wenzelm@61656
|
1 |
(*:maxLineLen=78:*)
|
wenzelm@61656
|
2 |
|
wenzelm@29755
|
3 |
theory Logic
|
wenzelm@29755
|
4 |
imports Base
|
wenzelm@29755
|
5 |
begin
|
wenzelm@18537
|
6 |
|
wenzelm@58618
|
7 |
chapter \<open>Primitive logic \label{ch:logic}\<close>
|
wenzelm@18537
|
8 |
|
wenzelm@58618
|
9 |
text \<open>
|
wenzelm@61854
|
10 |
The logical foundations of Isabelle/Isar are that of the Pure logic, which
|
wenzelm@61854
|
11 |
has been introduced as a Natural Deduction framework in @{cite paulson700}.
|
wenzelm@61854
|
12 |
This is essentially the same logic as ``\<open>\<lambda>HOL\<close>'' in the more abstract
|
wenzelm@61854
|
13 |
setting of Pure Type Systems (PTS) @{cite "Barendregt-Geuvers:2001"},
|
wenzelm@61854
|
14 |
although there are some key differences in the specific treatment of simple
|
wenzelm@61854
|
15 |
types in Isabelle/Pure.
|
wenzelm@20480
|
16 |
|
wenzelm@61854
|
17 |
Following type-theoretic parlance, the Pure logic consists of three levels
|
wenzelm@61854
|
18 |
of \<open>\<lambda>\<close>-calculus with corresponding arrows, \<open>\<Rightarrow>\<close> for syntactic function space
|
wenzelm@61854
|
19 |
(terms depending on terms), \<open>\<And>\<close> for universal quantification (proofs
|
wenzelm@61854
|
20 |
depending on terms), and \<open>\<Longrightarrow>\<close> for implication (proofs depending on proofs).
|
wenzelm@20480
|
21 |
|
wenzelm@20537
|
22 |
Derivations are relative to a logical theory, which declares type
|
wenzelm@61854
|
23 |
constructors, constants, and axioms. Theory declarations support schematic
|
wenzelm@61854
|
24 |
polymorphism, which is strictly speaking outside the logic.\<^footnote>\<open>This is the
|
wenzelm@61854
|
25 |
deeper logical reason, why the theory context \<open>\<Theta>\<close> is separate from the proof
|
wenzelm@61854
|
26 |
context \<open>\<Gamma>\<close> of the core calculus: type constructors, term constants, and
|
wenzelm@61854
|
27 |
facts (proof constants) may involve arbitrary type schemes, but the type of
|
wenzelm@61854
|
28 |
a locally fixed term parameter is also fixed!\<close>
|
wenzelm@58618
|
29 |
\<close>
|
wenzelm@20480
|
30 |
|
wenzelm@20480
|
31 |
|
wenzelm@58618
|
32 |
section \<open>Types \label{sec:types}\<close>
|
wenzelm@20437
|
33 |
|
wenzelm@58618
|
34 |
text \<open>
|
wenzelm@61854
|
35 |
The language of types is an uninterpreted order-sorted first-order algebra;
|
wenzelm@61854
|
36 |
types are qualified by ordered type classes.
|
wenzelm@20480
|
37 |
|
wenzelm@61416
|
38 |
\<^medskip>
|
wenzelm@61854
|
39 |
A \<^emph>\<open>type class\<close> is an abstract syntactic entity declared in the theory
|
wenzelm@61854
|
40 |
context. The \<^emph>\<open>subclass relation\<close> \<open>c\<^sub>1 \<subseteq> c\<^sub>2\<close> is specified by stating an
|
wenzelm@61854
|
41 |
acyclic generating relation; the transitive closure is maintained
|
wenzelm@61854
|
42 |
internally. The resulting relation is an ordering: reflexive, transitive,
|
wenzelm@61854
|
43 |
and antisymmetric.
|
wenzelm@20451
|
44 |
|
wenzelm@61854
|
45 |
A \<^emph>\<open>sort\<close> is a list of type classes written as \<open>s = {c\<^sub>1, \<dots>, c\<^sub>m}\<close>, it
|
wenzelm@61854
|
46 |
represents symbolic intersection. Notationally, the curly braces are omitted
|
wenzelm@61854
|
47 |
for singleton intersections, i.e.\ any class \<open>c\<close> may be read as a sort
|
wenzelm@61854
|
48 |
\<open>{c}\<close>. The ordering on type classes is extended to sorts according to the
|
wenzelm@61854
|
49 |
meaning of intersections: \<open>{c\<^sub>1, \<dots> c\<^sub>m} \<subseteq> {d\<^sub>1, \<dots>, d\<^sub>n}\<close> iff \<open>\<forall>j. \<exists>i. c\<^sub>i \<subseteq>
|
wenzelm@61854
|
50 |
d\<^sub>j\<close>. The empty intersection \<open>{}\<close> refers to the universal sort, which is the
|
wenzelm@61854
|
51 |
largest element wrt.\ the sort order. Thus \<open>{}\<close> represents the ``full
|
wenzelm@61854
|
52 |
sort'', not the empty one! The intersection of all (finitely many) classes
|
wenzelm@61854
|
53 |
declared in the current theory is the least element wrt.\ the sort ordering.
|
wenzelm@20480
|
54 |
|
wenzelm@61416
|
55 |
\<^medskip>
|
wenzelm@61854
|
56 |
A \<^emph>\<open>fixed type variable\<close> is a pair of a basic name (starting with a \<open>'\<close>
|
wenzelm@61854
|
57 |
character) and a sort constraint, e.g.\ \<open>('a, s)\<close> which is usually printed
|
wenzelm@61854
|
58 |
as \<open>\<alpha>\<^sub>s\<close>. A \<^emph>\<open>schematic type variable\<close> is a pair of an indexname and a sort
|
wenzelm@61854
|
59 |
constraint, e.g.\ \<open>(('a, 0), s)\<close> which is usually printed as \<open>?\<alpha>\<^sub>s\<close>.
|
wenzelm@20451
|
60 |
|
wenzelm@61854
|
61 |
Note that \<^emph>\<open>all\<close> syntactic components contribute to the identity of type
|
wenzelm@61854
|
62 |
variables: basic name, index, and sort constraint. The core logic handles
|
wenzelm@61854
|
63 |
type variables with the same name but different sorts as different, although
|
wenzelm@61854
|
64 |
the type-inference layer (which is outside the core) rejects anything like
|
wenzelm@61854
|
65 |
that.
|
wenzelm@20451
|
66 |
|
wenzelm@61854
|
67 |
A \<^emph>\<open>type constructor\<close> \<open>\<kappa>\<close> is a \<open>k\<close>-ary operator on types declared in the
|
wenzelm@61854
|
68 |
theory. Type constructor application is written postfix as \<open>(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>k)\<kappa>\<close>.
|
wenzelm@61854
|
69 |
For \<open>k = 0\<close> the argument tuple is omitted, e.g.\ \<open>prop\<close> instead of \<open>()prop\<close>.
|
wenzelm@61854
|
70 |
For \<open>k = 1\<close> the parentheses are omitted, e.g.\ \<open>\<alpha> list\<close> instead of
|
wenzelm@61854
|
71 |
\<open>(\<alpha>)list\<close>. Further notation is provided for specific constructors, notably
|
wenzelm@61854
|
72 |
the right-associative infix \<open>\<alpha> \<Rightarrow> \<beta>\<close> instead of \<open>(\<alpha>, \<beta>)fun\<close>.
|
wenzelm@65446
|
73 |
|
wenzelm@61854
|
74 |
The logical category \<^emph>\<open>type\<close> is defined inductively over type variables and
|
wenzelm@61854
|
75 |
type constructors as follows: \<open>\<tau> = \<alpha>\<^sub>s | ?\<alpha>\<^sub>s | (\<tau>\<^sub>1, \<dots>, \<tau>\<^sub>k)\<kappa>\<close>.
|
wenzelm@20451
|
76 |
|
wenzelm@61854
|
77 |
A \<^emph>\<open>type abbreviation\<close> is a syntactic definition \<open>(\<^vec>\<alpha>)\<kappa> = \<tau>\<close> of an
|
wenzelm@61854
|
78 |
arbitrary type expression \<open>\<tau>\<close> over variables \<open>\<^vec>\<alpha>\<close>. Type abbreviations
|
wenzelm@61854
|
79 |
appear as type constructors in the syntax, but are expanded before entering
|
wenzelm@61854
|
80 |
the logical core.
|
wenzelm@20480
|
81 |
|
wenzelm@61854
|
82 |
A \<^emph>\<open>type arity\<close> declares the image behavior of a type constructor wrt.\ the
|
wenzelm@61854
|
83 |
algebra of sorts: \<open>\<kappa> :: (s\<^sub>1, \<dots>, s\<^sub>k)s\<close> means that \<open>(\<tau>\<^sub>1, \<dots>, \<tau>\<^sub>k)\<kappa>\<close> is of
|
wenzelm@61854
|
84 |
sort \<open>s\<close> if every argument type \<open>\<tau>\<^sub>i\<close> is of sort \<open>s\<^sub>i\<close>. Arity declarations
|
wenzelm@61854
|
85 |
are implicitly completed, i.e.\ \<open>\<kappa> :: (\<^vec>s)c\<close> entails \<open>\<kappa> ::
|
wenzelm@61493
|
86 |
(\<^vec>s)c'\<close> for any \<open>c' \<supseteq> c\<close>.
|
wenzelm@20491
|
87 |
|
wenzelm@61416
|
88 |
\<^medskip>
|
wenzelm@61854
|
89 |
The sort algebra is always maintained as \<^emph>\<open>coregular\<close>, which means that type
|
wenzelm@61854
|
90 |
arities are consistent with the subclass relation: for any type constructor
|
wenzelm@61854
|
91 |
\<open>\<kappa>\<close>, and classes \<open>c\<^sub>1 \<subseteq> c\<^sub>2\<close>, and arities \<open>\<kappa> :: (\<^vec>s\<^sub>1)c\<^sub>1\<close> and \<open>\<kappa> ::
|
wenzelm@61854
|
92 |
(\<^vec>s\<^sub>2)c\<^sub>2\<close> holds \<open>\<^vec>s\<^sub>1 \<subseteq> \<^vec>s\<^sub>2\<close> component-wise.
|
wenzelm@20451
|
93 |
|
wenzelm@20491
|
94 |
The key property of a coregular order-sorted algebra is that sort
|
wenzelm@20537
|
95 |
constraints can be solved in a most general fashion: for each type
|
wenzelm@61854
|
96 |
constructor \<open>\<kappa>\<close> and sort \<open>s\<close> there is a most general vector of argument
|
wenzelm@61854
|
97 |
sorts \<open>(s\<^sub>1, \<dots>, s\<^sub>k)\<close> such that a type scheme \<open>(\<alpha>\<^bsub>s\<^sub>1\<^esub>, \<dots>, \<alpha>\<^bsub>s\<^sub>k\<^esub>)\<kappa>\<close> is of
|
wenzelm@61854
|
98 |
sort \<open>s\<close>. Consequently, type unification has most general solutions (modulo
|
wenzelm@61854
|
99 |
equivalence of sorts), so type-inference produces primary types as expected
|
wenzelm@61854
|
100 |
@{cite "nipkow-prehofer"}.
|
wenzelm@58618
|
101 |
\<close>
|
wenzelm@20451
|
102 |
|
wenzelm@58618
|
103 |
text %mlref \<open>
|
wenzelm@20480
|
104 |
\begin{mldecls}
|
wenzelm@34921
|
105 |
@{index_ML_type class: string} \\
|
wenzelm@34921
|
106 |
@{index_ML_type sort: "class list"} \\
|
wenzelm@34921
|
107 |
@{index_ML_type arity: "string * sort list * sort"} \\
|
wenzelm@20480
|
108 |
@{index_ML_type typ} \\
|
wenzelm@39846
|
109 |
@{index_ML Term.map_atyps: "(typ -> typ) -> typ -> typ"} \\
|
wenzelm@39846
|
110 |
@{index_ML Term.fold_atyps: "(typ -> 'a -> 'a) -> typ -> 'a -> 'a"} \\
|
wenzelm@20547
|
111 |
\end{mldecls}
|
wenzelm@20547
|
112 |
\begin{mldecls}
|
wenzelm@20480
|
113 |
@{index_ML Sign.subsort: "theory -> sort * sort -> bool"} \\
|
wenzelm@20480
|
114 |
@{index_ML Sign.of_sort: "theory -> typ * sort -> bool"} \\
|
wenzelm@47174
|
115 |
@{index_ML Sign.add_type: "Proof.context -> binding * int * mixfix -> theory -> theory"} \\
|
wenzelm@42401
|
116 |
@{index_ML Sign.add_type_abbrev: "Proof.context ->
|
wenzelm@42401
|
117 |
binding * string list * typ -> theory -> theory"} \\
|
wenzelm@30355
|
118 |
@{index_ML Sign.primitive_class: "binding * class list -> theory -> theory"} \\
|
wenzelm@20480
|
119 |
@{index_ML Sign.primitive_classrel: "class * class -> theory -> theory"} \\
|
wenzelm@20480
|
120 |
@{index_ML Sign.primitive_arity: "arity -> theory -> theory"} \\
|
wenzelm@20480
|
121 |
\end{mldecls}
|
wenzelm@20480
|
122 |
|
wenzelm@61439
|
123 |
\<^descr> Type @{ML_type class} represents type classes.
|
wenzelm@20480
|
124 |
|
wenzelm@61854
|
125 |
\<^descr> Type @{ML_type sort} represents sorts, i.e.\ finite intersections of
|
wenzelm@61854
|
126 |
classes. The empty list @{ML "[]: sort"} refers to the empty class
|
wenzelm@61854
|
127 |
intersection, i.e.\ the ``full sort''.
|
wenzelm@20451
|
128 |
|
wenzelm@61854
|
129 |
\<^descr> Type @{ML_type arity} represents type arities. A triple \<open>(\<kappa>, \<^vec>s, s)
|
wenzelm@61854
|
130 |
: arity\<close> represents \<open>\<kappa> :: (\<^vec>s)s\<close> as described above.
|
wenzelm@20480
|
131 |
|
wenzelm@61854
|
132 |
\<^descr> Type @{ML_type typ} represents types; this is a datatype with constructors
|
wenzelm@61854
|
133 |
@{ML TFree}, @{ML TVar}, @{ML Type}.
|
wenzelm@20480
|
134 |
|
wenzelm@61854
|
135 |
\<^descr> @{ML Term.map_atyps}~\<open>f \<tau>\<close> applies the mapping \<open>f\<close> to all atomic types
|
wenzelm@61854
|
136 |
(@{ML TFree}, @{ML TVar}) occurring in \<open>\<tau>\<close>.
|
wenzelm@20519
|
137 |
|
wenzelm@61854
|
138 |
\<^descr> @{ML Term.fold_atyps}~\<open>f \<tau>\<close> iterates the operation \<open>f\<close> over all
|
wenzelm@61854
|
139 |
occurrences of atomic types (@{ML TFree}, @{ML TVar}) in \<open>\<tau>\<close>; the type
|
wenzelm@61854
|
140 |
structure is traversed from left to right.
|
wenzelm@20494
|
141 |
|
wenzelm@61854
|
142 |
\<^descr> @{ML Sign.subsort}~\<open>thy (s\<^sub>1, s\<^sub>2)\<close> tests the subsort relation \<open>s\<^sub>1 \<subseteq>
|
wenzelm@61854
|
143 |
s\<^sub>2\<close>.
|
wenzelm@20480
|
144 |
|
wenzelm@61854
|
145 |
\<^descr> @{ML Sign.of_sort}~\<open>thy (\<tau>, s)\<close> tests whether type \<open>\<tau>\<close> is of sort \<open>s\<close>.
|
wenzelm@20480
|
146 |
|
wenzelm@61854
|
147 |
\<^descr> @{ML Sign.add_type}~\<open>ctxt (\<kappa>, k, mx)\<close> declares a new type constructors \<open>\<kappa>\<close>
|
wenzelm@61854
|
148 |
with \<open>k\<close> arguments and optional mixfix syntax.
|
wenzelm@20451
|
149 |
|
wenzelm@61854
|
150 |
\<^descr> @{ML Sign.add_type_abbrev}~\<open>ctxt (\<kappa>, \<^vec>\<alpha>, \<tau>)\<close> defines a new type
|
wenzelm@61854
|
151 |
abbreviation \<open>(\<^vec>\<alpha>)\<kappa> = \<tau>\<close>.
|
wenzelm@20480
|
152 |
|
wenzelm@61854
|
153 |
\<^descr> @{ML Sign.primitive_class}~\<open>(c, [c\<^sub>1, \<dots>, c\<^sub>n])\<close> declares a new class \<open>c\<close>,
|
wenzelm@61854
|
154 |
together with class relations \<open>c \<subseteq> c\<^sub>i\<close>, for \<open>i = 1, \<dots>, n\<close>.
|
wenzelm@20480
|
155 |
|
wenzelm@61854
|
156 |
\<^descr> @{ML Sign.primitive_classrel}~\<open>(c\<^sub>1, c\<^sub>2)\<close> declares the class relation
|
wenzelm@61854
|
157 |
\<open>c\<^sub>1 \<subseteq> c\<^sub>2\<close>.
|
wenzelm@20480
|
158 |
|
wenzelm@61854
|
159 |
\<^descr> @{ML Sign.primitive_arity}~\<open>(\<kappa>, \<^vec>s, s)\<close> declares the arity \<open>\<kappa> ::
|
wenzelm@61854
|
160 |
(\<^vec>s)s\<close>.
|
wenzelm@58618
|
161 |
\<close>
|
wenzelm@20437
|
162 |
|
wenzelm@58618
|
163 |
text %mlantiq \<open>
|
wenzelm@39832
|
164 |
\begin{matharray}{rcl}
|
wenzelm@61493
|
165 |
@{ML_antiquotation_def "class"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@61493
|
166 |
@{ML_antiquotation_def "sort"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@61493
|
167 |
@{ML_antiquotation_def "type_name"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@61493
|
168 |
@{ML_antiquotation_def "type_abbrev"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@61493
|
169 |
@{ML_antiquotation_def "nonterminal"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@61493
|
170 |
@{ML_antiquotation_def "typ"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@39832
|
171 |
\end{matharray}
|
wenzelm@39832
|
172 |
|
wenzelm@55112
|
173 |
@{rail \<open>
|
wenzelm@67146
|
174 |
@@{ML_antiquotation class} embedded
|
wenzelm@39832
|
175 |
;
|
wenzelm@42510
|
176 |
@@{ML_antiquotation sort} sort
|
wenzelm@39832
|
177 |
;
|
wenzelm@42510
|
178 |
(@@{ML_antiquotation type_name} |
|
wenzelm@42510
|
179 |
@@{ML_antiquotation type_abbrev} |
|
wenzelm@67146
|
180 |
@@{ML_antiquotation nonterminal}) embedded
|
wenzelm@39832
|
181 |
;
|
wenzelm@42510
|
182 |
@@{ML_antiquotation typ} type
|
wenzelm@55112
|
183 |
\<close>}
|
wenzelm@39832
|
184 |
|
wenzelm@61854
|
185 |
\<^descr> \<open>@{class c}\<close> inlines the internalized class \<open>c\<close> --- as @{ML_type string}
|
wenzelm@39832
|
186 |
literal.
|
wenzelm@39832
|
187 |
|
wenzelm@61854
|
188 |
\<^descr> \<open>@{sort s}\<close> inlines the internalized sort \<open>s\<close> --- as @{ML_type "string
|
wenzelm@61854
|
189 |
list"} literal.
|
wenzelm@61854
|
190 |
|
wenzelm@61854
|
191 |
\<^descr> \<open>@{type_name c}\<close> inlines the internalized type constructor \<open>c\<close> --- as
|
wenzelm@61854
|
192 |
@{ML_type string} literal.
|
wenzelm@61854
|
193 |
|
wenzelm@61854
|
194 |
\<^descr> \<open>@{type_abbrev c}\<close> inlines the internalized type abbreviation \<open>c\<close> --- as
|
wenzelm@61854
|
195 |
@{ML_type string} literal.
|
wenzelm@61854
|
196 |
|
wenzelm@61854
|
197 |
\<^descr> \<open>@{nonterminal c}\<close> inlines the internalized syntactic type~/ grammar
|
wenzelm@61854
|
198 |
nonterminal \<open>c\<close> --- as @{ML_type string} literal.
|
wenzelm@61854
|
199 |
|
wenzelm@61854
|
200 |
\<^descr> \<open>@{typ \<tau>}\<close> inlines the internalized type \<open>\<tau>\<close> --- as constructor term for
|
wenzelm@61854
|
201 |
datatype @{ML_type typ}.
|
wenzelm@58618
|
202 |
\<close>
|
wenzelm@39832
|
203 |
|
wenzelm@20437
|
204 |
|
wenzelm@58618
|
205 |
section \<open>Terms \label{sec:terms}\<close>
|
wenzelm@18537
|
206 |
|
wenzelm@58618
|
207 |
text \<open>
|
wenzelm@61854
|
208 |
The language of terms is that of simply-typed \<open>\<lambda>\<close>-calculus with de-Bruijn
|
wenzelm@61854
|
209 |
indices for bound variables (cf.\ @{cite debruijn72} or @{cite
|
wenzelm@61854
|
210 |
"paulson-ml2"}), with the types being determined by the corresponding
|
wenzelm@61854
|
211 |
binders. In contrast, free variables and constants have an explicit name and
|
wenzelm@61854
|
212 |
type in each occurrence.
|
wenzelm@20514
|
213 |
|
wenzelm@61416
|
214 |
\<^medskip>
|
wenzelm@61854
|
215 |
A \<^emph>\<open>bound variable\<close> is a natural number \<open>b\<close>, which accounts for the number
|
wenzelm@61854
|
216 |
of intermediate binders between the variable occurrence in the body and its
|
wenzelm@61854
|
217 |
binding position. For example, the de-Bruijn term \<open>\<lambda>\<^bsub>bool\<^esub>. \<lambda>\<^bsub>bool\<^esub>. 1 \<and> 0\<close>
|
wenzelm@61854
|
218 |
would correspond to \<open>\<lambda>x\<^bsub>bool\<^esub>. \<lambda>y\<^bsub>bool\<^esub>. x \<and> y\<close> in a named representation.
|
wenzelm@61854
|
219 |
Note that a bound variable may be represented by different de-Bruijn indices
|
wenzelm@61854
|
220 |
at different occurrences, depending on the nesting of abstractions.
|
wenzelm@20537
|
221 |
|
wenzelm@61854
|
222 |
A \<^emph>\<open>loose variable\<close> is a bound variable that is outside the scope of local
|
wenzelm@61854
|
223 |
binders. The types (and names) for loose variables can be managed as a
|
wenzelm@61854
|
224 |
separate context, that is maintained as a stack of hypothetical binders. The
|
wenzelm@61854
|
225 |
core logic operates on closed terms, without any loose variables.
|
wenzelm@20514
|
226 |
|
wenzelm@61854
|
227 |
A \<^emph>\<open>fixed variable\<close> is a pair of a basic name and a type, e.g.\ \<open>(x, \<tau>)\<close>
|
wenzelm@61854
|
228 |
which is usually printed \<open>x\<^sub>\<tau>\<close> here. A \<^emph>\<open>schematic variable\<close> is a pair of an
|
wenzelm@61854
|
229 |
indexname and a type, e.g.\ \<open>((x, 0), \<tau>)\<close> which is likewise printed as
|
wenzelm@61854
|
230 |
\<open>?x\<^sub>\<tau>\<close>.
|
wenzelm@20491
|
231 |
|
wenzelm@61416
|
232 |
\<^medskip>
|
wenzelm@61854
|
233 |
A \<^emph>\<open>constant\<close> is a pair of a basic name and a type, e.g.\ \<open>(c, \<tau>)\<close> which is
|
wenzelm@61854
|
234 |
usually printed as \<open>c\<^sub>\<tau>\<close> here. Constants are declared in the context as
|
wenzelm@61854
|
235 |
polymorphic families \<open>c :: \<sigma>\<close>, meaning that all substitution instances \<open>c\<^sub>\<tau>\<close>
|
wenzelm@61854
|
236 |
for \<open>\<tau> = \<sigma>\<vartheta>\<close> are valid.
|
wenzelm@20514
|
237 |
|
wenzelm@61854
|
238 |
The vector of \<^emph>\<open>type arguments\<close> of constant \<open>c\<^sub>\<tau>\<close> wrt.\ the declaration \<open>c
|
wenzelm@61854
|
239 |
:: \<sigma>\<close> is defined as the codomain of the matcher \<open>\<vartheta> = {?\<alpha>\<^sub>1 \<mapsto> \<tau>\<^sub>1,
|
wenzelm@61854
|
240 |
\<dots>, ?\<alpha>\<^sub>n \<mapsto> \<tau>\<^sub>n}\<close> presented in canonical order \<open>(\<tau>\<^sub>1, \<dots>, \<tau>\<^sub>n)\<close>, corresponding
|
wenzelm@61854
|
241 |
to the left-to-right occurrences of the \<open>\<alpha>\<^sub>i\<close> in \<open>\<sigma>\<close>. Within a given theory
|
wenzelm@61854
|
242 |
context, there is a one-to-one correspondence between any constant \<open>c\<^sub>\<tau>\<close> and
|
wenzelm@61854
|
243 |
the application \<open>c(\<tau>\<^sub>1, \<dots>, \<tau>\<^sub>n)\<close> of its type arguments. For example, with
|
wenzelm@61854
|
244 |
\<open>plus :: \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> \<alpha>\<close>, the instance \<open>plus\<^bsub>nat \<Rightarrow> nat \<Rightarrow> nat\<^esub>\<close> corresponds to
|
wenzelm@61493
|
245 |
\<open>plus(nat)\<close>.
|
wenzelm@20480
|
246 |
|
wenzelm@61854
|
247 |
Constant declarations \<open>c :: \<sigma>\<close> may contain sort constraints for type
|
wenzelm@61854
|
248 |
variables in \<open>\<sigma>\<close>. These are observed by type-inference as expected, but
|
wenzelm@61854
|
249 |
\<^emph>\<open>ignored\<close> by the core logic. This means the primitive logic is able to
|
wenzelm@61854
|
250 |
reason with instances of polymorphic constants that the user-level
|
wenzelm@61854
|
251 |
type-checker would reject due to violation of type class restrictions.
|
wenzelm@20480
|
252 |
|
wenzelm@61416
|
253 |
\<^medskip>
|
wenzelm@61854
|
254 |
An \<^emph>\<open>atomic term\<close> is either a variable or constant. The logical category
|
wenzelm@61854
|
255 |
\<^emph>\<open>term\<close> is defined inductively over atomic terms, with abstraction and
|
wenzelm@61854
|
256 |
application as follows: \<open>t = b | x\<^sub>\<tau> | ?x\<^sub>\<tau> | c\<^sub>\<tau> | \<lambda>\<^sub>\<tau>. t | t\<^sub>1 t\<^sub>2\<close>.
|
wenzelm@61854
|
257 |
Parsing and printing takes care of converting between an external
|
wenzelm@61854
|
258 |
representation with named bound variables. Subsequently, we shall use the
|
wenzelm@61854
|
259 |
latter notation instead of internal de-Bruijn representation.
|
wenzelm@20498
|
260 |
|
wenzelm@61854
|
261 |
The inductive relation \<open>t :: \<tau>\<close> assigns a (unique) type to a term according
|
wenzelm@61854
|
262 |
to the structure of atomic terms, abstractions, and applications:
|
wenzelm@20498
|
263 |
\[
|
wenzelm@61493
|
264 |
\infer{\<open>a\<^sub>\<tau> :: \<tau>\<close>}{}
|
wenzelm@20498
|
265 |
\qquad
|
wenzelm@61493
|
266 |
\infer{\<open>(\<lambda>x\<^sub>\<tau>. t) :: \<tau> \<Rightarrow> \<sigma>\<close>}{\<open>t :: \<sigma>\<close>}
|
wenzelm@20501
|
267 |
\qquad
|
wenzelm@61493
|
268 |
\infer{\<open>t u :: \<sigma>\<close>}{\<open>t :: \<tau> \<Rightarrow> \<sigma>\<close> & \<open>u :: \<tau>\<close>}
|
wenzelm@20498
|
269 |
\]
|
wenzelm@61477
|
270 |
A \<^emph>\<open>well-typed term\<close> is a term that can be typed according to these rules.
|
wenzelm@20498
|
271 |
|
wenzelm@61854
|
272 |
Typing information can be omitted: type-inference is able to reconstruct the
|
wenzelm@61854
|
273 |
most general type of a raw term, while assigning most general types to all
|
wenzelm@61854
|
274 |
of its variables and constants. Type-inference depends on a context of type
|
wenzelm@61854
|
275 |
constraints for fixed variables, and declarations for polymorphic constants.
|
wenzelm@20514
|
276 |
|
wenzelm@20537
|
277 |
The identity of atomic terms consists both of the name and the type
|
wenzelm@61854
|
278 |
component. This means that different variables \<open>x\<^bsub>\<tau>\<^sub>1\<^esub>\<close> and \<open>x\<^bsub>\<tau>\<^sub>2\<^esub>\<close> may
|
wenzelm@61854
|
279 |
become the same after type instantiation. Type-inference rejects variables
|
wenzelm@61854
|
280 |
of the same name, but different types. In contrast, mixed instances of
|
wenzelm@34929
|
281 |
polymorphic constants occur routinely.
|
wenzelm@20514
|
282 |
|
wenzelm@61416
|
283 |
\<^medskip>
|
wenzelm@61854
|
284 |
The \<^emph>\<open>hidden polymorphism\<close> of a term \<open>t :: \<sigma>\<close> is the set of type variables
|
wenzelm@61854
|
285 |
occurring in \<open>t\<close>, but not in its type \<open>\<sigma>\<close>. This means that the term
|
wenzelm@61854
|
286 |
implicitly depends on type arguments that are not accounted in the result
|
wenzelm@61854
|
287 |
type, i.e.\ there are different type instances \<open>t\<vartheta> :: \<sigma>\<close> and
|
wenzelm@61854
|
288 |
\<open>t\<vartheta>' :: \<sigma>\<close> with the same type. This slightly pathological
|
wenzelm@61854
|
289 |
situation notoriously demands additional care.
|
wenzelm@20514
|
290 |
|
wenzelm@61416
|
291 |
\<^medskip>
|
wenzelm@61854
|
292 |
A \<^emph>\<open>term abbreviation\<close> is a syntactic definition \<open>c\<^sub>\<sigma> \<equiv> t\<close> of a closed term
|
wenzelm@61854
|
293 |
\<open>t\<close> of type \<open>\<sigma>\<close>, without any hidden polymorphism. A term abbreviation looks
|
wenzelm@61854
|
294 |
like a constant in the syntax, but is expanded before entering the logical
|
wenzelm@61854
|
295 |
core. Abbreviations are usually reverted when printing terms, using \<open>t \<rightarrow>
|
wenzelm@61854
|
296 |
c\<^sub>\<sigma>\<close> as rules for higher-order rewriting.
|
wenzelm@20519
|
297 |
|
wenzelm@61416
|
298 |
\<^medskip>
|
wenzelm@61854
|
299 |
Canonical operations on \<open>\<lambda>\<close>-terms include \<open>\<alpha>\<beta>\<eta>\<close>-conversion: \<open>\<alpha>\<close>-conversion
|
wenzelm@61854
|
300 |
refers to capture-free renaming of bound variables; \<open>\<beta>\<close>-conversion contracts
|
wenzelm@61854
|
301 |
an abstraction applied to an argument term, substituting the argument in the
|
wenzelm@61854
|
302 |
body: \<open>(\<lambda>x. b)a\<close> becomes \<open>b[a/x]\<close>; \<open>\<eta>\<close>-conversion contracts vacuous
|
wenzelm@61854
|
303 |
application-abstraction: \<open>\<lambda>x. f x\<close> becomes \<open>f\<close>, provided that the bound
|
wenzelm@61854
|
304 |
variable does not occur in \<open>f\<close>.
|
wenzelm@20519
|
305 |
|
wenzelm@61854
|
306 |
Terms are normally treated modulo \<open>\<alpha>\<close>-conversion, which is implicit in the
|
wenzelm@61854
|
307 |
de-Bruijn representation. Names for bound variables in abstractions are
|
wenzelm@61854
|
308 |
maintained separately as (meaningless) comments, mostly for parsing and
|
wenzelm@61854
|
309 |
printing. Full \<open>\<alpha>\<beta>\<eta>\<close>-conversion is commonplace in various standard
|
wenzelm@61854
|
310 |
operations (\secref{sec:obj-rules}) that are based on higher-order
|
wenzelm@61854
|
311 |
unification and matching.
|
wenzelm@58618
|
312 |
\<close>
|
wenzelm@18537
|
313 |
|
wenzelm@58618
|
314 |
text %mlref \<open>
|
wenzelm@20514
|
315 |
\begin{mldecls}
|
wenzelm@20514
|
316 |
@{index_ML_type term} \\
|
wenzelm@46262
|
317 |
@{index_ML_op "aconv": "term * term -> bool"} \\
|
wenzelm@39846
|
318 |
@{index_ML Term.map_types: "(typ -> typ) -> term -> term"} \\
|
wenzelm@39846
|
319 |
@{index_ML Term.fold_types: "(typ -> 'a -> 'a) -> term -> 'a -> 'a"} \\
|
wenzelm@39846
|
320 |
@{index_ML Term.map_aterms: "(term -> term) -> term -> term"} \\
|
wenzelm@39846
|
321 |
@{index_ML Term.fold_aterms: "(term -> 'a -> 'a) -> term -> 'a -> 'a"} \\
|
wenzelm@20547
|
322 |
\end{mldecls}
|
wenzelm@20547
|
323 |
\begin{mldecls}
|
wenzelm@20514
|
324 |
@{index_ML fastype_of: "term -> typ"} \\
|
wenzelm@20519
|
325 |
@{index_ML lambda: "term -> term -> term"} \\
|
wenzelm@20519
|
326 |
@{index_ML betapply: "term * term -> term"} \\
|
wenzelm@42934
|
327 |
@{index_ML incr_boundvars: "int -> term -> term"} \\
|
wenzelm@42401
|
328 |
@{index_ML Sign.declare_const: "Proof.context ->
|
wenzelm@42401
|
329 |
(binding * typ) * mixfix -> theory -> term * theory"} \\
|
haftmann@33174
|
330 |
@{index_ML Sign.add_abbrev: "string -> binding * term ->
|
wenzelm@24972
|
331 |
theory -> (term * term) * theory"} \\
|
wenzelm@20519
|
332 |
@{index_ML Sign.const_typargs: "theory -> string * typ -> typ list"} \\
|
wenzelm@20519
|
333 |
@{index_ML Sign.const_instance: "theory -> string * typ list -> typ"} \\
|
wenzelm@20514
|
334 |
\end{mldecls}
|
wenzelm@18537
|
335 |
|
wenzelm@61854
|
336 |
\<^descr> Type @{ML_type term} represents de-Bruijn terms, with comments in
|
wenzelm@61854
|
337 |
abstractions, and explicitly named free variables and constants; this is a
|
wenzelm@61854
|
338 |
datatype with constructors @{index_ML Bound}, @{index_ML Free}, @{index_ML
|
wenzelm@61854
|
339 |
Var}, @{index_ML Const}, @{index_ML Abs}, @{index_ML_op "$"}.
|
wenzelm@20519
|
340 |
|
wenzelm@61854
|
341 |
\<^descr> \<open>t\<close>~@{ML_text aconv}~\<open>u\<close> checks \<open>\<alpha>\<close>-equivalence of two terms. This is the
|
wenzelm@61854
|
342 |
basic equality relation on type @{ML_type term}; raw datatype equality
|
wenzelm@61854
|
343 |
should only be used for operations related to parsing or printing!
|
wenzelm@20537
|
344 |
|
wenzelm@61854
|
345 |
\<^descr> @{ML Term.map_types}~\<open>f t\<close> applies the mapping \<open>f\<close> to all types occurring
|
wenzelm@61854
|
346 |
in \<open>t\<close>.
|
wenzelm@61854
|
347 |
|
wenzelm@61854
|
348 |
\<^descr> @{ML Term.fold_types}~\<open>f t\<close> iterates the operation \<open>f\<close> over all
|
wenzelm@61854
|
349 |
occurrences of types in \<open>t\<close>; the term structure is traversed from left to
|
wenzelm@61854
|
350 |
right.
|
wenzelm@20519
|
351 |
|
wenzelm@61854
|
352 |
\<^descr> @{ML Term.map_aterms}~\<open>f t\<close> applies the mapping \<open>f\<close> to all atomic terms
|
wenzelm@61854
|
353 |
(@{ML Bound}, @{ML Free}, @{ML Var}, @{ML Const}) occurring in \<open>t\<close>.
|
wenzelm@20537
|
354 |
|
wenzelm@61854
|
355 |
\<^descr> @{ML Term.fold_aterms}~\<open>f t\<close> iterates the operation \<open>f\<close> over all
|
wenzelm@61854
|
356 |
occurrences of atomic terms (@{ML Bound}, @{ML Free}, @{ML Var}, @{ML
|
wenzelm@61854
|
357 |
Const}) in \<open>t\<close>; the term structure is traversed from left to right.
|
wenzelm@20519
|
358 |
|
wenzelm@61854
|
359 |
\<^descr> @{ML fastype_of}~\<open>t\<close> determines the type of a well-typed term. This
|
wenzelm@61854
|
360 |
operation is relatively slow, despite the omission of any sanity checks.
|
wenzelm@20519
|
361 |
|
wenzelm@61854
|
362 |
\<^descr> @{ML lambda}~\<open>a b\<close> produces an abstraction \<open>\<lambda>a. b\<close>, where occurrences of
|
wenzelm@61854
|
363 |
the atomic term \<open>a\<close> in the body \<open>b\<close> are replaced by bound variables.
|
wenzelm@20519
|
364 |
|
wenzelm@61854
|
365 |
\<^descr> @{ML betapply}~\<open>(t, u)\<close> produces an application \<open>t u\<close>, with topmost
|
wenzelm@61854
|
366 |
\<open>\<beta>\<close>-conversion if \<open>t\<close> is an abstraction.
|
wenzelm@20519
|
367 |
|
wenzelm@61854
|
368 |
\<^descr> @{ML incr_boundvars}~\<open>j\<close> increments a term's dangling bound variables by
|
wenzelm@61854
|
369 |
the offset \<open>j\<close>. This is required when moving a subterm into a context where
|
wenzelm@61854
|
370 |
it is enclosed by a different number of abstractions. Bound variables with a
|
wenzelm@61854
|
371 |
matching abstraction are unaffected.
|
wenzelm@42934
|
372 |
|
wenzelm@61854
|
373 |
\<^descr> @{ML Sign.declare_const}~\<open>ctxt ((c, \<sigma>), mx)\<close> declares a new constant \<open>c ::
|
wenzelm@61854
|
374 |
\<sigma>\<close> with optional mixfix syntax.
|
wenzelm@20519
|
375 |
|
wenzelm@61854
|
376 |
\<^descr> @{ML Sign.add_abbrev}~\<open>print_mode (c, t)\<close> introduces a new term
|
wenzelm@61854
|
377 |
abbreviation \<open>c \<equiv> t\<close>.
|
wenzelm@20519
|
378 |
|
wenzelm@61854
|
379 |
\<^descr> @{ML Sign.const_typargs}~\<open>thy (c, \<tau>)\<close> and @{ML Sign.const_instance}~\<open>thy
|
wenzelm@61854
|
380 |
(c, [\<tau>\<^sub>1, \<dots>, \<tau>\<^sub>n])\<close> convert between two representations of polymorphic
|
wenzelm@61854
|
381 |
constants: full type instance vs.\ compact type arguments form.
|
wenzelm@58618
|
382 |
\<close>
|
wenzelm@18537
|
383 |
|
wenzelm@58618
|
384 |
text %mlantiq \<open>
|
wenzelm@39832
|
385 |
\begin{matharray}{rcl}
|
wenzelm@61493
|
386 |
@{ML_antiquotation_def "const_name"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@61493
|
387 |
@{ML_antiquotation_def "const_abbrev"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@61493
|
388 |
@{ML_antiquotation_def "const"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@61493
|
389 |
@{ML_antiquotation_def "term"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@61493
|
390 |
@{ML_antiquotation_def "prop"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@39832
|
391 |
\end{matharray}
|
wenzelm@39832
|
392 |
|
wenzelm@55112
|
393 |
@{rail \<open>
|
wenzelm@42510
|
394 |
(@@{ML_antiquotation const_name} |
|
wenzelm@67146
|
395 |
@@{ML_antiquotation const_abbrev}) embedded
|
wenzelm@39832
|
396 |
;
|
wenzelm@42510
|
397 |
@@{ML_antiquotation const} ('(' (type + ',') ')')?
|
wenzelm@39832
|
398 |
;
|
wenzelm@42510
|
399 |
@@{ML_antiquotation term} term
|
wenzelm@39832
|
400 |
;
|
wenzelm@42510
|
401 |
@@{ML_antiquotation prop} prop
|
wenzelm@55112
|
402 |
\<close>}
|
wenzelm@39832
|
403 |
|
wenzelm@61854
|
404 |
\<^descr> \<open>@{const_name c}\<close> inlines the internalized logical constant name \<open>c\<close> ---
|
wenzelm@61854
|
405 |
as @{ML_type string} literal.
|
wenzelm@61854
|
406 |
|
wenzelm@61854
|
407 |
\<^descr> \<open>@{const_abbrev c}\<close> inlines the internalized abbreviated constant name \<open>c\<close>
|
wenzelm@61854
|
408 |
--- as @{ML_type string} literal.
|
wenzelm@39832
|
409 |
|
wenzelm@61854
|
410 |
\<^descr> \<open>@{const c(\<^vec>\<tau>)}\<close> inlines the internalized constant \<open>c\<close> with precise
|
wenzelm@61854
|
411 |
type instantiation in the sense of @{ML Sign.const_instance} --- as @{ML
|
wenzelm@61854
|
412 |
Const} constructor term for datatype @{ML_type term}.
|
wenzelm@39832
|
413 |
|
wenzelm@61854
|
414 |
\<^descr> \<open>@{term t}\<close> inlines the internalized term \<open>t\<close> --- as constructor term for
|
wenzelm@39832
|
415 |
datatype @{ML_type term}.
|
wenzelm@39832
|
416 |
|
wenzelm@61854
|
417 |
\<^descr> \<open>@{prop \<phi>}\<close> inlines the internalized proposition \<open>\<phi>\<close> --- as constructor
|
wenzelm@61854
|
418 |
term for datatype @{ML_type term}.
|
wenzelm@58618
|
419 |
\<close>
|
wenzelm@39832
|
420 |
|
wenzelm@18537
|
421 |
|
wenzelm@58618
|
422 |
section \<open>Theorems \label{sec:thms}\<close>
|
wenzelm@18537
|
423 |
|
wenzelm@58618
|
424 |
text \<open>
|
wenzelm@61854
|
425 |
A \<^emph>\<open>proposition\<close> is a well-typed term of type \<open>prop\<close>, a \<^emph>\<open>theorem\<close> is a
|
wenzelm@61854
|
426 |
proven proposition (depending on a context of hypotheses and the background
|
wenzelm@61854
|
427 |
theory). Primitive inferences include plain Natural Deduction rules for the
|
wenzelm@61854
|
428 |
primary connectives \<open>\<And>\<close> and \<open>\<Longrightarrow>\<close> of the framework. There is also a builtin
|
wenzelm@61493
|
429 |
notion of equality/equivalence \<open>\<equiv>\<close>.
|
wenzelm@58618
|
430 |
\<close>
|
wenzelm@20521
|
431 |
|
wenzelm@29758
|
432 |
|
wenzelm@58618
|
433 |
subsection \<open>Primitive connectives and rules \label{sec:prim-rules}\<close>
|
wenzelm@18537
|
434 |
|
wenzelm@58618
|
435 |
text \<open>
|
wenzelm@61854
|
436 |
The theory \<open>Pure\<close> contains constant declarations for the primitive
|
wenzelm@61854
|
437 |
connectives \<open>\<And>\<close>, \<open>\<Longrightarrow>\<close>, and \<open>\<equiv>\<close> of the logical framework, see
|
wenzelm@61854
|
438 |
\figref{fig:pure-connectives}. The derivability judgment \<open>A\<^sub>1, \<dots>, A\<^sub>n \<turnstile> B\<close>
|
wenzelm@61854
|
439 |
is defined inductively by the primitive inferences given in
|
wenzelm@61854
|
440 |
\figref{fig:prim-rules}, with the global restriction that the hypotheses
|
wenzelm@61854
|
441 |
must \<^emph>\<open>not\<close> contain any schematic variables. The builtin equality is
|
wenzelm@61854
|
442 |
conceptually axiomatized as shown in \figref{fig:pure-equality}, although
|
wenzelm@61854
|
443 |
the implementation works directly with derived inferences.
|
wenzelm@20521
|
444 |
|
wenzelm@20521
|
445 |
\begin{figure}[htb]
|
wenzelm@20521
|
446 |
\begin{center}
|
wenzelm@20501
|
447 |
\begin{tabular}{ll}
|
wenzelm@61493
|
448 |
\<open>all :: (\<alpha> \<Rightarrow> prop) \<Rightarrow> prop\<close> & universal quantification (binder \<open>\<And>\<close>) \\
|
wenzelm@61493
|
449 |
\<open>\<Longrightarrow> :: prop \<Rightarrow> prop \<Rightarrow> prop\<close> & implication (right associative infix) \\
|
wenzelm@61493
|
450 |
\<open>\<equiv> :: \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> prop\<close> & equality relation (infix) \\
|
wenzelm@20501
|
451 |
\end{tabular}
|
wenzelm@20537
|
452 |
\caption{Primitive connectives of Pure}\label{fig:pure-connectives}
|
wenzelm@20521
|
453 |
\end{center}
|
wenzelm@20521
|
454 |
\end{figure}
|
wenzelm@18537
|
455 |
|
wenzelm@20501
|
456 |
\begin{figure}[htb]
|
wenzelm@20501
|
457 |
\begin{center}
|
wenzelm@20498
|
458 |
\[
|
wenzelm@61493
|
459 |
\infer[\<open>(axiom)\<close>]{\<open>\<turnstile> A\<close>}{\<open>A \<in> \<Theta>\<close>}
|
wenzelm@20498
|
460 |
\qquad
|
wenzelm@61493
|
461 |
\infer[\<open>(assume)\<close>]{\<open>A \<turnstile> A\<close>}{}
|
wenzelm@20498
|
462 |
\]
|
wenzelm@20498
|
463 |
\[
|
wenzelm@61493
|
464 |
\infer[\<open>(\<And>\<hyphen>intro)\<close>]{\<open>\<Gamma> \<turnstile> \<And>x. B[x]\<close>}{\<open>\<Gamma> \<turnstile> B[x]\<close> & \<open>x \<notin> \<Gamma>\<close>}
|
wenzelm@20498
|
465 |
\qquad
|
wenzelm@61493
|
466 |
\infer[\<open>(\<And>\<hyphen>elim)\<close>]{\<open>\<Gamma> \<turnstile> B[a]\<close>}{\<open>\<Gamma> \<turnstile> \<And>x. B[x]\<close>}
|
wenzelm@20498
|
467 |
\]
|
wenzelm@20498
|
468 |
\[
|
wenzelm@61493
|
469 |
\infer[\<open>(\<Longrightarrow>\<hyphen>intro)\<close>]{\<open>\<Gamma> - A \<turnstile> A \<Longrightarrow> B\<close>}{\<open>\<Gamma> \<turnstile> B\<close>}
|
wenzelm@20498
|
470 |
\qquad
|
wenzelm@61493
|
471 |
\infer[\<open>(\<Longrightarrow>\<hyphen>elim)\<close>]{\<open>\<Gamma>\<^sub>1 \<union> \<Gamma>\<^sub>2 \<turnstile> B\<close>}{\<open>\<Gamma>\<^sub>1 \<turnstile> A \<Longrightarrow> B\<close> & \<open>\<Gamma>\<^sub>2 \<turnstile> A\<close>}
|
wenzelm@20498
|
472 |
\]
|
wenzelm@20521
|
473 |
\caption{Primitive inferences of Pure}\label{fig:prim-rules}
|
wenzelm@20521
|
474 |
\end{center}
|
wenzelm@20521
|
475 |
\end{figure}
|
wenzelm@20521
|
476 |
|
wenzelm@20521
|
477 |
\begin{figure}[htb]
|
wenzelm@20521
|
478 |
\begin{center}
|
wenzelm@20521
|
479 |
\begin{tabular}{ll}
|
wenzelm@61493
|
480 |
\<open>\<turnstile> (\<lambda>x. b[x]) a \<equiv> b[a]\<close> & \<open>\<beta>\<close>-conversion \\
|
wenzelm@61493
|
481 |
\<open>\<turnstile> x \<equiv> x\<close> & reflexivity \\
|
wenzelm@61493
|
482 |
\<open>\<turnstile> x \<equiv> y \<Longrightarrow> P x \<Longrightarrow> P y\<close> & substitution \\
|
wenzelm@61493
|
483 |
\<open>\<turnstile> (\<And>x. f x \<equiv> g x) \<Longrightarrow> f \<equiv> g\<close> & extensionality \\
|
wenzelm@61493
|
484 |
\<open>\<turnstile> (A \<Longrightarrow> B) \<Longrightarrow> (B \<Longrightarrow> A) \<Longrightarrow> A \<equiv> B\<close> & logical equivalence \\
|
wenzelm@20521
|
485 |
\end{tabular}
|
wenzelm@20542
|
486 |
\caption{Conceptual axiomatization of Pure equality}\label{fig:pure-equality}
|
wenzelm@20501
|
487 |
\end{center}
|
wenzelm@20501
|
488 |
\end{figure}
|
wenzelm@18537
|
489 |
|
wenzelm@61854
|
490 |
The introduction and elimination rules for \<open>\<And>\<close> and \<open>\<Longrightarrow>\<close> are analogous to
|
wenzelm@61854
|
491 |
formation of dependently typed \<open>\<lambda>\<close>-terms representing the underlying proof
|
wenzelm@61854
|
492 |
objects. Proof terms are irrelevant in the Pure logic, though; they cannot
|
wenzelm@61854
|
493 |
occur within propositions. The system provides a runtime option to record
|
wenzelm@52408
|
494 |
explicit proof terms for primitive inferences, see also
|
wenzelm@61854
|
495 |
\secref{sec:proof-terms}. Thus all three levels of \<open>\<lambda>\<close>-calculus become
|
wenzelm@61854
|
496 |
explicit: \<open>\<Rightarrow>\<close> for terms, and \<open>\<And>/\<Longrightarrow>\<close> for proofs (cf.\ @{cite
|
wenzelm@61854
|
497 |
"Berghofer-Nipkow:2000:TPHOL"}).
|
wenzelm@20491
|
498 |
|
wenzelm@61854
|
499 |
Observe that locally fixed parameters (as in \<open>\<And>\<hyphen>intro\<close>) need not be recorded
|
wenzelm@61854
|
500 |
in the hypotheses, because the simple syntactic types of Pure are always
|
wenzelm@61854
|
501 |
inhabitable. ``Assumptions'' \<open>x :: \<tau>\<close> for type-membership are only present
|
wenzelm@61854
|
502 |
as long as some \<open>x\<^sub>\<tau>\<close> occurs in the statement body.\<^footnote>\<open>This is the key
|
wenzelm@61854
|
503 |
difference to ``\<open>\<lambda>HOL\<close>'' in the PTS framework @{cite
|
wenzelm@61854
|
504 |
"Barendregt-Geuvers:2001"}, where hypotheses \<open>x : A\<close> are treated uniformly
|
wenzelm@61854
|
505 |
for propositions and types.\<close>
|
wenzelm@20501
|
506 |
|
wenzelm@61416
|
507 |
\<^medskip>
|
wenzelm@61854
|
508 |
The axiomatization of a theory is implicitly closed by forming all instances
|
wenzelm@61854
|
509 |
of type and term variables: \<open>\<turnstile> A\<vartheta>\<close> holds for any substitution
|
wenzelm@61854
|
510 |
instance of an axiom \<open>\<turnstile> A\<close>. By pushing substitutions through derivations
|
wenzelm@61854
|
511 |
inductively, we also get admissible \<open>generalize\<close> and \<open>instantiate\<close> rules as
|
wenzelm@61854
|
512 |
shown in \figref{fig:subst-rules}.
|
wenzelm@20501
|
513 |
|
wenzelm@20501
|
514 |
\begin{figure}[htb]
|
wenzelm@20501
|
515 |
\begin{center}
|
wenzelm@20498
|
516 |
\[
|
wenzelm@61493
|
517 |
\infer{\<open>\<Gamma> \<turnstile> B[?\<alpha>]\<close>}{\<open>\<Gamma> \<turnstile> B[\<alpha>]\<close> & \<open>\<alpha> \<notin> \<Gamma>\<close>}
|
wenzelm@20501
|
518 |
\quad
|
wenzelm@61493
|
519 |
\infer[\quad\<open>(generalize)\<close>]{\<open>\<Gamma> \<turnstile> B[?x]\<close>}{\<open>\<Gamma> \<turnstile> B[x]\<close> & \<open>x \<notin> \<Gamma>\<close>}
|
wenzelm@20498
|
520 |
\]
|
wenzelm@20498
|
521 |
\[
|
wenzelm@61493
|
522 |
\infer{\<open>\<Gamma> \<turnstile> B[\<tau>]\<close>}{\<open>\<Gamma> \<turnstile> B[?\<alpha>]\<close>}
|
wenzelm@20501
|
523 |
\quad
|
wenzelm@61493
|
524 |
\infer[\quad\<open>(instantiate)\<close>]{\<open>\<Gamma> \<turnstile> B[t]\<close>}{\<open>\<Gamma> \<turnstile> B[?x]\<close>}
|
wenzelm@20498
|
525 |
\]
|
wenzelm@20501
|
526 |
\caption{Admissible substitution rules}\label{fig:subst-rules}
|
wenzelm@20501
|
527 |
\end{center}
|
wenzelm@20501
|
528 |
\end{figure}
|
wenzelm@18537
|
529 |
|
wenzelm@61854
|
530 |
Note that \<open>instantiate\<close> does not require an explicit side-condition, because
|
wenzelm@61854
|
531 |
\<open>\<Gamma>\<close> may never contain schematic variables.
|
wenzelm@20537
|
532 |
|
wenzelm@61854
|
533 |
In principle, variables could be substituted in hypotheses as well, but this
|
wenzelm@61854
|
534 |
would disrupt the monotonicity of reasoning: deriving \<open>\<Gamma>\<vartheta> \<turnstile>
|
wenzelm@61854
|
535 |
B\<vartheta>\<close> from \<open>\<Gamma> \<turnstile> B\<close> is correct, but \<open>\<Gamma>\<vartheta> \<supseteq> \<Gamma>\<close> does not
|
wenzelm@61854
|
536 |
necessarily hold: the result belongs to a different proof context.
|
wenzelm@20542
|
537 |
|
wenzelm@61416
|
538 |
\<^medskip>
|
wenzelm@61854
|
539 |
An \<^emph>\<open>oracle\<close> is a function that produces axioms on the fly. Logically, this
|
wenzelm@61854
|
540 |
is an instance of the \<open>axiom\<close> rule (\figref{fig:prim-rules}), but there is
|
wenzelm@61854
|
541 |
an operational difference. The system always records oracle invocations
|
wenzelm@61854
|
542 |
within derivations of theorems by a unique tag.
|
wenzelm@20542
|
543 |
|
wenzelm@61854
|
544 |
Axiomatizations should be limited to the bare minimum, typically as part of
|
wenzelm@61854
|
545 |
the initial logical basis of an object-logic formalization. Later on,
|
wenzelm@61854
|
546 |
theories are usually developed in a strictly definitional fashion, by
|
wenzelm@61854
|
547 |
stating only certain equalities over new constants.
|
wenzelm@20542
|
548 |
|
wenzelm@61854
|
549 |
A \<^emph>\<open>simple definition\<close> consists of a constant declaration \<open>c :: \<sigma>\<close> together
|
wenzelm@61854
|
550 |
with an axiom \<open>\<turnstile> c \<equiv> t\<close>, where \<open>t :: \<sigma>\<close> is a closed term without any hidden
|
wenzelm@61854
|
551 |
polymorphism. The RHS may depend on further defined constants, but not \<open>c\<close>
|
wenzelm@61854
|
552 |
itself. Definitions of functions may be presented as \<open>c \<^vec>x \<equiv> t\<close>
|
wenzelm@61854
|
553 |
instead of the puristic \<open>c \<equiv> \<lambda>\<^vec>x. t\<close>.
|
wenzelm@20542
|
554 |
|
wenzelm@61854
|
555 |
An \<^emph>\<open>overloaded definition\<close> consists of a collection of axioms for the same
|
wenzelm@61854
|
556 |
constant, with zero or one equations \<open>c((\<^vec>\<alpha>)\<kappa>) \<equiv> t\<close> for each type
|
wenzelm@61854
|
557 |
constructor \<open>\<kappa>\<close> (for distinct variables \<open>\<^vec>\<alpha>\<close>). The RHS may mention
|
wenzelm@61854
|
558 |
previously defined constants as above, or arbitrary constants \<open>d(\<alpha>\<^sub>i)\<close> for
|
wenzelm@61854
|
559 |
some \<open>\<alpha>\<^sub>i\<close> projected from \<open>\<^vec>\<alpha>\<close>. Thus overloaded definitions
|
wenzelm@61854
|
560 |
essentially work by primitive recursion over the syntactic structure of a
|
wenzelm@61854
|
561 |
single type argument. See also @{cite \<open>\S4.3\<close>
|
wenzelm@61854
|
562 |
"Haftmann-Wenzel:2006:classes"}.
|
wenzelm@58618
|
563 |
\<close>
|
wenzelm@20498
|
564 |
|
wenzelm@58618
|
565 |
text %mlref \<open>
|
wenzelm@20521
|
566 |
\begin{mldecls}
|
wenzelm@46253
|
567 |
@{index_ML Logic.all: "term -> term -> term"} \\
|
wenzelm@46253
|
568 |
@{index_ML Logic.mk_implies: "term * term -> term"} \\
|
wenzelm@46253
|
569 |
\end{mldecls}
|
wenzelm@46253
|
570 |
\begin{mldecls}
|
wenzelm@20521
|
571 |
@{index_ML_type ctyp} \\
|
wenzelm@20521
|
572 |
@{index_ML_type cterm} \\
|
wenzelm@59621
|
573 |
@{index_ML Thm.ctyp_of: "Proof.context -> typ -> ctyp"} \\
|
wenzelm@59621
|
574 |
@{index_ML Thm.cterm_of: "Proof.context -> term -> cterm"} \\
|
wenzelm@46497
|
575 |
@{index_ML Thm.apply: "cterm -> cterm -> cterm"} \\
|
wenzelm@46497
|
576 |
@{index_ML Thm.lambda: "cterm -> cterm -> cterm"} \\
|
wenzelm@60938
|
577 |
@{index_ML Thm.all: "Proof.context -> cterm -> cterm -> cterm"} \\
|
wenzelm@46253
|
578 |
@{index_ML Drule.mk_implies: "cterm * cterm -> cterm"} \\
|
wenzelm@20547
|
579 |
\end{mldecls}
|
wenzelm@20547
|
580 |
\begin{mldecls}
|
wenzelm@20521
|
581 |
@{index_ML_type thm} \\
|
wenzelm@50126
|
582 |
@{index_ML Thm.peek_status: "thm -> {oracle: bool, unfinished: bool, failed: bool}"} \\
|
wenzelm@42933
|
583 |
@{index_ML Thm.transfer: "theory -> thm -> thm"} \\
|
wenzelm@20542
|
584 |
@{index_ML Thm.assume: "cterm -> thm"} \\
|
wenzelm@20542
|
585 |
@{index_ML Thm.forall_intr: "cterm -> thm -> thm"} \\
|
wenzelm@20542
|
586 |
@{index_ML Thm.forall_elim: "cterm -> thm -> thm"} \\
|
wenzelm@20542
|
587 |
@{index_ML Thm.implies_intr: "cterm -> thm -> thm"} \\
|
wenzelm@20542
|
588 |
@{index_ML Thm.implies_elim: "thm -> thm -> thm"} \\
|
wenzelm@20542
|
589 |
@{index_ML Thm.generalize: "string list * string list -> int -> thm -> thm"} \\
|
wenzelm@60642
|
590 |
@{index_ML Thm.instantiate: "((indexname * sort) * ctyp) list * ((indexname * typ) * cterm) list
|
wenzelm@60642
|
591 |
-> thm -> thm"} \\
|
wenzelm@42401
|
592 |
@{index_ML Thm.add_axiom: "Proof.context ->
|
wenzelm@42401
|
593 |
binding * term -> theory -> (string * thm) * theory"} \\
|
wenzelm@39821
|
594 |
@{index_ML Thm.add_oracle: "binding * ('a -> cterm) -> theory ->
|
wenzelm@39821
|
595 |
(string * ('a -> thm)) * theory"} \\
|
wenzelm@61261
|
596 |
@{index_ML Thm.add_def: "Defs.context -> bool -> bool ->
|
wenzelm@42401
|
597 |
binding * term -> theory -> (string * thm) * theory"} \\
|
wenzelm@20547
|
598 |
\end{mldecls}
|
wenzelm@20547
|
599 |
\begin{mldecls}
|
wenzelm@61261
|
600 |
@{index_ML Theory.add_deps: "Defs.context -> string ->
|
wenzelm@61255
|
601 |
Defs.entry -> Defs.entry list -> theory -> theory"} \\
|
wenzelm@20521
|
602 |
\end{mldecls}
|
wenzelm@20521
|
603 |
|
wenzelm@61854
|
604 |
\<^descr> @{ML Thm.peek_status}~\<open>thm\<close> informs about the current status of the
|
wenzelm@61854
|
605 |
derivation object behind the given theorem. This is a snapshot of a
|
wenzelm@61854
|
606 |
potentially ongoing (parallel) evaluation of proofs. The three Boolean
|
wenzelm@61854
|
607 |
values indicate the following: \<^verbatim>\<open>oracle\<close> if the finished part contains some
|
wenzelm@61854
|
608 |
oracle invocation; \<^verbatim>\<open>unfinished\<close> if some future proofs are still pending;
|
wenzelm@61854
|
609 |
\<^verbatim>\<open>failed\<close> if some future proof has failed, rendering the theorem invalid!
|
wenzelm@50126
|
610 |
|
wenzelm@61854
|
611 |
\<^descr> @{ML Logic.all}~\<open>a B\<close> produces a Pure quantification \<open>\<And>a. B\<close>, where
|
wenzelm@61854
|
612 |
occurrences of the atomic term \<open>a\<close> in the body proposition \<open>B\<close> are replaced
|
wenzelm@61854
|
613 |
by bound variables. (See also @{ML lambda} on terms.)
|
wenzelm@46253
|
614 |
|
wenzelm@61854
|
615 |
\<^descr> @{ML Logic.mk_implies}~\<open>(A, B)\<close> produces a Pure implication \<open>A \<Longrightarrow> B\<close>.
|
wenzelm@46253
|
616 |
|
wenzelm@61854
|
617 |
\<^descr> Types @{ML_type ctyp} and @{ML_type cterm} represent certified types and
|
wenzelm@61854
|
618 |
terms, respectively. These are abstract datatypes that guarantee that its
|
wenzelm@61854
|
619 |
values have passed the full well-formedness (and well-typedness) checks,
|
wenzelm@61854
|
620 |
relative to the declarations of type constructors, constants etc.\ in the
|
wenzelm@61854
|
621 |
background theory. The abstract types @{ML_type ctyp} and @{ML_type cterm}
|
wenzelm@61854
|
622 |
are part of the same inference kernel that is mainly responsible for
|
wenzelm@61854
|
623 |
@{ML_type thm}. Thus syntactic operations on @{ML_type ctyp} and @{ML_type
|
wenzelm@61854
|
624 |
cterm} are located in the @{ML_structure Thm} module, even though theorems
|
wenzelm@61854
|
625 |
are not yet involved at that stage.
|
wenzelm@20542
|
626 |
|
wenzelm@61854
|
627 |
\<^descr> @{ML Thm.ctyp_of}~\<open>ctxt \<tau>\<close> and @{ML Thm.cterm_of}~\<open>ctxt t\<close> explicitly
|
wenzelm@61854
|
628 |
check types and terms, respectively. This also involves some basic
|
wenzelm@61854
|
629 |
normalizations, such expansion of type and term abbreviations from the
|
wenzelm@61854
|
630 |
underlying theory context. Full re-certification is relatively slow and
|
wenzelm@61854
|
631 |
should be avoided in tight reasoning loops.
|
wenzelm@20547
|
632 |
|
wenzelm@61854
|
633 |
\<^descr> @{ML Thm.apply}, @{ML Thm.lambda}, @{ML Thm.all}, @{ML Drule.mk_implies}
|
wenzelm@61854
|
634 |
etc.\ compose certified terms (or propositions) incrementally. This is
|
wenzelm@61854
|
635 |
equivalent to @{ML Thm.cterm_of} after unchecked @{ML_op "$"}, @{ML lambda},
|
wenzelm@61854
|
636 |
@{ML Logic.all}, @{ML Logic.mk_implies} etc., but there can be a big
|
wenzelm@61854
|
637 |
difference in performance when large existing entities are composed by a few
|
wenzelm@61854
|
638 |
extra constructions on top. There are separate operations to decompose
|
wenzelm@46253
|
639 |
certified terms and theorems to produce certified terms again.
|
wenzelm@20542
|
640 |
|
wenzelm@61854
|
641 |
\<^descr> Type @{ML_type thm} represents proven propositions. This is an abstract
|
wenzelm@61854
|
642 |
datatype that guarantees that its values have been constructed by basic
|
wenzelm@61854
|
643 |
principles of the @{ML_structure Thm} module. Every @{ML_type thm} value
|
wenzelm@61854
|
644 |
refers its background theory, cf.\ \secref{sec:context-theory}.
|
wenzelm@20542
|
645 |
|
wenzelm@61854
|
646 |
\<^descr> @{ML Thm.transfer}~\<open>thy thm\<close> transfers the given theorem to a \<^emph>\<open>larger\<close>
|
wenzelm@61854
|
647 |
theory, see also \secref{sec:context}. This formal adjustment of the
|
wenzelm@61854
|
648 |
background context has no logical significance, but is occasionally required
|
wenzelm@61854
|
649 |
for formal reasons, e.g.\ when theorems that are imported from more basic
|
wenzelm@61854
|
650 |
theories are used in the current situation.
|
wenzelm@42933
|
651 |
|
wenzelm@61854
|
652 |
\<^descr> @{ML Thm.assume}, @{ML Thm.forall_intr}, @{ML Thm.forall_elim}, @{ML
|
wenzelm@61854
|
653 |
Thm.implies_intr}, and @{ML Thm.implies_elim} correspond to the primitive
|
wenzelm@61854
|
654 |
inferences of \figref{fig:prim-rules}.
|
wenzelm@20542
|
655 |
|
wenzelm@61854
|
656 |
\<^descr> @{ML Thm.generalize}~\<open>(\<^vec>\<alpha>, \<^vec>x)\<close> corresponds to the
|
wenzelm@61854
|
657 |
\<open>generalize\<close> rules of \figref{fig:subst-rules}. Here collections of type and
|
wenzelm@61854
|
658 |
term variables are generalized simultaneously, specified by the given basic
|
wenzelm@61854
|
659 |
names.
|
wenzelm@20521
|
660 |
|
wenzelm@61854
|
661 |
\<^descr> @{ML Thm.instantiate}~\<open>(\<^vec>\<alpha>\<^sub>s, \<^vec>x\<^sub>\<tau>)\<close> corresponds to the
|
wenzelm@61854
|
662 |
\<open>instantiate\<close> rules of \figref{fig:subst-rules}. Type variables are
|
wenzelm@61854
|
663 |
substituted before term variables. Note that the types in \<open>\<^vec>x\<^sub>\<tau>\<close> refer
|
wenzelm@61854
|
664 |
to the instantiated versions.
|
wenzelm@20542
|
665 |
|
wenzelm@61854
|
666 |
\<^descr> @{ML Thm.add_axiom}~\<open>ctxt (name, A)\<close> declares an arbitrary proposition as
|
wenzelm@61854
|
667 |
axiom, and retrieves it as a theorem from the resulting theory, cf.\ \<open>axiom\<close>
|
wenzelm@61854
|
668 |
in \figref{fig:prim-rules}. Note that the low-level representation in the
|
wenzelm@61854
|
669 |
axiom table may differ slightly from the returned theorem.
|
wenzelm@20542
|
670 |
|
wenzelm@61854
|
671 |
\<^descr> @{ML Thm.add_oracle}~\<open>(binding, oracle)\<close> produces a named oracle rule,
|
wenzelm@61854
|
672 |
essentially generating arbitrary axioms on the fly, cf.\ \<open>axiom\<close> in
|
wenzelm@61854
|
673 |
\figref{fig:prim-rules}.
|
wenzelm@20521
|
674 |
|
wenzelm@61854
|
675 |
\<^descr> @{ML Thm.add_def}~\<open>ctxt unchecked overloaded (name, c \<^vec>x \<equiv> t)\<close>
|
wenzelm@61854
|
676 |
states a definitional axiom for an existing constant \<open>c\<close>. Dependencies are
|
wenzelm@61854
|
677 |
recorded via @{ML Theory.add_deps}, unless the \<open>unchecked\<close> option is set.
|
wenzelm@61854
|
678 |
Note that the low-level representation in the axiom table may differ
|
wenzelm@61854
|
679 |
slightly from the returned theorem.
|
wenzelm@20542
|
680 |
|
wenzelm@61854
|
681 |
\<^descr> @{ML Theory.add_deps}~\<open>ctxt name c\<^sub>\<tau> \<^vec>d\<^sub>\<sigma>\<close> declares dependencies of
|
wenzelm@61854
|
682 |
a named specification for constant \<open>c\<^sub>\<tau>\<close>, relative to existing
|
wenzelm@61854
|
683 |
specifications for constants \<open>\<^vec>d\<^sub>\<sigma>\<close>. This also works for type
|
wenzelm@61854
|
684 |
constructors.
|
wenzelm@58618
|
685 |
\<close>
|
wenzelm@20521
|
686 |
|
wenzelm@58618
|
687 |
text %mlantiq \<open>
|
wenzelm@39832
|
688 |
\begin{matharray}{rcl}
|
wenzelm@61493
|
689 |
@{ML_antiquotation_def "ctyp"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@61493
|
690 |
@{ML_antiquotation_def "cterm"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@61493
|
691 |
@{ML_antiquotation_def "cprop"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@61493
|
692 |
@{ML_antiquotation_def "thm"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@61493
|
693 |
@{ML_antiquotation_def "thms"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@61493
|
694 |
@{ML_antiquotation_def "lemma"} & : & \<open>ML_antiquotation\<close> \\
|
wenzelm@39832
|
695 |
\end{matharray}
|
wenzelm@39832
|
696 |
|
wenzelm@55112
|
697 |
@{rail \<open>
|
wenzelm@42510
|
698 |
@@{ML_antiquotation ctyp} typ
|
wenzelm@39832
|
699 |
;
|
wenzelm@42510
|
700 |
@@{ML_antiquotation cterm} term
|
wenzelm@39832
|
701 |
;
|
wenzelm@42510
|
702 |
@@{ML_antiquotation cprop} prop
|
wenzelm@39832
|
703 |
;
|
wenzelm@62969
|
704 |
@@{ML_antiquotation thm} thm
|
wenzelm@42510
|
705 |
;
|
wenzelm@62969
|
706 |
@@{ML_antiquotation thms} thms
|
wenzelm@39832
|
707 |
;
|
wenzelm@55029
|
708 |
@@{ML_antiquotation lemma} ('(' @'open' ')')? ((prop +) + @'and') \<newline>
|
wenzelm@42517
|
709 |
@'by' method method?
|
wenzelm@55112
|
710 |
\<close>}
|
wenzelm@39832
|
711 |
|
wenzelm@61854
|
712 |
\<^descr> \<open>@{ctyp \<tau>}\<close> produces a certified type wrt.\ the current background theory
|
wenzelm@61854
|
713 |
--- as abstract value of type @{ML_type ctyp}.
|
wenzelm@61854
|
714 |
|
wenzelm@61854
|
715 |
\<^descr> \<open>@{cterm t}\<close> and \<open>@{cprop \<phi>}\<close> produce a certified term wrt.\ the current
|
wenzelm@61854
|
716 |
background theory --- as abstract value of type @{ML_type cterm}.
|
wenzelm@39832
|
717 |
|
wenzelm@61854
|
718 |
\<^descr> \<open>@{thm a}\<close> produces a singleton fact --- as abstract value of type
|
wenzelm@61854
|
719 |
@{ML_type thm}.
|
wenzelm@39832
|
720 |
|
wenzelm@61854
|
721 |
\<^descr> \<open>@{thms a}\<close> produces a general fact --- as abstract value of type
|
wenzelm@61854
|
722 |
@{ML_type "thm list"}.
|
wenzelm@39832
|
723 |
|
wenzelm@61854
|
724 |
\<^descr> \<open>@{lemma \<phi> by meth}\<close> produces a fact that is proven on the spot according
|
wenzelm@61854
|
725 |
to the minimal proof, which imitates a terminal Isar proof. The result is an
|
wenzelm@61854
|
726 |
abstract value of type @{ML_type thm} or @{ML_type "thm list"}, depending on
|
wenzelm@61854
|
727 |
the number of propositions given here.
|
wenzelm@39832
|
728 |
|
wenzelm@61854
|
729 |
The internal derivation object lacks a proper theorem name, but it is
|
wenzelm@61854
|
730 |
formally closed, unless the \<open>(open)\<close> option is specified (this may impact
|
wenzelm@61854
|
731 |
performance of applications with proof terms).
|
wenzelm@39832
|
732 |
|
wenzelm@61854
|
733 |
Since ML antiquotations are always evaluated at compile-time, there is no
|
wenzelm@61854
|
734 |
run-time overhead even for non-trivial proofs. Nonetheless, the
|
wenzelm@61854
|
735 |
justification is syntactically limited to a single @{command "by"} step.
|
wenzelm@61854
|
736 |
More complex Isar proofs should be done in regular theory source, before
|
wenzelm@61854
|
737 |
compiling the corresponding ML text that uses the result.
|
wenzelm@58618
|
738 |
\<close>
|
wenzelm@39832
|
739 |
|
wenzelm@39832
|
740 |
|
wenzelm@58618
|
741 |
subsection \<open>Auxiliary connectives \label{sec:logic-aux}\<close>
|
wenzelm@20521
|
742 |
|
wenzelm@61854
|
743 |
text \<open>
|
wenzelm@61854
|
744 |
Theory \<open>Pure\<close> provides a few auxiliary connectives that are defined on top
|
wenzelm@61854
|
745 |
of the primitive ones, see \figref{fig:pure-aux}. These special constants
|
wenzelm@61854
|
746 |
are useful in certain internal encodings, and are normally not directly
|
wenzelm@61854
|
747 |
exposed to the user.
|
wenzelm@20501
|
748 |
|
wenzelm@20501
|
749 |
\begin{figure}[htb]
|
wenzelm@20501
|
750 |
\begin{center}
|
wenzelm@20498
|
751 |
\begin{tabular}{ll}
|
wenzelm@61493
|
752 |
\<open>conjunction :: prop \<Rightarrow> prop \<Rightarrow> prop\<close> & (infix \<open>&&&\<close>) \\
|
wenzelm@61493
|
753 |
\<open>\<turnstile> A &&& B \<equiv> (\<And>C. (A \<Longrightarrow> B \<Longrightarrow> C) \<Longrightarrow> C)\<close> \\[1ex]
|
wenzelm@61493
|
754 |
\<open>prop :: prop \<Rightarrow> prop\<close> & (prefix \<open>#\<close>, suppressed) \\
|
wenzelm@61493
|
755 |
\<open>#A \<equiv> A\<close> \\[1ex]
|
wenzelm@61493
|
756 |
\<open>term :: \<alpha> \<Rightarrow> prop\<close> & (prefix \<open>TERM\<close>) \\
|
wenzelm@61493
|
757 |
\<open>term x \<equiv> (\<And>A. A \<Longrightarrow> A)\<close> \\[1ex]
|
wenzelm@61493
|
758 |
\<open>type :: \<alpha> itself\<close> & (prefix \<open>TYPE\<close>) \\
|
wenzelm@61493
|
759 |
\<open>(unspecified)\<close> \\
|
wenzelm@20498
|
760 |
\end{tabular}
|
wenzelm@20521
|
761 |
\caption{Definitions of auxiliary connectives}\label{fig:pure-aux}
|
wenzelm@20501
|
762 |
\end{center}
|
wenzelm@20501
|
763 |
\end{figure}
|
wenzelm@20501
|
764 |
|
wenzelm@61854
|
765 |
The introduction \<open>A \<Longrightarrow> B \<Longrightarrow> A &&& B\<close>, and eliminations (projections) \<open>A &&& B
|
wenzelm@61854
|
766 |
\<Longrightarrow> A\<close> and \<open>A &&& B \<Longrightarrow> B\<close> are available as derived rules. Conjunction allows to
|
wenzelm@61854
|
767 |
treat simultaneous assumptions and conclusions uniformly, e.g.\ consider \<open>A
|
wenzelm@61854
|
768 |
\<Longrightarrow> B \<Longrightarrow> C &&& D\<close>. In particular, the goal mechanism represents multiple claims
|
wenzelm@61854
|
769 |
as explicit conjunction internally, but this is refined (via backwards
|
wenzelm@61854
|
770 |
introduction) into separate sub-goals before the user commences the proof;
|
wenzelm@61854
|
771 |
the final result is projected into a list of theorems using eliminations
|
wenzelm@61854
|
772 |
(cf.\ \secref{sec:tactical-goals}).
|
wenzelm@20498
|
773 |
|
wenzelm@61854
|
774 |
The \<open>prop\<close> marker (\<open>#\<close>) makes arbitrarily complex propositions appear as
|
wenzelm@61854
|
775 |
atomic, without changing the meaning: \<open>\<Gamma> \<turnstile> A\<close> and \<open>\<Gamma> \<turnstile> #A\<close> are
|
wenzelm@61854
|
776 |
interchangeable. See \secref{sec:tactical-goals} for specific operations.
|
wenzelm@20521
|
777 |
|
wenzelm@61854
|
778 |
The \<open>term\<close> marker turns any well-typed term into a derivable proposition: \<open>\<turnstile>
|
wenzelm@61854
|
779 |
TERM t\<close> holds unconditionally. Although this is logically vacuous, it allows
|
wenzelm@61854
|
780 |
to treat terms and proofs uniformly, similar to a type-theoretic framework.
|
wenzelm@20498
|
781 |
|
wenzelm@61854
|
782 |
The \<open>TYPE\<close> constructor is the canonical representative of the unspecified
|
wenzelm@61854
|
783 |
type \<open>\<alpha> itself\<close>; it essentially injects the language of types into that of
|
wenzelm@61854
|
784 |
terms. There is specific notation \<open>TYPE(\<tau>)\<close> for \<open>TYPE\<^bsub>\<tau> itself\<^esub>\<close>. Although
|
wenzelm@61854
|
785 |
being devoid of any particular meaning, the term \<open>TYPE(\<tau>)\<close> accounts for the
|
wenzelm@61854
|
786 |
type \<open>\<tau>\<close> within the term language. In particular, \<open>TYPE(\<alpha>)\<close> may be used as
|
wenzelm@61854
|
787 |
formal argument in primitive definitions, in order to circumvent hidden
|
wenzelm@61854
|
788 |
polymorphism (cf.\ \secref{sec:terms}). For example, \<open>c TYPE(\<alpha>) \<equiv> A[\<alpha>]\<close>
|
wenzelm@61854
|
789 |
defines \<open>c :: \<alpha> itself \<Rightarrow> prop\<close> in terms of a proposition \<open>A\<close> that depends on
|
wenzelm@61854
|
790 |
an additional type argument, which is essentially a predicate on types.
|
wenzelm@58618
|
791 |
\<close>
|
wenzelm@20501
|
792 |
|
wenzelm@58618
|
793 |
text %mlref \<open>
|
wenzelm@20521
|
794 |
\begin{mldecls}
|
wenzelm@20521
|
795 |
@{index_ML Conjunction.intr: "thm -> thm -> thm"} \\
|
wenzelm@20521
|
796 |
@{index_ML Conjunction.elim: "thm -> thm * thm"} \\
|
wenzelm@20521
|
797 |
@{index_ML Drule.mk_term: "cterm -> thm"} \\
|
wenzelm@20521
|
798 |
@{index_ML Drule.dest_term: "thm -> cterm"} \\
|
wenzelm@20521
|
799 |
@{index_ML Logic.mk_type: "typ -> term"} \\
|
wenzelm@20521
|
800 |
@{index_ML Logic.dest_type: "term -> typ"} \\
|
wenzelm@20521
|
801 |
\end{mldecls}
|
wenzelm@20521
|
802 |
|
wenzelm@61493
|
803 |
\<^descr> @{ML Conjunction.intr} derives \<open>A &&& B\<close> from \<open>A\<close> and \<open>B\<close>.
|
wenzelm@20542
|
804 |
|
wenzelm@61854
|
805 |
\<^descr> @{ML Conjunction.elim} derives \<open>A\<close> and \<open>B\<close> from \<open>A &&& B\<close>.
|
wenzelm@20542
|
806 |
|
wenzelm@61493
|
807 |
\<^descr> @{ML Drule.mk_term} derives \<open>TERM t\<close>.
|
wenzelm@20542
|
808 |
|
wenzelm@61493
|
809 |
\<^descr> @{ML Drule.dest_term} recovers term \<open>t\<close> from \<open>TERM t\<close>.
|
wenzelm@20542
|
810 |
|
wenzelm@61493
|
811 |
\<^descr> @{ML Logic.mk_type}~\<open>\<tau>\<close> produces the term \<open>TYPE(\<tau>)\<close>.
|
wenzelm@20542
|
812 |
|
wenzelm@61854
|
813 |
\<^descr> @{ML Logic.dest_type}~\<open>TYPE(\<tau>)\<close> recovers the type \<open>\<tau>\<close>.
|
wenzelm@58618
|
814 |
\<close>
|
wenzelm@18537
|
815 |
|
wenzelm@20480
|
816 |
|
wenzelm@58618
|
817 |
subsection \<open>Sort hypotheses\<close>
|
wenzelm@52406
|
818 |
|
wenzelm@61854
|
819 |
text \<open>
|
wenzelm@61854
|
820 |
Type variables are decorated with sorts, as explained in \secref{sec:types}.
|
wenzelm@61854
|
821 |
This constrains type instantiation to certain ranges of types: variable
|
wenzelm@61854
|
822 |
\<open>\<alpha>\<^sub>s\<close> may only be assigned to types \<open>\<tau>\<close> that belong to sort \<open>s\<close>. Within the
|
wenzelm@61854
|
823 |
logic, sort constraints act like implicit preconditions on the result \<open>\<lparr>\<alpha>\<^sub>1
|
wenzelm@61854
|
824 |
: s\<^sub>1\<rparr>, \<dots>, \<lparr>\<alpha>\<^sub>n : s\<^sub>n\<rparr>, \<Gamma> \<turnstile> \<phi>\<close> where the type variables \<open>\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>n\<close> cover
|
wenzelm@61854
|
825 |
the propositions \<open>\<Gamma>\<close>, \<open>\<phi>\<close>, as well as the proof of \<open>\<Gamma> \<turnstile> \<phi>\<close>.
|
wenzelm@52406
|
826 |
|
wenzelm@61854
|
827 |
These \<^emph>\<open>sort hypothesis\<close> of a theorem are passed monotonically through
|
wenzelm@61854
|
828 |
further derivations. They are redundant, as long as the statement of a
|
wenzelm@61854
|
829 |
theorem still contains the type variables that are accounted here. The
|
wenzelm@61854
|
830 |
logical significance of sort hypotheses is limited to the boundary case
|
wenzelm@61854
|
831 |
where type variables disappear from the proposition, e.g.\ \<open>\<lparr>\<alpha>\<^sub>s : s\<rparr> \<turnstile> \<phi>\<close>.
|
wenzelm@61854
|
832 |
Since such dangling type variables can be renamed arbitrarily without
|
wenzelm@61854
|
833 |
changing the proposition \<open>\<phi>\<close>, the inference kernel maintains sort hypotheses
|
wenzelm@61854
|
834 |
in anonymous form \<open>s \<turnstile> \<phi>\<close>.
|
wenzelm@52406
|
835 |
|
wenzelm@61854
|
836 |
In most practical situations, such extra sort hypotheses may be stripped in
|
wenzelm@61854
|
837 |
a final bookkeeping step, e.g.\ at the end of a proof: they are typically
|
wenzelm@61854
|
838 |
left over from intermediate reasoning with type classes that can be
|
wenzelm@61854
|
839 |
satisfied by some concrete type \<open>\<tau>\<close> of sort \<open>s\<close> to replace the hypothetical
|
wenzelm@61854
|
840 |
type variable \<open>\<alpha>\<^sub>s\<close>.
|
wenzelm@61854
|
841 |
\<close>
|
wenzelm@52406
|
842 |
|
wenzelm@58618
|
843 |
text %mlref \<open>
|
wenzelm@52406
|
844 |
\begin{mldecls}
|
wenzelm@52406
|
845 |
@{index_ML Thm.extra_shyps: "thm -> sort list"} \\
|
wenzelm@52406
|
846 |
@{index_ML Thm.strip_shyps: "thm -> thm"} \\
|
wenzelm@52406
|
847 |
\end{mldecls}
|
wenzelm@52406
|
848 |
|
wenzelm@61854
|
849 |
\<^descr> @{ML Thm.extra_shyps}~\<open>thm\<close> determines the extraneous sort hypotheses of
|
wenzelm@61854
|
850 |
the given theorem, i.e.\ the sorts that are not present within type
|
wenzelm@61854
|
851 |
variables of the statement.
|
wenzelm@52406
|
852 |
|
wenzelm@61854
|
853 |
\<^descr> @{ML Thm.strip_shyps}~\<open>thm\<close> removes any extraneous sort hypotheses that
|
wenzelm@61854
|
854 |
can be witnessed from the type signature.
|
wenzelm@58618
|
855 |
\<close>
|
wenzelm@52406
|
856 |
|
wenzelm@61854
|
857 |
text %mlex \<open>
|
wenzelm@61854
|
858 |
The following artificial example demonstrates the derivation of @{prop
|
wenzelm@61854
|
859 |
False} with a pending sort hypothesis involving a logically empty sort.
|
wenzelm@61854
|
860 |
\<close>
|
wenzelm@52406
|
861 |
|
wenzelm@52406
|
862 |
class empty =
|
wenzelm@52406
|
863 |
assumes bad: "\<And>(x::'a) y. x \<noteq> y"
|
wenzelm@52406
|
864 |
|
wenzelm@68540
|
865 |
declare [[pending_shyps]]
|
wenzelm@68540
|
866 |
|
wenzelm@52406
|
867 |
theorem (in empty) false: False
|
wenzelm@52406
|
868 |
using bad by blast
|
wenzelm@52406
|
869 |
|
wenzelm@68540
|
870 |
declare [[pending_shyps = false]]
|
wenzelm@68540
|
871 |
|
wenzelm@59902
|
872 |
ML_val \<open>@{assert} (Thm.extra_shyps @{thm false} = [@{sort empty}])\<close>
|
wenzelm@52406
|
873 |
|
wenzelm@61854
|
874 |
text \<open>
|
wenzelm@61854
|
875 |
Thanks to the inference kernel managing sort hypothesis according to their
|
wenzelm@61854
|
876 |
logical significance, this example is merely an instance of \<^emph>\<open>ex falso
|
wenzelm@61854
|
877 |
quodlibet consequitur\<close> --- not a collapse of the logical framework!
|
wenzelm@61854
|
878 |
\<close>
|
wenzelm@52406
|
879 |
|
wenzelm@52406
|
880 |
|
wenzelm@58618
|
881 |
section \<open>Object-level rules \label{sec:obj-rules}\<close>
|
wenzelm@18537
|
882 |
|
wenzelm@58618
|
883 |
text \<open>
|
wenzelm@61854
|
884 |
The primitive inferences covered so far mostly serve foundational purposes.
|
wenzelm@61854
|
885 |
User-level reasoning usually works via object-level rules that are
|
wenzelm@61854
|
886 |
represented as theorems of Pure. Composition of rules involves
|
wenzelm@61854
|
887 |
\<^emph>\<open>backchaining\<close>, \<^emph>\<open>higher-order unification\<close> modulo \<open>\<alpha>\<beta>\<eta>\<close>-conversion of
|
wenzelm@61854
|
888 |
\<open>\<lambda>\<close>-terms, and so-called \<^emph>\<open>lifting\<close> of rules into a context of \<open>\<And>\<close> and \<open>\<Longrightarrow>\<close>
|
wenzelm@61854
|
889 |
connectives. Thus the full power of higher-order Natural Deduction in
|
wenzelm@61854
|
890 |
Isabelle/Pure becomes readily available.
|
wenzelm@58618
|
891 |
\<close>
|
wenzelm@20491
|
892 |
|
wenzelm@29769
|
893 |
|
wenzelm@58618
|
894 |
subsection \<open>Hereditary Harrop Formulae\<close>
|
wenzelm@29769
|
895 |
|
wenzelm@58618
|
896 |
text \<open>
|
wenzelm@61854
|
897 |
The idea of object-level rules is to model Natural Deduction inferences in
|
wenzelm@61854
|
898 |
the style of Gentzen @{cite "Gentzen:1935"}, but we allow arbitrary nesting
|
wenzelm@61854
|
899 |
similar to @{cite extensions91}. The most basic rule format is that of a
|
wenzelm@61854
|
900 |
\<^emph>\<open>Horn Clause\<close>:
|
wenzelm@29768
|
901 |
\[
|
wenzelm@61493
|
902 |
\infer{\<open>A\<close>}{\<open>A\<^sub>1\<close> & \<open>\<dots>\<close> & \<open>A\<^sub>n\<close>}
|
wenzelm@29768
|
903 |
\]
|
wenzelm@61854
|
904 |
where \<open>A, A\<^sub>1, \<dots>, A\<^sub>n\<close> are atomic propositions of the framework, usually of
|
wenzelm@61854
|
905 |
the form \<open>Trueprop B\<close>, where \<open>B\<close> is a (compound) object-level statement.
|
wenzelm@61854
|
906 |
This object-level inference corresponds to an iterated implication in Pure
|
wenzelm@61854
|
907 |
like this:
|
wenzelm@29768
|
908 |
\[
|
wenzelm@61493
|
909 |
\<open>A\<^sub>1 \<Longrightarrow> \<dots> A\<^sub>n \<Longrightarrow> A\<close>
|
wenzelm@29768
|
910 |
\]
|
wenzelm@61854
|
911 |
As an example consider conjunction introduction: \<open>A \<Longrightarrow> B \<Longrightarrow> A \<and> B\<close>. Any
|
wenzelm@61854
|
912 |
parameters occurring in such rule statements are conceptionally treated as
|
wenzelm@61854
|
913 |
arbitrary:
|
wenzelm@29768
|
914 |
\[
|
wenzelm@61493
|
915 |
\<open>\<And>x\<^sub>1 \<dots> x\<^sub>m. A\<^sub>1 x\<^sub>1 \<dots> x\<^sub>m \<Longrightarrow> \<dots> A\<^sub>n x\<^sub>1 \<dots> x\<^sub>m \<Longrightarrow> A x\<^sub>1 \<dots> x\<^sub>m\<close>
|
wenzelm@29768
|
916 |
\]
|
wenzelm@20491
|
917 |
|
wenzelm@61854
|
918 |
Nesting of rules means that the positions of \<open>A\<^sub>i\<close> may again hold compound
|
wenzelm@61854
|
919 |
rules, not just atomic propositions. Propositions of this format are called
|
wenzelm@61854
|
920 |
\<^emph>\<open>Hereditary Harrop Formulae\<close> in the literature @{cite "Miller:1991"}. Here
|
wenzelm@61854
|
921 |
we give an inductive characterization as follows:
|
wenzelm@29768
|
922 |
|
wenzelm@61416
|
923 |
\<^medskip>
|
wenzelm@29768
|
924 |
\begin{tabular}{ll}
|
wenzelm@61493
|
925 |
\<open>\<^bold>x\<close> & set of variables \\
|
wenzelm@61493
|
926 |
\<open>\<^bold>A\<close> & set of atomic propositions \\
|
wenzelm@61493
|
927 |
\<open>\<^bold>H = \<And>\<^bold>x\<^sup>*. \<^bold>H\<^sup>* \<Longrightarrow> \<^bold>A\<close> & set of Hereditary Harrop Formulas \\
|
wenzelm@29768
|
928 |
\end{tabular}
|
wenzelm@61416
|
929 |
\<^medskip>
|
wenzelm@29768
|
930 |
|
wenzelm@61854
|
931 |
Thus we essentially impose nesting levels on propositions formed from \<open>\<And>\<close>
|
wenzelm@61854
|
932 |
and \<open>\<Longrightarrow>\<close>. At each level there is a prefix of parameters and compound
|
wenzelm@61854
|
933 |
premises, concluding an atomic proposition. Typical examples are
|
wenzelm@61854
|
934 |
\<open>\<longrightarrow>\<close>-introduction \<open>(A \<Longrightarrow> B) \<Longrightarrow> A \<longrightarrow> B\<close> or mathematical induction \<open>P 0 \<Longrightarrow> (\<And>n. P n
|
wenzelm@61854
|
935 |
\<Longrightarrow> P (Suc n)) \<Longrightarrow> P n\<close>. Even deeper nesting occurs in well-founded induction
|
wenzelm@61854
|
936 |
\<open>(\<And>x. (\<And>y. y \<prec> x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P x\<close>, but this already marks the limit of
|
wenzelm@61854
|
937 |
rule complexity that is usually seen in practice.
|
wenzelm@29769
|
938 |
|
wenzelm@61416
|
939 |
\<^medskip>
|
wenzelm@61854
|
940 |
Regular user-level inferences in Isabelle/Pure always maintain the following
|
wenzelm@61854
|
941 |
canonical form of results:
|
wenzelm@29769
|
942 |
|
wenzelm@61854
|
943 |
\<^item> Normalization by \<open>(A \<Longrightarrow> (\<And>x. B x)) \<equiv> (\<And>x. A \<Longrightarrow> B x)\<close>, which is a theorem of
|
wenzelm@61854
|
944 |
Pure, means that quantifiers are pushed in front of implication at each
|
wenzelm@61854
|
945 |
level of nesting. The normal form is a Hereditary Harrop Formula.
|
wenzelm@29769
|
946 |
|
wenzelm@61854
|
947 |
\<^item> The outermost prefix of parameters is represented via schematic variables:
|
wenzelm@61854
|
948 |
instead of \<open>\<And>\<^vec>x. \<^vec>H \<^vec>x \<Longrightarrow> A \<^vec>x\<close> we have \<open>\<^vec>H
|
wenzelm@61854
|
949 |
?\<^vec>x \<Longrightarrow> A ?\<^vec>x\<close>. Note that this representation looses information
|
wenzelm@61854
|
950 |
about the order of parameters, and vacuous quantifiers vanish automatically.
|
wenzelm@58618
|
951 |
\<close>
|
wenzelm@29769
|
952 |
|
wenzelm@58618
|
953 |
text %mlref \<open>
|
wenzelm@29771
|
954 |
\begin{mldecls}
|
wenzelm@54883
|
955 |
@{index_ML Simplifier.norm_hhf: "Proof.context -> thm -> thm"} \\
|
wenzelm@29771
|
956 |
\end{mldecls}
|
wenzelm@29771
|
957 |
|
wenzelm@61854
|
958 |
\<^descr> @{ML Simplifier.norm_hhf}~\<open>ctxt thm\<close> normalizes the given theorem
|
wenzelm@61854
|
959 |
according to the canonical form specified above. This is occasionally
|
wenzelm@61854
|
960 |
helpful to repair some low-level tools that do not handle Hereditary Harrop
|
wenzelm@61854
|
961 |
Formulae properly.
|
wenzelm@58618
|
962 |
\<close>
|
wenzelm@29771
|
963 |
|
wenzelm@29769
|
964 |
|
wenzelm@58618
|
965 |
subsection \<open>Rule composition\<close>
|
wenzelm@29769
|
966 |
|
wenzelm@58618
|
967 |
text \<open>
|
wenzelm@61854
|
968 |
The rule calculus of Isabelle/Pure provides two main inferences: @{inference
|
wenzelm@61854
|
969 |
resolution} (i.e.\ back-chaining of rules) and @{inference assumption}
|
wenzelm@61854
|
970 |
(i.e.\ closing a branch), both modulo higher-order unification. There are
|
wenzelm@61854
|
971 |
also combined variants, notably @{inference elim_resolution} and @{inference
|
wenzelm@61854
|
972 |
dest_resolution}.
|
wenzelm@20491
|
973 |
|
wenzelm@61854
|
974 |
To understand the all-important @{inference resolution} principle, we first
|
wenzelm@61854
|
975 |
consider raw @{inference_def composition} (modulo higher-order unification
|
wenzelm@61854
|
976 |
with substitution \<open>\<vartheta>\<close>):
|
wenzelm@20498
|
977 |
\[
|
wenzelm@61493
|
978 |
\infer[(@{inference_def composition})]{\<open>\<^vec>A\<vartheta> \<Longrightarrow> C\<vartheta>\<close>}
|
wenzelm@61493
|
979 |
{\<open>\<^vec>A \<Longrightarrow> B\<close> & \<open>B' \<Longrightarrow> C\<close> & \<open>B\<vartheta> = B'\<vartheta>\<close>}
|
wenzelm@20498
|
980 |
\]
|
wenzelm@61854
|
981 |
Here the conclusion of the first rule is unified with the premise of the
|
wenzelm@61854
|
982 |
second; the resulting rule instance inherits the premises of the first and
|
wenzelm@61854
|
983 |
conclusion of the second. Note that \<open>C\<close> can again consist of iterated
|
wenzelm@61854
|
984 |
implications. We can also permute the premises of the second rule
|
wenzelm@61854
|
985 |
back-and-forth in order to compose with \<open>B'\<close> in any position (subsequently
|
wenzelm@61854
|
986 |
we shall always refer to position 1 w.l.o.g.).
|
wenzelm@20498
|
987 |
|
wenzelm@61854
|
988 |
In @{inference composition} the internal structure of the common part \<open>B\<close>
|
wenzelm@61854
|
989 |
and \<open>B'\<close> is not taken into account. For proper @{inference resolution} we
|
wenzelm@61854
|
990 |
require \<open>B\<close> to be atomic, and explicitly observe the structure \<open>\<And>\<^vec>x.
|
wenzelm@61854
|
991 |
\<^vec>H \<^vec>x \<Longrightarrow> B' \<^vec>x\<close> of the premise of the second rule. The idea
|
wenzelm@61854
|
992 |
is to adapt the first rule by ``lifting'' it into this context, by means of
|
wenzelm@61854
|
993 |
iterated application of the following inferences:
|
wenzelm@20498
|
994 |
\[
|
wenzelm@61493
|
995 |
\infer[(@{inference_def imp_lift})]{\<open>(\<^vec>H \<Longrightarrow> \<^vec>A) \<Longrightarrow> (\<^vec>H \<Longrightarrow> B)\<close>}{\<open>\<^vec>A \<Longrightarrow> B\<close>}
|
wenzelm@20498
|
996 |
\]
|
wenzelm@20498
|
997 |
\[
|
wenzelm@61493
|
998 |
\infer[(@{inference_def all_lift})]{\<open>(\<And>\<^vec>x. \<^vec>A (?\<^vec>a \<^vec>x)) \<Longrightarrow> (\<And>\<^vec>x. B (?\<^vec>a \<^vec>x))\<close>}{\<open>\<^vec>A ?\<^vec>a \<Longrightarrow> B ?\<^vec>a\<close>}
|
wenzelm@20498
|
999 |
\]
|
wenzelm@29771
|
1000 |
By combining raw composition with lifting, we get full @{inference
|
wenzelm@29771
|
1001 |
resolution} as follows:
|
wenzelm@20498
|
1002 |
\[
|
wenzelm@29771
|
1003 |
\infer[(@{inference_def resolution})]
|
wenzelm@61493
|
1004 |
{\<open>(\<And>\<^vec>x. \<^vec>H \<^vec>x \<Longrightarrow> \<^vec>A (?\<^vec>a \<^vec>x))\<vartheta> \<Longrightarrow> C\<vartheta>\<close>}
|
wenzelm@20498
|
1005 |
{\begin{tabular}{l}
|
wenzelm@61493
|
1006 |
\<open>\<^vec>A ?\<^vec>a \<Longrightarrow> B ?\<^vec>a\<close> \\
|
wenzelm@61493
|
1007 |
\<open>(\<And>\<^vec>x. \<^vec>H \<^vec>x \<Longrightarrow> B' \<^vec>x) \<Longrightarrow> C\<close> \\
|
wenzelm@61493
|
1008 |
\<open>(\<lambda>\<^vec>x. B (?\<^vec>a \<^vec>x))\<vartheta> = B'\<vartheta>\<close> \\
|
wenzelm@20498
|
1009 |
\end{tabular}}
|
wenzelm@20498
|
1010 |
\]
|
wenzelm@20498
|
1011 |
|
wenzelm@61854
|
1012 |
Continued resolution of rules allows to back-chain a problem towards more
|
wenzelm@61854
|
1013 |
and sub-problems. Branches are closed either by resolving with a rule of 0
|
wenzelm@61854
|
1014 |
premises, or by producing a ``short-circuit'' within a solved situation
|
wenzelm@61854
|
1015 |
(again modulo unification):
|
wenzelm@29771
|
1016 |
\[
|
wenzelm@61493
|
1017 |
\infer[(@{inference_def assumption})]{\<open>C\<vartheta>\<close>}
|
wenzelm@61962
|
1018 |
{\<open>(\<And>\<^vec>x. \<^vec>H \<^vec>x \<Longrightarrow> A \<^vec>x) \<Longrightarrow> C\<close> & \<open>A\<vartheta> = H\<^sub>i\<vartheta>\<close>~~\mbox{(for some~\<open>i\<close>)}}
|
wenzelm@29771
|
1019 |
\]
|
wenzelm@20498
|
1020 |
|
wenzelm@52422
|
1021 |
%FIXME @{inference_def elim_resolution}, @{inference_def dest_resolution}
|
wenzelm@58618
|
1022 |
\<close>
|
wenzelm@18537
|
1023 |
|
wenzelm@58618
|
1024 |
text %mlref \<open>
|
wenzelm@29768
|
1025 |
\begin{mldecls}
|
wenzelm@46262
|
1026 |
@{index_ML_op "RSN": "thm * (int * thm) -> thm"} \\
|
wenzelm@46262
|
1027 |
@{index_ML_op "RS": "thm * thm -> thm"} \\
|
wenzelm@46256
|
1028 |
|
wenzelm@46262
|
1029 |
@{index_ML_op "RLN": "thm list * (int * thm list) -> thm list"} \\
|
wenzelm@46262
|
1030 |
@{index_ML_op "RL": "thm list * thm list -> thm list"} \\
|
wenzelm@46256
|
1031 |
|
wenzelm@46262
|
1032 |
@{index_ML_op "MRS": "thm list * thm -> thm"} \\
|
wenzelm@46262
|
1033 |
@{index_ML_op "OF": "thm * thm list -> thm"} \\
|
wenzelm@29768
|
1034 |
\end{mldecls}
|
wenzelm@29768
|
1035 |
|
wenzelm@61854
|
1036 |
\<^descr> \<open>rule\<^sub>1 RSN (i, rule\<^sub>2)\<close> resolves the conclusion of \<open>rule\<^sub>1\<close> with the
|
wenzelm@61854
|
1037 |
\<open>i\<close>-th premise of \<open>rule\<^sub>2\<close>, according to the @{inference resolution}
|
wenzelm@61854
|
1038 |
principle explained above. Unless there is precisely one resolvent it raises
|
wenzelm@61854
|
1039 |
exception @{ML THM}.
|
wenzelm@46256
|
1040 |
|
wenzelm@61854
|
1041 |
This corresponds to the rule attribute @{attribute THEN} in Isar source
|
wenzelm@61854
|
1042 |
language.
|
wenzelm@46256
|
1043 |
|
wenzelm@61854
|
1044 |
\<^descr> \<open>rule\<^sub>1 RS rule\<^sub>2\<close> abbreviates \<open>rule\<^sub>1 RSN (1, rule\<^sub>2)\<close>.
|
wenzelm@29768
|
1045 |
|
wenzelm@61854
|
1046 |
\<^descr> \<open>rules\<^sub>1 RLN (i, rules\<^sub>2)\<close> joins lists of rules. For every \<open>rule\<^sub>1\<close> in
|
wenzelm@61854
|
1047 |
\<open>rules\<^sub>1\<close> and \<open>rule\<^sub>2\<close> in \<open>rules\<^sub>2\<close>, it resolves the conclusion of \<open>rule\<^sub>1\<close>
|
wenzelm@61854
|
1048 |
with the \<open>i\<close>-th premise of \<open>rule\<^sub>2\<close>, accumulating multiple results in one
|
wenzelm@61854
|
1049 |
big list. Note that such strict enumerations of higher-order unifications
|
wenzelm@61854
|
1050 |
can be inefficient compared to the lazy variant seen in elementary tactics
|
wenzelm@61854
|
1051 |
like @{ML resolve_tac}.
|
wenzelm@46256
|
1052 |
|
wenzelm@61854
|
1053 |
\<^descr> \<open>rules\<^sub>1 RL rules\<^sub>2\<close> abbreviates \<open>rules\<^sub>1 RLN (1, rules\<^sub>2)\<close>.
|
wenzelm@46256
|
1054 |
|
wenzelm@61854
|
1055 |
\<^descr> \<open>[rule\<^sub>1, \<dots>, rule\<^sub>n] MRS rule\<close> resolves \<open>rule\<^sub>i\<close> against premise \<open>i\<close> of
|
wenzelm@61854
|
1056 |
\<open>rule\<close>, for \<open>i = n, \<dots>, 1\<close>. By working from right to left, newly emerging
|
wenzelm@61854
|
1057 |
premises are concatenated in the result, without interfering.
|
wenzelm@46256
|
1058 |
|
wenzelm@61854
|
1059 |
\<^descr> \<open>rule OF rules\<close> is an alternative notation for \<open>rules MRS rule\<close>, which
|
wenzelm@61854
|
1060 |
makes rule composition look more like function application. Note that the
|
wenzelm@61854
|
1061 |
argument \<open>rules\<close> need not be atomic.
|
wenzelm@46256
|
1062 |
|
wenzelm@61854
|
1063 |
This corresponds to the rule attribute @{attribute OF} in Isar source
|
wenzelm@61854
|
1064 |
language.
|
wenzelm@58618
|
1065 |
\<close>
|
wenzelm@30272
|
1066 |
|
wenzelm@52407
|
1067 |
|
wenzelm@58618
|
1068 |
section \<open>Proof terms \label{sec:proof-terms}\<close>
|
wenzelm@52407
|
1069 |
|
wenzelm@61854
|
1070 |
text \<open>
|
wenzelm@61854
|
1071 |
The Isabelle/Pure inference kernel can record the proof of each theorem as a
|
wenzelm@61854
|
1072 |
proof term that contains all logical inferences in detail. Rule composition
|
wenzelm@61854
|
1073 |
by resolution (\secref{sec:obj-rules}) and type-class reasoning is broken
|
wenzelm@61854
|
1074 |
down to primitive rules of the logical framework. The proof term can be
|
wenzelm@61854
|
1075 |
inspected by a separate proof-checker, for example.
|
wenzelm@52407
|
1076 |
|
wenzelm@61854
|
1077 |
According to the well-known \<^emph>\<open>Curry-Howard isomorphism\<close>, a proof can be
|
wenzelm@61854
|
1078 |
viewed as a \<open>\<lambda>\<close>-term. Following this idea, proofs in Isabelle are internally
|
wenzelm@61854
|
1079 |
represented by a datatype similar to the one for terms described in
|
wenzelm@61854
|
1080 |
\secref{sec:terms}. On top of these syntactic terms, two more layers of
|
wenzelm@61854
|
1081 |
\<open>\<lambda>\<close>-calculus are added, which correspond to \<open>\<And>x :: \<alpha>. B x\<close> and \<open>A \<Longrightarrow> B\<close>
|
wenzelm@61854
|
1082 |
according to the propositions-as-types principle. The resulting 3-level
|
wenzelm@61854
|
1083 |
\<open>\<lambda>\<close>-calculus resembles ``\<open>\<lambda>HOL\<close>'' in the more abstract setting of Pure Type
|
wenzelm@61854
|
1084 |
Systems (PTS) @{cite "Barendregt-Geuvers:2001"}, if some fine points like
|
wenzelm@61854
|
1085 |
schematic polymorphism and type classes are ignored.
|
wenzelm@52407
|
1086 |
|
wenzelm@61416
|
1087 |
\<^medskip>
|
wenzelm@61854
|
1088 |
\<^emph>\<open>Proof abstractions\<close> of the form \<open>\<^bold>\<lambda>x :: \<alpha>. prf\<close> or \<open>\<^bold>\<lambda>p : A. prf\<close>
|
wenzelm@61854
|
1089 |
correspond to introduction of \<open>\<And>\<close>/\<open>\<Longrightarrow>\<close>, and \<^emph>\<open>proof applications\<close> of the form
|
wenzelm@61854
|
1090 |
\<open>p \<cdot> t\<close> or \<open>p \<bullet> q\<close> correspond to elimination of \<open>\<And>\<close>/\<open>\<Longrightarrow>\<close>. Actual types \<open>\<alpha>\<close>,
|
wenzelm@61854
|
1091 |
propositions \<open>A\<close>, and terms \<open>t\<close> might be suppressed and reconstructed from
|
wenzelm@61854
|
1092 |
the overall proof term.
|
wenzelm@52407
|
1093 |
|
wenzelm@61416
|
1094 |
\<^medskip>
|
wenzelm@61854
|
1095 |
Various atomic proofs indicate special situations within the proof
|
wenzelm@61854
|
1096 |
construction as follows.
|
wenzelm@52407
|
1097 |
|
wenzelm@61854
|
1098 |
A \<^emph>\<open>bound proof variable\<close> is a natural number \<open>b\<close> that acts as de-Bruijn
|
wenzelm@61854
|
1099 |
index for proof term abstractions.
|
wenzelm@52407
|
1100 |
|
wenzelm@61854
|
1101 |
A \<^emph>\<open>minimal proof\<close> ``\<open>?\<close>'' is a dummy proof term. This indicates some
|
wenzelm@61854
|
1102 |
unrecorded part of the proof.
|
wenzelm@52407
|
1103 |
|
wenzelm@61854
|
1104 |
\<open>Hyp A\<close> refers to some pending hypothesis by giving its proposition. This
|
wenzelm@61854
|
1105 |
indicates an open context of implicit hypotheses, similar to loose bound
|
wenzelm@61854
|
1106 |
variables or free variables within a term (\secref{sec:terms}).
|
wenzelm@52407
|
1107 |
|
wenzelm@61854
|
1108 |
An \<^emph>\<open>axiom\<close> or \<^emph>\<open>oracle\<close> \<open>a : A[\<^vec>\<tau>]\<close> refers some postulated \<open>proof
|
wenzelm@61854
|
1109 |
constant\<close>, which is subject to schematic polymorphism of theory content, and
|
wenzelm@61854
|
1110 |
the particular type instantiation may be given explicitly. The vector of
|
wenzelm@61854
|
1111 |
types \<open>\<^vec>\<tau>\<close> refers to the schematic type variables in the generic
|
wenzelm@61493
|
1112 |
proposition \<open>A\<close> in canonical order.
|
wenzelm@52407
|
1113 |
|
wenzelm@61854
|
1114 |
A \<^emph>\<open>proof promise\<close> \<open>a : A[\<^vec>\<tau>]\<close> is a placeholder for some proof of
|
wenzelm@61854
|
1115 |
polymorphic proposition \<open>A\<close>, with explicit type instantiation as given by
|
wenzelm@61854
|
1116 |
the vector \<open>\<^vec>\<tau>\<close>, as above. Unlike axioms or oracles, proof promises
|
wenzelm@61854
|
1117 |
may be \<^emph>\<open>fulfilled\<close> eventually, by substituting \<open>a\<close> by some particular proof
|
wenzelm@61854
|
1118 |
\<open>q\<close> at the corresponding type instance. This acts like Hindley-Milner
|
wenzelm@61854
|
1119 |
\<open>let\<close>-polymorphism: a generic local proof definition may get used at
|
wenzelm@61854
|
1120 |
different type instances, and is replaced by the concrete instance
|
wenzelm@61854
|
1121 |
eventually.
|
wenzelm@52407
|
1122 |
|
wenzelm@61854
|
1123 |
A \<^emph>\<open>named theorem\<close> wraps up some concrete proof as a closed formal entity,
|
wenzelm@61854
|
1124 |
in the manner of constant definitions for proof terms. The \<^emph>\<open>proof body\<close> of
|
wenzelm@61854
|
1125 |
such boxed theorems involves some digest about oracles and promises
|
wenzelm@61854
|
1126 |
occurring in the original proof. This allows the inference kernel to manage
|
wenzelm@61854
|
1127 |
this critical information without the full overhead of explicit proof terms.
|
wenzelm@58618
|
1128 |
\<close>
|
wenzelm@52407
|
1129 |
|
wenzelm@52411
|
1130 |
|
wenzelm@58618
|
1131 |
subsection \<open>Reconstructing and checking proof terms\<close>
|
wenzelm@52411
|
1132 |
|
wenzelm@61854
|
1133 |
text \<open>
|
wenzelm@61854
|
1134 |
Fully explicit proof terms can be large, but most of this information is
|
wenzelm@61854
|
1135 |
redundant and can be reconstructed from the context. Therefore, the
|
wenzelm@61854
|
1136 |
Isabelle/Pure inference kernel records only \<^emph>\<open>implicit\<close> proof terms, by
|
wenzelm@61854
|
1137 |
omitting all typing information in terms, all term and type labels of proof
|
wenzelm@61854
|
1138 |
abstractions, and some argument terms of applications \<open>p \<cdot> t\<close> (if possible).
|
wenzelm@52411
|
1139 |
|
wenzelm@61854
|
1140 |
There are separate operations to reconstruct the full proof term later on,
|
wenzelm@61854
|
1141 |
using \<^emph>\<open>higher-order pattern unification\<close> @{cite "nipkow-patterns" and
|
wenzelm@61854
|
1142 |
"Berghofer-Nipkow:2000:TPHOL"}.
|
wenzelm@52411
|
1143 |
|
wenzelm@61854
|
1144 |
The \<^emph>\<open>proof checker\<close> expects a fully reconstructed proof term, and can turn
|
wenzelm@61854
|
1145 |
it into a theorem by replaying its primitive inferences within the kernel.
|
wenzelm@61854
|
1146 |
\<close>
|
wenzelm@52411
|
1147 |
|
wenzelm@52412
|
1148 |
|
wenzelm@58618
|
1149 |
subsection \<open>Concrete syntax of proof terms\<close>
|
wenzelm@52412
|
1150 |
|
wenzelm@61854
|
1151 |
text \<open>
|
wenzelm@61854
|
1152 |
The concrete syntax of proof terms is a slight extension of the regular
|
wenzelm@61854
|
1153 |
inner syntax of Isabelle/Pure @{cite "isabelle-isar-ref"}. Its main
|
wenzelm@61854
|
1154 |
syntactic category @{syntax (inner) proof} is defined as follows:
|
wenzelm@52412
|
1155 |
|
wenzelm@52412
|
1156 |
\begin{center}
|
wenzelm@52412
|
1157 |
\begin{supertabular}{rclr}
|
wenzelm@52412
|
1158 |
|
wenzelm@61503
|
1159 |
@{syntax_def (inner) proof} & = & \<^verbatim>\<open>Lam\<close> \<open>params\<close> \<^verbatim>\<open>.\<close> \<open>proof\<close> \\
|
wenzelm@61503
|
1160 |
& \<open>|\<close> & \<open>\<^bold>\<lambda>\<close> \<open>params\<close> \<^verbatim>\<open>.\<close> \<open>proof\<close> \\
|
wenzelm@61503
|
1161 |
& \<open>|\<close> & \<open>proof\<close> \<^verbatim>\<open>%\<close> \<open>any\<close> \\
|
wenzelm@61493
|
1162 |
& \<open>|\<close> & \<open>proof\<close> \<open>\<cdot>\<close> \<open>any\<close> \\
|
wenzelm@61503
|
1163 |
& \<open>|\<close> & \<open>proof\<close> \<^verbatim>\<open>%%\<close> \<open>proof\<close> \\
|
wenzelm@61493
|
1164 |
& \<open>|\<close> & \<open>proof\<close> \<open>\<bullet>\<close> \<open>proof\<close> \\
|
wenzelm@61493
|
1165 |
& \<open>|\<close> & \<open>id | longid\<close> \\
|
wenzelm@52412
|
1166 |
\\
|
wenzelm@52412
|
1167 |
|
wenzelm@61493
|
1168 |
\<open>param\<close> & = & \<open>idt\<close> \\
|
wenzelm@61503
|
1169 |
& \<open>|\<close> & \<open>idt\<close> \<^verbatim>\<open>:\<close> \<open>prop\<close> \\
|
wenzelm@61503
|
1170 |
& \<open>|\<close> & \<^verbatim>\<open>(\<close> \<open>param\<close> \<^verbatim>\<open>)\<close> \\
|
wenzelm@52412
|
1171 |
\\
|
wenzelm@52412
|
1172 |
|
wenzelm@61493
|
1173 |
\<open>params\<close> & = & \<open>param\<close> \\
|
wenzelm@61493
|
1174 |
& \<open>|\<close> & \<open>param\<close> \<open>params\<close> \\
|
wenzelm@52412
|
1175 |
|
wenzelm@52412
|
1176 |
\end{supertabular}
|
wenzelm@52412
|
1177 |
\end{center}
|
wenzelm@52412
|
1178 |
|
wenzelm@61854
|
1179 |
Implicit term arguments in partial proofs are indicated by ``\<open>_\<close>''. Type
|
wenzelm@61854
|
1180 |
arguments for theorems and axioms may be specified using \<open>p \<cdot> TYPE(type)\<close>
|
wenzelm@61854
|
1181 |
(they must appear before any other term argument of a theorem or axiom, but
|
wenzelm@61854
|
1182 |
may be omitted altogether).
|
wenzelm@52412
|
1183 |
|
wenzelm@61416
|
1184 |
\<^medskip>
|
wenzelm@61854
|
1185 |
There are separate read and print operations for proof terms, in order to
|
wenzelm@61854
|
1186 |
avoid conflicts with the regular term language.
|
wenzelm@58618
|
1187 |
\<close>
|
wenzelm@52412
|
1188 |
|
wenzelm@58618
|
1189 |
text %mlref \<open>
|
wenzelm@52408
|
1190 |
\begin{mldecls}
|
wenzelm@52408
|
1191 |
@{index_ML_type proof} \\
|
wenzelm@52408
|
1192 |
@{index_ML_type proof_body} \\
|
wenzelm@65446
|
1193 |
@{index_ML Proofterm.proofs: "int Unsynchronized.ref"} \\
|
wenzelm@52411
|
1194 |
@{index_ML Reconstruct.reconstruct_proof:
|
wenzelm@62922
|
1195 |
"Proof.context -> term -> proof -> proof"} \\
|
wenzelm@62922
|
1196 |
@{index_ML Reconstruct.expand_proof: "Proof.context ->
|
wenzelm@52411
|
1197 |
(string * term option) list -> proof -> proof"} \\
|
wenzelm@52412
|
1198 |
@{index_ML Proof_Checker.thm_of_proof: "theory -> proof -> thm"} \\
|
wenzelm@52412
|
1199 |
@{index_ML Proof_Syntax.read_proof: "theory -> bool -> bool -> string -> proof"} \\
|
wenzelm@52412
|
1200 |
@{index_ML Proof_Syntax.pretty_proof: "Proof.context -> proof -> Pretty.T"} \\
|
wenzelm@52408
|
1201 |
\end{mldecls}
|
wenzelm@52408
|
1202 |
|
wenzelm@61854
|
1203 |
\<^descr> Type @{ML_type proof} represents proof terms; this is a datatype with
|
wenzelm@61854
|
1204 |
constructors @{index_ML Abst}, @{index_ML AbsP}, @{index_ML_op "%"},
|
wenzelm@61854
|
1205 |
@{index_ML_op "%%"}, @{index_ML PBound}, @{index_ML MinProof}, @{index_ML
|
wenzelm@61854
|
1206 |
Hyp}, @{index_ML PAxm}, @{index_ML Oracle}, @{index_ML Promise}, @{index_ML
|
wenzelm@61854
|
1207 |
PThm} as explained above. %FIXME OfClass (!?)
|
wenzelm@61854
|
1208 |
|
wenzelm@61854
|
1209 |
\<^descr> Type @{ML_type proof_body} represents the nested proof information of a
|
wenzelm@61854
|
1210 |
named theorem, consisting of a digest of oracles and named theorem over some
|
wenzelm@61854
|
1211 |
proof term. The digest only covers the directly visible part of the proof:
|
wenzelm@61854
|
1212 |
in order to get the full information, the implicit graph of nested theorems
|
wenzelm@61854
|
1213 |
needs to be traversed (e.g.\ using @{ML Proofterm.fold_body_thms}).
|
wenzelm@52408
|
1214 |
|
wenzelm@61854
|
1215 |
\<^descr> @{ML Thm.proof_of}~\<open>thm\<close> and @{ML Thm.proof_body_of}~\<open>thm\<close> produce the
|
wenzelm@61854
|
1216 |
proof term or proof body (with digest of oracles and theorems) from a given
|
wenzelm@61854
|
1217 |
theorem. Note that this involves a full join of internal futures that
|
wenzelm@61854
|
1218 |
fulfill pending proof promises, and thus disrupts the natural bottom-up
|
wenzelm@61854
|
1219 |
construction of proofs by introducing dynamic ad-hoc dependencies. Parallel
|
wenzelm@61854
|
1220 |
performance may suffer by inspecting proof terms at run-time.
|
wenzelm@52408
|
1221 |
|
wenzelm@65446
|
1222 |
\<^descr> @{ML Proofterm.proofs} specifies the detail of proof recording within
|
wenzelm@65446
|
1223 |
@{ML_type thm} values produced by the inference kernel: @{ML 0} records only
|
wenzelm@65446
|
1224 |
the names of oracles, @{ML 1} records oracle names and propositions, @{ML 2}
|
wenzelm@65446
|
1225 |
additionally records full proof terms. Officially named theorems that
|
wenzelm@65446
|
1226 |
contribute to a result are recorded in any case.
|
wenzelm@52408
|
1227 |
|
wenzelm@62922
|
1228 |
\<^descr> @{ML Reconstruct.reconstruct_proof}~\<open>ctxt prop prf\<close> turns the implicit
|
wenzelm@61854
|
1229 |
proof term \<open>prf\<close> into a full proof of the given proposition.
|
wenzelm@52487
|
1230 |
|
wenzelm@61854
|
1231 |
Reconstruction may fail if \<open>prf\<close> is not a proof of \<open>prop\<close>, or if it does not
|
wenzelm@61854
|
1232 |
contain sufficient information for reconstruction. Failure may only happen
|
wenzelm@61854
|
1233 |
for proofs that are constructed manually, but not for those produced
|
wenzelm@61854
|
1234 |
automatically by the inference kernel.
|
wenzelm@52411
|
1235 |
|
wenzelm@62922
|
1236 |
\<^descr> @{ML Reconstruct.expand_proof}~\<open>ctxt [thm\<^sub>1, \<dots>, thm\<^sub>n] prf\<close> expands and
|
wenzelm@61854
|
1237 |
reconstructs the proofs of all specified theorems, with the given (full)
|
wenzelm@61854
|
1238 |
proof. Theorems that are not unique specified via their name may be
|
wenzelm@61854
|
1239 |
disambiguated by giving their proposition.
|
wenzelm@52411
|
1240 |
|
wenzelm@61854
|
1241 |
\<^descr> @{ML Proof_Checker.thm_of_proof}~\<open>thy prf\<close> turns the given (full) proof
|
wenzelm@61854
|
1242 |
into a theorem, by replaying it using only primitive rules of the inference
|
wenzelm@61854
|
1243 |
kernel.
|
wenzelm@52411
|
1244 |
|
wenzelm@61854
|
1245 |
\<^descr> @{ML Proof_Syntax.read_proof}~\<open>thy b\<^sub>1 b\<^sub>2 s\<close> reads in a proof term. The
|
wenzelm@61854
|
1246 |
Boolean flags indicate the use of sort and type information. Usually, typing
|
wenzelm@61854
|
1247 |
information is left implicit and is inferred during proof reconstruction.
|
wenzelm@61854
|
1248 |
%FIXME eliminate flags!?
|
wenzelm@52412
|
1249 |
|
wenzelm@61854
|
1250 |
\<^descr> @{ML Proof_Syntax.pretty_proof}~\<open>ctxt prf\<close> pretty-prints the given proof
|
wenzelm@61854
|
1251 |
term.
|
wenzelm@58618
|
1252 |
\<close>
|
wenzelm@52408
|
1253 |
|
wenzelm@61854
|
1254 |
text %mlex \<open>
|
wenzelm@63680
|
1255 |
\<^item> \<^file>\<open>~~/src/HOL/Proofs/ex/Proof_Terms.thy\<close> provides basic examples involving
|
wenzelm@63680
|
1256 |
proof terms.
|
wenzelm@52410
|
1257 |
|
wenzelm@63680
|
1258 |
\<^item> \<^file>\<open>~~/src/HOL/Proofs/ex/XML_Data.thy\<close> demonstrates export and import of
|
wenzelm@63680
|
1259 |
proof terms via XML/ML data representation.
|
wenzelm@58618
|
1260 |
\<close>
|
wenzelm@52410
|
1261 |
|
wenzelm@18537
|
1262 |
end
|