1.1 --- a/src/HOL/Library/Equipollence.thy Tue Dec 03 16:51:53 2019 +0100
1.2 +++ b/src/HOL/Library/Equipollence.thy Wed Dec 04 12:44:38 2019 +0000
1.3 @@ -693,4 +693,19 @@
1.4 apply (auto simp: finite_PiE_iff PiE_eq_empty_iff dest: not_finite_existsD)
1.5 using finite.simps by auto
1.6
1.7 +lemma lists_lepoll_mono:
1.8 + assumes "A \<lesssim> B" shows "lists A \<lesssim> lists B"
1.9 +proof -
1.10 + obtain f where f: "inj_on f A" "f ` A \<subseteq> B"
1.11 + by (meson assms lepoll_def)
1.12 + moreover have "inj_on (map f) (lists A)"
1.13 + using f unfolding inj_on_def
1.14 + by clarsimp (metis list.inj_map_strong)
1.15 + ultimately show ?thesis
1.16 + unfolding lepoll_def by force
1.17 +qed
1.18 +
1.19 +lemma lepoll_lists: "A \<lesssim> lists A"
1.20 + unfolding lepoll_def inj_on_def by(rule_tac x="\<lambda>x. [x]" in exI) auto
1.21 +
1.22 end