define reflp directly, in the manner of symp and transp
authorhuffman
Thu Apr 05 15:23:26 2012 +0200 (2012-04-05)
changeset 473758e6a45f1bf8f
parent 47374 9475d524bafb
child 47376 776254f89a18
define reflp directly, in the manner of symp and transp
src/HOL/Relation.thy
     1.1 --- a/src/HOL/Relation.thy	Thu Apr 05 14:14:16 2012 +0200
     1.2 +++ b/src/HOL/Relation.thy	Thu Apr 05 15:23:26 2012 +0200
     1.3 @@ -146,7 +146,7 @@
     1.4  
     1.5  definition reflp :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> bool"
     1.6  where
     1.7 -  "reflp r \<longleftrightarrow> refl {(x, y). r x y}"
     1.8 +  "reflp r \<longleftrightarrow> (\<forall>x. r x x)"
     1.9  
    1.10  lemma reflp_refl_eq [pred_set_conv]:
    1.11    "reflp (\<lambda>x y. (x, y) \<in> r) \<longleftrightarrow> refl r"