src/Pure/drule.ML
author wenzelm
Wed Aug 25 15:12:49 2010 +0200 (2010-08-25 ago)
changeset 38709 04414091f3b5
parent 36944 dbf831a50e4a
child 39557 fe5722fce758
permissions -rw-r--r--
structure Thm: less pervasive names;
wenzelm@252
     1
(*  Title:      Pure/drule.ML
wenzelm@252
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     3
wenzelm@3766
     4
Derived rules and other operations on theorems.
clasohm@0
     5
*)
clasohm@0
     6
wenzelm@21578
     7
infix 0 RS RSN RL RLN MRS MRL OF COMP INCR_COMP COMP_INCR;
clasohm@0
     8
wenzelm@5903
     9
signature BASIC_DRULE =
wenzelm@3766
    10
sig
wenzelm@18179
    11
  val mk_implies: cterm * cterm -> cterm
wenzelm@18179
    12
  val list_implies: cterm list * cterm -> cterm
wenzelm@18179
    13
  val strip_imp_prems: cterm -> cterm list
wenzelm@18179
    14
  val strip_imp_concl: cterm -> cterm
wenzelm@18179
    15
  val cprems_of: thm -> cterm list
wenzelm@18179
    16
  val cterm_fun: (term -> term) -> (cterm -> cterm)
wenzelm@18179
    17
  val ctyp_fun: (typ -> typ) -> (ctyp -> ctyp)
wenzelm@18179
    18
  val forall_intr_list: cterm list -> thm -> thm
wenzelm@18179
    19
  val forall_intr_vars: thm -> thm
wenzelm@18179
    20
  val forall_elim_list: cterm list -> thm -> thm
wenzelm@18179
    21
  val gen_all: thm -> thm
wenzelm@18179
    22
  val lift_all: cterm -> thm -> thm
wenzelm@33832
    23
  val legacy_freeze_thaw: thm -> thm * (thm -> thm)
wenzelm@33832
    24
  val legacy_freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
wenzelm@18179
    25
  val implies_elim_list: thm -> thm list -> thm
wenzelm@18179
    26
  val implies_intr_list: cterm list -> thm -> thm
wenzelm@18206
    27
  val instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@21603
    28
  val zero_var_indexes_list: thm list -> thm list
wenzelm@18179
    29
  val zero_var_indexes: thm -> thm
wenzelm@18179
    30
  val implies_intr_hyps: thm -> thm
wenzelm@18179
    31
  val rotate_prems: int -> thm -> thm
wenzelm@18179
    32
  val rearrange_prems: int list -> thm -> thm
wenzelm@18179
    33
  val RSN: thm * (int * thm) -> thm
wenzelm@18179
    34
  val RS: thm * thm -> thm
wenzelm@18179
    35
  val RLN: thm list * (int * thm list) -> thm list
wenzelm@18179
    36
  val RL: thm list * thm list -> thm list
wenzelm@18179
    37
  val MRS: thm list * thm -> thm
wenzelm@18179
    38
  val MRL: thm list list * thm list -> thm list
wenzelm@18179
    39
  val OF: thm * thm list -> thm
wenzelm@18179
    40
  val compose: thm * int * thm -> thm list
wenzelm@18179
    41
  val COMP: thm * thm -> thm
wenzelm@21578
    42
  val INCR_COMP: thm * thm -> thm
wenzelm@21578
    43
  val COMP_INCR: thm * thm -> thm
wenzelm@18179
    44
  val cterm_instantiate: (cterm*cterm)list -> thm -> thm
wenzelm@18179
    45
  val size_of_thm: thm -> int
wenzelm@18179
    46
  val reflexive_thm: thm
wenzelm@18179
    47
  val symmetric_thm: thm
wenzelm@18179
    48
  val transitive_thm: thm
wenzelm@18179
    49
  val symmetric_fun: thm -> thm
wenzelm@18179
    50
  val extensional: thm -> thm
wenzelm@18820
    51
  val equals_cong: thm
wenzelm@18179
    52
  val imp_cong: thm
wenzelm@18179
    53
  val swap_prems_eq: thm
wenzelm@18179
    54
  val asm_rl: thm
wenzelm@18179
    55
  val cut_rl: thm
wenzelm@18179
    56
  val revcut_rl: thm
wenzelm@18179
    57
  val thin_rl: thm
wenzelm@4285
    58
  val triv_forall_equality: thm
wenzelm@19051
    59
  val distinct_prems_rl: thm
wenzelm@18179
    60
  val swap_prems_rl: thm
wenzelm@18179
    61
  val equal_intr_rule: thm
wenzelm@18179
    62
  val equal_elim_rule1: thm
wenzelm@19421
    63
  val equal_elim_rule2: thm
wenzelm@18179
    64
  val instantiate': ctyp option list -> cterm option list -> thm -> thm
wenzelm@5903
    65
end;
wenzelm@5903
    66
wenzelm@5903
    67
signature DRULE =
wenzelm@5903
    68
sig
wenzelm@5903
    69
  include BASIC_DRULE
wenzelm@19999
    70
  val generalize: string list * string list -> thm -> thm
paulson@15949
    71
  val list_comb: cterm * cterm list -> cterm
berghofe@12908
    72
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    73
  val strip_type: ctyp -> ctyp list * ctyp
paulson@15949
    74
  val beta_conv: cterm -> cterm -> cterm
wenzelm@27156
    75
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
berghofe@17713
    76
  val flexflex_unique: thm -> thm
wenzelm@35021
    77
  val export_without_context: thm -> thm
wenzelm@35021
    78
  val export_without_context_open: thm -> thm
wenzelm@33277
    79
  val store_thm: binding -> thm -> thm
wenzelm@33277
    80
  val store_standard_thm: binding -> thm -> thm
wenzelm@33277
    81
  val store_thm_open: binding -> thm -> thm
wenzelm@33277
    82
  val store_standard_thm_open: binding -> thm -> thm
wenzelm@11975
    83
  val compose_single: thm * int * thm -> thm
wenzelm@18468
    84
  val imp_cong_rule: thm -> thm -> thm
wenzelm@22939
    85
  val arg_cong_rule: cterm -> thm -> thm
wenzelm@23568
    86
  val binop_cong_rule: cterm -> thm -> thm -> thm
wenzelm@22939
    87
  val fun_cong_rule: thm -> cterm -> thm
skalberg@15001
    88
  val beta_eta_conversion: cterm -> thm
berghofe@15925
    89
  val eta_long_conversion: cterm -> thm
paulson@20861
    90
  val eta_contraction_rule: thm -> thm
wenzelm@11975
    91
  val norm_hhf_eq: thm
wenzelm@28618
    92
  val norm_hhf_eqs: thm list
wenzelm@12800
    93
  val is_norm_hhf: term -> bool
wenzelm@16425
    94
  val norm_hhf: theory -> term -> term
wenzelm@20298
    95
  val norm_hhf_cterm: cterm -> cterm
wenzelm@18025
    96
  val protect: cterm -> cterm
wenzelm@18025
    97
  val protectI: thm
wenzelm@18025
    98
  val protectD: thm
wenzelm@18179
    99
  val protect_cong: thm
wenzelm@18025
   100
  val implies_intr_protected: cterm list -> thm -> thm
wenzelm@19775
   101
  val termI: thm
wenzelm@19775
   102
  val mk_term: cterm -> thm
wenzelm@19775
   103
  val dest_term: thm -> cterm
wenzelm@21519
   104
  val cterm_rule: (thm -> thm) -> cterm -> cterm
wenzelm@20881
   105
  val term_rule: theory -> (thm -> thm) -> term -> term
wenzelm@24005
   106
  val dummy_thm: thm
wenzelm@28618
   107
  val sort_constraintI: thm
wenzelm@28618
   108
  val sort_constraint_eq: thm
wenzelm@23423
   109
  val with_subgoal: int -> (thm -> thm) -> thm -> thm
wenzelm@29344
   110
  val comp_no_flatten: thm * int -> int -> thm -> thm
berghofe@14081
   111
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   112
  val rename_bvars': string option list -> thm -> thm
paulson@24426
   113
  val incr_type_indexes: int -> thm -> thm
wenzelm@19124
   114
  val incr_indexes: thm -> thm -> thm
wenzelm@19124
   115
  val incr_indexes2: thm -> thm -> thm -> thm
wenzelm@12297
   116
  val remdups_rl: thm
wenzelm@18225
   117
  val multi_resolve: thm list -> thm -> thm Seq.seq
wenzelm@18225
   118
  val multi_resolves: thm list -> thm list -> thm Seq.seq
berghofe@13325
   119
  val abs_def: thm -> thm
wenzelm@3766
   120
end;
clasohm@0
   121
wenzelm@5903
   122
structure Drule: DRULE =
clasohm@0
   123
struct
clasohm@0
   124
wenzelm@3991
   125
wenzelm@16682
   126
(** some cterm->cterm operations: faster than calling cterm_of! **)
lcp@708
   127
lcp@708
   128
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   129
fun strip_imp_prems ct =
wenzelm@22906
   130
  let val (cA, cB) = Thm.dest_implies ct
wenzelm@20579
   131
  in cA :: strip_imp_prems cB end
wenzelm@20579
   132
  handle TERM _ => [];
lcp@708
   133
paulson@2004
   134
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   135
fun strip_imp_concl ct =
wenzelm@20579
   136
  (case Thm.term_of ct of
wenzelm@20579
   137
    Const ("==>", _) $ _ $ _ => strip_imp_concl (Thm.dest_arg ct)
wenzelm@20579
   138
  | _ => ct);
paulson@2004
   139
lcp@708
   140
(*The premises of a theorem, as a cterm list*)
berghofe@13659
   141
val cprems_of = strip_imp_prems o cprop_of;
lcp@708
   142
wenzelm@26627
   143
fun cterm_fun f ct = Thm.cterm_of (Thm.theory_of_cterm ct) (f (Thm.term_of ct));
wenzelm@26627
   144
fun ctyp_fun f cT = Thm.ctyp_of (Thm.theory_of_ctyp cT) (f (Thm.typ_of cT));
berghofe@15797
   145
wenzelm@26487
   146
fun certify t = Thm.cterm_of (Context.the_theory (Context.the_thread_data ())) t;
paulson@9547
   147
wenzelm@27333
   148
val implies = certify Logic.implies;
wenzelm@19183
   149
fun mk_implies (A, B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   150
paulson@9547
   151
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   152
fun list_implies([], B) = B
paulson@9547
   153
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   154
paulson@15949
   155
(*cterm version of list_comb: maps  (f, [t1,...,tn])  to  f(t1,...,tn) *)
paulson@15949
   156
fun list_comb (f, []) = f
paulson@15949
   157
  | list_comb (f, t::ts) = list_comb (Thm.capply f t, ts);
paulson@15949
   158
berghofe@12908
   159
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
wenzelm@18179
   160
fun strip_comb ct =
berghofe@12908
   161
  let
berghofe@12908
   162
    fun stripc (p as (ct, cts)) =
berghofe@12908
   163
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   164
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   165
  in stripc (ct, []) end;
berghofe@12908
   166
berghofe@15262
   167
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   168
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   169
    Type ("fun", _) =>
berghofe@15262
   170
      let
berghofe@15262
   171
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   172
        val (cTs, cT') = strip_type cT2
berghofe@15262
   173
      in (cT1 :: cTs, cT') end
berghofe@15262
   174
  | _ => ([], cT));
berghofe@15262
   175
paulson@15949
   176
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
paulson@15949
   177
  of the meta-equality returned by the beta_conversion rule.*)
wenzelm@18179
   178
fun beta_conv x y =
wenzelm@20579
   179
  Thm.dest_arg (cprop_of (Thm.beta_conversion false (Thm.capply x y)));
paulson@15949
   180
wenzelm@15875
   181
lcp@708
   182
wenzelm@252
   183
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   184
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   185
     type variables) when reading another term.
clasohm@0
   186
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   187
***)
clasohm@0
   188
clasohm@0
   189
fun types_sorts thm =
wenzelm@20329
   190
  let
wenzelm@22695
   191
    val vars = Thm.fold_terms Term.add_vars thm [];
wenzelm@22695
   192
    val frees = Thm.fold_terms Term.add_frees thm [];
wenzelm@22695
   193
    val tvars = Thm.fold_terms Term.add_tvars thm [];
wenzelm@22695
   194
    val tfrees = Thm.fold_terms Term.add_tfrees thm [];
wenzelm@20329
   195
    fun types (a, i) =
wenzelm@20329
   196
      if i < 0 then AList.lookup (op =) frees a else AList.lookup (op =) vars (a, i);
wenzelm@20329
   197
    fun sorts (a, i) =
wenzelm@20329
   198
      if i < 0 then AList.lookup (op =) tfrees a else AList.lookup (op =) tvars (a, i);
wenzelm@20329
   199
  in (types, sorts) end;
clasohm@0
   200
wenzelm@15669
   201
wenzelm@7636
   202
wenzelm@9455
   203
clasohm@0
   204
(** Standardization of rules **)
clasohm@0
   205
wenzelm@19730
   206
(*Generalization over a list of variables*)
wenzelm@36944
   207
val forall_intr_list = fold_rev Thm.forall_intr;
clasohm@0
   208
wenzelm@18535
   209
(*Generalization over Vars -- canonical order*)
wenzelm@18535
   210
fun forall_intr_vars th =
wenzelm@36944
   211
  fold Thm.forall_intr
wenzelm@22695
   212
    (map (Thm.cterm_of (Thm.theory_of_thm th) o Var) (Thm.fold_terms Term.add_vars th [])) th;
wenzelm@18535
   213
wenzelm@18025
   214
fun outer_params t =
wenzelm@20077
   215
  let val vs = Term.strip_all_vars t
wenzelm@20077
   216
  in Name.variant_list [] (map (Name.clean o #1) vs) ~~ map #2 vs end;
wenzelm@18025
   217
wenzelm@18025
   218
(*generalize outermost parameters*)
wenzelm@18025
   219
fun gen_all th =
wenzelm@12719
   220
  let
wenzelm@26627
   221
    val thy = Thm.theory_of_thm th;
wenzelm@26627
   222
    val {prop, maxidx, ...} = Thm.rep_thm th;
wenzelm@18025
   223
    val cert = Thm.cterm_of thy;
wenzelm@18025
   224
    fun elim (x, T) = Thm.forall_elim (cert (Var ((x, maxidx + 1), T)));
wenzelm@18025
   225
  in fold elim (outer_params prop) th end;
wenzelm@18025
   226
wenzelm@18025
   227
(*lift vars wrt. outermost goal parameters
wenzelm@18118
   228
  -- reverses the effect of gen_all modulo higher-order unification*)
wenzelm@18025
   229
fun lift_all goal th =
wenzelm@18025
   230
  let
wenzelm@18025
   231
    val thy = Theory.merge (Thm.theory_of_cterm goal, Thm.theory_of_thm th);
wenzelm@18025
   232
    val cert = Thm.cterm_of thy;
wenzelm@19421
   233
    val maxidx = Thm.maxidx_of th;
wenzelm@18025
   234
    val ps = outer_params (Thm.term_of goal)
wenzelm@18025
   235
      |> map (fn (x, T) => Var ((x, maxidx + 1), Logic.incr_tvar (maxidx + 1) T));
wenzelm@18025
   236
    val Ts = map Term.fastype_of ps;
wenzelm@22695
   237
    val inst = Thm.fold_terms Term.add_vars th [] |> map (fn (xi, T) =>
wenzelm@18025
   238
      (cert (Var (xi, T)), cert (Term.list_comb (Var (xi, Ts ---> T), ps))));
wenzelm@18025
   239
  in
wenzelm@18025
   240
    th |> Thm.instantiate ([], inst)
wenzelm@18025
   241
    |> fold_rev (Thm.forall_intr o cert) ps
wenzelm@18025
   242
  end;
wenzelm@18025
   243
wenzelm@19999
   244
(*direct generalization*)
wenzelm@19999
   245
fun generalize names th = Thm.generalize names (Thm.maxidx_of th + 1) th;
wenzelm@9554
   246
wenzelm@16949
   247
(*specialization over a list of cterms*)
wenzelm@36944
   248
val forall_elim_list = fold Thm.forall_elim;
clasohm@0
   249
wenzelm@16949
   250
(*maps A1,...,An |- B  to  [| A1;...;An |] ==> B*)
wenzelm@36944
   251
val implies_intr_list = fold_rev Thm.implies_intr;
clasohm@0
   252
wenzelm@16949
   253
(*maps [| A1;...;An |] ==> B and [A1,...,An]  to  B*)
wenzelm@24978
   254
fun implies_elim_list impth ths = fold Thm.elim_implies ths impth;
clasohm@0
   255
clasohm@0
   256
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@21603
   257
fun zero_var_indexes_list [] = []
wenzelm@21603
   258
  | zero_var_indexes_list ths =
wenzelm@21603
   259
      let
wenzelm@21603
   260
        val thy = Theory.merge_list (map Thm.theory_of_thm ths);
wenzelm@21603
   261
        val certT = Thm.ctyp_of thy and cert = Thm.cterm_of thy;
wenzelm@31977
   262
        val (instT, inst) = Term_Subst.zero_var_indexes_inst (map Thm.full_prop_of ths);
wenzelm@21603
   263
        val cinstT = map (fn (v, T) => (certT (TVar v), certT T)) instT;
wenzelm@21603
   264
        val cinst = map (fn (v, t) => (cert (Var v), cert t)) inst;
wenzelm@21603
   265
      in map (Thm.adjust_maxidx_thm ~1 o Thm.instantiate (cinstT, cinst)) ths end;
wenzelm@21603
   266
wenzelm@21603
   267
val zero_var_indexes = singleton zero_var_indexes_list;
clasohm@0
   268
clasohm@0
   269
paulson@14394
   270
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   271
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   272
wenzelm@16595
   273
(*Discharge all hypotheses.*)
wenzelm@16595
   274
fun implies_intr_hyps th =
wenzelm@16595
   275
  fold Thm.implies_intr (#hyps (Thm.crep_thm th)) th;
wenzelm@16595
   276
paulson@14394
   277
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   278
  This step can lose information.*)
paulson@14387
   279
fun flexflex_unique th =
wenzelm@38709
   280
  if null (Thm.tpairs_of th) then th else
wenzelm@36944
   281
    case distinct Thm.eq_thm (Seq.list_of (Thm.flexflex_rule th)) of
paulson@23439
   282
      [th] => th
paulson@23439
   283
    | []   => raise THM("flexflex_unique: impossible constraints", 0, [th])
paulson@23439
   284
    |  _   => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
paulson@14387
   285
wenzelm@21603
   286
wenzelm@35021
   287
(* old-style export without context *)
wenzelm@21603
   288
wenzelm@35021
   289
val export_without_context_open =
wenzelm@16949
   290
  implies_intr_hyps
wenzelm@35985
   291
  #> Thm.forall_intr_frees
wenzelm@19421
   292
  #> `Thm.maxidx_of
wenzelm@16949
   293
  #-> (fn maxidx =>
wenzelm@26653
   294
    Thm.forall_elim_vars (maxidx + 1)
wenzelm@20904
   295
    #> Thm.strip_shyps
wenzelm@16949
   296
    #> zero_var_indexes
wenzelm@35845
   297
    #> Thm.varifyT_global);
wenzelm@1218
   298
wenzelm@35021
   299
val export_without_context =
wenzelm@21600
   300
  flexflex_unique
wenzelm@35021
   301
  #> export_without_context_open
wenzelm@26627
   302
  #> Thm.close_derivation;
berghofe@11512
   303
clasohm@0
   304
wenzelm@8328
   305
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   306
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   307
  Similar code in type/freeze_thaw*)
paulson@15495
   308
wenzelm@33832
   309
fun legacy_freeze_thaw_robust th =
wenzelm@36615
   310
 let val fth = Thm.legacy_freezeT th
wenzelm@26627
   311
     val thy = Thm.theory_of_thm fth
wenzelm@26627
   312
     val {prop, tpairs, ...} = rep_thm fth
paulson@15495
   313
 in
wenzelm@29265
   314
   case List.foldr OldTerm.add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@15495
   315
       [] => (fth, fn i => fn x => x)   (*No vars: nothing to do!*)
paulson@15495
   316
     | vars =>
paulson@19753
   317
         let fun newName (Var(ix,_)) = (ix, gensym (string_of_indexname ix))
paulson@19753
   318
             val alist = map newName vars
paulson@15495
   319
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   320
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   321
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
paulson@15495
   322
             val insts = map mk_inst vars
paulson@15495
   323
             fun thaw i th' = (*i is non-negative increment for Var indexes*)
paulson@15495
   324
                 th' |> forall_intr_list (map #2 insts)
wenzelm@22906
   325
                     |> forall_elim_list (map (Thm.incr_indexes_cterm i o #1) insts)
paulson@15495
   326
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@15495
   327
 end;
paulson@15495
   328
paulson@15495
   329
(*Basic version of the function above. No option to rename Vars apart in thaw.
wenzelm@33832
   330
  The Frees created from Vars have nice names.*)
wenzelm@33832
   331
fun legacy_freeze_thaw th =
wenzelm@36615
   332
 let val fth = Thm.legacy_freezeT th
wenzelm@26627
   333
     val thy = Thm.theory_of_thm fth
wenzelm@26627
   334
     val {prop, tpairs, ...} = rep_thm fth
paulson@7248
   335
 in
wenzelm@29265
   336
   case List.foldr OldTerm.add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@7248
   337
       [] => (fth, fn x => x)
paulson@7248
   338
     | vars =>
wenzelm@8328
   339
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@20077
   340
                   let val v = Name.variant used (string_of_indexname ix)
wenzelm@8328
   341
                   in  ((ix,v)::pairs, v::used)  end;
wenzelm@29270
   342
             val (alist, _) = List.foldr newName ([], Library.foldr OldTerm.add_term_names
skalberg@15574
   343
               (prop :: Thm.terms_of_tpairs tpairs, [])) vars
wenzelm@8328
   344
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   345
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   346
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
wenzelm@8328
   347
             val insts = map mk_inst vars
wenzelm@8328
   348
             fun thaw th' =
wenzelm@8328
   349
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   350
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   351
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   352
 end;
paulson@4610
   353
paulson@7248
   354
(*Rotates a rule's premises to the left by k*)
wenzelm@23537
   355
fun rotate_prems 0 = I
wenzelm@31945
   356
  | rotate_prems k = Thm.permute_prems 0 k;
wenzelm@23537
   357
wenzelm@23423
   358
fun with_subgoal i f = rotate_prems (i - 1) #> f #> rotate_prems (1 - i);
paulson@4610
   359
wenzelm@31945
   360
(*Permute prems, where the i-th position in the argument list (counting from 0)
wenzelm@31945
   361
  gives the position within the original thm to be transferred to position i.
wenzelm@31945
   362
  Any remaining trailing positions are left unchanged.*)
wenzelm@31945
   363
val rearrange_prems =
wenzelm@31945
   364
  let
wenzelm@31945
   365
    fun rearr new [] thm = thm
wenzelm@31945
   366
      | rearr new (p :: ps) thm =
wenzelm@31945
   367
          rearr (new + 1)
wenzelm@31945
   368
            (map (fn q => if new <= q andalso q < p then q + 1 else q) ps)
wenzelm@31945
   369
            (Thm.permute_prems (new + 1) (new - p) (Thm.permute_prems new (p - new) thm))
oheimb@11163
   370
  in rearr 0 end;
paulson@4610
   371
wenzelm@252
   372
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   373
fun tha RSN (i,thb) =
wenzelm@31945
   374
  case Seq.chop 2 (Thm.biresolution false [(false,tha)] i thb) of
clasohm@0
   375
      ([th],_) => th
clasohm@0
   376
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   377
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   378
clasohm@0
   379
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   380
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   381
clasohm@0
   382
(*For joining lists of rules*)
wenzelm@252
   383
fun thas RLN (i,thbs) =
wenzelm@31945
   384
  let val resolve = Thm.biresolution false (map (pair false) thas) i
wenzelm@4270
   385
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
wenzelm@19482
   386
  in maps resb thbs end;
clasohm@0
   387
clasohm@0
   388
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   389
lcp@11
   390
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   391
  makes proof trees*)
wenzelm@252
   392
fun rls MRS bottom_rl =
lcp@11
   393
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   394
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   395
  in  rs_aux 1 rls  end;
lcp@11
   396
lcp@11
   397
(*As above, but for rule lists*)
wenzelm@252
   398
fun rlss MRL bottom_rls =
lcp@11
   399
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   400
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   401
  in  rs_aux 1 rlss  end;
lcp@11
   402
wenzelm@9288
   403
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   404
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   405
wenzelm@252
   406
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   407
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   408
  ALWAYS deletes premise i *)
wenzelm@252
   409
fun compose(tha,i,thb) =
wenzelm@31945
   410
    distinct Thm.eq_thm (Seq.list_of (Thm.bicompose false (false,tha,0) i thb));
clasohm@0
   411
wenzelm@6946
   412
fun compose_single (tha,i,thb) =
paulson@24426
   413
  case compose (tha,i,thb) of
wenzelm@6946
   414
    [th] => th
paulson@24426
   415
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]);
wenzelm@6946
   416
clasohm@0
   417
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   418
fun tha COMP thb =
paulson@24426
   419
    case compose(tha,1,thb) of
wenzelm@252
   420
        [th] => th
clasohm@0
   421
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   422
wenzelm@13105
   423
wenzelm@4016
   424
(** theorem equality **)
clasohm@0
   425
clasohm@0
   426
(*Useful "distance" function for BEST_FIRST*)
wenzelm@16720
   427
val size_of_thm = size_of_term o Thm.full_prop_of;
clasohm@0
   428
lcp@1194
   429
lcp@1194
   430
clasohm@0
   431
(*** Meta-Rewriting Rules ***)
clasohm@0
   432
wenzelm@33384
   433
val read_prop = certify o Simple_Syntax.read_prop;
wenzelm@26487
   434
wenzelm@26487
   435
fun store_thm name th =
wenzelm@33277
   436
  Context.>>> (Context.map_theory_result (PureThy.store_thm (name, th)));
paulson@4610
   437
wenzelm@26487
   438
fun store_thm_open name th =
wenzelm@33277
   439
  Context.>>> (Context.map_theory_result (PureThy.store_thm_open (name, th)));
wenzelm@26487
   440
wenzelm@35021
   441
fun store_standard_thm name th = store_thm name (export_without_context th);
wenzelm@35021
   442
fun store_standard_thm_open name thm = store_thm_open name (export_without_context_open thm);
wenzelm@4016
   443
clasohm@0
   444
val reflexive_thm =
wenzelm@26487
   445
  let val cx = certify (Var(("x",0),TVar(("'a",0),[])))
wenzelm@33277
   446
  in store_standard_thm_open (Binding.name "reflexive") (Thm.reflexive cx) end;
clasohm@0
   447
clasohm@0
   448
val symmetric_thm =
wenzelm@33277
   449
  let
wenzelm@33277
   450
    val xy = read_prop "x::'a == y::'a";
wenzelm@33277
   451
    val thm = Thm.implies_intr xy (Thm.symmetric (Thm.assume xy));
wenzelm@33277
   452
  in store_standard_thm_open (Binding.name "symmetric") thm end;
clasohm@0
   453
clasohm@0
   454
val transitive_thm =
wenzelm@33277
   455
  let
wenzelm@33277
   456
    val xy = read_prop "x::'a == y::'a";
wenzelm@33277
   457
    val yz = read_prop "y::'a == z::'a";
wenzelm@33277
   458
    val xythm = Thm.assume xy;
wenzelm@33277
   459
    val yzthm = Thm.assume yz;
wenzelm@33277
   460
    val thm = Thm.implies_intr yz (Thm.transitive xythm yzthm);
wenzelm@33277
   461
  in store_standard_thm_open (Binding.name "transitive") thm end;
clasohm@0
   462
nipkow@4679
   463
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   464
berghofe@11512
   465
fun extensional eq =
berghofe@11512
   466
  let val eq' =
wenzelm@36944
   467
    Thm.abstract_rule "x" (Thm.dest_arg (fst (Thm.dest_equals (cprop_of eq)))) eq
wenzelm@36944
   468
  in Thm.equal_elim (Thm.eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   469
wenzelm@18820
   470
val equals_cong =
wenzelm@33277
   471
  store_standard_thm_open (Binding.name "equals_cong")
wenzelm@33277
   472
    (Thm.reflexive (read_prop "x::'a == y::'a"));
wenzelm@18820
   473
berghofe@10414
   474
val imp_cong =
berghofe@10414
   475
  let
wenzelm@24241
   476
    val ABC = read_prop "A ==> B::prop == C::prop"
wenzelm@24241
   477
    val AB = read_prop "A ==> B"
wenzelm@24241
   478
    val AC = read_prop "A ==> C"
wenzelm@24241
   479
    val A = read_prop "A"
berghofe@10414
   480
  in
wenzelm@36944
   481
    store_standard_thm_open (Binding.name "imp_cong") (Thm.implies_intr ABC (Thm.equal_intr
wenzelm@36944
   482
      (Thm.implies_intr AB (Thm.implies_intr A
wenzelm@36944
   483
        (Thm.equal_elim (Thm.implies_elim (Thm.assume ABC) (Thm.assume A))
wenzelm@36944
   484
          (Thm.implies_elim (Thm.assume AB) (Thm.assume A)))))
wenzelm@36944
   485
      (Thm.implies_intr AC (Thm.implies_intr A
wenzelm@36944
   486
        (Thm.equal_elim (Thm.symmetric (Thm.implies_elim (Thm.assume ABC) (Thm.assume A)))
wenzelm@36944
   487
          (Thm.implies_elim (Thm.assume AC) (Thm.assume A)))))))
berghofe@10414
   488
  end;
berghofe@10414
   489
berghofe@10414
   490
val swap_prems_eq =
berghofe@10414
   491
  let
wenzelm@24241
   492
    val ABC = read_prop "A ==> B ==> C"
wenzelm@24241
   493
    val BAC = read_prop "B ==> A ==> C"
wenzelm@24241
   494
    val A = read_prop "A"
wenzelm@24241
   495
    val B = read_prop "B"
berghofe@10414
   496
  in
wenzelm@33277
   497
    store_standard_thm_open (Binding.name "swap_prems_eq")
wenzelm@36944
   498
      (Thm.equal_intr
wenzelm@36944
   499
        (Thm.implies_intr ABC (Thm.implies_intr B (Thm.implies_intr A
wenzelm@36944
   500
          (Thm.implies_elim (Thm.implies_elim (Thm.assume ABC) (Thm.assume A)) (Thm.assume B)))))
wenzelm@36944
   501
        (Thm.implies_intr BAC (Thm.implies_intr A (Thm.implies_intr B
wenzelm@36944
   502
          (Thm.implies_elim (Thm.implies_elim (Thm.assume BAC) (Thm.assume B)) (Thm.assume A))))))
berghofe@10414
   503
  end;
lcp@229
   504
wenzelm@22938
   505
val imp_cong_rule = Thm.combination o Thm.combination (Thm.reflexive implies);
wenzelm@22938
   506
wenzelm@23537
   507
fun arg_cong_rule ct th = Thm.combination (Thm.reflexive ct) th;    (*AP_TERM in LCF/HOL*)
wenzelm@23537
   508
fun fun_cong_rule th ct = Thm.combination th (Thm.reflexive ct);    (*AP_THM in LCF/HOL*)
wenzelm@23568
   509
fun binop_cong_rule ct th1 th2 = Thm.combination (arg_cong_rule ct th1) th2;
clasohm@0
   510
skalberg@15001
   511
local
wenzelm@22906
   512
  val dest_eq = Thm.dest_equals o cprop_of
skalberg@15001
   513
  val rhs_of = snd o dest_eq
skalberg@15001
   514
in
skalberg@15001
   515
fun beta_eta_conversion t =
wenzelm@36944
   516
  let val thm = Thm.beta_conversion true t
wenzelm@36944
   517
  in Thm.transitive thm (Thm.eta_conversion (rhs_of thm)) end
skalberg@15001
   518
end;
skalberg@15001
   519
wenzelm@36944
   520
fun eta_long_conversion ct =
wenzelm@36944
   521
  Thm.transitive
wenzelm@36944
   522
    (beta_eta_conversion ct)
wenzelm@36944
   523
    (Thm.symmetric (beta_eta_conversion (cterm_fun (Pattern.eta_long []) ct)));
berghofe@15925
   524
paulson@20861
   525
(*Contract all eta-redexes in the theorem, lest they give rise to needless abstractions*)
paulson@20861
   526
fun eta_contraction_rule th =
wenzelm@36944
   527
  Thm.equal_elim (Thm.eta_conversion (cprop_of th)) th;
paulson@20861
   528
wenzelm@24947
   529
wenzelm@24947
   530
(* abs_def *)
wenzelm@24947
   531
wenzelm@24947
   532
(*
wenzelm@24947
   533
   f ?x1 ... ?xn == u
wenzelm@24947
   534
  --------------------
wenzelm@24947
   535
   f == %x1 ... xn. u
wenzelm@24947
   536
*)
wenzelm@24947
   537
wenzelm@24947
   538
local
wenzelm@24947
   539
wenzelm@24947
   540
fun contract_lhs th =
wenzelm@24947
   541
  Thm.transitive (Thm.symmetric (beta_eta_conversion
wenzelm@24947
   542
    (fst (Thm.dest_equals (cprop_of th))))) th;
wenzelm@24947
   543
wenzelm@24947
   544
fun var_args ct =
wenzelm@24947
   545
  (case try Thm.dest_comb ct of
wenzelm@24947
   546
    SOME (f, arg) =>
wenzelm@24947
   547
      (case Thm.term_of arg of
wenzelm@24947
   548
        Var ((x, _), _) => update (eq_snd (op aconvc)) (x, arg) (var_args f)
wenzelm@24947
   549
      | _ => [])
wenzelm@24947
   550
  | NONE => []);
wenzelm@24947
   551
wenzelm@24947
   552
in
wenzelm@24947
   553
wenzelm@24947
   554
fun abs_def th =
wenzelm@18337
   555
  let
wenzelm@24947
   556
    val th' = contract_lhs th;
wenzelm@24947
   557
    val args = var_args (Thm.lhs_of th');
wenzelm@24947
   558
  in contract_lhs (fold (uncurry Thm.abstract_rule) args th') end;
wenzelm@24947
   559
wenzelm@24947
   560
end;
wenzelm@24947
   561
wenzelm@18337
   562
wenzelm@18468
   563
wenzelm@15669
   564
(*** Some useful meta-theorems ***)
clasohm@0
   565
clasohm@0
   566
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@33277
   567
val asm_rl = store_standard_thm_open (Binding.name "asm_rl") (Thm.trivial (read_prop "?psi"));
wenzelm@33277
   568
val _ = store_thm_open (Binding.name "_") asm_rl;
clasohm@0
   569
clasohm@0
   570
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   571
val cut_rl =
wenzelm@33277
   572
  store_standard_thm_open (Binding.name "cut_rl")
wenzelm@24241
   573
    (Thm.trivial (read_prop "?psi ==> ?theta"));
clasohm@0
   574
wenzelm@252
   575
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   576
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   577
val revcut_rl =
wenzelm@33277
   578
  let
wenzelm@33277
   579
    val V = read_prop "V";
wenzelm@33277
   580
    val VW = read_prop "V ==> W";
wenzelm@4016
   581
  in
wenzelm@33277
   582
    store_standard_thm_open (Binding.name "revcut_rl")
wenzelm@36944
   583
      (Thm.implies_intr V (Thm.implies_intr VW (Thm.implies_elim (Thm.assume VW) (Thm.assume V))))
clasohm@0
   584
  end;
clasohm@0
   585
lcp@668
   586
(*for deleting an unwanted assumption*)
lcp@668
   587
val thin_rl =
wenzelm@33277
   588
  let
wenzelm@33277
   589
    val V = read_prop "V";
wenzelm@33277
   590
    val W = read_prop "W";
wenzelm@36944
   591
    val thm = Thm.implies_intr V (Thm.implies_intr W (Thm.assume W));
wenzelm@33277
   592
  in store_standard_thm_open (Binding.name "thin_rl") thm end;
lcp@668
   593
clasohm@0
   594
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   595
val triv_forall_equality =
wenzelm@33277
   596
  let
wenzelm@33277
   597
    val V = read_prop "V";
wenzelm@33277
   598
    val QV = read_prop "!!x::'a. V";
wenzelm@33277
   599
    val x = certify (Free ("x", Term.aT []));
wenzelm@4016
   600
  in
wenzelm@33277
   601
    store_standard_thm_open (Binding.name "triv_forall_equality")
wenzelm@36944
   602
      (Thm.equal_intr (Thm.implies_intr QV (Thm.forall_elim x (Thm.assume QV)))
wenzelm@36944
   603
        (Thm.implies_intr V (Thm.forall_intr x (Thm.assume V))))
clasohm@0
   604
  end;
clasohm@0
   605
wenzelm@19051
   606
(* (PROP ?Phi ==> PROP ?Phi ==> PROP ?Psi) ==>
wenzelm@19051
   607
   (PROP ?Phi ==> PROP ?Psi)
wenzelm@19051
   608
*)
wenzelm@19051
   609
val distinct_prems_rl =
wenzelm@19051
   610
  let
wenzelm@33277
   611
    val AAB = read_prop "Phi ==> Phi ==> Psi";
wenzelm@24241
   612
    val A = read_prop "Phi";
wenzelm@19051
   613
  in
wenzelm@33277
   614
    store_standard_thm_open (Binding.name "distinct_prems_rl")
wenzelm@36944
   615
      (implies_intr_list [AAB, A] (implies_elim_list (Thm.assume AAB) [Thm.assume A, Thm.assume A]))
wenzelm@19051
   616
  end;
wenzelm@19051
   617
nipkow@1756
   618
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   619
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   620
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   621
*)
nipkow@1756
   622
val swap_prems_rl =
wenzelm@33277
   623
  let
wenzelm@33277
   624
    val cmajor = read_prop "PhiA ==> PhiB ==> Psi";
wenzelm@36944
   625
    val major = Thm.assume cmajor;
wenzelm@33277
   626
    val cminor1 = read_prop "PhiA";
wenzelm@36944
   627
    val minor1 = Thm.assume cminor1;
wenzelm@33277
   628
    val cminor2 = read_prop "PhiB";
wenzelm@36944
   629
    val minor2 = Thm.assume cminor2;
wenzelm@33277
   630
  in
wenzelm@33277
   631
    store_standard_thm_open (Binding.name "swap_prems_rl")
wenzelm@36944
   632
      (Thm.implies_intr cmajor (Thm.implies_intr cminor2 (Thm.implies_intr cminor1
wenzelm@36944
   633
        (Thm.implies_elim (Thm.implies_elim major minor1) minor2))))
nipkow@1756
   634
  end;
nipkow@1756
   635
nipkow@3653
   636
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   637
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   638
   Introduction rule for == as a meta-theorem.
nipkow@3653
   639
*)
nipkow@3653
   640
val equal_intr_rule =
wenzelm@33277
   641
  let
wenzelm@33277
   642
    val PQ = read_prop "phi ==> psi";
wenzelm@33277
   643
    val QP = read_prop "psi ==> phi";
wenzelm@4016
   644
  in
wenzelm@33277
   645
    store_standard_thm_open (Binding.name "equal_intr_rule")
wenzelm@36944
   646
      (Thm.implies_intr PQ (Thm.implies_intr QP (Thm.equal_intr (Thm.assume PQ) (Thm.assume QP))))
nipkow@3653
   647
  end;
nipkow@3653
   648
wenzelm@19421
   649
(* PROP ?phi == PROP ?psi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@13368
   650
val equal_elim_rule1 =
wenzelm@33277
   651
  let
wenzelm@33277
   652
    val eq = read_prop "phi::prop == psi::prop";
wenzelm@33277
   653
    val P = read_prop "phi";
wenzelm@33277
   654
  in
wenzelm@33277
   655
    store_standard_thm_open (Binding.name "equal_elim_rule1")
wenzelm@36944
   656
      (Thm.equal_elim (Thm.assume eq) (Thm.assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   657
  end;
wenzelm@4285
   658
wenzelm@19421
   659
(* PROP ?psi == PROP ?phi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@19421
   660
val equal_elim_rule2 =
wenzelm@33277
   661
  store_standard_thm_open (Binding.name "equal_elim_rule2")
wenzelm@33277
   662
    (symmetric_thm RS equal_elim_rule1);
wenzelm@19421
   663
wenzelm@28618
   664
(* PROP ?phi ==> PROP ?phi ==> PROP ?psi ==> PROP ?psi *)
wenzelm@12297
   665
val remdups_rl =
wenzelm@33277
   666
  let
wenzelm@33277
   667
    val P = read_prop "phi";
wenzelm@33277
   668
    val Q = read_prop "psi";
wenzelm@33277
   669
    val thm = implies_intr_list [P, P, Q] (Thm.assume Q);
wenzelm@33277
   670
  in store_standard_thm_open (Binding.name "remdups_rl") thm end;
wenzelm@12297
   671
wenzelm@12297
   672
wenzelm@28618
   673
wenzelm@28618
   674
(** embedded terms and types **)
wenzelm@28618
   675
wenzelm@28618
   676
local
wenzelm@28618
   677
  val A = certify (Free ("A", propT));
wenzelm@35845
   678
  val axiom = Thm.unvarify_global o Thm.axiom (Context.the_theory (Context.the_thread_data ()));
wenzelm@28674
   679
  val prop_def = axiom "Pure.prop_def";
wenzelm@28674
   680
  val term_def = axiom "Pure.term_def";
wenzelm@28674
   681
  val sort_constraint_def = axiom "Pure.sort_constraint_def";
wenzelm@28618
   682
  val C = Thm.lhs_of sort_constraint_def;
wenzelm@28618
   683
  val T = Thm.dest_arg C;
wenzelm@28618
   684
  val CA = mk_implies (C, A);
wenzelm@28618
   685
in
wenzelm@28618
   686
wenzelm@28618
   687
(* protect *)
wenzelm@28618
   688
wenzelm@28618
   689
val protect = Thm.capply (certify Logic.protectC);
wenzelm@28618
   690
wenzelm@33277
   691
val protectI =
wenzelm@35021
   692
  store_standard_thm (Binding.conceal (Binding.name "protectI"))
wenzelm@35021
   693
    (Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A));
wenzelm@28618
   694
wenzelm@33277
   695
val protectD =
wenzelm@35021
   696
  store_standard_thm (Binding.conceal (Binding.name "protectD"))
wenzelm@35021
   697
    (Thm.equal_elim prop_def (Thm.assume (protect A)));
wenzelm@28618
   698
wenzelm@33277
   699
val protect_cong =
wenzelm@33277
   700
  store_standard_thm_open (Binding.name "protect_cong") (Thm.reflexive (protect A));
wenzelm@28618
   701
wenzelm@28618
   702
fun implies_intr_protected asms th =
wenzelm@28618
   703
  let val asms' = map protect asms in
wenzelm@28618
   704
    implies_elim_list
wenzelm@28618
   705
      (implies_intr_list asms th)
wenzelm@28618
   706
      (map (fn asm' => Thm.assume asm' RS protectD) asms')
wenzelm@28618
   707
    |> implies_intr_list asms'
wenzelm@28618
   708
  end;
wenzelm@28618
   709
wenzelm@28618
   710
wenzelm@28618
   711
(* term *)
wenzelm@28618
   712
wenzelm@33277
   713
val termI =
wenzelm@35021
   714
  store_standard_thm (Binding.conceal (Binding.name "termI"))
wenzelm@35021
   715
    (Thm.equal_elim (Thm.symmetric term_def) (Thm.forall_intr A (Thm.trivial A)));
wenzelm@9554
   716
wenzelm@28618
   717
fun mk_term ct =
wenzelm@28618
   718
  let
wenzelm@28618
   719
    val thy = Thm.theory_of_cterm ct;
wenzelm@28618
   720
    val cert = Thm.cterm_of thy;
wenzelm@28618
   721
    val certT = Thm.ctyp_of thy;
wenzelm@28618
   722
    val T = Thm.typ_of (Thm.ctyp_of_term ct);
wenzelm@28618
   723
    val a = certT (TVar (("'a", 0), []));
wenzelm@28618
   724
    val x = cert (Var (("x", 0), T));
wenzelm@28618
   725
  in Thm.instantiate ([(a, certT T)], [(x, ct)]) termI end;
wenzelm@28618
   726
wenzelm@28618
   727
fun dest_term th =
wenzelm@28618
   728
  let val cprop = strip_imp_concl (Thm.cprop_of th) in
wenzelm@28618
   729
    if can Logic.dest_term (Thm.term_of cprop) then
wenzelm@28618
   730
      Thm.dest_arg cprop
wenzelm@28618
   731
    else raise THM ("dest_term", 0, [th])
wenzelm@28618
   732
  end;
wenzelm@28618
   733
wenzelm@28618
   734
fun cterm_rule f = dest_term o f o mk_term;
wenzelm@28618
   735
fun term_rule thy f t = Thm.term_of (cterm_rule f (Thm.cterm_of thy t));
wenzelm@28618
   736
wenzelm@28618
   737
val dummy_thm = mk_term (certify (Term.dummy_pattern propT));
wenzelm@28618
   738
wenzelm@28618
   739
wenzelm@28618
   740
(* sort_constraint *)
wenzelm@28618
   741
wenzelm@33277
   742
val sort_constraintI =
wenzelm@35021
   743
  store_standard_thm (Binding.conceal (Binding.name "sort_constraintI"))
wenzelm@35021
   744
    (Thm.equal_elim (Thm.symmetric sort_constraint_def) (mk_term T));
wenzelm@28618
   745
wenzelm@33277
   746
val sort_constraint_eq =
wenzelm@35021
   747
  store_standard_thm (Binding.conceal (Binding.name "sort_constraint_eq"))
wenzelm@35021
   748
    (Thm.equal_intr
wenzelm@35845
   749
      (Thm.implies_intr CA (Thm.implies_elim (Thm.assume CA)
wenzelm@35845
   750
        (Thm.unvarify_global sort_constraintI)))
wenzelm@35021
   751
      (implies_intr_list [A, C] (Thm.assume A)));
wenzelm@28618
   752
wenzelm@28618
   753
end;
wenzelm@28618
   754
wenzelm@28618
   755
wenzelm@28618
   756
(* HHF normalization *)
wenzelm@28618
   757
wenzelm@28618
   758
(* (PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x)) *)
wenzelm@9554
   759
val norm_hhf_eq =
wenzelm@9554
   760
  let
wenzelm@14854
   761
    val aT = TFree ("'a", []);
wenzelm@9554
   762
    val all = Term.all aT;
wenzelm@9554
   763
    val x = Free ("x", aT);
wenzelm@9554
   764
    val phi = Free ("phi", propT);
wenzelm@9554
   765
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   766
wenzelm@26487
   767
    val cx = certify x;
wenzelm@26487
   768
    val cphi = certify phi;
wenzelm@26487
   769
    val lhs = certify (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@26487
   770
    val rhs = certify (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   771
  in
wenzelm@9554
   772
    Thm.equal_intr
wenzelm@9554
   773
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   774
        |> Thm.forall_elim cx
wenzelm@9554
   775
        |> Thm.implies_intr cphi
wenzelm@9554
   776
        |> Thm.forall_intr cx
wenzelm@9554
   777
        |> Thm.implies_intr lhs)
wenzelm@9554
   778
      (Thm.implies_elim
wenzelm@9554
   779
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   780
        |> Thm.forall_intr cx
wenzelm@9554
   781
        |> Thm.implies_intr cphi
wenzelm@9554
   782
        |> Thm.implies_intr rhs)
wenzelm@33277
   783
    |> store_standard_thm_open (Binding.name "norm_hhf_eq")
wenzelm@9554
   784
  end;
wenzelm@9554
   785
wenzelm@18179
   786
val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq);
wenzelm@28618
   787
val norm_hhf_eqs = [norm_hhf_eq, sort_constraint_eq];
wenzelm@18179
   788
wenzelm@30553
   789
fun is_norm_hhf (Const ("Pure.sort_constraint", _)) = false
wenzelm@30553
   790
  | is_norm_hhf (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
wenzelm@30553
   791
  | is_norm_hhf (Abs _ $ _) = false
wenzelm@30553
   792
  | is_norm_hhf (t $ u) = is_norm_hhf t andalso is_norm_hhf u
wenzelm@30553
   793
  | is_norm_hhf (Abs (_, _, t)) = is_norm_hhf t
wenzelm@30553
   794
  | is_norm_hhf _ = true;
wenzelm@12800
   795
wenzelm@16425
   796
fun norm_hhf thy t =
wenzelm@12800
   797
  if is_norm_hhf t then t
wenzelm@18179
   798
  else Pattern.rewrite_term thy [norm_hhf_prop] [] t;
wenzelm@18179
   799
wenzelm@20298
   800
fun norm_hhf_cterm ct =
wenzelm@20298
   801
  if is_norm_hhf (Thm.term_of ct) then ct
wenzelm@20298
   802
  else cterm_fun (Pattern.rewrite_term (Thm.theory_of_cterm ct) [norm_hhf_prop] []) ct;
wenzelm@20298
   803
wenzelm@12800
   804
wenzelm@21603
   805
(* var indexes *)
wenzelm@21603
   806
paulson@24426
   807
(*Increment the indexes of only the type variables*)
paulson@24426
   808
fun incr_type_indexes inc th =
wenzelm@29270
   809
  let val tvs = OldTerm.term_tvars (prop_of th)
wenzelm@29270
   810
      and thy = Thm.theory_of_thm th
paulson@24426
   811
      fun inc_tvar ((a,i),s) = pairself (ctyp_of thy) (TVar ((a,i),s), TVar ((a,i+inc),s))
paulson@24426
   812
  in Thm.instantiate (map inc_tvar tvs, []) th end;
paulson@24426
   813
wenzelm@21603
   814
fun incr_indexes th = Thm.incr_indexes (Thm.maxidx_of th + 1);
wenzelm@21603
   815
wenzelm@21603
   816
fun incr_indexes2 th1 th2 =
wenzelm@21603
   817
  Thm.incr_indexes (Int.max (Thm.maxidx_of th1, Thm.maxidx_of th2) + 1);
wenzelm@21603
   818
wenzelm@21603
   819
fun th1 INCR_COMP th2 = incr_indexes th2 th1 COMP th2;
wenzelm@21603
   820
fun th1 COMP_INCR th2 = th1 COMP incr_indexes th1 th2;
wenzelm@21603
   821
wenzelm@29344
   822
fun comp_no_flatten (th, n) i rule =
wenzelm@29344
   823
  (case distinct Thm.eq_thm (Seq.list_of
wenzelm@29344
   824
      (Thm.compose_no_flatten false (th, n) i (incr_indexes th rule))) of
wenzelm@29344
   825
    [th'] => th'
wenzelm@29344
   826
  | [] => raise THM ("comp_no_flatten", i, [th, rule])
wenzelm@29344
   827
  | _ => raise THM ("comp_no_flatten: unique result expected", i, [th, rule]));
wenzelm@29344
   828
wenzelm@29344
   829
wenzelm@9554
   830
wenzelm@16425
   831
(*** Instantiate theorem th, reading instantiations in theory thy ****)
paulson@8129
   832
paulson@8129
   833
(*Version that normalizes the result: Thm.instantiate no longer does that*)
wenzelm@21603
   834
fun instantiate instpair th =
wenzelm@21603
   835
  Thm.adjust_maxidx_thm ~1 (Thm.instantiate instpair th COMP_INCR asm_rl);
paulson@8129
   836
paulson@8129
   837
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   838
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   839
local
wenzelm@16425
   840
  fun add_types ((ct,cu), (thy,tye,maxidx)) =
wenzelm@26627
   841
    let
wenzelm@26627
   842
        val thyt = Thm.theory_of_cterm ct;
wenzelm@26627
   843
        val thyu = Thm.theory_of_cterm cu;
wenzelm@26627
   844
        val {t, T, maxidx = maxt, ...} = Thm.rep_cterm ct;
wenzelm@26627
   845
        val {t = u, T = U, maxidx = maxu, ...} = Thm.rep_cterm cu;
paulson@8129
   846
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
wenzelm@16425
   847
        val thy' = Theory.merge(thy, Theory.merge(thyt, thyu))
wenzelm@16949
   848
        val (tye',maxi') = Sign.typ_unify thy' (T, U) (tye, maxi)
berghofe@25470
   849
          handle Type.TUNIFY => raise TYPE ("Ill-typed instantiation:\nType\n" ^
wenzelm@26939
   850
            Syntax.string_of_typ_global thy' (Envir.norm_type tye T) ^
berghofe@25470
   851
            "\nof variable " ^
wenzelm@26939
   852
            Syntax.string_of_term_global thy' (Term.map_types (Envir.norm_type tye) t) ^
berghofe@25470
   853
            "\ncannot be unified with type\n" ^
wenzelm@26939
   854
            Syntax.string_of_typ_global thy' (Envir.norm_type tye U) ^ "\nof term " ^
wenzelm@26939
   855
            Syntax.string_of_term_global thy' (Term.map_types (Envir.norm_type tye) u),
berghofe@25470
   856
            [T, U], [t, u])
wenzelm@16425
   857
    in  (thy', tye', maxi')  end;
paulson@8129
   858
in
paulson@22561
   859
fun cterm_instantiate [] th = th
paulson@22561
   860
  | cterm_instantiate ctpairs0 th =
wenzelm@23178
   861
  let val (thy,tye,_) = List.foldr add_types (Thm.theory_of_thm th, Vartab.empty, 0) ctpairs0
wenzelm@18179
   862
      fun instT(ct,cu) =
paulson@22287
   863
        let val inst = cterm_of thy o Term.map_types (Envir.norm_type tye) o term_of
paulson@14340
   864
        in (inst ct, inst cu) end
paulson@22307
   865
      fun ctyp2 (ixn, (S, T)) = (ctyp_of thy (TVar (ixn, S)), ctyp_of thy (Envir.norm_type tye T))
berghofe@8406
   866
  in  instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   867
  handle TERM _ =>
wenzelm@16425
   868
           raise THM("cterm_instantiate: incompatible theories",0,[th])
paulson@8129
   869
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   870
end;
paulson@8129
   871
paulson@8129
   872
wenzelm@4789
   873
wenzelm@5688
   874
(** variations on instantiate **)
wenzelm@4285
   875
wenzelm@4285
   876
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   877
wenzelm@4285
   878
fun instantiate' cTs cts thm =
wenzelm@4285
   879
  let
wenzelm@4285
   880
    fun err msg =
wenzelm@4285
   881
      raise TYPE ("instantiate': " ^ msg,
wenzelm@19482
   882
        map_filter (Option.map Thm.typ_of) cTs,
wenzelm@19482
   883
        map_filter (Option.map Thm.term_of) cts);
wenzelm@4285
   884
wenzelm@4285
   885
    fun inst_of (v, ct) =
wenzelm@16425
   886
      (Thm.cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
wenzelm@4285
   887
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   888
berghofe@15797
   889
    fun tyinst_of (v, cT) =
wenzelm@16425
   890
      (Thm.ctyp_of (Thm.theory_of_ctyp cT) (TVar v), cT)
berghofe@15797
   891
        handle TYPE (msg, _, _) => err msg;
berghofe@15797
   892
wenzelm@20298
   893
    fun zip_vars xs ys =
wenzelm@20298
   894
      zip_options xs ys handle Library.UnequalLengths =>
wenzelm@20298
   895
        err "more instantiations than variables in thm";
wenzelm@4285
   896
wenzelm@4285
   897
    (*instantiate types first!*)
wenzelm@4285
   898
    val thm' =
wenzelm@4285
   899
      if forall is_none cTs then thm
wenzelm@20298
   900
      else Thm.instantiate
wenzelm@22695
   901
        (map tyinst_of (zip_vars (rev (Thm.fold_terms Term.add_tvars thm [])) cTs), []) thm;
wenzelm@20579
   902
    val thm'' =
wenzelm@4285
   903
      if forall is_none cts then thm'
wenzelm@20298
   904
      else Thm.instantiate
wenzelm@22695
   905
        ([], map inst_of (zip_vars (rev (Thm.fold_terms Term.add_vars thm' [])) cts)) thm';
wenzelm@20298
   906
    in thm'' end;
wenzelm@4285
   907
wenzelm@4285
   908
berghofe@14081
   909
berghofe@14081
   910
(** renaming of bound variables **)
berghofe@14081
   911
berghofe@14081
   912
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
   913
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
   914
berghofe@14081
   915
fun rename_bvars [] thm = thm
berghofe@14081
   916
  | rename_bvars vs thm =
wenzelm@26627
   917
      let
wenzelm@26627
   918
        val cert = Thm.cterm_of (Thm.theory_of_thm thm);
wenzelm@26627
   919
        fun ren (Abs (x, T, t)) = Abs (AList.lookup (op =) vs x |> the_default x, T, ren t)
wenzelm@26627
   920
          | ren (t $ u) = ren t $ ren u
wenzelm@26627
   921
          | ren t = t;
wenzelm@36944
   922
      in Thm.equal_elim (Thm.reflexive (cert (ren (Thm.prop_of thm)))) thm end;
berghofe@14081
   923
berghofe@14081
   924
berghofe@14081
   925
(* renaming in left-to-right order *)
berghofe@14081
   926
berghofe@14081
   927
fun rename_bvars' xs thm =
berghofe@14081
   928
  let
wenzelm@26627
   929
    val cert = Thm.cterm_of (Thm.theory_of_thm thm);
wenzelm@26627
   930
    val prop = Thm.prop_of thm;
berghofe@14081
   931
    fun rename [] t = ([], t)
berghofe@14081
   932
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
   933
          let val (xs', t') = rename xs t
wenzelm@18929
   934
          in (xs', Abs (the_default x x', T, t')) end
berghofe@14081
   935
      | rename xs (t $ u) =
berghofe@14081
   936
          let
berghofe@14081
   937
            val (xs', t') = rename xs t;
berghofe@14081
   938
            val (xs'', u') = rename xs' u
berghofe@14081
   939
          in (xs'', t' $ u') end
berghofe@14081
   940
      | rename xs t = (xs, t);
berghofe@14081
   941
  in case rename xs prop of
wenzelm@36944
   942
      ([], prop') => Thm.equal_elim (Thm.reflexive (cert prop')) thm
berghofe@14081
   943
    | _ => error "More names than abstractions in theorem"
berghofe@14081
   944
  end;
berghofe@14081
   945
berghofe@14081
   946
wenzelm@11975
   947
wenzelm@18225
   948
(** multi_resolve **)
wenzelm@18225
   949
wenzelm@18225
   950
local
wenzelm@18225
   951
wenzelm@18225
   952
fun res th i rule =
wenzelm@18225
   953
  Thm.biresolution false [(false, th)] i rule handle THM _ => Seq.empty;
wenzelm@18225
   954
wenzelm@18225
   955
fun multi_res _ [] rule = Seq.single rule
wenzelm@18225
   956
  | multi_res i (th :: ths) rule = Seq.maps (res th i) (multi_res (i + 1) ths rule);
wenzelm@18225
   957
wenzelm@18225
   958
in
wenzelm@18225
   959
wenzelm@18225
   960
val multi_resolve = multi_res 1;
wenzelm@18225
   961
fun multi_resolves facts rules = Seq.maps (multi_resolve facts) (Seq.of_list rules);
wenzelm@18225
   962
wenzelm@18225
   963
end;
wenzelm@18225
   964
wenzelm@11975
   965
end;
wenzelm@5903
   966
wenzelm@35021
   967
structure Basic_Drule: BASIC_DRULE = Drule;
wenzelm@35021
   968
open Basic_Drule;