author wenzelm Fri Jul 27 19:57:23 2012 +0200 (2012-07-27) changeset 48562 f6d6d58fa318 parent 48561 12aa0cb2b447 child 48563 04e129931181
tuned proofs -- avoid odd situations of polymorphic Frees in goal state;
```     1.1 --- a/src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy	Fri Jul 27 19:27:21 2012 +0200
1.2 +++ b/src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy	Fri Jul 27 19:57:23 2012 +0200
1.3 @@ -1051,7 +1051,7 @@
1.4
1.5  lemma simplt_nb[simp]:   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
1.6    shows "tmbound0 t \<Longrightarrow> bound0 (simplt t)"
1.7 -  using split0 [of "simptm t" vs bs]
1.8 +  using split0 [of "simptm t" "vs::'a list" bs]
1.9  proof(simp add: simplt_def Let_def split_def)
1.10    assume nb: "tmbound0 t"
1.11    hence nb': "tmbound0 (simptm t)" by simp
1.12 @@ -1068,7 +1068,7 @@
1.13
1.14  lemma simple_nb[simp]:   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
1.15    shows "tmbound0 t \<Longrightarrow> bound0 (simple t)"
1.16 -  using split0 [of "simptm t" vs bs]
1.17 +  using split0 [of "simptm t" "vs::'a list" bs]
1.18  proof(simp add: simple_def Let_def split_def)
1.19    assume nb: "tmbound0 t"
1.20    hence nb': "tmbound0 (simptm t)" by simp
1.21 @@ -1085,7 +1085,7 @@
1.22
1.23  lemma simpeq_nb[simp]:   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
1.24    shows "tmbound0 t \<Longrightarrow> bound0 (simpeq t)"
1.25 -  using split0 [of "simptm t" vs bs]
1.26 +  using split0 [of "simptm t" "vs::'a list" bs]
1.27  proof(simp add: simpeq_def Let_def split_def)
1.28    assume nb: "tmbound0 t"
1.29    hence nb': "tmbound0 (simptm t)" by simp
1.30 @@ -1102,7 +1102,7 @@
1.31
1.32  lemma simpneq_nb[simp]:   assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})"
1.33    shows "tmbound0 t \<Longrightarrow> bound0 (simpneq t)"
1.34 -  using split0 [of "simptm t" vs bs]
1.35 +  using split0 [of "simptm t" "vs::'a list" bs]
1.36  proof(simp add: simpneq_def Let_def split_def)
1.37    assume nb: "tmbound0 t"
1.38    hence nb': "tmbound0 (simptm t)" by simp
```
```     2.1 --- a/src/HOL/GCD.thy	Fri Jul 27 19:27:21 2012 +0200
2.2 +++ b/src/HOL/GCD.thy	Fri Jul 27 19:57:23 2012 +0200
2.3 @@ -610,8 +610,8 @@
2.4    apply (erule subst)
2.5    apply (rule iffI)
2.6    apply force
2.7 -  apply (drule_tac x = "abs e" in exI)
2.8 -  apply (case_tac "e >= 0")
2.9 +  apply (drule_tac x = "abs ?e" in exI)
2.10 +  apply (case_tac "(?e::int) >= 0")
2.11    apply force
2.12    apply force
2.13  done
```
```     3.1 --- a/src/HOL/MicroJava/Comp/LemmasComp.thy	Fri Jul 27 19:27:21 2012 +0200
3.2 +++ b/src/HOL/MicroJava/Comp/LemmasComp.thy	Fri Jul 27 19:57:23 2012 +0200
3.3 @@ -369,9 +369,6 @@
3.4  prefer 2 apply assumption
3.5  apply (simp add: comp_method [of G D])
3.6  apply (erule exE)+
3.7 -apply (subgoal_tac "z =(fst z, fst (snd z), snd (snd z))")
3.8 -apply (rule exI)
3.9 -apply (simp)