wenzelm@252
|
1 |
(* Title: Pure/drule.ML
|
clasohm@0
|
2 |
ID: $Id$
|
wenzelm@252
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
clasohm@0
|
4 |
Copyright 1993 University of Cambridge
|
clasohm@0
|
5 |
|
wenzelm@3766
|
6 |
Derived rules and other operations on theorems.
|
clasohm@0
|
7 |
*)
|
clasohm@0
|
8 |
|
berghofe@13606
|
9 |
infix 0 RS RSN RL RLN MRS MRL OF COMP;
|
clasohm@0
|
10 |
|
wenzelm@5903
|
11 |
signature BASIC_DRULE =
|
wenzelm@3766
|
12 |
sig
|
paulson@9547
|
13 |
val mk_implies : cterm * cterm -> cterm
|
paulson@9547
|
14 |
val list_implies : cterm list * cterm -> cterm
|
wenzelm@4285
|
15 |
val dest_implies : cterm -> cterm * cterm
|
berghofe@10414
|
16 |
val dest_equals : cterm -> cterm * cterm
|
wenzelm@8328
|
17 |
val strip_imp_prems : cterm -> cterm list
|
berghofe@10414
|
18 |
val strip_imp_concl : cterm -> cterm
|
wenzelm@8328
|
19 |
val cprems_of : thm -> cterm list
|
berghofe@15797
|
20 |
val cterm_fun : (term -> term) -> (cterm -> cterm)
|
berghofe@15797
|
21 |
val ctyp_fun : (typ -> typ) -> (ctyp -> ctyp)
|
wenzelm@8328
|
22 |
val read_insts :
|
wenzelm@16425
|
23 |
theory -> (indexname -> typ option) * (indexname -> sort option)
|
wenzelm@4285
|
24 |
-> (indexname -> typ option) * (indexname -> sort option)
|
berghofe@15442
|
25 |
-> string list -> (indexname * string) list
|
berghofe@15797
|
26 |
-> (ctyp * ctyp) list * (cterm * cterm) list
|
wenzelm@4285
|
27 |
val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
|
wenzelm@7636
|
28 |
val strip_shyps_warning : thm -> thm
|
wenzelm@8328
|
29 |
val forall_intr_list : cterm list -> thm -> thm
|
wenzelm@8328
|
30 |
val forall_intr_frees : thm -> thm
|
wenzelm@8328
|
31 |
val forall_intr_vars : thm -> thm
|
wenzelm@8328
|
32 |
val forall_elim_list : cterm list -> thm -> thm
|
wenzelm@8328
|
33 |
val forall_elim_var : int -> thm -> thm
|
wenzelm@8328
|
34 |
val forall_elim_vars : int -> thm -> thm
|
wenzelm@12725
|
35 |
val gen_all : thm -> thm
|
wenzelm@8328
|
36 |
val freeze_thaw : thm -> thm * (thm -> thm)
|
paulson@15495
|
37 |
val freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
|
wenzelm@8328
|
38 |
val implies_elim_list : thm -> thm list -> thm
|
wenzelm@8328
|
39 |
val implies_intr_list : cterm list -> thm -> thm
|
paulson@8129
|
40 |
val instantiate :
|
berghofe@15797
|
41 |
(ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
|
wenzelm@8328
|
42 |
val zero_var_indexes : thm -> thm
|
wenzelm@16595
|
43 |
val implies_intr_hyps : thm -> thm
|
wenzelm@8328
|
44 |
val standard : thm -> thm
|
berghofe@11512
|
45 |
val standard' : thm -> thm
|
paulson@4610
|
46 |
val rotate_prems : int -> thm -> thm
|
oheimb@11163
|
47 |
val rearrange_prems : int list -> thm -> thm
|
wenzelm@8328
|
48 |
val assume_ax : theory -> string -> thm
|
wenzelm@8328
|
49 |
val RSN : thm * (int * thm) -> thm
|
wenzelm@8328
|
50 |
val RS : thm * thm -> thm
|
wenzelm@8328
|
51 |
val RLN : thm list * (int * thm list) -> thm list
|
wenzelm@8328
|
52 |
val RL : thm list * thm list -> thm list
|
wenzelm@8328
|
53 |
val MRS : thm list * thm -> thm
|
wenzelm@8328
|
54 |
val MRL : thm list list * thm list -> thm list
|
wenzelm@9288
|
55 |
val OF : thm * thm list -> thm
|
wenzelm@8328
|
56 |
val compose : thm * int * thm -> thm list
|
wenzelm@8328
|
57 |
val COMP : thm * thm -> thm
|
wenzelm@16425
|
58 |
val read_instantiate_sg: theory -> (string*string)list -> thm -> thm
|
wenzelm@8328
|
59 |
val read_instantiate : (string*string)list -> thm -> thm
|
wenzelm@8328
|
60 |
val cterm_instantiate : (cterm*cterm)list -> thm -> thm
|
wenzelm@16425
|
61 |
val eq_thm_thy : thm * thm -> bool
|
wenzelm@13105
|
62 |
val eq_thm_prop : thm * thm -> bool
|
wenzelm@8328
|
63 |
val weak_eq_thm : thm * thm -> bool
|
wenzelm@8328
|
64 |
val size_of_thm : thm -> int
|
wenzelm@8328
|
65 |
val reflexive_thm : thm
|
wenzelm@8328
|
66 |
val symmetric_thm : thm
|
wenzelm@8328
|
67 |
val transitive_thm : thm
|
nipkow@4679
|
68 |
val symmetric_fun : thm -> thm
|
berghofe@11512
|
69 |
val extensional : thm -> thm
|
berghofe@10414
|
70 |
val imp_cong : thm
|
berghofe@10414
|
71 |
val swap_prems_eq : thm
|
wenzelm@8328
|
72 |
val equal_abs_elim : cterm -> thm -> thm
|
wenzelm@4285
|
73 |
val equal_abs_elim_list: cterm list -> thm -> thm
|
wenzelm@8328
|
74 |
val asm_rl : thm
|
wenzelm@8328
|
75 |
val cut_rl : thm
|
wenzelm@8328
|
76 |
val revcut_rl : thm
|
wenzelm@8328
|
77 |
val thin_rl : thm
|
wenzelm@4285
|
78 |
val triv_forall_equality: thm
|
nipkow@1756
|
79 |
val swap_prems_rl : thm
|
wenzelm@4285
|
80 |
val equal_intr_rule : thm
|
wenzelm@13368
|
81 |
val equal_elim_rule1 : thm
|
paulson@8550
|
82 |
val inst : string -> string -> thm -> thm
|
wenzelm@8328
|
83 |
val instantiate' : ctyp option list -> cterm option list -> thm -> thm
|
wenzelm@8328
|
84 |
val incr_indexes_wrt : int list -> ctyp list -> cterm list -> thm list -> thm -> thm
|
wenzelm@5903
|
85 |
end;
|
wenzelm@5903
|
86 |
|
wenzelm@5903
|
87 |
signature DRULE =
|
wenzelm@5903
|
88 |
sig
|
wenzelm@5903
|
89 |
include BASIC_DRULE
|
paulson@15949
|
90 |
val list_comb: cterm * cterm list -> cterm
|
berghofe@12908
|
91 |
val strip_comb: cterm -> cterm * cterm list
|
berghofe@15262
|
92 |
val strip_type: ctyp -> ctyp list * ctyp
|
paulson@15949
|
93 |
val beta_conv: cterm -> cterm -> cterm
|
wenzelm@15875
|
94 |
val plain_prop_of: thm -> term
|
wenzelm@15669
|
95 |
val add_used: thm -> string list -> string list
|
wenzelm@11975
|
96 |
val rule_attribute: ('a -> thm -> thm) -> 'a attribute
|
wenzelm@11975
|
97 |
val tag_rule: tag -> thm -> thm
|
wenzelm@11975
|
98 |
val untag_rule: string -> thm -> thm
|
wenzelm@11975
|
99 |
val tag: tag -> 'a attribute
|
wenzelm@11975
|
100 |
val untag: string -> 'a attribute
|
wenzelm@11975
|
101 |
val get_kind: thm -> string
|
wenzelm@11975
|
102 |
val kind: string -> 'a attribute
|
wenzelm@11975
|
103 |
val theoremK: string
|
wenzelm@11975
|
104 |
val lemmaK: string
|
wenzelm@11975
|
105 |
val corollaryK: string
|
wenzelm@11975
|
106 |
val internalK: string
|
wenzelm@11975
|
107 |
val kind_internal: 'a attribute
|
wenzelm@11975
|
108 |
val has_internal: tag list -> bool
|
wenzelm@11975
|
109 |
val impose_hyps: cterm list -> thm -> thm
|
wenzelm@13389
|
110 |
val satisfy_hyps: thm list -> thm -> thm
|
wenzelm@11975
|
111 |
val close_derivation: thm -> thm
|
wenzelm@12005
|
112 |
val local_standard: thm -> thm
|
wenzelm@11975
|
113 |
val compose_single: thm * int * thm -> thm
|
wenzelm@12373
|
114 |
val add_rule: thm -> thm list -> thm list
|
wenzelm@12373
|
115 |
val del_rule: thm -> thm list -> thm list
|
wenzelm@11975
|
116 |
val add_rules: thm list -> thm list -> thm list
|
wenzelm@11975
|
117 |
val del_rules: thm list -> thm list -> thm list
|
wenzelm@11975
|
118 |
val merge_rules: thm list * thm list -> thm list
|
skalberg@15001
|
119 |
val imp_cong' : thm -> thm -> thm
|
skalberg@15001
|
120 |
val beta_eta_conversion: cterm -> thm
|
berghofe@15925
|
121 |
val eta_long_conversion: cterm -> thm
|
skalberg@15001
|
122 |
val goals_conv : (int -> bool) -> (cterm -> thm) -> cterm -> thm
|
skalberg@15001
|
123 |
val forall_conv : (cterm -> thm) -> cterm -> thm
|
skalberg@15001
|
124 |
val fconv_rule : (cterm -> thm) -> thm -> thm
|
wenzelm@11975
|
125 |
val norm_hhf_eq: thm
|
wenzelm@12800
|
126 |
val is_norm_hhf: term -> bool
|
wenzelm@16425
|
127 |
val norm_hhf: theory -> term -> term
|
wenzelm@11975
|
128 |
val triv_goal: thm
|
wenzelm@11975
|
129 |
val rev_triv_goal: thm
|
wenzelm@11815
|
130 |
val implies_intr_goals: cterm list -> thm -> thm
|
wenzelm@11975
|
131 |
val freeze_all: thm -> thm
|
wenzelm@11975
|
132 |
val mk_triv_goal: cterm -> thm
|
wenzelm@11975
|
133 |
val tvars_of_terms: term list -> (indexname * sort) list
|
wenzelm@11975
|
134 |
val vars_of_terms: term list -> (indexname * typ) list
|
wenzelm@11975
|
135 |
val tvars_of: thm -> (indexname * sort) list
|
wenzelm@11975
|
136 |
val vars_of: thm -> (indexname * typ) list
|
berghofe@14081
|
137 |
val rename_bvars: (string * string) list -> thm -> thm
|
berghofe@14081
|
138 |
val rename_bvars': string option list -> thm -> thm
|
wenzelm@11975
|
139 |
val unvarifyT: thm -> thm
|
wenzelm@11975
|
140 |
val unvarify: thm -> thm
|
berghofe@15797
|
141 |
val tvars_intr_list: string list -> thm -> thm * (string * (indexname * sort)) list
|
wenzelm@12297
|
142 |
val remdups_rl: thm
|
wenzelm@11975
|
143 |
val conj_intr: thm -> thm -> thm
|
wenzelm@11975
|
144 |
val conj_intr_list: thm list -> thm
|
wenzelm@11975
|
145 |
val conj_elim: thm -> thm * thm
|
wenzelm@11975
|
146 |
val conj_elim_list: thm -> thm list
|
wenzelm@12135
|
147 |
val conj_elim_precise: int -> thm -> thm list
|
wenzelm@12135
|
148 |
val conj_intr_thm: thm
|
berghofe@13325
|
149 |
val abs_def: thm -> thm
|
wenzelm@16425
|
150 |
val read_instantiate_sg': theory -> (indexname * string) list -> thm -> thm
|
berghofe@15797
|
151 |
val read_instantiate': (indexname * string) list -> thm -> thm
|
wenzelm@3766
|
152 |
end;
|
clasohm@0
|
153 |
|
wenzelm@5903
|
154 |
structure Drule: DRULE =
|
clasohm@0
|
155 |
struct
|
clasohm@0
|
156 |
|
wenzelm@3991
|
157 |
|
wenzelm@16682
|
158 |
(** some cterm->cterm operations: faster than calling cterm_of! **)
|
lcp@708
|
159 |
|
wenzelm@16682
|
160 |
(* FIXME exception CTERM (!?) *)
|
paulson@2004
|
161 |
|
paulson@2004
|
162 |
fun dest_implies ct =
|
wenzelm@16682
|
163 |
(case Thm.term_of ct of
|
wenzelm@16682
|
164 |
(Const ("==>", _) $ _ $ _) =>
|
wenzelm@16682
|
165 |
let val (ct1, ct2) = Thm.dest_comb ct
|
wenzelm@16682
|
166 |
in (#2 (Thm.dest_comb ct1), ct2) end
|
wenzelm@16682
|
167 |
| _ => raise TERM ("dest_implies", [term_of ct]));
|
clasohm@1703
|
168 |
|
berghofe@10414
|
169 |
fun dest_equals ct =
|
wenzelm@16682
|
170 |
(case Thm.term_of ct of
|
wenzelm@16682
|
171 |
(Const ("==", _) $ _ $ _) =>
|
wenzelm@16682
|
172 |
let val (ct1, ct2) = Thm.dest_comb ct
|
wenzelm@16682
|
173 |
in (#2 (Thm.dest_comb ct1), ct2) end
|
wenzelm@16682
|
174 |
| _ => raise TERM ("dest_equals", [term_of ct]));
|
berghofe@10414
|
175 |
|
clasohm@1703
|
176 |
|
lcp@708
|
177 |
(* A1==>...An==>B goes to [A1,...,An], where B is not an implication *)
|
paulson@2004
|
178 |
fun strip_imp_prems ct =
|
paulson@2004
|
179 |
let val (cA,cB) = dest_implies ct
|
paulson@2004
|
180 |
in cA :: strip_imp_prems cB end
|
lcp@708
|
181 |
handle TERM _ => [];
|
lcp@708
|
182 |
|
paulson@2004
|
183 |
(* A1==>...An==>B goes to B, where B is not an implication *)
|
paulson@2004
|
184 |
fun strip_imp_concl ct =
|
wenzelm@8328
|
185 |
case term_of ct of (Const("==>", _) $ _ $ _) =>
|
wenzelm@10767
|
186 |
strip_imp_concl (#2 (Thm.dest_comb ct))
|
paulson@2004
|
187 |
| _ => ct;
|
paulson@2004
|
188 |
|
lcp@708
|
189 |
(*The premises of a theorem, as a cterm list*)
|
berghofe@13659
|
190 |
val cprems_of = strip_imp_prems o cprop_of;
|
lcp@708
|
191 |
|
berghofe@15797
|
192 |
fun cterm_fun f ct =
|
wenzelm@16425
|
193 |
let val {t, thy, ...} = Thm.rep_cterm ct
|
wenzelm@16425
|
194 |
in Thm.cterm_of thy (f t) end;
|
berghofe@15797
|
195 |
|
berghofe@15797
|
196 |
fun ctyp_fun f cT =
|
wenzelm@16425
|
197 |
let val {T, thy, ...} = Thm.rep_ctyp cT
|
wenzelm@16425
|
198 |
in Thm.ctyp_of thy (f T) end;
|
berghofe@15797
|
199 |
|
wenzelm@16425
|
200 |
val implies = cterm_of ProtoPure.thy Term.implies;
|
paulson@9547
|
201 |
|
paulson@9547
|
202 |
(*cterm version of mk_implies*)
|
wenzelm@10767
|
203 |
fun mk_implies(A,B) = Thm.capply (Thm.capply implies A) B;
|
paulson@9547
|
204 |
|
paulson@9547
|
205 |
(*cterm version of list_implies: [A1,...,An], B goes to [|A1;==>;An|]==>B *)
|
paulson@9547
|
206 |
fun list_implies([], B) = B
|
paulson@9547
|
207 |
| list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
|
paulson@9547
|
208 |
|
paulson@15949
|
209 |
(*cterm version of list_comb: maps (f, [t1,...,tn]) to f(t1,...,tn) *)
|
paulson@15949
|
210 |
fun list_comb (f, []) = f
|
paulson@15949
|
211 |
| list_comb (f, t::ts) = list_comb (Thm.capply f t, ts);
|
paulson@15949
|
212 |
|
berghofe@12908
|
213 |
(*cterm version of strip_comb: maps f(t1,...,tn) to (f, [t1,...,tn]) *)
|
berghofe@12908
|
214 |
fun strip_comb ct =
|
berghofe@12908
|
215 |
let
|
berghofe@12908
|
216 |
fun stripc (p as (ct, cts)) =
|
berghofe@12908
|
217 |
let val (ct1, ct2) = Thm.dest_comb ct
|
berghofe@12908
|
218 |
in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
|
berghofe@12908
|
219 |
in stripc (ct, []) end;
|
berghofe@12908
|
220 |
|
berghofe@15262
|
221 |
(* cterm version of strip_type: maps [T1,...,Tn]--->T to ([T1,T2,...,Tn], T) *)
|
berghofe@15262
|
222 |
fun strip_type cT = (case Thm.typ_of cT of
|
berghofe@15262
|
223 |
Type ("fun", _) =>
|
berghofe@15262
|
224 |
let
|
berghofe@15262
|
225 |
val [cT1, cT2] = Thm.dest_ctyp cT;
|
berghofe@15262
|
226 |
val (cTs, cT') = strip_type cT2
|
berghofe@15262
|
227 |
in (cT1 :: cTs, cT') end
|
berghofe@15262
|
228 |
| _ => ([], cT));
|
berghofe@15262
|
229 |
|
paulson@15949
|
230 |
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
|
paulson@15949
|
231 |
of the meta-equality returned by the beta_conversion rule.*)
|
paulson@15949
|
232 |
fun beta_conv x y =
|
paulson@15949
|
233 |
#2 (Thm.dest_comb (cprop_of (Thm.beta_conversion false (Thm.capply x y))));
|
paulson@15949
|
234 |
|
wenzelm@15875
|
235 |
fun plain_prop_of raw_thm =
|
wenzelm@15875
|
236 |
let
|
wenzelm@15875
|
237 |
val thm = Thm.strip_shyps raw_thm;
|
wenzelm@15875
|
238 |
fun err msg = raise THM ("plain_prop_of: " ^ msg, 0, [thm]);
|
wenzelm@15875
|
239 |
val {hyps, prop, tpairs, ...} = Thm.rep_thm thm;
|
wenzelm@15875
|
240 |
in
|
wenzelm@15875
|
241 |
if not (null hyps) then
|
wenzelm@15875
|
242 |
err "theorem may not contain hypotheses"
|
wenzelm@15875
|
243 |
else if not (null (Thm.extra_shyps thm)) then
|
wenzelm@15875
|
244 |
err "theorem may not contain sort hypotheses"
|
wenzelm@15875
|
245 |
else if not (null tpairs) then
|
wenzelm@15875
|
246 |
err "theorem may not contain flex-flex pairs"
|
wenzelm@15875
|
247 |
else prop
|
wenzelm@15875
|
248 |
end;
|
wenzelm@15875
|
249 |
|
wenzelm@15875
|
250 |
|
lcp@708
|
251 |
|
lcp@229
|
252 |
(** reading of instantiations **)
|
lcp@229
|
253 |
|
lcp@229
|
254 |
fun absent ixn =
|
lcp@229
|
255 |
error("No such variable in term: " ^ Syntax.string_of_vname ixn);
|
lcp@229
|
256 |
|
lcp@229
|
257 |
fun inst_failure ixn =
|
lcp@229
|
258 |
error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
|
lcp@229
|
259 |
|
wenzelm@16425
|
260 |
fun read_insts thy (rtypes,rsorts) (types,sorts) used insts =
|
wenzelm@10403
|
261 |
let
|
berghofe@15442
|
262 |
fun is_tv ((a, _), _) =
|
berghofe@15442
|
263 |
(case Symbol.explode a of "'" :: _ => true | _ => false);
|
skalberg@15570
|
264 |
val (tvs, vs) = List.partition is_tv insts;
|
berghofe@15797
|
265 |
fun sort_of ixn = case rsorts ixn of SOME S => S | NONE => absent ixn;
|
berghofe@15442
|
266 |
fun readT (ixn, st) =
|
berghofe@15797
|
267 |
let val S = sort_of ixn;
|
wenzelm@16425
|
268 |
val T = Sign.read_typ (thy,sorts) st;
|
wenzelm@16425
|
269 |
in if Sign.typ_instance thy (T, TVar(ixn,S)) then (ixn,T)
|
nipkow@4281
|
270 |
else inst_failure ixn
|
nipkow@4281
|
271 |
end
|
nipkow@4281
|
272 |
val tye = map readT tvs;
|
nipkow@4281
|
273 |
fun mkty(ixn,st) = (case rtypes ixn of
|
skalberg@15531
|
274 |
SOME T => (ixn,(st,typ_subst_TVars tye T))
|
skalberg@15531
|
275 |
| NONE => absent ixn);
|
nipkow@4281
|
276 |
val ixnsTs = map mkty vs;
|
nipkow@4281
|
277 |
val ixns = map fst ixnsTs
|
nipkow@4281
|
278 |
and sTs = map snd ixnsTs
|
wenzelm@16425
|
279 |
val (cts,tye2) = read_def_cterms(thy,types,sorts) used false sTs;
|
nipkow@4281
|
280 |
fun mkcVar(ixn,T) =
|
nipkow@4281
|
281 |
let val U = typ_subst_TVars tye2 T
|
wenzelm@16425
|
282 |
in cterm_of thy (Var(ixn,U)) end
|
nipkow@4281
|
283 |
val ixnTs = ListPair.zip(ixns, map snd sTs)
|
wenzelm@16425
|
284 |
in (map (fn (ixn, T) => (ctyp_of thy (TVar (ixn, sort_of ixn)),
|
wenzelm@16425
|
285 |
ctyp_of thy T)) (tye2 @ tye),
|
nipkow@4281
|
286 |
ListPair.zip(map mkcVar ixnTs,cts))
|
nipkow@4281
|
287 |
end;
|
lcp@229
|
288 |
|
lcp@229
|
289 |
|
wenzelm@252
|
290 |
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
|
clasohm@0
|
291 |
Used for establishing default types (of variables) and sorts (of
|
clasohm@0
|
292 |
type variables) when reading another term.
|
clasohm@0
|
293 |
Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
|
clasohm@0
|
294 |
***)
|
clasohm@0
|
295 |
|
clasohm@0
|
296 |
fun types_sorts thm =
|
wenzelm@15669
|
297 |
let val {prop, hyps, tpairs, ...} = Thm.rep_thm thm;
|
wenzelm@15669
|
298 |
(* bogus term! *)
|
paulson@15949
|
299 |
val big = Term.list_comb
|
paulson@15949
|
300 |
(Term.list_comb (prop, hyps), Thm.terms_of_tpairs tpairs);
|
wenzelm@252
|
301 |
val vars = map dest_Var (term_vars big);
|
wenzelm@252
|
302 |
val frees = map dest_Free (term_frees big);
|
wenzelm@252
|
303 |
val tvars = term_tvars big;
|
wenzelm@252
|
304 |
val tfrees = term_tfrees big;
|
wenzelm@252
|
305 |
fun typ(a,i) = if i<0 then assoc(frees,a) else assoc(vars,(a,i));
|
wenzelm@252
|
306 |
fun sort(a,i) = if i<0 then assoc(tfrees,a) else assoc(tvars,(a,i));
|
clasohm@0
|
307 |
in (typ,sort) end;
|
clasohm@0
|
308 |
|
wenzelm@15669
|
309 |
fun add_used thm used =
|
wenzelm@15669
|
310 |
let val {prop, hyps, tpairs, ...} = Thm.rep_thm thm in
|
wenzelm@15669
|
311 |
add_term_tvarnames (prop, used)
|
wenzelm@15669
|
312 |
|> fold (curry add_term_tvarnames) hyps
|
wenzelm@15669
|
313 |
|> fold (curry add_term_tvarnames) (Thm.terms_of_tpairs tpairs)
|
wenzelm@15669
|
314 |
end;
|
wenzelm@15669
|
315 |
|
wenzelm@7636
|
316 |
|
wenzelm@9455
|
317 |
|
wenzelm@9455
|
318 |
(** basic attributes **)
|
wenzelm@9455
|
319 |
|
wenzelm@9455
|
320 |
(* dependent rules *)
|
wenzelm@9455
|
321 |
|
wenzelm@9455
|
322 |
fun rule_attribute f (x, thm) = (x, (f x thm));
|
wenzelm@9455
|
323 |
|
wenzelm@9455
|
324 |
|
wenzelm@9455
|
325 |
(* add / delete tags *)
|
wenzelm@9455
|
326 |
|
wenzelm@9455
|
327 |
fun map_tags f thm =
|
wenzelm@9455
|
328 |
Thm.put_name_tags (Thm.name_of_thm thm, f (#2 (Thm.get_name_tags thm))) thm;
|
wenzelm@9455
|
329 |
|
wenzelm@9455
|
330 |
fun tag_rule tg = map_tags (fn tgs => if tg mem tgs then tgs else tgs @ [tg]);
|
wenzelm@9455
|
331 |
fun untag_rule s = map_tags (filter_out (equal s o #1));
|
wenzelm@9455
|
332 |
|
wenzelm@9455
|
333 |
fun tag tg x = rule_attribute (K (tag_rule tg)) x;
|
wenzelm@9455
|
334 |
fun untag s x = rule_attribute (K (untag_rule s)) x;
|
wenzelm@9455
|
335 |
|
wenzelm@9455
|
336 |
fun simple_tag name x = tag (name, []) x;
|
wenzelm@9455
|
337 |
|
wenzelm@11741
|
338 |
|
wenzelm@11741
|
339 |
(* theorem kinds *)
|
wenzelm@11741
|
340 |
|
wenzelm@11741
|
341 |
val theoremK = "theorem";
|
wenzelm@11741
|
342 |
val lemmaK = "lemma";
|
wenzelm@11741
|
343 |
val corollaryK = "corollary";
|
wenzelm@11741
|
344 |
val internalK = "internal";
|
wenzelm@9455
|
345 |
|
wenzelm@11741
|
346 |
fun get_kind thm =
|
wenzelm@11741
|
347 |
(case Library.assoc (#2 (Thm.get_name_tags thm), "kind") of
|
skalberg@15531
|
348 |
SOME (k :: _) => k
|
wenzelm@11741
|
349 |
| _ => "unknown");
|
wenzelm@11741
|
350 |
|
wenzelm@11741
|
351 |
fun kind_rule k = tag_rule ("kind", [k]) o untag_rule "kind";
|
wenzelm@12710
|
352 |
fun kind k x = if k = "" then x else rule_attribute (K (kind_rule k)) x;
|
wenzelm@11741
|
353 |
fun kind_internal x = kind internalK x;
|
wenzelm@11741
|
354 |
fun has_internal tags = exists (equal internalK o fst) tags;
|
wenzelm@9455
|
355 |
|
wenzelm@9455
|
356 |
|
wenzelm@9455
|
357 |
|
clasohm@0
|
358 |
(** Standardization of rules **)
|
clasohm@0
|
359 |
|
wenzelm@7636
|
360 |
(*Strip extraneous shyps as far as possible*)
|
wenzelm@7636
|
361 |
fun strip_shyps_warning thm =
|
wenzelm@7636
|
362 |
let
|
wenzelm@16425
|
363 |
val str_of_sort = Pretty.str_of o Sign.pretty_sort (Thm.theory_of_thm thm);
|
wenzelm@7636
|
364 |
val thm' = Thm.strip_shyps thm;
|
wenzelm@7636
|
365 |
val xshyps = Thm.extra_shyps thm';
|
wenzelm@7636
|
366 |
in
|
wenzelm@7636
|
367 |
if null xshyps then ()
|
wenzelm@7636
|
368 |
else warning ("Pending sort hypotheses: " ^ commas (map str_of_sort xshyps));
|
wenzelm@7636
|
369 |
thm'
|
wenzelm@7636
|
370 |
end;
|
wenzelm@7636
|
371 |
|
clasohm@0
|
372 |
(*Generalization over a list of variables, IGNORING bad ones*)
|
clasohm@0
|
373 |
fun forall_intr_list [] th = th
|
clasohm@0
|
374 |
| forall_intr_list (y::ys) th =
|
wenzelm@252
|
375 |
let val gth = forall_intr_list ys th
|
wenzelm@252
|
376 |
in forall_intr y gth handle THM _ => gth end;
|
clasohm@0
|
377 |
|
clasohm@0
|
378 |
(*Generalization over all suitable Free variables*)
|
clasohm@0
|
379 |
fun forall_intr_frees th =
|
wenzelm@16425
|
380 |
let val {prop,thy,...} = rep_thm th
|
clasohm@0
|
381 |
in forall_intr_list
|
wenzelm@16425
|
382 |
(map (cterm_of thy) (sort (make_ord atless) (term_frees prop)))
|
clasohm@0
|
383 |
th
|
clasohm@0
|
384 |
end;
|
clasohm@0
|
385 |
|
wenzelm@7898
|
386 |
val forall_elim_var = PureThy.forall_elim_var;
|
wenzelm@7898
|
387 |
val forall_elim_vars = PureThy.forall_elim_vars;
|
clasohm@0
|
388 |
|
wenzelm@12725
|
389 |
fun gen_all thm =
|
wenzelm@12719
|
390 |
let
|
wenzelm@16425
|
391 |
val {thy, prop, maxidx, ...} = Thm.rep_thm thm;
|
wenzelm@16425
|
392 |
fun elim (th, (x, T)) = Thm.forall_elim (Thm.cterm_of thy (Var ((x, maxidx + 1), T))) th;
|
wenzelm@12719
|
393 |
val vs = Term.strip_all_vars prop;
|
skalberg@15570
|
394 |
in Library.foldl elim (thm, Term.variantlist (map #1 vs, []) ~~ map #2 vs) end;
|
wenzelm@9554
|
395 |
|
clasohm@0
|
396 |
(*Specialization over a list of cterms*)
|
skalberg@15574
|
397 |
fun forall_elim_list cts th = foldr (uncurry forall_elim) th (rev cts);
|
clasohm@0
|
398 |
|
wenzelm@11815
|
399 |
(* maps A1,...,An |- B to [| A1;...;An |] ==> B *)
|
skalberg@15574
|
400 |
fun implies_intr_list cAs th = foldr (uncurry implies_intr) th cAs;
|
clasohm@0
|
401 |
|
clasohm@0
|
402 |
(* maps [| A1;...;An |] ==> B and [A1,...,An] to B *)
|
skalberg@15570
|
403 |
fun implies_elim_list impth ths = Library.foldl (uncurry implies_elim) (impth,ths);
|
clasohm@0
|
404 |
|
wenzelm@11960
|
405 |
(* maps |- B to A1,...,An |- B *)
|
wenzelm@11960
|
406 |
fun impose_hyps chyps th =
|
wenzelm@12092
|
407 |
let val chyps' = gen_rems (op aconv o apfst Thm.term_of) (chyps, #hyps (Thm.rep_thm th))
|
wenzelm@12092
|
408 |
in implies_elim_list (implies_intr_list chyps' th) (map Thm.assume chyps') end;
|
wenzelm@11960
|
409 |
|
wenzelm@13389
|
410 |
(* maps A1,...,An and A1,...,An |- B to |- B *)
|
wenzelm@13389
|
411 |
fun satisfy_hyps ths th =
|
wenzelm@13389
|
412 |
implies_elim_list (implies_intr_list (map (#prop o Thm.crep_thm) ths) th) ths;
|
wenzelm@13389
|
413 |
|
clasohm@0
|
414 |
(*Reset Var indexes to zero, renaming to preserve distinctness*)
|
wenzelm@252
|
415 |
fun zero_var_indexes th =
|
wenzelm@16425
|
416 |
let val {prop,thy,tpairs,...} = rep_thm th;
|
dixon@15545
|
417 |
val (tpair_l, tpair_r) = Library.split_list tpairs;
|
skalberg@15574
|
418 |
val vars = foldr add_term_vars
|
skalberg@15574
|
419 |
(foldr add_term_vars (term_vars prop) tpair_l) tpair_r;
|
skalberg@15570
|
420 |
val bs = Library.foldl add_new_id ([], map (fn Var((a,_),_)=>a) vars)
|
dixon@15545
|
421 |
val inrs =
|
skalberg@15574
|
422 |
foldr add_term_tvars
|
skalberg@15574
|
423 |
(foldr add_term_tvars (term_tvars prop) tpair_l) tpair_r;
|
skalberg@15570
|
424 |
val nms' = rev(Library.foldl add_new_id ([], map (#1 o #1) inrs));
|
berghofe@15797
|
425 |
val tye = ListPair.map (fn ((v, rs), a) => (TVar (v, rs), TVar ((a, 0), rs)))
|
wenzelm@8328
|
426 |
(inrs, nms')
|
wenzelm@16425
|
427 |
val ctye = map (pairself (ctyp_of thy)) tye;
|
wenzelm@252
|
428 |
fun varpairs([],[]) = []
|
wenzelm@252
|
429 |
| varpairs((var as Var(v,T)) :: vars, b::bs) =
|
berghofe@15797
|
430 |
let val T' = typ_subst_atomic tye T
|
wenzelm@16425
|
431 |
in (cterm_of thy (Var(v,T')),
|
wenzelm@16425
|
432 |
cterm_of thy (Var((b,0),T'))) :: varpairs(vars,bs)
|
wenzelm@252
|
433 |
end
|
wenzelm@252
|
434 |
| varpairs _ = raise TERM("varpairs", []);
|
paulson@8129
|
435 |
in Thm.instantiate (ctye, varpairs(vars,rev bs)) th end;
|
clasohm@0
|
436 |
|
clasohm@0
|
437 |
|
paulson@14394
|
438 |
(** Standard form of object-rule: no hypotheses, flexflex constraints,
|
paulson@14394
|
439 |
Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
|
wenzelm@10515
|
440 |
|
wenzelm@16595
|
441 |
(*Discharge all hypotheses.*)
|
wenzelm@16595
|
442 |
fun implies_intr_hyps th =
|
wenzelm@16595
|
443 |
fold Thm.implies_intr (#hyps (Thm.crep_thm th)) th;
|
wenzelm@16595
|
444 |
|
paulson@14394
|
445 |
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
|
paulson@14394
|
446 |
This step can lose information.*)
|
paulson@14387
|
447 |
fun flexflex_unique th =
|
paulson@14387
|
448 |
case Seq.chop (2, flexflex_rule th) of
|
paulson@14387
|
449 |
([th],_) => th
|
paulson@14387
|
450 |
| ([],_) => raise THM("flexflex_unique: impossible constraints", 0, [th])
|
paulson@14387
|
451 |
| _ => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
|
paulson@14387
|
452 |
|
wenzelm@10515
|
453 |
fun close_derivation thm =
|
wenzelm@10515
|
454 |
if Thm.get_name_tags thm = ("", []) then Thm.name_thm ("", thm)
|
wenzelm@10515
|
455 |
else thm;
|
wenzelm@10515
|
456 |
|
berghofe@11512
|
457 |
fun standard' th =
|
wenzelm@10515
|
458 |
let val {maxidx,...} = rep_thm th in
|
wenzelm@10515
|
459 |
th
|
berghofe@14391
|
460 |
|> implies_intr_hyps
|
wenzelm@10515
|
461 |
|> forall_intr_frees |> forall_elim_vars (maxidx + 1)
|
wenzelm@10515
|
462 |
|> strip_shyps_warning
|
berghofe@11512
|
463 |
|> zero_var_indexes |> Thm.varifyT |> Thm.compress
|
wenzelm@1218
|
464 |
end;
|
wenzelm@1218
|
465 |
|
berghofe@14391
|
466 |
val standard = close_derivation o standard' o flexflex_unique;
|
berghofe@11512
|
467 |
|
wenzelm@12005
|
468 |
fun local_standard th =
|
wenzelm@12221
|
469 |
th |> strip_shyps |> zero_var_indexes
|
wenzelm@12005
|
470 |
|> Thm.compress |> close_derivation;
|
wenzelm@12005
|
471 |
|
clasohm@0
|
472 |
|
wenzelm@8328
|
473 |
(*Convert all Vars in a theorem to Frees. Also return a function for
|
paulson@4610
|
474 |
reversing that operation. DOES NOT WORK FOR TYPE VARIABLES.
|
paulson@4610
|
475 |
Similar code in type/freeze_thaw*)
|
paulson@15495
|
476 |
|
paulson@15495
|
477 |
fun freeze_thaw_robust th =
|
paulson@15495
|
478 |
let val fth = freezeT th
|
wenzelm@16425
|
479 |
val {prop, tpairs, thy, ...} = rep_thm fth
|
paulson@15495
|
480 |
in
|
skalberg@15574
|
481 |
case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
|
paulson@15495
|
482 |
[] => (fth, fn i => fn x => x) (*No vars: nothing to do!*)
|
paulson@15495
|
483 |
| vars =>
|
paulson@15495
|
484 |
let fun newName (Var(ix,_), pairs) =
|
paulson@15495
|
485 |
let val v = gensym (string_of_indexname ix)
|
paulson@15495
|
486 |
in ((ix,v)::pairs) end;
|
skalberg@15574
|
487 |
val alist = foldr newName [] vars
|
paulson@15495
|
488 |
fun mk_inst (Var(v,T)) =
|
wenzelm@16425
|
489 |
(cterm_of thy (Var(v,T)),
|
wenzelm@16425
|
490 |
cterm_of thy (Free(valOf (assoc(alist,v)), T)))
|
paulson@15495
|
491 |
val insts = map mk_inst vars
|
paulson@15495
|
492 |
fun thaw i th' = (*i is non-negative increment for Var indexes*)
|
paulson@15495
|
493 |
th' |> forall_intr_list (map #2 insts)
|
paulson@15495
|
494 |
|> forall_elim_list (map (Thm.cterm_incr_indexes i o #1) insts)
|
paulson@15495
|
495 |
in (Thm.instantiate ([],insts) fth, thaw) end
|
paulson@15495
|
496 |
end;
|
paulson@15495
|
497 |
|
paulson@15495
|
498 |
(*Basic version of the function above. No option to rename Vars apart in thaw.
|
paulson@15495
|
499 |
The Frees created from Vars have nice names.*)
|
paulson@4610
|
500 |
fun freeze_thaw th =
|
paulson@7248
|
501 |
let val fth = freezeT th
|
wenzelm@16425
|
502 |
val {prop, tpairs, thy, ...} = rep_thm fth
|
paulson@7248
|
503 |
in
|
skalberg@15574
|
504 |
case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
|
paulson@7248
|
505 |
[] => (fth, fn x => x)
|
paulson@7248
|
506 |
| vars =>
|
wenzelm@8328
|
507 |
let fun newName (Var(ix,_), (pairs,used)) =
|
wenzelm@8328
|
508 |
let val v = variant used (string_of_indexname ix)
|
wenzelm@8328
|
509 |
in ((ix,v)::pairs, v::used) end;
|
skalberg@15574
|
510 |
val (alist, _) = foldr newName ([], Library.foldr add_term_names
|
skalberg@15574
|
511 |
(prop :: Thm.terms_of_tpairs tpairs, [])) vars
|
wenzelm@8328
|
512 |
fun mk_inst (Var(v,T)) =
|
wenzelm@16425
|
513 |
(cterm_of thy (Var(v,T)),
|
wenzelm@16425
|
514 |
cterm_of thy (Free(valOf (assoc(alist,v)), T)))
|
wenzelm@8328
|
515 |
val insts = map mk_inst vars
|
wenzelm@8328
|
516 |
fun thaw th' =
|
wenzelm@8328
|
517 |
th' |> forall_intr_list (map #2 insts)
|
wenzelm@8328
|
518 |
|> forall_elim_list (map #1 insts)
|
wenzelm@8328
|
519 |
in (Thm.instantiate ([],insts) fth, thaw) end
|
paulson@7248
|
520 |
end;
|
paulson@4610
|
521 |
|
paulson@7248
|
522 |
(*Rotates a rule's premises to the left by k*)
|
paulson@7248
|
523 |
val rotate_prems = permute_prems 0;
|
paulson@4610
|
524 |
|
oheimb@11163
|
525 |
(* permute prems, where the i-th position in the argument list (counting from 0)
|
oheimb@11163
|
526 |
gives the position within the original thm to be transferred to position i.
|
oheimb@11163
|
527 |
Any remaining trailing positions are left unchanged. *)
|
oheimb@11163
|
528 |
val rearrange_prems = let
|
oheimb@11163
|
529 |
fun rearr new [] thm = thm
|
wenzelm@11815
|
530 |
| rearr new (p::ps) thm = rearr (new+1)
|
oheimb@11163
|
531 |
(map (fn q => if new<=q andalso q<p then q+1 else q) ps)
|
oheimb@11163
|
532 |
(permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
|
oheimb@11163
|
533 |
in rearr 0 end;
|
paulson@4610
|
534 |
|
wenzelm@252
|
535 |
(*Assume a new formula, read following the same conventions as axioms.
|
clasohm@0
|
536 |
Generalizes over Free variables,
|
clasohm@0
|
537 |
creates the assumption, and then strips quantifiers.
|
clasohm@0
|
538 |
Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
|
wenzelm@252
|
539 |
[ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ] *)
|
clasohm@0
|
540 |
fun assume_ax thy sP =
|
wenzelm@16425
|
541 |
let val prop = Logic.close_form (term_of (read_cterm thy (sP, propT)))
|
wenzelm@16425
|
542 |
in forall_elim_vars 0 (Thm.assume (cterm_of thy prop)) end;
|
clasohm@0
|
543 |
|
wenzelm@252
|
544 |
(*Resolution: exactly one resolvent must be produced.*)
|
clasohm@0
|
545 |
fun tha RSN (i,thb) =
|
wenzelm@4270
|
546 |
case Seq.chop (2, biresolution false [(false,tha)] i thb) of
|
clasohm@0
|
547 |
([th],_) => th
|
clasohm@0
|
548 |
| ([],_) => raise THM("RSN: no unifiers", i, [tha,thb])
|
clasohm@0
|
549 |
| _ => raise THM("RSN: multiple unifiers", i, [tha,thb]);
|
clasohm@0
|
550 |
|
clasohm@0
|
551 |
(*resolution: P==>Q, Q==>R gives P==>R. *)
|
clasohm@0
|
552 |
fun tha RS thb = tha RSN (1,thb);
|
clasohm@0
|
553 |
|
clasohm@0
|
554 |
(*For joining lists of rules*)
|
wenzelm@252
|
555 |
fun thas RLN (i,thbs) =
|
clasohm@0
|
556 |
let val resolve = biresolution false (map (pair false) thas) i
|
wenzelm@4270
|
557 |
fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
|
paulson@2672
|
558 |
in List.concat (map resb thbs) end;
|
clasohm@0
|
559 |
|
clasohm@0
|
560 |
fun thas RL thbs = thas RLN (1,thbs);
|
clasohm@0
|
561 |
|
lcp@11
|
562 |
(*Resolve a list of rules against bottom_rl from right to left;
|
lcp@11
|
563 |
makes proof trees*)
|
wenzelm@252
|
564 |
fun rls MRS bottom_rl =
|
lcp@11
|
565 |
let fun rs_aux i [] = bottom_rl
|
wenzelm@252
|
566 |
| rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
|
lcp@11
|
567 |
in rs_aux 1 rls end;
|
lcp@11
|
568 |
|
lcp@11
|
569 |
(*As above, but for rule lists*)
|
wenzelm@252
|
570 |
fun rlss MRL bottom_rls =
|
lcp@11
|
571 |
let fun rs_aux i [] = bottom_rls
|
wenzelm@252
|
572 |
| rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
|
lcp@11
|
573 |
in rs_aux 1 rlss end;
|
lcp@11
|
574 |
|
wenzelm@9288
|
575 |
(*A version of MRS with more appropriate argument order*)
|
wenzelm@9288
|
576 |
fun bottom_rl OF rls = rls MRS bottom_rl;
|
wenzelm@9288
|
577 |
|
wenzelm@252
|
578 |
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
|
clasohm@0
|
579 |
with no lifting or renaming! Q may contain ==> or meta-quants
|
clasohm@0
|
580 |
ALWAYS deletes premise i *)
|
wenzelm@252
|
581 |
fun compose(tha,i,thb) =
|
wenzelm@4270
|
582 |
Seq.list_of (bicompose false (false,tha,0) i thb);
|
clasohm@0
|
583 |
|
wenzelm@6946
|
584 |
fun compose_single (tha,i,thb) =
|
wenzelm@6946
|
585 |
(case compose (tha,i,thb) of
|
wenzelm@6946
|
586 |
[th] => th
|
wenzelm@6946
|
587 |
| _ => raise THM ("compose: unique result expected", i, [tha,thb]));
|
wenzelm@6946
|
588 |
|
clasohm@0
|
589 |
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
|
clasohm@0
|
590 |
fun tha COMP thb =
|
clasohm@0
|
591 |
case compose(tha,1,thb) of
|
wenzelm@252
|
592 |
[th] => th
|
clasohm@0
|
593 |
| _ => raise THM("COMP", 1, [tha,thb]);
|
clasohm@0
|
594 |
|
wenzelm@13105
|
595 |
|
wenzelm@4016
|
596 |
(** theorem equality **)
|
clasohm@0
|
597 |
|
wenzelm@16425
|
598 |
(*True if the two theorems have the same theory.*)
|
wenzelm@16425
|
599 |
val eq_thm_thy = eq_thy o pairself Thm.theory_of_thm;
|
paulson@13650
|
600 |
|
paulson@13650
|
601 |
(*True if the two theorems have the same prop field, ignoring hyps, der, etc.*)
|
wenzelm@16720
|
602 |
val eq_thm_prop = op aconv o pairself Thm.full_prop_of;
|
clasohm@0
|
603 |
|
clasohm@0
|
604 |
(*Useful "distance" function for BEST_FIRST*)
|
wenzelm@16720
|
605 |
val size_of_thm = size_of_term o Thm.full_prop_of;
|
clasohm@0
|
606 |
|
wenzelm@9829
|
607 |
(*maintain lists of theorems --- preserving canonical order*)
|
wenzelm@13105
|
608 |
fun del_rules rs rules = Library.gen_rems eq_thm_prop (rules, rs);
|
wenzelm@9862
|
609 |
fun add_rules rs rules = rs @ del_rules rs rules;
|
wenzelm@12373
|
610 |
val del_rule = del_rules o single;
|
wenzelm@12373
|
611 |
val add_rule = add_rules o single;
|
wenzelm@13105
|
612 |
fun merge_rules (rules1, rules2) = gen_merge_lists' eq_thm_prop rules1 rules2;
|
wenzelm@9829
|
613 |
|
lcp@1194
|
614 |
(** Mark Staples's weaker version of eq_thm: ignores variable renaming and
|
lcp@1194
|
615 |
(some) type variable renaming **)
|
lcp@1194
|
616 |
|
lcp@1194
|
617 |
(* Can't use term_vars, because it sorts the resulting list of variable names.
|
lcp@1194
|
618 |
We instead need the unique list noramlised by the order of appearance
|
lcp@1194
|
619 |
in the term. *)
|
lcp@1194
|
620 |
fun term_vars' (t as Var(v,T)) = [t]
|
lcp@1194
|
621 |
| term_vars' (Abs(_,_,b)) = term_vars' b
|
lcp@1194
|
622 |
| term_vars' (f$a) = (term_vars' f) @ (term_vars' a)
|
lcp@1194
|
623 |
| term_vars' _ = [];
|
lcp@1194
|
624 |
|
lcp@1194
|
625 |
fun forall_intr_vars th =
|
wenzelm@16425
|
626 |
let val {prop,thy,...} = rep_thm th;
|
lcp@1194
|
627 |
val vars = distinct (term_vars' prop);
|
wenzelm@16425
|
628 |
in forall_intr_list (map (cterm_of thy) vars) th end;
|
lcp@1194
|
629 |
|
wenzelm@13105
|
630 |
val weak_eq_thm = Thm.eq_thm o pairself (forall_intr_vars o freezeT);
|
lcp@1194
|
631 |
|
lcp@1194
|
632 |
|
clasohm@0
|
633 |
(*** Meta-Rewriting Rules ***)
|
clasohm@0
|
634 |
|
wenzelm@16425
|
635 |
fun read_prop s = read_cterm ProtoPure.thy (s, propT);
|
paulson@4610
|
636 |
|
wenzelm@9455
|
637 |
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
|
wenzelm@9455
|
638 |
fun store_standard_thm name thm = store_thm name (standard thm);
|
wenzelm@12135
|
639 |
fun store_thm_open name thm = hd (PureThy.smart_store_thms_open (name, [thm]));
|
wenzelm@12135
|
640 |
fun store_standard_thm_open name thm = store_thm_open name (standard' thm);
|
wenzelm@4016
|
641 |
|
clasohm@0
|
642 |
val reflexive_thm =
|
wenzelm@16425
|
643 |
let val cx = cterm_of ProtoPure.thy (Var(("x",0),TVar(("'a",0),[])))
|
wenzelm@12135
|
644 |
in store_standard_thm_open "reflexive" (Thm.reflexive cx) end;
|
clasohm@0
|
645 |
|
clasohm@0
|
646 |
val symmetric_thm =
|
wenzelm@14854
|
647 |
let val xy = read_prop "x == y"
|
wenzelm@16595
|
648 |
in store_standard_thm_open "symmetric" (Thm.implies_intr xy (Thm.symmetric (Thm.assume xy))) end;
|
clasohm@0
|
649 |
|
clasohm@0
|
650 |
val transitive_thm =
|
wenzelm@14854
|
651 |
let val xy = read_prop "x == y"
|
wenzelm@14854
|
652 |
val yz = read_prop "y == z"
|
clasohm@0
|
653 |
val xythm = Thm.assume xy and yzthm = Thm.assume yz
|
wenzelm@12135
|
654 |
in store_standard_thm_open "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
|
clasohm@0
|
655 |
|
nipkow@4679
|
656 |
fun symmetric_fun thm = thm RS symmetric_thm;
|
nipkow@4679
|
657 |
|
berghofe@11512
|
658 |
fun extensional eq =
|
berghofe@11512
|
659 |
let val eq' =
|
berghofe@11512
|
660 |
abstract_rule "x" (snd (Thm.dest_comb (fst (dest_equals (cprop_of eq))))) eq
|
berghofe@11512
|
661 |
in equal_elim (eta_conversion (cprop_of eq')) eq' end;
|
berghofe@11512
|
662 |
|
berghofe@10414
|
663 |
val imp_cong =
|
berghofe@10414
|
664 |
let
|
berghofe@10414
|
665 |
val ABC = read_prop "PROP A ==> PROP B == PROP C"
|
berghofe@10414
|
666 |
val AB = read_prop "PROP A ==> PROP B"
|
berghofe@10414
|
667 |
val AC = read_prop "PROP A ==> PROP C"
|
berghofe@10414
|
668 |
val A = read_prop "PROP A"
|
berghofe@10414
|
669 |
in
|
wenzelm@12135
|
670 |
store_standard_thm_open "imp_cong" (implies_intr ABC (equal_intr
|
berghofe@10414
|
671 |
(implies_intr AB (implies_intr A
|
berghofe@10414
|
672 |
(equal_elim (implies_elim (assume ABC) (assume A))
|
berghofe@10414
|
673 |
(implies_elim (assume AB) (assume A)))))
|
berghofe@10414
|
674 |
(implies_intr AC (implies_intr A
|
berghofe@10414
|
675 |
(equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
|
berghofe@10414
|
676 |
(implies_elim (assume AC) (assume A)))))))
|
berghofe@10414
|
677 |
end;
|
berghofe@10414
|
678 |
|
berghofe@10414
|
679 |
val swap_prems_eq =
|
berghofe@10414
|
680 |
let
|
berghofe@10414
|
681 |
val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
|
berghofe@10414
|
682 |
val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
|
berghofe@10414
|
683 |
val A = read_prop "PROP A"
|
berghofe@10414
|
684 |
val B = read_prop "PROP B"
|
berghofe@10414
|
685 |
in
|
wenzelm@12135
|
686 |
store_standard_thm_open "swap_prems_eq" (equal_intr
|
berghofe@10414
|
687 |
(implies_intr ABC (implies_intr B (implies_intr A
|
berghofe@10414
|
688 |
(implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
|
berghofe@10414
|
689 |
(implies_intr BAC (implies_intr A (implies_intr B
|
berghofe@10414
|
690 |
(implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
|
berghofe@10414
|
691 |
end;
|
lcp@229
|
692 |
|
skalberg@15001
|
693 |
val imp_cong' = combination o combination (reflexive implies)
|
clasohm@0
|
694 |
|
berghofe@13325
|
695 |
fun abs_def thm =
|
berghofe@13325
|
696 |
let
|
berghofe@13325
|
697 |
val (_, cvs) = strip_comb (fst (dest_equals (cprop_of thm)));
|
skalberg@15574
|
698 |
val thm' = foldr (fn (ct, thm) => Thm.abstract_rule
|
berghofe@13325
|
699 |
(case term_of ct of Var ((a, _), _) => a | Free (a, _) => a | _ => "x")
|
skalberg@15574
|
700 |
ct thm) thm cvs
|
berghofe@13325
|
701 |
in transitive
|
berghofe@13325
|
702 |
(symmetric (eta_conversion (fst (dest_equals (cprop_of thm'))))) thm'
|
berghofe@13325
|
703 |
end;
|
berghofe@13325
|
704 |
|
clasohm@0
|
705 |
|
skalberg@15001
|
706 |
local
|
skalberg@15001
|
707 |
val dest_eq = dest_equals o cprop_of
|
skalberg@15001
|
708 |
val rhs_of = snd o dest_eq
|
skalberg@15001
|
709 |
in
|
skalberg@15001
|
710 |
fun beta_eta_conversion t =
|
skalberg@15001
|
711 |
let val thm = beta_conversion true t
|
skalberg@15001
|
712 |
in transitive thm (eta_conversion (rhs_of thm)) end
|
skalberg@15001
|
713 |
end;
|
skalberg@15001
|
714 |
|
berghofe@15925
|
715 |
fun eta_long_conversion ct = transitive (beta_eta_conversion ct)
|
berghofe@15925
|
716 |
(symmetric (beta_eta_conversion (cterm_fun (Pattern.eta_long []) ct)));
|
berghofe@15925
|
717 |
|
skalberg@15001
|
718 |
(*In [A1,...,An]==>B, rewrite the selected A's only -- for rewrite_goals_tac*)
|
skalberg@15001
|
719 |
fun goals_conv pred cv =
|
skalberg@15001
|
720 |
let fun gconv i ct =
|
skalberg@15001
|
721 |
let val (A,B) = dest_implies ct
|
skalberg@15001
|
722 |
in imp_cong' (if pred i then cv A else reflexive A) (gconv (i+1) B) end
|
skalberg@15001
|
723 |
handle TERM _ => reflexive ct
|
skalberg@15001
|
724 |
in gconv 1 end
|
skalberg@15001
|
725 |
|
skalberg@15001
|
726 |
(* Rewrite A in !!x1,...,xn. A *)
|
skalberg@15001
|
727 |
fun forall_conv cv ct =
|
skalberg@15001
|
728 |
let val p as (ct1, ct2) = Thm.dest_comb ct
|
skalberg@15001
|
729 |
in (case pairself term_of p of
|
skalberg@15001
|
730 |
(Const ("all", _), Abs (s, _, _)) =>
|
wenzelm@16682
|
731 |
let val (v, ct') = Thm.dest_abs (SOME (gensym "all_")) ct2;
|
skalberg@15001
|
732 |
in Thm.combination (Thm.reflexive ct1)
|
skalberg@15001
|
733 |
(Thm.abstract_rule s v (forall_conv cv ct'))
|
skalberg@15001
|
734 |
end
|
skalberg@15001
|
735 |
| _ => cv ct)
|
skalberg@15001
|
736 |
end handle TERM _ => cv ct;
|
skalberg@15001
|
737 |
|
skalberg@15001
|
738 |
(*Use a conversion to transform a theorem*)
|
skalberg@15001
|
739 |
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
|
skalberg@15001
|
740 |
|
wenzelm@15669
|
741 |
(*** Some useful meta-theorems ***)
|
clasohm@0
|
742 |
|
clasohm@0
|
743 |
(*The rule V/V, obtains assumption solving for eresolve_tac*)
|
wenzelm@12135
|
744 |
val asm_rl = store_standard_thm_open "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
|
wenzelm@7380
|
745 |
val _ = store_thm "_" asm_rl;
|
clasohm@0
|
746 |
|
clasohm@0
|
747 |
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
|
wenzelm@4016
|
748 |
val cut_rl =
|
wenzelm@12135
|
749 |
store_standard_thm_open "cut_rl"
|
wenzelm@9455
|
750 |
(Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
|
clasohm@0
|
751 |
|
wenzelm@252
|
752 |
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
|
clasohm@0
|
753 |
[| PROP V; PROP V ==> PROP W |] ==> PROP W *)
|
clasohm@0
|
754 |
val revcut_rl =
|
paulson@4610
|
755 |
let val V = read_prop "PROP V"
|
paulson@4610
|
756 |
and VW = read_prop "PROP V ==> PROP W";
|
wenzelm@4016
|
757 |
in
|
wenzelm@12135
|
758 |
store_standard_thm_open "revcut_rl"
|
wenzelm@4016
|
759 |
(implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
|
clasohm@0
|
760 |
end;
|
clasohm@0
|
761 |
|
lcp@668
|
762 |
(*for deleting an unwanted assumption*)
|
lcp@668
|
763 |
val thin_rl =
|
paulson@4610
|
764 |
let val V = read_prop "PROP V"
|
paulson@4610
|
765 |
and W = read_prop "PROP W";
|
wenzelm@12135
|
766 |
in store_standard_thm_open "thin_rl" (implies_intr V (implies_intr W (assume W))) end;
|
lcp@668
|
767 |
|
clasohm@0
|
768 |
(* (!!x. PROP ?V) == PROP ?V Allows removal of redundant parameters*)
|
clasohm@0
|
769 |
val triv_forall_equality =
|
paulson@4610
|
770 |
let val V = read_prop "PROP V"
|
paulson@4610
|
771 |
and QV = read_prop "!!x::'a. PROP V"
|
wenzelm@16425
|
772 |
and x = read_cterm ProtoPure.thy ("x", TypeInfer.logicT);
|
wenzelm@4016
|
773 |
in
|
wenzelm@12135
|
774 |
store_standard_thm_open "triv_forall_equality"
|
berghofe@11512
|
775 |
(equal_intr (implies_intr QV (forall_elim x (assume QV)))
|
berghofe@11512
|
776 |
(implies_intr V (forall_intr x (assume V))))
|
clasohm@0
|
777 |
end;
|
clasohm@0
|
778 |
|
nipkow@1756
|
779 |
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
|
nipkow@1756
|
780 |
(PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
|
nipkow@1756
|
781 |
`thm COMP swap_prems_rl' swaps the first two premises of `thm'
|
nipkow@1756
|
782 |
*)
|
nipkow@1756
|
783 |
val swap_prems_rl =
|
paulson@4610
|
784 |
let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
|
nipkow@1756
|
785 |
val major = assume cmajor;
|
paulson@4610
|
786 |
val cminor1 = read_prop "PROP PhiA";
|
nipkow@1756
|
787 |
val minor1 = assume cminor1;
|
paulson@4610
|
788 |
val cminor2 = read_prop "PROP PhiB";
|
nipkow@1756
|
789 |
val minor2 = assume cminor2;
|
wenzelm@12135
|
790 |
in store_standard_thm_open "swap_prems_rl"
|
nipkow@1756
|
791 |
(implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
|
nipkow@1756
|
792 |
(implies_elim (implies_elim major minor1) minor2))))
|
nipkow@1756
|
793 |
end;
|
nipkow@1756
|
794 |
|
nipkow@3653
|
795 |
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
|
nipkow@3653
|
796 |
==> PROP ?phi == PROP ?psi
|
wenzelm@8328
|
797 |
Introduction rule for == as a meta-theorem.
|
nipkow@3653
|
798 |
*)
|
nipkow@3653
|
799 |
val equal_intr_rule =
|
paulson@4610
|
800 |
let val PQ = read_prop "PROP phi ==> PROP psi"
|
paulson@4610
|
801 |
and QP = read_prop "PROP psi ==> PROP phi"
|
wenzelm@4016
|
802 |
in
|
wenzelm@12135
|
803 |
store_standard_thm_open "equal_intr_rule"
|
wenzelm@4016
|
804 |
(implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
|
nipkow@3653
|
805 |
end;
|
nipkow@3653
|
806 |
|
wenzelm@13368
|
807 |
(* [| PROP ?phi == PROP ?psi; PROP ?phi |] ==> PROP ?psi *)
|
wenzelm@13368
|
808 |
val equal_elim_rule1 =
|
wenzelm@13368
|
809 |
let val eq = read_prop "PROP phi == PROP psi"
|
wenzelm@13368
|
810 |
and P = read_prop "PROP phi"
|
wenzelm@13368
|
811 |
in store_standard_thm_open "equal_elim_rule1"
|
wenzelm@13368
|
812 |
(Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
|
wenzelm@13368
|
813 |
end;
|
wenzelm@4285
|
814 |
|
wenzelm@12297
|
815 |
(* "[| PROP ?phi; PROP ?phi; PROP ?psi |] ==> PROP ?psi" *)
|
wenzelm@12297
|
816 |
|
wenzelm@12297
|
817 |
val remdups_rl =
|
wenzelm@12297
|
818 |
let val P = read_prop "PROP phi" and Q = read_prop "PROP psi";
|
wenzelm@12297
|
819 |
in store_standard_thm_open "remdups_rl" (implies_intr_list [P, P, Q] (Thm.assume Q)) end;
|
wenzelm@12297
|
820 |
|
wenzelm@12297
|
821 |
|
wenzelm@9554
|
822 |
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
|
wenzelm@12297
|
823 |
Rewrite rule for HHF normalization.*)
|
wenzelm@9554
|
824 |
|
wenzelm@9554
|
825 |
val norm_hhf_eq =
|
wenzelm@9554
|
826 |
let
|
wenzelm@16425
|
827 |
val cert = Thm.cterm_of ProtoPure.thy;
|
wenzelm@14854
|
828 |
val aT = TFree ("'a", []);
|
wenzelm@9554
|
829 |
val all = Term.all aT;
|
wenzelm@9554
|
830 |
val x = Free ("x", aT);
|
wenzelm@9554
|
831 |
val phi = Free ("phi", propT);
|
wenzelm@9554
|
832 |
val psi = Free ("psi", aT --> propT);
|
wenzelm@9554
|
833 |
|
wenzelm@9554
|
834 |
val cx = cert x;
|
wenzelm@9554
|
835 |
val cphi = cert phi;
|
wenzelm@9554
|
836 |
val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
|
wenzelm@9554
|
837 |
val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
|
wenzelm@9554
|
838 |
in
|
wenzelm@9554
|
839 |
Thm.equal_intr
|
wenzelm@9554
|
840 |
(Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
|
wenzelm@9554
|
841 |
|> Thm.forall_elim cx
|
wenzelm@9554
|
842 |
|> Thm.implies_intr cphi
|
wenzelm@9554
|
843 |
|> Thm.forall_intr cx
|
wenzelm@9554
|
844 |
|> Thm.implies_intr lhs)
|
wenzelm@9554
|
845 |
(Thm.implies_elim
|
wenzelm@9554
|
846 |
(Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
|
wenzelm@9554
|
847 |
|> Thm.forall_intr cx
|
wenzelm@9554
|
848 |
|> Thm.implies_intr cphi
|
wenzelm@9554
|
849 |
|> Thm.implies_intr rhs)
|
wenzelm@12135
|
850 |
|> store_standard_thm_open "norm_hhf_eq"
|
wenzelm@9554
|
851 |
end;
|
wenzelm@9554
|
852 |
|
wenzelm@12800
|
853 |
fun is_norm_hhf tm =
|
wenzelm@12800
|
854 |
let
|
wenzelm@12800
|
855 |
fun is_norm (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
|
wenzelm@12800
|
856 |
| is_norm (t $ u) = is_norm t andalso is_norm u
|
wenzelm@12800
|
857 |
| is_norm (Abs (_, _, t)) = is_norm t
|
wenzelm@12800
|
858 |
| is_norm _ = true;
|
wenzelm@12800
|
859 |
in is_norm (Pattern.beta_eta_contract tm) end;
|
wenzelm@12800
|
860 |
|
wenzelm@16425
|
861 |
fun norm_hhf thy t =
|
wenzelm@12800
|
862 |
if is_norm_hhf t then t
|
wenzelm@16425
|
863 |
else Pattern.rewrite_term (Sign.tsig_of thy) [Logic.dest_equals (prop_of norm_hhf_eq)] [] t;
|
wenzelm@12800
|
864 |
|
wenzelm@9554
|
865 |
|
wenzelm@16425
|
866 |
(*** Instantiate theorem th, reading instantiations in theory thy ****)
|
paulson@8129
|
867 |
|
paulson@8129
|
868 |
(*Version that normalizes the result: Thm.instantiate no longer does that*)
|
paulson@8129
|
869 |
fun instantiate instpair th = Thm.instantiate instpair th COMP asm_rl;
|
paulson@8129
|
870 |
|
wenzelm@16425
|
871 |
fun read_instantiate_sg' thy sinsts th =
|
paulson@8129
|
872 |
let val ts = types_sorts th;
|
wenzelm@15669
|
873 |
val used = add_used th [];
|
wenzelm@16425
|
874 |
in instantiate (read_insts thy ts ts used sinsts) th end;
|
berghofe@15797
|
875 |
|
wenzelm@16425
|
876 |
fun read_instantiate_sg thy sinsts th =
|
wenzelm@16425
|
877 |
read_instantiate_sg' thy (map (apfst Syntax.indexname) sinsts) th;
|
paulson@8129
|
878 |
|
paulson@8129
|
879 |
(*Instantiate theorem th, reading instantiations under theory of th*)
|
paulson@8129
|
880 |
fun read_instantiate sinsts th =
|
wenzelm@16425
|
881 |
read_instantiate_sg (Thm.theory_of_thm th) sinsts th;
|
paulson@8129
|
882 |
|
berghofe@15797
|
883 |
fun read_instantiate' sinsts th =
|
wenzelm@16425
|
884 |
read_instantiate_sg' (Thm.theory_of_thm th) sinsts th;
|
berghofe@15797
|
885 |
|
paulson@8129
|
886 |
|
paulson@8129
|
887 |
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
|
paulson@8129
|
888 |
Instantiates distinct Vars by terms, inferring type instantiations. *)
|
paulson@8129
|
889 |
local
|
wenzelm@16425
|
890 |
fun add_types ((ct,cu), (thy,tye,maxidx)) =
|
wenzelm@16425
|
891 |
let val {thy=thyt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
|
wenzelm@16425
|
892 |
and {thy=thyu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
|
paulson@8129
|
893 |
val maxi = Int.max(maxidx, Int.max(maxt, maxu));
|
wenzelm@16425
|
894 |
val thy' = Theory.merge(thy, Theory.merge(thyt, thyu))
|
wenzelm@16425
|
895 |
val (tye',maxi') = Type.unify (Sign.tsig_of thy') (tye, maxi) (T, U)
|
wenzelm@10403
|
896 |
handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
|
wenzelm@16425
|
897 |
in (thy', tye', maxi') end;
|
paulson@8129
|
898 |
in
|
paulson@8129
|
899 |
fun cterm_instantiate ctpairs0 th =
|
wenzelm@16425
|
900 |
let val (thy,tye,_) = foldr add_types (Thm.theory_of_thm th, Vartab.empty, 0) ctpairs0
|
paulson@14340
|
901 |
fun instT(ct,cu) =
|
wenzelm@16425
|
902 |
let val inst = cterm_of thy o Envir.subst_TVars tye o term_of
|
paulson@14340
|
903 |
in (inst ct, inst cu) end
|
wenzelm@16425
|
904 |
fun ctyp2 (ixn, (S, T)) = (ctyp_of thy (TVar (ixn, S)), ctyp_of thy T)
|
berghofe@8406
|
905 |
in instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th end
|
paulson@8129
|
906 |
handle TERM _ =>
|
wenzelm@16425
|
907 |
raise THM("cterm_instantiate: incompatible theories",0,[th])
|
paulson@8129
|
908 |
| TYPE (msg, _, _) => raise THM(msg, 0, [th])
|
paulson@8129
|
909 |
end;
|
paulson@8129
|
910 |
|
paulson@8129
|
911 |
|
paulson@8129
|
912 |
(** Derived rules mainly for METAHYPS **)
|
paulson@8129
|
913 |
|
paulson@8129
|
914 |
(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
|
paulson@8129
|
915 |
fun equal_abs_elim ca eqth =
|
wenzelm@16425
|
916 |
let val {thy=thya, t=a, ...} = rep_cterm ca
|
paulson@8129
|
917 |
and combth = combination eqth (reflexive ca)
|
wenzelm@16425
|
918 |
val {thy,prop,...} = rep_thm eqth
|
paulson@8129
|
919 |
val (abst,absu) = Logic.dest_equals prop
|
wenzelm@16425
|
920 |
val cterm = cterm_of (Theory.merge (thy,thya))
|
berghofe@10414
|
921 |
in transitive (symmetric (beta_conversion false (cterm (abst$a))))
|
berghofe@10414
|
922 |
(transitive combth (beta_conversion false (cterm (absu$a))))
|
paulson@8129
|
923 |
end
|
paulson@8129
|
924 |
handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
|
paulson@8129
|
925 |
|
paulson@8129
|
926 |
(*Calling equal_abs_elim with multiple terms*)
|
skalberg@15574
|
927 |
fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) th (rev cts);
|
paulson@8129
|
928 |
|
paulson@8129
|
929 |
|
wenzelm@10667
|
930 |
(*** Goal (PROP A) <==> PROP A ***)
|
wenzelm@4789
|
931 |
|
wenzelm@4789
|
932 |
local
|
wenzelm@16425
|
933 |
val cert = Thm.cterm_of ProtoPure.thy;
|
wenzelm@10667
|
934 |
val A = Free ("A", propT);
|
wenzelm@10667
|
935 |
val G = Logic.mk_goal A;
|
wenzelm@4789
|
936 |
val (G_def, _) = freeze_thaw ProtoPure.Goal_def;
|
wenzelm@4789
|
937 |
in
|
wenzelm@11741
|
938 |
val triv_goal = store_thm "triv_goal" (kind_rule internalK (standard
|
wenzelm@10667
|
939 |
(Thm.equal_elim (Thm.symmetric G_def) (Thm.assume (cert A)))));
|
wenzelm@11741
|
940 |
val rev_triv_goal = store_thm "rev_triv_goal" (kind_rule internalK (standard
|
wenzelm@10667
|
941 |
(Thm.equal_elim G_def (Thm.assume (cert G)))));
|
wenzelm@4789
|
942 |
end;
|
wenzelm@4789
|
943 |
|
wenzelm@16425
|
944 |
val mk_cgoal = Thm.capply (Thm.cterm_of ProtoPure.thy Logic.goal_const);
|
wenzelm@6995
|
945 |
fun assume_goal ct = Thm.assume (mk_cgoal ct) RS rev_triv_goal;
|
wenzelm@6995
|
946 |
|
wenzelm@11815
|
947 |
fun implies_intr_goals cprops thm =
|
wenzelm@11815
|
948 |
implies_elim_list (implies_intr_list cprops thm) (map assume_goal cprops)
|
wenzelm@11815
|
949 |
|> implies_intr_list (map mk_cgoal cprops);
|
wenzelm@11815
|
950 |
|
wenzelm@4789
|
951 |
|
wenzelm@4285
|
952 |
|
wenzelm@5688
|
953 |
(** variations on instantiate **)
|
wenzelm@4285
|
954 |
|
paulson@8550
|
955 |
(*shorthand for instantiating just one variable in the current theory*)
|
wenzelm@16425
|
956 |
fun inst x t = read_instantiate_sg (the_context()) [(x,t)];
|
paulson@8550
|
957 |
|
paulson@8550
|
958 |
|
wenzelm@16720
|
959 |
(* vars in left-to-right order *)
|
wenzelm@4285
|
960 |
|
skalberg@15570
|
961 |
fun tvars_of_terms ts = rev (Library.foldl Term.add_tvars ([], ts));
|
skalberg@15570
|
962 |
fun vars_of_terms ts = rev (Library.foldl Term.add_vars ([], ts));
|
wenzelm@5903
|
963 |
|
wenzelm@16720
|
964 |
fun tvars_of thm = tvars_of_terms [Thm.full_prop_of thm];
|
wenzelm@16720
|
965 |
fun vars_of thm = vars_of_terms [Thm.full_prop_of thm];
|
wenzelm@4285
|
966 |
|
wenzelm@4285
|
967 |
|
wenzelm@4285
|
968 |
(* instantiate by left-to-right occurrence of variables *)
|
wenzelm@4285
|
969 |
|
wenzelm@4285
|
970 |
fun instantiate' cTs cts thm =
|
wenzelm@4285
|
971 |
let
|
wenzelm@4285
|
972 |
fun err msg =
|
wenzelm@4285
|
973 |
raise TYPE ("instantiate': " ^ msg,
|
skalberg@15570
|
974 |
List.mapPartial (Option.map Thm.typ_of) cTs,
|
skalberg@15570
|
975 |
List.mapPartial (Option.map Thm.term_of) cts);
|
wenzelm@4285
|
976 |
|
wenzelm@4285
|
977 |
fun inst_of (v, ct) =
|
wenzelm@16425
|
978 |
(Thm.cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
|
wenzelm@4285
|
979 |
handle TYPE (msg, _, _) => err msg;
|
wenzelm@4285
|
980 |
|
berghofe@15797
|
981 |
fun tyinst_of (v, cT) =
|
wenzelm@16425
|
982 |
(Thm.ctyp_of (Thm.theory_of_ctyp cT) (TVar v), cT)
|
berghofe@15797
|
983 |
handle TYPE (msg, _, _) => err msg;
|
berghofe@15797
|
984 |
|
wenzelm@4285
|
985 |
fun zip_vars _ [] = []
|
skalberg@15531
|
986 |
| zip_vars (_ :: vs) (NONE :: opt_ts) = zip_vars vs opt_ts
|
skalberg@15531
|
987 |
| zip_vars (v :: vs) (SOME t :: opt_ts) = (v, t) :: zip_vars vs opt_ts
|
wenzelm@4285
|
988 |
| zip_vars [] _ = err "more instantiations than variables in thm";
|
wenzelm@4285
|
989 |
|
wenzelm@4285
|
990 |
(*instantiate types first!*)
|
wenzelm@4285
|
991 |
val thm' =
|
wenzelm@4285
|
992 |
if forall is_none cTs then thm
|
berghofe@15797
|
993 |
else Thm.instantiate (map tyinst_of (zip_vars (tvars_of thm) cTs), []) thm;
|
wenzelm@4285
|
994 |
in
|
wenzelm@4285
|
995 |
if forall is_none cts then thm'
|
wenzelm@4285
|
996 |
else Thm.instantiate ([], map inst_of (zip_vars (vars_of thm') cts)) thm'
|
wenzelm@4285
|
997 |
end;
|
wenzelm@4285
|
998 |
|
wenzelm@4285
|
999 |
|
berghofe@14081
|
1000 |
|
berghofe@14081
|
1001 |
(** renaming of bound variables **)
|
berghofe@14081
|
1002 |
|
berghofe@14081
|
1003 |
(* replace bound variables x_i in thm by y_i *)
|
berghofe@14081
|
1004 |
(* where vs = [(x_1, y_1), ..., (x_n, y_n)] *)
|
berghofe@14081
|
1005 |
|
berghofe@14081
|
1006 |
fun rename_bvars [] thm = thm
|
berghofe@14081
|
1007 |
| rename_bvars vs thm =
|
berghofe@14081
|
1008 |
let
|
wenzelm@16425
|
1009 |
val {thy, prop, ...} = rep_thm thm;
|
skalberg@15570
|
1010 |
fun ren (Abs (x, T, t)) = Abs (getOpt (assoc (vs, x), x), T, ren t)
|
berghofe@14081
|
1011 |
| ren (t $ u) = ren t $ ren u
|
berghofe@14081
|
1012 |
| ren t = t;
|
wenzelm@16425
|
1013 |
in equal_elim (reflexive (cterm_of thy (ren prop))) thm end;
|
berghofe@14081
|
1014 |
|
berghofe@14081
|
1015 |
|
berghofe@14081
|
1016 |
(* renaming in left-to-right order *)
|
berghofe@14081
|
1017 |
|
berghofe@14081
|
1018 |
fun rename_bvars' xs thm =
|
berghofe@14081
|
1019 |
let
|
wenzelm@16425
|
1020 |
val {thy, prop, ...} = rep_thm thm;
|
berghofe@14081
|
1021 |
fun rename [] t = ([], t)
|
berghofe@14081
|
1022 |
| rename (x' :: xs) (Abs (x, T, t)) =
|
berghofe@14081
|
1023 |
let val (xs', t') = rename xs t
|
skalberg@15570
|
1024 |
in (xs', Abs (getOpt (x',x), T, t')) end
|
berghofe@14081
|
1025 |
| rename xs (t $ u) =
|
berghofe@14081
|
1026 |
let
|
berghofe@14081
|
1027 |
val (xs', t') = rename xs t;
|
berghofe@14081
|
1028 |
val (xs'', u') = rename xs' u
|
berghofe@14081
|
1029 |
in (xs'', t' $ u') end
|
berghofe@14081
|
1030 |
| rename xs t = (xs, t);
|
berghofe@14081
|
1031 |
in case rename xs prop of
|
wenzelm@16425
|
1032 |
([], prop') => equal_elim (reflexive (cterm_of thy prop')) thm
|
berghofe@14081
|
1033 |
| _ => error "More names than abstractions in theorem"
|
berghofe@14081
|
1034 |
end;
|
berghofe@14081
|
1035 |
|
berghofe@14081
|
1036 |
|
berghofe@14081
|
1037 |
|
wenzelm@5688
|
1038 |
(* unvarify(T) *)
|
wenzelm@5688
|
1039 |
|
wenzelm@5688
|
1040 |
(*assume thm in standard form, i.e. no frees, 0 var indexes*)
|
wenzelm@5688
|
1041 |
|
wenzelm@5688
|
1042 |
fun unvarifyT thm =
|
wenzelm@5688
|
1043 |
let
|
wenzelm@16425
|
1044 |
val cT = Thm.ctyp_of (Thm.theory_of_thm thm);
|
skalberg@15531
|
1045 |
val tfrees = map (fn ((x, _), S) => SOME (cT (TFree (x, S)))) (tvars_of thm);
|
wenzelm@5688
|
1046 |
in instantiate' tfrees [] thm end;
|
wenzelm@5688
|
1047 |
|
wenzelm@5688
|
1048 |
fun unvarify raw_thm =
|
wenzelm@5688
|
1049 |
let
|
wenzelm@5688
|
1050 |
val thm = unvarifyT raw_thm;
|
wenzelm@16425
|
1051 |
val ct = Thm.cterm_of (Thm.theory_of_thm thm);
|
skalberg@15531
|
1052 |
val frees = map (fn ((x, _), T) => SOME (ct (Free (x, T)))) (vars_of thm);
|
wenzelm@5688
|
1053 |
in instantiate' [] frees thm end;
|
wenzelm@5688
|
1054 |
|
wenzelm@5688
|
1055 |
|
wenzelm@8605
|
1056 |
(* tvars_intr_list *)
|
wenzelm@8605
|
1057 |
|
wenzelm@8605
|
1058 |
fun tfrees_of thm =
|
wenzelm@8605
|
1059 |
let val {hyps, prop, ...} = Thm.rep_thm thm
|
berghofe@15797
|
1060 |
in foldr Term.add_term_tfrees [] (prop :: hyps) end;
|
wenzelm@8605
|
1061 |
|
wenzelm@8605
|
1062 |
fun tvars_intr_list tfrees thm =
|
berghofe@15797
|
1063 |
apsnd (map (fn ((s, S), ixn) => (s, (ixn, S)))) (Thm.varifyT'
|
berghofe@15797
|
1064 |
(gen_rems (op = o apfst fst) (tfrees_of thm, tfrees)) thm);
|
wenzelm@8605
|
1065 |
|
wenzelm@8605
|
1066 |
|
wenzelm@6435
|
1067 |
(* increment var indexes *)
|
wenzelm@6435
|
1068 |
|
wenzelm@6435
|
1069 |
fun incr_indexes_wrt is cTs cts thms =
|
wenzelm@6435
|
1070 |
let
|
wenzelm@6435
|
1071 |
val maxidx =
|
skalberg@15570
|
1072 |
Library.foldl Int.max (~1, is @
|
wenzelm@6435
|
1073 |
map (maxidx_of_typ o #T o Thm.rep_ctyp) cTs @
|
wenzelm@6435
|
1074 |
map (#maxidx o Thm.rep_cterm) cts @
|
wenzelm@6435
|
1075 |
map (#maxidx o Thm.rep_thm) thms);
|
berghofe@10414
|
1076 |
in Thm.incr_indexes (maxidx + 1) end;
|
wenzelm@6435
|
1077 |
|
wenzelm@6435
|
1078 |
|
wenzelm@8328
|
1079 |
(* freeze_all *)
|
wenzelm@8328
|
1080 |
|
wenzelm@8328
|
1081 |
(*freeze all (T)Vars; assumes thm in standard form*)
|
wenzelm@8328
|
1082 |
|
wenzelm@8328
|
1083 |
fun freeze_all_TVars thm =
|
wenzelm@8328
|
1084 |
(case tvars_of thm of
|
wenzelm@8328
|
1085 |
[] => thm
|
wenzelm@8328
|
1086 |
| tvars =>
|
wenzelm@16425
|
1087 |
let val cert = Thm.ctyp_of (Thm.theory_of_thm thm)
|
skalberg@15531
|
1088 |
in instantiate' (map (fn ((x, _), S) => SOME (cert (TFree (x, S)))) tvars) [] thm end);
|
wenzelm@8328
|
1089 |
|
wenzelm@8328
|
1090 |
fun freeze_all_Vars thm =
|
wenzelm@8328
|
1091 |
(case vars_of thm of
|
wenzelm@8328
|
1092 |
[] => thm
|
wenzelm@8328
|
1093 |
| vars =>
|
wenzelm@16425
|
1094 |
let val cert = Thm.cterm_of (Thm.theory_of_thm thm)
|
skalberg@15531
|
1095 |
in instantiate' [] (map (fn ((x, _), T) => SOME (cert (Free (x, T)))) vars) thm end);
|
wenzelm@8328
|
1096 |
|
wenzelm@8328
|
1097 |
val freeze_all = freeze_all_Vars o freeze_all_TVars;
|
wenzelm@8328
|
1098 |
|
wenzelm@8328
|
1099 |
|
wenzelm@5688
|
1100 |
(* mk_triv_goal *)
|
wenzelm@5688
|
1101 |
|
wenzelm@5688
|
1102 |
(*make an initial proof state, "PROP A ==> (PROP A)" *)
|
skalberg@15531
|
1103 |
fun mk_triv_goal ct = instantiate' [] [SOME ct] triv_goal;
|
paulson@5311
|
1104 |
|
wenzelm@11975
|
1105 |
|
wenzelm@11975
|
1106 |
|
wenzelm@11975
|
1107 |
(** meta-level conjunction **)
|
wenzelm@11975
|
1108 |
|
wenzelm@11975
|
1109 |
local
|
wenzelm@11975
|
1110 |
val A = read_prop "PROP A";
|
wenzelm@11975
|
1111 |
val B = read_prop "PROP B";
|
wenzelm@11975
|
1112 |
val C = read_prop "PROP C";
|
wenzelm@11975
|
1113 |
val ABC = read_prop "PROP A ==> PROP B ==> PROP C";
|
wenzelm@11975
|
1114 |
|
wenzelm@11975
|
1115 |
val proj1 =
|
wenzelm@11975
|
1116 |
forall_intr_list [A, B] (implies_intr_list [A, B] (Thm.assume A))
|
wenzelm@11975
|
1117 |
|> forall_elim_vars 0;
|
wenzelm@11975
|
1118 |
|
wenzelm@11975
|
1119 |
val proj2 =
|
wenzelm@11975
|
1120 |
forall_intr_list [A, B] (implies_intr_list [A, B] (Thm.assume B))
|
wenzelm@11975
|
1121 |
|> forall_elim_vars 0;
|
wenzelm@11975
|
1122 |
|
wenzelm@11975
|
1123 |
val conj_intr_rule =
|
wenzelm@11975
|
1124 |
forall_intr_list [A, B] (implies_intr_list [A, B]
|
wenzelm@11975
|
1125 |
(Thm.forall_intr C (Thm.implies_intr ABC
|
wenzelm@11975
|
1126 |
(implies_elim_list (Thm.assume ABC) [Thm.assume A, Thm.assume B]))))
|
wenzelm@11975
|
1127 |
|> forall_elim_vars 0;
|
wenzelm@11975
|
1128 |
|
wenzelm@11975
|
1129 |
val incr = incr_indexes_wrt [] [] [];
|
wenzelm@11975
|
1130 |
in
|
wenzelm@11975
|
1131 |
|
wenzelm@11975
|
1132 |
fun conj_intr tha thb = thb COMP (tha COMP incr [tha, thb] conj_intr_rule);
|
wenzelm@12756
|
1133 |
|
wenzelm@12756
|
1134 |
fun conj_intr_list [] = asm_rl
|
wenzelm@12756
|
1135 |
| conj_intr_list ths = foldr1 (uncurry conj_intr) ths;
|
wenzelm@11975
|
1136 |
|
wenzelm@11975
|
1137 |
fun conj_elim th =
|
wenzelm@11975
|
1138 |
let val th' = forall_elim_var (#maxidx (Thm.rep_thm th) + 1) th
|
wenzelm@11975
|
1139 |
in (incr [th'] proj1 COMP th', incr [th'] proj2 COMP th') end;
|
wenzelm@11975
|
1140 |
|
wenzelm@11975
|
1141 |
fun conj_elim_list th =
|
wenzelm@11975
|
1142 |
let val (th1, th2) = conj_elim th
|
wenzelm@11975
|
1143 |
in conj_elim_list th1 @ conj_elim_list th2 end handle THM _ => [th];
|
wenzelm@11975
|
1144 |
|
wenzelm@12756
|
1145 |
fun conj_elim_precise 0 _ = []
|
wenzelm@12756
|
1146 |
| conj_elim_precise 1 th = [th]
|
wenzelm@12135
|
1147 |
| conj_elim_precise n th =
|
wenzelm@12135
|
1148 |
let val (th1, th2) = conj_elim th
|
wenzelm@12135
|
1149 |
in th1 :: conj_elim_precise (n - 1) th2 end;
|
wenzelm@12135
|
1150 |
|
wenzelm@12135
|
1151 |
val conj_intr_thm = store_standard_thm_open "conjunctionI"
|
wenzelm@12135
|
1152 |
(implies_intr_list [A, B] (conj_intr (Thm.assume A) (Thm.assume B)));
|
wenzelm@12135
|
1153 |
|
clasohm@0
|
1154 |
end;
|
wenzelm@252
|
1155 |
|
wenzelm@11975
|
1156 |
end;
|
wenzelm@5903
|
1157 |
|
wenzelm@5903
|
1158 |
structure BasicDrule: BASIC_DRULE = Drule;
|
wenzelm@5903
|
1159 |
open BasicDrule;
|