dec 779 0
     5.5 +unsat
     5.6 +((set-logic AUFLIA)
     5.7 +(declare-fun ?v0!3 () Int)
     5.8 +(declare-fun ?v0!2 () Int)
     5.9 +(declare-fun ?v0!1 () Int)
    5.10 +(declare-fun ?v0!0 () Int)
    5.11 +(proof
    5.12 +(let (($x109 (= v_b_max_G_3$ v_b_max_G_2$)))
    5.13 +(let ((?x135 (v_b_array$ v_b_k_G_1$)))
    5.14 +(let (($x136 (= ?x135 v_b_max_G_3$)))
    5.15 +(let (($x1878 (forall ((?v0 Int) )(!(let (($x746 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0)))
    5.16 +(let (($x733 (>= (+ ?v0 (* (- 1) v_b_p_G_1$)) 0)))
    5.17 +(let (($x521 (>= ?v0 0)))
    5.18 +(let (($x1157 (not $x521)))
    5.19 +(or $x1157 $x733 $x746))))) :pattern ( (v_b_array$ ?v0) )))
    5.20 +))
    5.21 +(let (($x1883 (not $x1878)))
    5.22 +(let (($x1886 (or $x1883 $x136)))
    5.23 +(let (($x1889 (not $x1886)))
    5.24 +(let (($x1070 (>= (+ v_b_max_G_3$ (* (- 1) (v_b_array$ ?v0!3))) 0)))
    5.25 +(let (($x1048 (<= (+ v_b_p_G_1$ (* (- 1) ?v0!3)) 0)))
    5.26 +(let (($x931 (>= ?v0!3 0)))
    5.27 +(let (($x1298 (not $x931)))
    5.28 +(let (($x1313 (or $x1298 $x1048 $x1070)))
    5.29 +(let (($x1318 (not $x1313)))
    5.30 +(let (($x1892 (or $x1318 $x1889)))
    5.31 +(let (($x1895 (not $x1892)))
    5.32 +(let (($x682 (>= v_b_p_G_1$ 2)))
    5.33 +(let (($x1364 (not $x682)))
    5.34 +(let (($x679 (>= v_b_k_G_1$ 0)))
    5.35 +(let (($x1363 (not $x679)))
    5.36 +(let ((?x685 (* (- 1) v_b_p_G_1$)))
    5.37 +(let ((?x686 (+ v_b_p_G_0$ ?x685)))
    5.38 +(let (($x684 (= ?x686 (- 1))))
    5.39 +(let (($x1362 (not $x684)))
    5.40 +(let (($x573 (>= v_b_p_G_0$ 1)))
    5.41 +(let (($x1287 (not $x573)))
    5.42 +(let (($x1361 (not $x109)))
    5.43 +(let (($x107 (= v_b_k_G_1$ v_b_p_G_0$)))
    5.44 +(let (($x1360 (not $x107)))
    5.45 +(let ((?x101 (v_b_array$ v_b_p_G_0$)))
    5.46 +(let (($x104 (= v_b_max_G_2$ ?x101)))
    5.47 +(let (($x1359 (not $x104)))
    5.48 +(let (($x689 (>= (+ v_b_max_G_1$ (* (- 1) ?x101)) 0)))
    5.49 +(let (($x571 (>= v_b_k_G_0$ 0)))
    5.50 +(let (($x1286 (not $x571)))
    5.51 +(let (($x1898 (or $x1286 $x689 $x1359 $x1360 $x1361 $x1287 $x1362 $x1363 $x1364 $x1895)))
    5.52 +(let (($x1901 (not $x1898)))
    5.53 +(let (($x145 (= v_b_max_G_3$ v_b_max_G_1$)))
    5.54 +(let (($x1376 (not $x145)))
    5.55 +(let (($x144 (= v_b_k_G_1$ v_b_k_G_0$)))
    5.56 +(let (($x1375 (not $x144)))
    5.57 +(let (($x692 (not $x689)))
    5.58 +(let (($x1904 (or $x692 $x1286 $x1375 $x1376 $x1287 $x1362 $x1363 $x1364 $x1895)))
    5.59 +(let ((?x937 (v_b_array$ ?v0!3)))
    5.60 +(let (($x1559 (= ?x101 ?x937)))
    5.61 +(let (($x1563 (not $x1559)))
    5.62 +(let ((?x1068 (* (- 1) ?x937)))
    5.63 +(let ((?x1461 (+ ?x101 ?x1068)))
    5.64 +(let (($x1445 (>= ?x1461 0)))
    5.65 +(let (($x1453 (not $x1445)))
    5.66 +(let (($x1907 (not $x1904)))
    5.67 +(let ((@x2149 (hypothesis $x1907)))
    5.68 +(let ((?x744 (* (- 1) v_b_max_G_3$)))
    5.69 +(let ((?x1781 (+ v_b_max_G_1$ ?x744)))
    5.70 +(let (($x1782 (<= ?x1781 0)))
    5.71 +(let (($x1780 (= v_b_max_G_1$ v_b_max_G_3$)))
    5.72 +(let ((@x2162 (mp (unit-resolution (def-axiom (or $x1904 $x145)) @x2149 $x145) (symm (commutativity (= $x1780 $x145)) (= $x145 $x1780)) $x1780)))
    5.73 +(let (($x1436 (not $x1070)))
    5.74 +(let ((?x62 (v_b_array$ v_b_k_G_0$)))
    5.75 +(let (($x63 (= ?x62 v_b_max_G_1$)))
    5.76 +(let (($x1910 (or $x1901 $x1907)))
    5.77 +(let (($x1913 (not $x1910)))
    5.78 +(let ((?x549 (* (- 1) v_b_p_G_0$)))
    5.79 +(let ((?x599 (+ v_b_length$ ?x549)))
    5.80 +(let (($x600 (<= ?x599 0)))
    5.81 +(let (($x1916 (or $x600 $x1286 $x1287 $x1913)))
    5.82 +(let (($x1919 (not $x1916)))
    5.83 +(let (($x1011 (>= (+ v_b_max_G_4$ (* (- 1) (v_b_array$ ?v0!2))) 0)))
    5.84 +(let (($x900 (<= (+ v_b_length$ (* (- 1) ?v0!2)) 0)))
    5.85 +(let (($x897 (>= ?v0!2 0)))
    5.86 +(let (($x1247 (not $x897)))
    5.87 +(let (($x889 (= (v_b_array$ ?v0!1) v_b_max_G_4$)))
    5.88 +(let (($x884 (<= (+ v_b_length$ (* (- 1) ?v0!1)) 0)))
    5.89 +(let (($x881 (>= ?v0!1 0)))
    5.90 +(let (($x1227 (not $x881)))
    5.91 +(let (($x1242 (or $x1227 $x884 $x889)))
    5.92 +(let (($x1273 (not $x1242)))
    5.93 +(let (($x1274 (or $x1273 $x1247 $x900 $x1011)))
    5.94 +(let (($x1275 (not $x1274)))
    5.95 +(let (($x1861 (forall ((?v0 Int) )(!(let ((?x46 (v_b_array$ ?v0)))
    5.96 +(let (($x86 (= ?x46 v_b_max_G_4$)))
    5.97 +(let (($x622 (<= (+ v_b_length$ (* (- 1) ?v0)) 0)))
    5.98 +(let (($x521 (>= ?v0 0)))
    5.99 +(let (($x1157 (not $x521)))
   5.100 +(let (($x1216 (or $x1157 $x622 $x86)))
   5.101 +(not $x1216))))))) :pattern ( (v_b_array$ ?v0) )))
   5.102 +))
   5.103 +(let (($x1866 (or $x1861 $x1275)))
   5.104 +(let (($x1869 (not $x1866)))
   5.105 +(let (($x75 (= v_b_p_G_2$ v_b_p_G_0$)))
   5.106 +(let (($x1290 (not $x75)))
   5.107 +(let (($x73 (= v_b_max_G_4$ v_b_max_G_1$)))
   5.108 +(let (($x1289 (not $x73)))
   5.109 +(let (($x71 (= v_b_k_G_2$ v_b_k_G_0$)))
   5.110 +(let (($x1288 (not $x71)))
   5.111 +(let (($x661 (not $x600)))
   5.112 +(let (($x1872 (or $x661 $x1286 $x1287 $x1288 $x1289 $x1290 $x1869)))
   5.113 +(let (($x1875 (not $x1872)))
   5.114 +(let (($x1922 (or $x1875 $x1919)))
   5.115 +(let (($x1925 (not $x1922)))
   5.116 +(let (($x1403 (not $x63)))
   5.117 +(let (($x1853 (forall ((?v0 Int) )(!(let (($x561 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0)))
   5.118 +(let (($x548 (>= (+ ?v0 (* (- 1) v_b_p_G_0$)) 0)))
   5.119 +(let (($x521 (>= ?v0 0)))
   5.120 +(let (($x1157 (not $x521)))
   5.121 +(or $x1157 $x548 $x561))))) :pattern ( (v_b_array$ ?v0) )))
   5.122 +))
   5.123 +(let (($x1858 (not $x1853)))
   5.124 +(let ((?x30 (v_b_array$ 0)))
   5.125 +(let (($x50 (= ?x30 v_b_max_G_0$)))
   5.126 +(let (($x851 (not $x50)))
   5.127 +(let (($x1928 (or $x851 $x1858 $x1403 $x1286 $x1287 $x1925)))
   5.128 +(let (($x1931 (not $x1928)))
   5.129 +(let (($x1934 (or $x851 $x1931)))
   5.130 +(let (($x1937 (not $x1934)))
   5.131 +(let (($x1845 (forall ((?v0 Int) )(!(let (($x534 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0)))
   5.132 +(let (($x524 (>= ?v0 1)))
   5.133 +(let (($x521 (>= ?v0 0)))
   5.134 +(let (($x1157 (not $x521)))
   5.135 +(or $x1157 $x524 $x534))))) :pattern ( (v_b_array$ ?v0) )))
   5.136 +))
   5.137 +(let (($x1850 (not $x1845)))
   5.138 +(let (($x1940 (or $x1850 $x1937)))
   5.139 +(let (($x1943 (not $x1940)))
   5.140 +(let (($x839 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0!0))) 0)))
   5.141 +(let (($x832 (>= ?v0!0 1)))
   5.142 +(let (($x835 (>= ?v0!0 0)))
   5.143 +(let (($x1134 (not $x835)))
   5.144 +(let (($x1149 (or $x1134 $x832 $x839)))
   5.145 +(let (($x833 (not $x832)))
   5.146 +(let (($x1154 (not $x1149)))
   5.147 +(let ((@x1726 (hypothesis $x1154)))
   5.148 +(let ((@x1711 ((_ th-lemma arith eq-propagate 0 0) (unit-resolution (def-axiom (or $x1149 $x835)) @x1726 $x835) (unit-resolution (def-axiom (or $x1149 $x833)) @x1726 $x833) (= ?v0!0 0))))
   5.149 +(let ((@x1715 (symm (monotonicity @x1711 (= (v_b_array$ ?v0!0) ?x30)) (= ?x30 (v_b_array$ ?v0!0)))))
   5.150 +(let (($x31 (= v_b_max_G_0$ ?x30)))
   5.151 +(let (($x495 (<= v_b_length$ 0)))
   5.152 +(let (($x496 (not $x495)))
   5.153 +(let (($x511 (and $x496 $x31)))
   5.154 +(let (($x752 (forall ((?v0 Int) )(let (($x746 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_3$)) 0)))
   5.155 +(let (($x521 (>= ?v0 0)))
   5.156 +(let (($x738 (and $x521 (not (>= (+ ?v0 (* (- 1) v_b_p_G_1$)) 0)))))
   5.157 +(let (($x741 (not $x738)))
   5.158 +(or $x741 $x746))))))
   5.159 +))
   5.160 +(let (($x755 (not $x752)))
   5.161 +(let (($x758 (or $x755 $x136)))
   5.162 +(let (($x761 (and $x752 $x758)))
   5.163 +(let (($x784 (and $x689 $x571 $x144 $x145 $x573 $x684 $x679 $x682)))
   5.164 +(let (($x789 (not $x784)))
   5.165 +(let (($x792 (or $x789 $x761)))
   5.166 +(let (($x725 (and $x571 $x692 $x104 $x107 $x109 $x573 $x684 $x679 $x682)))
   5.167 +(let (($x730 (not $x725)))
   5.168 +(let (($x764 (or $x730 $x761)))
   5.169 +(let (($x795 (and $x764 $x792)))
   5.170 +(let (($x670 (and $x661 $x571 $x573)))
   5.171 +(let (($x675 (not $x670)))
   5.172 +(let (($x798 (or $x675 $x795)))
   5.173 +(let (($x649 (forall ((?v0 Int) )(let (($x521 (>= ?v0 0)))
   5.174 +(let (($x626 (and $x521 (not (<= (+ v_b_length$ (* (- 1) ?v0)) 0)))))
   5.175 +(let (($x629 (not $x626)))
   5.176 +(or $x629 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_4$)) 0))))))
   5.177 +))
   5.178 +(let (($x635 (exists ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
   5.179 +(let (($x86 (= ?x46 v_b_max_G_4$)))
   5.180 +(let (($x521 (>= ?v0 0)))
   5.181 +(let (($x626 (and $x521 (not (<= (+ v_b_length$ (* (- 1) ?v0)) 0)))))
   5.182 +(let (($x629 (not $x626)))
   5.183 +(or $x629 $x86)))))))
   5.184 +))
   5.185 +(let (($x638 (not $x635)))
   5.186 +(let (($x652 (or $x638 $x649)))
   5.187 +(let (($x655 (and $x635 $x652)))
   5.188 +(let (($x612 (and $x600 $x571 $x573 $x71 $x73 $x75)))
   5.189 +(let (($x617 (not $x612)))
   5.190 +(let (($x658 (or $x617 $x655)))
   5.191 +(let (($x801 (and $x658 $x798)))
   5.192 +(let (($x567 (forall ((?v0 Int) )(let (($x561 (<= (+ (v_b_array$ ?v0) (* (- 1) v_b_max_G_1$)) 0)))
   5.193 +(let (($x521 (>= ?v0 0)))
   5.194 +(let (($x553 (and $x521 (not (>= (+ ?v0 (* (- 1) v_b_p_G_0$)) 0)))))
   5.195 +(let (($x556 (not $x553)))
   5.196 +(or $x556 $x561))))))
   5.197 +))
   5.198 +(let (($x591 (and $x50 $x567 $x63 $x571 $x573)))
   5.199 +(let (($x596 (not $x591)))
   5.200 +(let (($x804 (or $x596 $x801)))
   5.201 +(let (($x807 (and $x50 $x804)))
   5.202 +(let (($x541 (forall ((?v0 Int) )(let (($x534 (>= (+ v_b_max_G_0$ (* (- 1) (v_b_array$ ?v0))) 0)))
   5.203 +(let (($x521 (>= ?v0 0)))
   5.204 +(let (($x526 (and $x521 (not (>= ?v0 1)))))
   5.205 +(let (($x529 (not $x526)))
   5.206 +(or $x529 $x534))))))
   5.207 +))
   5.208 +(let (($x544 (not $x541)))
   5.209 +(let (($x810 (or $x544 $x807)))
   5.210 +(let (($x813 (and $x541 $x810)))
   5.211 +(let (($x819 (not (or (not $x511) $x813))))
   5.212 +(let (($x138 (=> (and $x136 false) true)))
   5.213 +(let (($x139 (and $x136 $x138)))
   5.214 +(let (($x134 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
   5.215 +(let (($x132 (<= ?x46 v_b_max_G_3$)))
   5.216 +(let (($x43 (<= 0 ?v0)))
   5.217 +(let (($x131 (and $x43 (< ?v0 v_b_p_G_1$))))
   5.218 +(=> $x131 $x132))))))
   5.219 +))
   5.220 +(let (($x140 (=> $x134 $x139)))
   5.221 +(let (($x141 (and $x134 $x140)))
   5.222 +(let (($x119 (and (= v_b_p_G_1$ (+ v_b_p_G_0$ 1)) (and (and (<= 0 v_b_k_G_1$) (<= 2 v_b_p_G_1$)) true))))
   5.223 +(let (($x54 (<= 1 v_b_p_G_0$)))
   5.224 +(let (($x110 (<= 0 v_b_k_G_1$)))
   5.225 +(let (($x111 (and $x110 $x54)))
   5.226 +(let (($x121 (and true (and $x111 $x119))))
   5.227 +(let (($x148 (and true (and $x144 (and $x145 $x121)))))
   5.228 +(let (($x55 (and (<= 0 v_b_k_G_0$) $x54)))
   5.229 +(let (($x143 (<= ?x101 v_b_max_G_1$)))
   5.230 +(let (($x152 (and true (and $x55 (and $x143 (and $x55 $x148))))))
   5.231 +(let (($x153 (=> $x152 $x141)))
   5.232 +(let (($x126 (and $x104 (and (and $x54 $x54) (and true (and $x107 (and $x109 $x121)))))))
   5.233 +(let (($x102 (< v_b_max_G_1$ ?x101)))
   5.234 +(let (($x129 (and true (and $x55 (and $x102 $x126)))))
   5.235 +(let (($x142 (=> $x129 $x141)))
   5.236 +(let (($x155 (=> (and true (and $x55 (and (< v_b_p_G_0$ v_b_length$) $x55))) (and $x142 $x153))))
   5.237 +(let (($x91 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
   5.238 +(let (($x89 (<= ?x46 v_b_max_G_4$)))
   5.239 +(let (($x43 (<= 0 ?v0)))
   5.240 +(let (($x85 (and $x43 (< ?v0 v_b_length$))))
   5.241 +(=> $x85 $x89))))))
   5.242 +))
   5.243 +(let (($x92 (=> $x91 true)))
   5.244 +(let (($x93 (and $x91 $x92)))
   5.245 +(let (($x88 (exists ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
   5.246 +(let (($x86 (= ?x46 v_b_max_G_4$)))
   5.247 +(let (($x43 (<= 0 ?v0)))
   5.248 +(let (($x85 (and $x43 (< ?v0 v_b_length$))))
   5.249 +(=> $x85 $x86))))))
   5.250 +))
   5.251 +(let (($x94 (=> $x88 $x93)))
   5.252 +(let (($x69 (<= v_b_length$ v_b_p_G_0$)))
   5.253 +(let (($x81 (and $x69 (and $x55 (and true (and $x71 (and $x73 (and $x75 true))))))))
   5.254 +(let (($x83 (and true (and $x55 $x81))))
   5.255 +(let (($x96 (=> $x83 (and $x88 $x94))))
   5.256 +(let (($x64 (and $x63 $x55)))
   5.257 +(let (($x61 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
   5.258 +(let (($x59 (<= ?x46 v_b_max_G_1$)))
   5.259 +(let (($x43 (<= 0 ?v0)))
   5.260 +(let (($x57 (and $x43 (< ?v0 v_b_p_G_0$))))
   5.261 +(=> $x57 $x59))))))
   5.262 +))
   5.263 +(let (($x67 (and true (and $x55 (and $x61 $x64)))))
   5.264 +(let (($x157 (=> (and $x50 $x67) (and $x96 $x155))))
   5.265 +(let (($x49 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
   5.266 +(let (($x47 (<= ?x46 v_b_max_G_0$)))
   5.267 +(let (($x43 (<= 0 ?v0)))
   5.268 +(let (($x45 (and $x43 (< ?v0 1))))
   5.269 +(=> $x45 $x47))))))
   5.270 +))
   5.271 +(let (($x159 (=> $x49 (and $x50 $x157))))
   5.272 +(let (($x32 (<= 0 0)))
   5.273 +(let (($x38 (and $x31 (and $x32 (and $x32 (and (<= 1 1) (<= 1 1)))))))
   5.274 +(let (($x39 (and true $x38)))
   5.275 +(let (($x28 (< 0 v_b_length$)))
   5.276 +(let (($x41 (and true (and $x28 $x39))))
   5.277 +(let (($x161 (=> $x41 (and $x49 $x159))))
   5.278 +(let (($x162 (not $x161)))
   5.279 +(let (($x362 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
   5.280 +(let (($x132 (<= ?x46 v_b_max_G_3$)))
   5.281 +(or (not (and (<= 0 ?v0) (< ?v0 v_b_p_G_1$))) $x132))))
   5.282 +))
   5.283 +(let (($x385 (or (not $x362) $x136)))
   5.284 +(let (($x390 (and $x362 $x385)))
   5.285 +(let (($x117 (and $x110 (<= 2 v_b_p_G_1$))))
   5.286 +(let (($x308 (= v_b_p_G_1$ (+ 1 v_b_p_G_0$))))
   5.287 +(let (($x313 (and $x308 $x117)))
   5.288 +(let (($x316 (and $x111 $x313)))
   5.289 +(let (($x402 (and $x145 $x316)))
   5.290 +(let (($x405 (and $x144 $x402)))
   5.291 +(let (($x415 (and $x55 $x405)))
   5.292 +(let (($x418 (and $x143 $x415)))
   5.293 +(let (($x421 (and $x55 $x418)))
   5.294 +(let (($x435 (or (not $x421) $x390)))
   5.295 +(let (($x326 (and $x109 $x316)))
   5.296 +(let (($x329 (and $x107 $x326)))
   5.297 +(let (($x339 (and $x54 $x329)))
   5.298 +(let (($x342 (and $x104 $x339)))
   5.299 +(let (($x345 (and $x102 $x342)))
   5.300 +(let (($x348 (and $x55 $x345)))
   5.301 +(let (($x397 (or (not $x348) $x390)))
   5.302 +(let (($x440 (and $x397 $x435)))
   5.303 +(let (($x447 (or (not (and $x55 (and (< v_b_p_G_0$ v_b_length$) $x55))) $x440)))
   5.304 +(let (($x263 (forall ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
   5.305 +(let (($x89 (<= ?x46 v_b_max_G_4$)))
   5.306 +(let (($x43 (<= 0 ?v0)))
   5.307 +(let (($x85 (and $x43 (< ?v0 v_b_length$))))
   5.308 +(let (($x253 (not $x85)))
   5.309 +(or $x253 $x89)))))))
   5.310 +))
   5.311 +(let (($x257 (exists ((?v0 Int) )(let ((?x46 (v_b_array$ ?v0)))
   5.312 +(let (($x86 (= ?x46 v_b_max_G_4$)))
   5.313 +(let (($x43 (<= 0 ?v0)))
   5.314 +(let (($x85 (and $x43 (< ?v0 v_b_length$))))
   5.315 +(let (($x253 (not $x85)))
   5.316 +(or $x253 $x86)))))))
   5.317 +))
   5.318 +(let (($x284 (or (not $x257) $x263)))
   5.319 +(let (($x289 (and $x257 $x284)))