1.1 --- a/src/HOL/Import/HOL4Compat.thy Sat Sep 03 09:26:11 2011 -0700
1.2 +++ b/src/HOL/Import/HOL4Compat.thy Sat Sep 03 11:10:38 2011 -0700
1.3 @@ -421,16 +421,6 @@
1.4 assume allx': "ALL x. P x \<longrightarrow> x < z"
1.5 have "EX s. ALL y. (EX x : Collect P. y < x) = (y < s)"
1.6 proof (rule posreal_complete)
1.7 - show "ALL x : Collect P. 0 < x"
1.8 - proof safe
1.9 - fix x
1.10 - assume P: "P x"
1.11 - from allx
1.12 - have "P x \<longrightarrow> 0 < x"
1.13 - ..
1.14 - with P show "0 < x" by simp
1.15 - qed
1.16 - next
1.17 from px
1.18 show "EX x. x : Collect P"
1.19 by auto
2.1 --- a/src/HOL/RComplete.thy Sat Sep 03 09:26:11 2011 -0700
2.2 +++ b/src/HOL/RComplete.thy Sat Sep 03 11:10:38 2011 -0700
2.3 @@ -33,8 +33,8 @@
2.4 text {* Only used in HOL/Import/HOL4Compat.thy; delete? *}
2.5
2.6 lemma posreal_complete:
2.7 - assumes positive_P: "\<forall>x \<in> P. (0::real) < x"
2.8 - and not_empty_P: "\<exists>x. x \<in> P"
2.9 + fixes P :: "real set"
2.10 + assumes not_empty_P: "\<exists>x. x \<in> P"
2.11 and upper_bound_Ex: "\<exists>y. \<forall>x \<in> P. x<y"
2.12 shows "\<exists>S. \<forall>y. (\<exists>x \<in> P. y < x) = (y < S)"
2.13 proof -