src/ZF/Perm.thy
author clasohm
Sat Dec 09 13:36:11 1995 +0100 (1995-12-09 ago)
changeset 1401 0c439768f45c
parent 1155 928a16e02f9f
child 1478 2b8c2a7547ab
permissions -rw-r--r--
removed quotes from consts and syntax sections
clasohm@0
     1
(*  Title: 	ZF/perm
clasohm@0
     2
    ID:         $Id$
clasohm@0
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1991  University of Cambridge
clasohm@0
     5
clasohm@0
     6
The theory underlying permutation groups
clasohm@0
     7
  -- Composition of relations, the identity relation
clasohm@0
     8
  -- Injections, surjections, bijections
clasohm@0
     9
  -- Lemmas for the Schroeder-Bernstein Theorem
clasohm@0
    10
*)
clasohm@0
    11
clasohm@124
    12
Perm = ZF + "mono" +
clasohm@0
    13
consts
clasohm@1401
    14
    O    	::      [i,i]=>i      (infixr 60)
clasohm@1401
    15
    id  	::      i=>i
clasohm@1401
    16
    inj,surj,bij::      [i,i]=>i
clasohm@0
    17
lcp@753
    18
defs
clasohm@0
    19
clasohm@0
    20
    (*composition of relations and functions; NOT Suppes's relative product*)
clasohm@1155
    21
    comp_def	"r O s == {xz : domain(s)*range(r) . 
clasohm@1155
    22
                  		EX x y z. xz=<x,z> & <x,y>:s & <y,z>:r}"
clasohm@0
    23
clasohm@0
    24
    (*the identity function for A*)
clasohm@0
    25
    id_def	"id(A) == (lam x:A. x)"
clasohm@0
    26
clasohm@0
    27
    (*one-to-one functions from A to B*)
clasohm@0
    28
    inj_def      "inj(A,B) == { f: A->B. ALL w:A. ALL x:A. f`w=f`x --> w=x}"
clasohm@0
    29
clasohm@0
    30
    (*onto functions from A to B*)
clasohm@0
    31
    surj_def	"surj(A,B) == { f: A->B . ALL y:B. EX x:A. f`x=y}"
clasohm@0
    32
clasohm@0
    33
    (*one-to-one and onto functions*)
clasohm@0
    34
    bij_def	"bij(A,B) == inj(A,B) Int surj(A,B)"
clasohm@0
    35
clasohm@0
    36
end