src/Pure/drule.ML
author wenzelm
Sun Apr 15 14:31:53 2007 +0200 (2007-04-15 ago)
changeset 22695 17073e9b94f2
parent 22681 9d42e5365ad1
child 22906 195b7515911a
permissions -rw-r--r--
moved Drule.plain_prop_of, Drule.fold_terms to more_thm.ML;
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
wenzelm@3766
     6
Derived rules and other operations on theorems.
clasohm@0
     7
*)
clasohm@0
     8
wenzelm@21578
     9
infix 0 RS RSN RL RLN MRS MRL OF COMP INCR_COMP COMP_INCR;
clasohm@0
    10
wenzelm@5903
    11
signature BASIC_DRULE =
wenzelm@3766
    12
sig
wenzelm@18179
    13
  val mk_implies: cterm * cterm -> cterm
wenzelm@18179
    14
  val list_implies: cterm list * cterm -> cterm
wenzelm@18179
    15
  val dest_implies: cterm -> cterm * cterm
wenzelm@18179
    16
  val dest_equals: cterm -> cterm * cterm
wenzelm@20904
    17
  val dest_equals_lhs: cterm -> cterm
wenzelm@20669
    18
  val dest_equals_rhs: cterm -> cterm
wenzelm@18179
    19
  val strip_imp_prems: cterm -> cterm list
wenzelm@18179
    20
  val strip_imp_concl: cterm -> cterm
wenzelm@18179
    21
  val cprems_of: thm -> cterm list
wenzelm@18179
    22
  val cterm_fun: (term -> term) -> (cterm -> cterm)
wenzelm@18179
    23
  val ctyp_fun: (typ -> typ) -> (ctyp -> ctyp)
wenzelm@18206
    24
  val read_insts: theory -> (indexname -> typ option) * (indexname -> sort option) ->
wenzelm@18206
    25
    (indexname -> typ option) * (indexname -> sort option) -> string list ->
wenzelm@18206
    26
    (indexname * string) list -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@4285
    27
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
wenzelm@18179
    28
  val forall_intr_list: cterm list -> thm -> thm
wenzelm@18179
    29
  val forall_intr_frees: thm -> thm
wenzelm@18179
    30
  val forall_intr_vars: thm -> thm
wenzelm@18179
    31
  val forall_elim_list: cterm list -> thm -> thm
wenzelm@18179
    32
  val forall_elim_var: int -> thm -> thm
wenzelm@18179
    33
  val forall_elim_vars: int -> thm -> thm
wenzelm@18179
    34
  val gen_all: thm -> thm
wenzelm@18179
    35
  val lift_all: cterm -> thm -> thm
wenzelm@18179
    36
  val freeze_thaw: thm -> thm * (thm -> thm)
paulson@15495
    37
  val freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
wenzelm@18179
    38
  val implies_elim_list: thm -> thm list -> thm
wenzelm@18179
    39
  val implies_intr_list: cterm list -> thm -> thm
wenzelm@18206
    40
  val instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@21603
    41
  val zero_var_indexes_list: thm list -> thm list
wenzelm@18179
    42
  val zero_var_indexes: thm -> thm
wenzelm@18179
    43
  val implies_intr_hyps: thm -> thm
wenzelm@18179
    44
  val standard: thm -> thm
wenzelm@18179
    45
  val standard': thm -> thm
wenzelm@18179
    46
  val rotate_prems: int -> thm -> thm
wenzelm@18179
    47
  val rearrange_prems: int list -> thm -> thm
wenzelm@18179
    48
  val RSN: thm * (int * thm) -> thm
wenzelm@18179
    49
  val RS: thm * thm -> thm
wenzelm@18179
    50
  val RLN: thm list * (int * thm list) -> thm list
wenzelm@18179
    51
  val RL: thm list * thm list -> thm list
wenzelm@18179
    52
  val MRS: thm list * thm -> thm
wenzelm@18179
    53
  val MRL: thm list list * thm list -> thm list
wenzelm@18179
    54
  val OF: thm * thm list -> thm
wenzelm@18179
    55
  val compose: thm * int * thm -> thm list
wenzelm@18179
    56
  val COMP: thm * thm -> thm
wenzelm@21578
    57
  val INCR_COMP: thm * thm -> thm
wenzelm@21578
    58
  val COMP_INCR: thm * thm -> thm
wenzelm@16425
    59
  val read_instantiate_sg: theory -> (string*string)list -> thm -> thm
wenzelm@18179
    60
  val read_instantiate: (string*string)list -> thm -> thm
wenzelm@18179
    61
  val cterm_instantiate: (cterm*cterm)list -> thm -> thm
wenzelm@18179
    62
  val size_of_thm: thm -> int
wenzelm@18179
    63
  val reflexive_thm: thm
wenzelm@18179
    64
  val symmetric_thm: thm
wenzelm@18179
    65
  val transitive_thm: thm
wenzelm@18179
    66
  val symmetric_fun: thm -> thm
wenzelm@18179
    67
  val extensional: thm -> thm
wenzelm@18820
    68
  val equals_cong: thm
wenzelm@18179
    69
  val imp_cong: thm
wenzelm@18179
    70
  val swap_prems_eq: thm
wenzelm@18179
    71
  val asm_rl: thm
wenzelm@18179
    72
  val cut_rl: thm
wenzelm@18179
    73
  val revcut_rl: thm
wenzelm@18179
    74
  val thin_rl: thm
wenzelm@4285
    75
  val triv_forall_equality: thm
wenzelm@19051
    76
  val distinct_prems_rl: thm
wenzelm@18179
    77
  val swap_prems_rl: thm
wenzelm@18179
    78
  val equal_intr_rule: thm
wenzelm@18179
    79
  val equal_elim_rule1: thm
wenzelm@19421
    80
  val equal_elim_rule2: thm
wenzelm@18179
    81
  val instantiate': ctyp option list -> cterm option list -> thm -> thm
wenzelm@5903
    82
end;
wenzelm@5903
    83
wenzelm@5903
    84
signature DRULE =
wenzelm@5903
    85
sig
wenzelm@5903
    86
  include BASIC_DRULE
wenzelm@19999
    87
  val generalize: string list * string list -> thm -> thm
paulson@15949
    88
  val list_comb: cterm * cterm list -> cterm
berghofe@12908
    89
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    90
  val strip_type: ctyp -> ctyp list * ctyp
wenzelm@20904
    91
  val lhs_of: thm -> cterm
wenzelm@20904
    92
  val rhs_of: thm -> cterm
paulson@15949
    93
  val beta_conv: cterm -> cterm -> cterm
wenzelm@15669
    94
  val add_used: thm -> string list -> string list
berghofe@17713
    95
  val flexflex_unique: thm -> thm
wenzelm@11975
    96
  val close_derivation: thm -> thm
wenzelm@19421
    97
  val store_thm: bstring -> thm -> thm
wenzelm@19421
    98
  val store_standard_thm: bstring -> thm -> thm
wenzelm@19421
    99
  val store_thm_open: bstring -> thm -> thm
wenzelm@19421
   100
  val store_standard_thm_open: bstring -> thm -> thm
wenzelm@11975
   101
  val compose_single: thm * int * thm -> thm
wenzelm@12373
   102
  val add_rule: thm -> thm list -> thm list
wenzelm@12373
   103
  val del_rule: thm -> thm list -> thm list
wenzelm@11975
   104
  val merge_rules: thm list * thm list -> thm list
wenzelm@18468
   105
  val imp_cong_rule: thm -> thm -> thm
skalberg@15001
   106
  val beta_eta_conversion: cterm -> thm
berghofe@15925
   107
  val eta_long_conversion: cterm -> thm
paulson@20861
   108
  val eta_contraction_rule: thm -> thm
wenzelm@18468
   109
  val forall_conv: int -> (cterm -> thm) -> cterm -> thm
wenzelm@18468
   110
  val concl_conv: int -> (cterm -> thm) -> cterm -> thm
wenzelm@18468
   111
  val prems_conv: int -> (int -> cterm -> thm) -> cterm -> thm
wenzelm@18179
   112
  val goals_conv: (int -> bool) -> (cterm -> thm) -> cterm -> thm
wenzelm@18179
   113
  val fconv_rule: (cterm -> thm) -> thm -> thm
wenzelm@11975
   114
  val norm_hhf_eq: thm
wenzelm@12800
   115
  val is_norm_hhf: term -> bool
wenzelm@16425
   116
  val norm_hhf: theory -> term -> term
wenzelm@20298
   117
  val norm_hhf_cterm: cterm -> cterm
wenzelm@19878
   118
  val unvarify: thm -> thm
wenzelm@18025
   119
  val protect: cterm -> cterm
wenzelm@18025
   120
  val protectI: thm
wenzelm@18025
   121
  val protectD: thm
wenzelm@18179
   122
  val protect_cong: thm
wenzelm@18025
   123
  val implies_intr_protected: cterm list -> thm -> thm
wenzelm@19775
   124
  val termI: thm
wenzelm@19775
   125
  val mk_term: cterm -> thm
wenzelm@19775
   126
  val dest_term: thm -> cterm
wenzelm@21519
   127
  val cterm_rule: (thm -> thm) -> cterm -> cterm
wenzelm@20881
   128
  val term_rule: theory -> (thm -> thm) -> term -> term
wenzelm@19523
   129
  val sort_triv: theory -> typ * sort -> thm list
wenzelm@19504
   130
  val unconstrainTs: thm -> thm
berghofe@14081
   131
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   132
  val rename_bvars': string option list -> thm -> thm
wenzelm@19124
   133
  val incr_indexes: thm -> thm -> thm
wenzelm@19124
   134
  val incr_indexes2: thm -> thm -> thm -> thm
wenzelm@12297
   135
  val remdups_rl: thm
wenzelm@18225
   136
  val multi_resolve: thm list -> thm -> thm Seq.seq
wenzelm@18225
   137
  val multi_resolves: thm list -> thm list -> thm Seq.seq
berghofe@13325
   138
  val abs_def: thm -> thm
wenzelm@16425
   139
  val read_instantiate_sg': theory -> (indexname * string) list -> thm -> thm
berghofe@15797
   140
  val read_instantiate': (indexname * string) list -> thm -> thm
wenzelm@3766
   141
end;
clasohm@0
   142
wenzelm@5903
   143
structure Drule: DRULE =
clasohm@0
   144
struct
clasohm@0
   145
wenzelm@3991
   146
wenzelm@16682
   147
(** some cterm->cterm operations: faster than calling cterm_of! **)
lcp@708
   148
paulson@2004
   149
fun dest_implies ct =
wenzelm@16682
   150
  (case Thm.term_of ct of
wenzelm@20669
   151
    Const ("==>", _) $ _ $ _ => Thm.dest_binop ct
wenzelm@20669
   152
  | _ => raise TERM ("dest_implies", [Thm.term_of ct]));
clasohm@1703
   153
berghofe@10414
   154
fun dest_equals ct =
wenzelm@16682
   155
  (case Thm.term_of ct of
wenzelm@20669
   156
    Const ("==", _) $ _ $ _ => Thm.dest_binop ct
wenzelm@20669
   157
  | _ => raise TERM ("dest_equals", [Thm.term_of ct]));
wenzelm@20669
   158
wenzelm@20904
   159
fun dest_equals_lhs ct =
wenzelm@20904
   160
  (case Thm.term_of ct of
wenzelm@20904
   161
    Const ("==", _) $ _ $ _ => #1 (Thm.dest_binop ct)
wenzelm@20904
   162
  | _ => raise TERM ("dest_equals_lhs", [Thm.term_of ct]));
wenzelm@20904
   163
wenzelm@20669
   164
fun dest_equals_rhs ct =
wenzelm@20669
   165
  (case Thm.term_of ct of
wenzelm@20669
   166
    Const ("==", _) $ _ $ _ => Thm.dest_arg ct
wenzelm@20669
   167
  | _ => raise TERM ("dest_equals_rhs", [Thm.term_of ct]));
berghofe@10414
   168
wenzelm@20904
   169
val lhs_of = dest_equals_lhs o Thm.cprop_of;
wenzelm@20904
   170
val rhs_of = dest_equals_rhs o Thm.cprop_of;
wenzelm@20904
   171
lcp@708
   172
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   173
fun strip_imp_prems ct =
wenzelm@20579
   174
  let val (cA, cB) = dest_implies ct
wenzelm@20579
   175
  in cA :: strip_imp_prems cB end
wenzelm@20579
   176
  handle TERM _ => [];
lcp@708
   177
paulson@2004
   178
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   179
fun strip_imp_concl ct =
wenzelm@20579
   180
  (case Thm.term_of ct of
wenzelm@20579
   181
    Const ("==>", _) $ _ $ _ => strip_imp_concl (Thm.dest_arg ct)
wenzelm@20579
   182
  | _ => ct);
paulson@2004
   183
lcp@708
   184
(*The premises of a theorem, as a cterm list*)
berghofe@13659
   185
val cprems_of = strip_imp_prems o cprop_of;
lcp@708
   186
berghofe@15797
   187
fun cterm_fun f ct =
wenzelm@16425
   188
  let val {t, thy, ...} = Thm.rep_cterm ct
wenzelm@16425
   189
  in Thm.cterm_of thy (f t) end;
berghofe@15797
   190
berghofe@15797
   191
fun ctyp_fun f cT =
wenzelm@16425
   192
  let val {T, thy, ...} = Thm.rep_ctyp cT
wenzelm@16425
   193
  in Thm.ctyp_of thy (f T) end;
berghofe@15797
   194
wenzelm@19421
   195
val cert = cterm_of ProtoPure.thy;
paulson@9547
   196
wenzelm@19421
   197
val implies = cert Term.implies;
wenzelm@19183
   198
fun mk_implies (A, B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   199
paulson@9547
   200
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   201
fun list_implies([], B) = B
paulson@9547
   202
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   203
paulson@15949
   204
(*cterm version of list_comb: maps  (f, [t1,...,tn])  to  f(t1,...,tn) *)
paulson@15949
   205
fun list_comb (f, []) = f
paulson@15949
   206
  | list_comb (f, t::ts) = list_comb (Thm.capply f t, ts);
paulson@15949
   207
berghofe@12908
   208
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
wenzelm@18179
   209
fun strip_comb ct =
berghofe@12908
   210
  let
berghofe@12908
   211
    fun stripc (p as (ct, cts)) =
berghofe@12908
   212
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   213
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   214
  in stripc (ct, []) end;
berghofe@12908
   215
berghofe@15262
   216
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   217
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   218
    Type ("fun", _) =>
berghofe@15262
   219
      let
berghofe@15262
   220
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   221
        val (cTs, cT') = strip_type cT2
berghofe@15262
   222
      in (cT1 :: cTs, cT') end
berghofe@15262
   223
  | _ => ([], cT));
berghofe@15262
   224
paulson@15949
   225
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
paulson@15949
   226
  of the meta-equality returned by the beta_conversion rule.*)
wenzelm@18179
   227
fun beta_conv x y =
wenzelm@20579
   228
  Thm.dest_arg (cprop_of (Thm.beta_conversion false (Thm.capply x y)));
paulson@15949
   229
wenzelm@15875
   230
lcp@708
   231
lcp@229
   232
(** reading of instantiations **)
lcp@229
   233
lcp@229
   234
fun absent ixn =
wenzelm@22681
   235
  error("No such variable in term: " ^ Term.string_of_vname ixn);
lcp@229
   236
lcp@229
   237
fun inst_failure ixn =
wenzelm@22681
   238
  error("Instantiation of " ^ Term.string_of_vname ixn ^ " fails");
lcp@229
   239
wenzelm@16425
   240
fun read_insts thy (rtypes,rsorts) (types,sorts) used insts =
wenzelm@10403
   241
let
berghofe@15442
   242
    fun is_tv ((a, _), _) =
berghofe@15442
   243
      (case Symbol.explode a of "'" :: _ => true | _ => false);
skalberg@15570
   244
    val (tvs, vs) = List.partition is_tv insts;
berghofe@15797
   245
    fun sort_of ixn = case rsorts ixn of SOME S => S | NONE => absent ixn;
berghofe@15442
   246
    fun readT (ixn, st) =
berghofe@15797
   247
        let val S = sort_of ixn;
wenzelm@22681
   248
            val T = Sign.read_def_typ (thy,sorts) st;
wenzelm@16425
   249
        in if Sign.typ_instance thy (T, TVar(ixn,S)) then (ixn,T)
nipkow@4281
   250
           else inst_failure ixn
nipkow@4281
   251
        end
nipkow@4281
   252
    val tye = map readT tvs;
nipkow@4281
   253
    fun mkty(ixn,st) = (case rtypes ixn of
skalberg@15531
   254
                          SOME T => (ixn,(st,typ_subst_TVars tye T))
skalberg@15531
   255
                        | NONE => absent ixn);
nipkow@4281
   256
    val ixnsTs = map mkty vs;
nipkow@4281
   257
    val ixns = map fst ixnsTs
nipkow@4281
   258
    and sTs  = map snd ixnsTs
wenzelm@22681
   259
    val (cts,tye2) = Thm.read_def_cterms(thy,types,sorts) used false sTs;
nipkow@4281
   260
    fun mkcVar(ixn,T) =
nipkow@4281
   261
        let val U = typ_subst_TVars tye2 T
wenzelm@16425
   262
        in cterm_of thy (Var(ixn,U)) end
nipkow@4281
   263
    val ixnTs = ListPair.zip(ixns, map snd sTs)
wenzelm@16425
   264
in (map (fn (ixn, T) => (ctyp_of thy (TVar (ixn, sort_of ixn)),
wenzelm@16425
   265
      ctyp_of thy T)) (tye2 @ tye),
nipkow@4281
   266
    ListPair.zip(map mkcVar ixnTs,cts))
nipkow@4281
   267
end;
lcp@229
   268
lcp@229
   269
wenzelm@252
   270
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   271
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   272
     type variables) when reading another term.
clasohm@0
   273
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   274
***)
clasohm@0
   275
clasohm@0
   276
fun types_sorts thm =
wenzelm@20329
   277
  let
wenzelm@22695
   278
    val vars = Thm.fold_terms Term.add_vars thm [];
wenzelm@22695
   279
    val frees = Thm.fold_terms Term.add_frees thm [];
wenzelm@22695
   280
    val tvars = Thm.fold_terms Term.add_tvars thm [];
wenzelm@22695
   281
    val tfrees = Thm.fold_terms Term.add_tfrees thm [];
wenzelm@20329
   282
    fun types (a, i) =
wenzelm@20329
   283
      if i < 0 then AList.lookup (op =) frees a else AList.lookup (op =) vars (a, i);
wenzelm@20329
   284
    fun sorts (a, i) =
wenzelm@20329
   285
      if i < 0 then AList.lookup (op =) tfrees a else AList.lookup (op =) tvars (a, i);
wenzelm@20329
   286
  in (types, sorts) end;
clasohm@0
   287
wenzelm@20329
   288
val add_used =
wenzelm@22695
   289
  (Thm.fold_terms o fold_types o fold_atyps)
wenzelm@20329
   290
    (fn TFree (a, _) => insert (op =) a
wenzelm@20329
   291
      | TVar ((a, _), _) => insert (op =) a
wenzelm@20329
   292
      | _ => I);
wenzelm@15669
   293
wenzelm@7636
   294
wenzelm@9455
   295
clasohm@0
   296
(** Standardization of rules **)
clasohm@0
   297
wenzelm@19523
   298
(* type classes and sorts *)
wenzelm@19523
   299
wenzelm@19523
   300
fun sort_triv thy (T, S) =
wenzelm@19523
   301
  let
wenzelm@19523
   302
    val certT = Thm.ctyp_of thy;
wenzelm@19523
   303
    val cT = certT T;
wenzelm@19523
   304
    fun class_triv c =
wenzelm@19523
   305
      Thm.class_triv thy c
wenzelm@19523
   306
      |> Thm.instantiate ([(certT (TVar (("'a", 0), [c])), cT)], []);
wenzelm@19523
   307
  in map class_triv S end;
wenzelm@19523
   308
wenzelm@19504
   309
fun unconstrainTs th =
wenzelm@20298
   310
  fold (Thm.unconstrainT o Thm.ctyp_of (Thm.theory_of_thm th) o TVar)
wenzelm@22695
   311
    (Thm.fold_terms Term.add_tvars th []) th;
wenzelm@19504
   312
wenzelm@19730
   313
(*Generalization over a list of variables*)
wenzelm@19730
   314
val forall_intr_list = fold_rev forall_intr;
clasohm@0
   315
clasohm@0
   316
(*Generalization over all suitable Free variables*)
clasohm@0
   317
fun forall_intr_frees th =
wenzelm@19730
   318
    let
wenzelm@19730
   319
      val {prop, hyps, tpairs, thy,...} = rep_thm th;
wenzelm@19730
   320
      val fixed = fold Term.add_frees (Thm.terms_of_tpairs tpairs @ hyps) [];
wenzelm@19730
   321
      val frees = Term.fold_aterms (fn Free v =>
wenzelm@19730
   322
        if member (op =) fixed v then I else insert (op =) v | _ => I) prop [];
wenzelm@19730
   323
    in fold (forall_intr o cterm_of thy o Free) frees th end;
clasohm@0
   324
wenzelm@18535
   325
(*Generalization over Vars -- canonical order*)
wenzelm@18535
   326
fun forall_intr_vars th =
wenzelm@20298
   327
  fold forall_intr
wenzelm@22695
   328
    (map (Thm.cterm_of (Thm.theory_of_thm th) o Var) (Thm.fold_terms Term.add_vars th [])) th;
wenzelm@18535
   329
wenzelm@7898
   330
val forall_elim_var = PureThy.forall_elim_var;
wenzelm@7898
   331
val forall_elim_vars = PureThy.forall_elim_vars;
clasohm@0
   332
wenzelm@18025
   333
fun outer_params t =
wenzelm@20077
   334
  let val vs = Term.strip_all_vars t
wenzelm@20077
   335
  in Name.variant_list [] (map (Name.clean o #1) vs) ~~ map #2 vs end;
wenzelm@18025
   336
wenzelm@18025
   337
(*generalize outermost parameters*)
wenzelm@18025
   338
fun gen_all th =
wenzelm@12719
   339
  let
wenzelm@18025
   340
    val {thy, prop, maxidx, ...} = Thm.rep_thm th;
wenzelm@18025
   341
    val cert = Thm.cterm_of thy;
wenzelm@18025
   342
    fun elim (x, T) = Thm.forall_elim (cert (Var ((x, maxidx + 1), T)));
wenzelm@18025
   343
  in fold elim (outer_params prop) th end;
wenzelm@18025
   344
wenzelm@18025
   345
(*lift vars wrt. outermost goal parameters
wenzelm@18118
   346
  -- reverses the effect of gen_all modulo higher-order unification*)
wenzelm@18025
   347
fun lift_all goal th =
wenzelm@18025
   348
  let
wenzelm@18025
   349
    val thy = Theory.merge (Thm.theory_of_cterm goal, Thm.theory_of_thm th);
wenzelm@18025
   350
    val cert = Thm.cterm_of thy;
wenzelm@19421
   351
    val maxidx = Thm.maxidx_of th;
wenzelm@18025
   352
    val ps = outer_params (Thm.term_of goal)
wenzelm@18025
   353
      |> map (fn (x, T) => Var ((x, maxidx + 1), Logic.incr_tvar (maxidx + 1) T));
wenzelm@18025
   354
    val Ts = map Term.fastype_of ps;
wenzelm@22695
   355
    val inst = Thm.fold_terms Term.add_vars th [] |> map (fn (xi, T) =>
wenzelm@18025
   356
      (cert (Var (xi, T)), cert (Term.list_comb (Var (xi, Ts ---> T), ps))));
wenzelm@18025
   357
  in
wenzelm@18025
   358
    th |> Thm.instantiate ([], inst)
wenzelm@18025
   359
    |> fold_rev (Thm.forall_intr o cert) ps
wenzelm@18025
   360
  end;
wenzelm@18025
   361
wenzelm@19999
   362
(*direct generalization*)
wenzelm@19999
   363
fun generalize names th = Thm.generalize names (Thm.maxidx_of th + 1) th;
wenzelm@9554
   364
wenzelm@16949
   365
(*specialization over a list of cterms*)
wenzelm@16949
   366
val forall_elim_list = fold forall_elim;
clasohm@0
   367
wenzelm@16949
   368
(*maps A1,...,An |- B  to  [| A1;...;An |] ==> B*)
wenzelm@16949
   369
val implies_intr_list = fold_rev implies_intr;
clasohm@0
   370
wenzelm@16949
   371
(*maps [| A1;...;An |] ==> B and [A1,...,An]  to  B*)
skalberg@15570
   372
fun implies_elim_list impth ths = Library.foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   373
clasohm@0
   374
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@21603
   375
fun zero_var_indexes_list [] = []
wenzelm@21603
   376
  | zero_var_indexes_list ths =
wenzelm@21603
   377
      let
wenzelm@21603
   378
        val thy = Theory.merge_list (map Thm.theory_of_thm ths);
wenzelm@21603
   379
        val certT = Thm.ctyp_of thy and cert = Thm.cterm_of thy;
wenzelm@21603
   380
        val (instT, inst) = TermSubst.zero_var_indexes_inst (map Thm.full_prop_of ths);
wenzelm@21603
   381
        val cinstT = map (fn (v, T) => (certT (TVar v), certT T)) instT;
wenzelm@21603
   382
        val cinst = map (fn (v, t) => (cert (Var v), cert t)) inst;
wenzelm@21603
   383
      in map (Thm.adjust_maxidx_thm ~1 o Thm.instantiate (cinstT, cinst)) ths end;
wenzelm@21603
   384
wenzelm@21603
   385
val zero_var_indexes = singleton zero_var_indexes_list;
clasohm@0
   386
clasohm@0
   387
paulson@14394
   388
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   389
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   390
wenzelm@16595
   391
(*Discharge all hypotheses.*)
wenzelm@16595
   392
fun implies_intr_hyps th =
wenzelm@16595
   393
  fold Thm.implies_intr (#hyps (Thm.crep_thm th)) th;
wenzelm@16595
   394
paulson@14394
   395
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   396
  This step can lose information.*)
paulson@14387
   397
fun flexflex_unique th =
berghofe@17713
   398
  if null (tpairs_of th) then th else
wenzelm@19861
   399
    case Seq.chop 2 (flexflex_rule th) of
paulson@14387
   400
      ([th],_) => th
paulson@14387
   401
    | ([],_)   => raise THM("flexflex_unique: impossible constraints", 0, [th])
paulson@14387
   402
    |      _   => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
paulson@14387
   403
wenzelm@10515
   404
fun close_derivation thm =
wenzelm@21646
   405
  if Thm.get_name thm = "" then Thm.put_name "" thm
wenzelm@10515
   406
  else thm;
wenzelm@10515
   407
wenzelm@21603
   408
wenzelm@21603
   409
(* legacy standard operations *)
wenzelm@21603
   410
wenzelm@16949
   411
val standard' =
wenzelm@16949
   412
  implies_intr_hyps
wenzelm@16949
   413
  #> forall_intr_frees
wenzelm@19421
   414
  #> `Thm.maxidx_of
wenzelm@16949
   415
  #-> (fn maxidx =>
wenzelm@16949
   416
    forall_elim_vars (maxidx + 1)
wenzelm@20904
   417
    #> Thm.strip_shyps
wenzelm@16949
   418
    #> zero_var_indexes
wenzelm@16949
   419
    #> Thm.varifyT
wenzelm@21600
   420
    #> Thm.compress);
wenzelm@1218
   421
wenzelm@16949
   422
val standard =
wenzelm@21600
   423
  flexflex_unique
wenzelm@16949
   424
  #> standard'
wenzelm@16949
   425
  #> close_derivation;
berghofe@11512
   426
clasohm@0
   427
wenzelm@8328
   428
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   429
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   430
  Similar code in type/freeze_thaw*)
paulson@15495
   431
paulson@15495
   432
fun freeze_thaw_robust th =
wenzelm@19878
   433
 let val fth = Thm.freezeT th
wenzelm@16425
   434
     val {prop, tpairs, thy, ...} = rep_thm fth
paulson@15495
   435
 in
skalberg@15574
   436
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@15495
   437
       [] => (fth, fn i => fn x => x)   (*No vars: nothing to do!*)
paulson@15495
   438
     | vars =>
paulson@19753
   439
         let fun newName (Var(ix,_)) = (ix, gensym (string_of_indexname ix))
paulson@19753
   440
             val alist = map newName vars
paulson@15495
   441
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   442
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   443
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
paulson@15495
   444
             val insts = map mk_inst vars
paulson@15495
   445
             fun thaw i th' = (*i is non-negative increment for Var indexes*)
paulson@15495
   446
                 th' |> forall_intr_list (map #2 insts)
paulson@15495
   447
                     |> forall_elim_list (map (Thm.cterm_incr_indexes i o #1) insts)
paulson@15495
   448
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@15495
   449
 end;
paulson@15495
   450
paulson@15495
   451
(*Basic version of the function above. No option to rename Vars apart in thaw.
wenzelm@19999
   452
  The Frees created from Vars have nice names. FIXME: does not check for
paulson@19753
   453
  clashes with variables in the assumptions, so delete and use freeze_thaw_robust instead?*)
paulson@4610
   454
fun freeze_thaw th =
wenzelm@19878
   455
 let val fth = Thm.freezeT th
wenzelm@16425
   456
     val {prop, tpairs, thy, ...} = rep_thm fth
paulson@7248
   457
 in
skalberg@15574
   458
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@7248
   459
       [] => (fth, fn x => x)
paulson@7248
   460
     | vars =>
wenzelm@8328
   461
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@20077
   462
                   let val v = Name.variant used (string_of_indexname ix)
wenzelm@8328
   463
                   in  ((ix,v)::pairs, v::used)  end;
skalberg@15574
   464
             val (alist, _) = foldr newName ([], Library.foldr add_term_names
skalberg@15574
   465
               (prop :: Thm.terms_of_tpairs tpairs, [])) vars
wenzelm@8328
   466
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   467
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   468
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
wenzelm@8328
   469
             val insts = map mk_inst vars
wenzelm@8328
   470
             fun thaw th' =
wenzelm@8328
   471
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   472
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   473
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   474
 end;
paulson@4610
   475
paulson@7248
   476
(*Rotates a rule's premises to the left by k*)
paulson@7248
   477
val rotate_prems = permute_prems 0;
paulson@4610
   478
oheimb@11163
   479
(* permute prems, where the i-th position in the argument list (counting from 0)
oheimb@11163
   480
   gives the position within the original thm to be transferred to position i.
oheimb@11163
   481
   Any remaining trailing positions are left unchanged. *)
oheimb@11163
   482
val rearrange_prems = let
oheimb@11163
   483
  fun rearr new []      thm = thm
wenzelm@11815
   484
  |   rearr new (p::ps) thm = rearr (new+1)
oheimb@11163
   485
     (map (fn q => if new<=q andalso q<p then q+1 else q) ps)
oheimb@11163
   486
     (permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
oheimb@11163
   487
  in rearr 0 end;
paulson@4610
   488
wenzelm@252
   489
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   490
fun tha RSN (i,thb) =
wenzelm@19861
   491
  case Seq.chop 2 (biresolution false [(false,tha)] i thb) of
clasohm@0
   492
      ([th],_) => th
clasohm@0
   493
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   494
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   495
clasohm@0
   496
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   497
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   498
clasohm@0
   499
(*For joining lists of rules*)
wenzelm@252
   500
fun thas RLN (i,thbs) =
clasohm@0
   501
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   502
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
wenzelm@19482
   503
  in maps resb thbs end;
clasohm@0
   504
clasohm@0
   505
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   506
lcp@11
   507
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   508
  makes proof trees*)
wenzelm@252
   509
fun rls MRS bottom_rl =
lcp@11
   510
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   511
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   512
  in  rs_aux 1 rls  end;
lcp@11
   513
lcp@11
   514
(*As above, but for rule lists*)
wenzelm@252
   515
fun rlss MRL bottom_rls =
lcp@11
   516
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   517
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   518
  in  rs_aux 1 rlss  end;
lcp@11
   519
wenzelm@9288
   520
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   521
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   522
wenzelm@252
   523
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   524
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   525
  ALWAYS deletes premise i *)
wenzelm@252
   526
fun compose(tha,i,thb) =
wenzelm@4270
   527
    Seq.list_of (bicompose false (false,tha,0) i thb);
clasohm@0
   528
wenzelm@6946
   529
fun compose_single (tha,i,thb) =
wenzelm@6946
   530
  (case compose (tha,i,thb) of
wenzelm@6946
   531
    [th] => th
wenzelm@6946
   532
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]));
wenzelm@6946
   533
clasohm@0
   534
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   535
fun tha COMP thb =
wenzelm@22360
   536
    case distinct Thm.eq_thm (compose(tha,1,thb)) of
wenzelm@252
   537
        [th] => th
clasohm@0
   538
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   539
wenzelm@13105
   540
wenzelm@4016
   541
(** theorem equality **)
clasohm@0
   542
clasohm@0
   543
(*Useful "distance" function for BEST_FIRST*)
wenzelm@16720
   544
val size_of_thm = size_of_term o Thm.full_prop_of;
clasohm@0
   545
wenzelm@9829
   546
(*maintain lists of theorems --- preserving canonical order*)
wenzelm@22360
   547
val del_rule = remove Thm.eq_thm_prop;
wenzelm@18922
   548
fun add_rule th = cons th o del_rule th;
wenzelm@22360
   549
val merge_rules = Library.merge Thm.eq_thm_prop;
wenzelm@9829
   550
lcp@1194
   551
lcp@1194
   552
clasohm@0
   553
(*** Meta-Rewriting Rules ***)
clasohm@0
   554
wenzelm@22681
   555
fun read_prop s = Thm.read_cterm ProtoPure.thy (s, propT);
paulson@4610
   556
wenzelm@9455
   557
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
wenzelm@9455
   558
fun store_standard_thm name thm = store_thm name (standard thm);
wenzelm@12135
   559
fun store_thm_open name thm = hd (PureThy.smart_store_thms_open (name, [thm]));
wenzelm@12135
   560
fun store_standard_thm_open name thm = store_thm_open name (standard' thm);
wenzelm@4016
   561
clasohm@0
   562
val reflexive_thm =
wenzelm@19421
   563
  let val cx = cert (Var(("x",0),TVar(("'a",0),[])))
wenzelm@12135
   564
  in store_standard_thm_open "reflexive" (Thm.reflexive cx) end;
clasohm@0
   565
clasohm@0
   566
val symmetric_thm =
wenzelm@14854
   567
  let val xy = read_prop "x == y"
wenzelm@16595
   568
  in store_standard_thm_open "symmetric" (Thm.implies_intr xy (Thm.symmetric (Thm.assume xy))) end;
clasohm@0
   569
clasohm@0
   570
val transitive_thm =
wenzelm@14854
   571
  let val xy = read_prop "x == y"
wenzelm@14854
   572
      val yz = read_prop "y == z"
clasohm@0
   573
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
wenzelm@12135
   574
  in store_standard_thm_open "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
clasohm@0
   575
nipkow@4679
   576
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   577
berghofe@11512
   578
fun extensional eq =
berghofe@11512
   579
  let val eq' =
wenzelm@20579
   580
    abstract_rule "x" (Thm.dest_arg (fst (dest_equals (cprop_of eq)))) eq
berghofe@11512
   581
  in equal_elim (eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   582
wenzelm@18820
   583
val equals_cong =
wenzelm@18820
   584
  store_standard_thm_open "equals_cong" (Thm.reflexive (read_prop "x == y"));
wenzelm@18820
   585
berghofe@10414
   586
val imp_cong =
berghofe@10414
   587
  let
berghofe@10414
   588
    val ABC = read_prop "PROP A ==> PROP B == PROP C"
berghofe@10414
   589
    val AB = read_prop "PROP A ==> PROP B"
berghofe@10414
   590
    val AC = read_prop "PROP A ==> PROP C"
berghofe@10414
   591
    val A = read_prop "PROP A"
berghofe@10414
   592
  in
wenzelm@12135
   593
    store_standard_thm_open "imp_cong" (implies_intr ABC (equal_intr
berghofe@10414
   594
      (implies_intr AB (implies_intr A
berghofe@10414
   595
        (equal_elim (implies_elim (assume ABC) (assume A))
berghofe@10414
   596
          (implies_elim (assume AB) (assume A)))))
berghofe@10414
   597
      (implies_intr AC (implies_intr A
berghofe@10414
   598
        (equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
berghofe@10414
   599
          (implies_elim (assume AC) (assume A)))))))
berghofe@10414
   600
  end;
berghofe@10414
   601
berghofe@10414
   602
val swap_prems_eq =
berghofe@10414
   603
  let
berghofe@10414
   604
    val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
berghofe@10414
   605
    val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
berghofe@10414
   606
    val A = read_prop "PROP A"
berghofe@10414
   607
    val B = read_prop "PROP B"
berghofe@10414
   608
  in
wenzelm@12135
   609
    store_standard_thm_open "swap_prems_eq" (equal_intr
berghofe@10414
   610
      (implies_intr ABC (implies_intr B (implies_intr A
berghofe@10414
   611
        (implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
berghofe@10414
   612
      (implies_intr BAC (implies_intr A (implies_intr B
berghofe@10414
   613
        (implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
berghofe@10414
   614
  end;
lcp@229
   615
wenzelm@18468
   616
val imp_cong_rule = combination o combination (reflexive implies);
clasohm@0
   617
skalberg@15001
   618
local
skalberg@15001
   619
  val dest_eq = dest_equals o cprop_of
skalberg@15001
   620
  val rhs_of = snd o dest_eq
skalberg@15001
   621
in
skalberg@15001
   622
fun beta_eta_conversion t =
skalberg@15001
   623
  let val thm = beta_conversion true t
skalberg@15001
   624
  in transitive thm (eta_conversion (rhs_of thm)) end
skalberg@15001
   625
end;
skalberg@15001
   626
berghofe@15925
   627
fun eta_long_conversion ct = transitive (beta_eta_conversion ct)
berghofe@15925
   628
  (symmetric (beta_eta_conversion (cterm_fun (Pattern.eta_long []) ct)));
berghofe@15925
   629
paulson@20861
   630
(*Contract all eta-redexes in the theorem, lest they give rise to needless abstractions*)
paulson@20861
   631
fun eta_contraction_rule th =
paulson@20861
   632
  equal_elim (eta_conversion (cprop_of th)) th;
paulson@20861
   633
wenzelm@18337
   634
val abs_def =
wenzelm@18337
   635
  let
wenzelm@18337
   636
    fun contract_lhs th =
wenzelm@18337
   637
      Thm.transitive (Thm.symmetric (beta_eta_conversion (fst (dest_equals (cprop_of th))))) th;
wenzelm@18777
   638
    fun abstract cx th = Thm.abstract_rule
wenzelm@18777
   639
        (case Thm.term_of cx of Var ((x, _), _) => x | Free (x, _) => x | _ => "x") cx th
wenzelm@18777
   640
      handle THM _ => raise THM ("Malformed definitional equation", 0, [th]);
wenzelm@18337
   641
  in
wenzelm@18337
   642
    contract_lhs
wenzelm@18337
   643
    #> `(snd o strip_comb o fst o dest_equals o cprop_of)
wenzelm@18337
   644
    #-> fold_rev abstract
wenzelm@18337
   645
    #> contract_lhs
wenzelm@18337
   646
  end;
wenzelm@18337
   647
wenzelm@18468
   648
(*rewrite B in !!x1 ... xn. B*)
wenzelm@18251
   649
fun forall_conv 0 cv ct = cv ct
wenzelm@18251
   650
  | forall_conv n cv ct =
wenzelm@18468
   651
      (case try Thm.dest_comb ct of
wenzelm@18468
   652
        NONE => cv ct
wenzelm@18468
   653
      | SOME (A, B) =>
wenzelm@18468
   654
          (case (term_of A, term_of B) of
wenzelm@18468
   655
            (Const ("all", _), Abs (x, _, _)) =>
wenzelm@18468
   656
              let val (v, B') = Thm.dest_abs (SOME (gensym "all_")) B in
wenzelm@18468
   657
                Thm.combination (Thm.reflexive A)
wenzelm@18468
   658
                  (Thm.abstract_rule x v (forall_conv (n - 1) cv B'))
wenzelm@18468
   659
              end
wenzelm@18468
   660
          | _ => cv ct));
wenzelm@18468
   661
wenzelm@18468
   662
(*rewrite B in A1 ==> ... ==> An ==> B*)
wenzelm@18468
   663
fun concl_conv 0 cv ct = cv ct
wenzelm@18468
   664
  | concl_conv n cv ct =
wenzelm@18468
   665
      (case try dest_implies ct of
wenzelm@18468
   666
        NONE => cv ct
wenzelm@18468
   667
      | SOME (A, B) => imp_cong_rule (reflexive A) (concl_conv (n - 1) cv B));
skalberg@15001
   668
wenzelm@18468
   669
(*rewrite the A's in A1 ==> ... ==> An ==> B*)
wenzelm@18468
   670
fun prems_conv 0 _ = reflexive
wenzelm@18468
   671
  | prems_conv n cv =
wenzelm@18468
   672
      let
wenzelm@18468
   673
        fun conv i ct =
wenzelm@18468
   674
          if i = n + 1 then reflexive ct
wenzelm@18468
   675
          else
wenzelm@18468
   676
            (case try dest_implies ct of
wenzelm@18468
   677
              NONE => reflexive ct
wenzelm@18468
   678
            | SOME (A, B) => imp_cong_rule (cv i A) (conv (i + 1) B));
wenzelm@18468
   679
  in conv 1 end;
wenzelm@18468
   680
wenzelm@18468
   681
fun goals_conv pred cv = prems_conv ~1 (fn i => if pred i then cv else reflexive);
skalberg@15001
   682
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
skalberg@15001
   683
wenzelm@18468
   684
wenzelm@15669
   685
(*** Some useful meta-theorems ***)
clasohm@0
   686
clasohm@0
   687
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@12135
   688
val asm_rl = store_standard_thm_open "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
wenzelm@7380
   689
val _ = store_thm "_" asm_rl;
clasohm@0
   690
clasohm@0
   691
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   692
val cut_rl =
wenzelm@12135
   693
  store_standard_thm_open "cut_rl"
wenzelm@9455
   694
    (Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
clasohm@0
   695
wenzelm@252
   696
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   697
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   698
val revcut_rl =
paulson@4610
   699
  let val V = read_prop "PROP V"
paulson@4610
   700
      and VW = read_prop "PROP V ==> PROP W";
wenzelm@4016
   701
  in
wenzelm@12135
   702
    store_standard_thm_open "revcut_rl"
wenzelm@4016
   703
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   704
  end;
clasohm@0
   705
lcp@668
   706
(*for deleting an unwanted assumption*)
lcp@668
   707
val thin_rl =
paulson@4610
   708
  let val V = read_prop "PROP V"
paulson@4610
   709
      and W = read_prop "PROP W";
wenzelm@12135
   710
  in store_standard_thm_open "thin_rl" (implies_intr V (implies_intr W (assume W))) end;
lcp@668
   711
clasohm@0
   712
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   713
val triv_forall_equality =
paulson@4610
   714
  let val V  = read_prop "PROP V"
paulson@4610
   715
      and QV = read_prop "!!x::'a. PROP V"
wenzelm@19421
   716
      and x  = cert (Free ("x", Term.aT []));
wenzelm@4016
   717
  in
wenzelm@12135
   718
    store_standard_thm_open "triv_forall_equality"
berghofe@11512
   719
      (equal_intr (implies_intr QV (forall_elim x (assume QV)))
berghofe@11512
   720
        (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   721
  end;
clasohm@0
   722
wenzelm@19051
   723
(* (PROP ?Phi ==> PROP ?Phi ==> PROP ?Psi) ==>
wenzelm@19051
   724
   (PROP ?Phi ==> PROP ?Psi)
wenzelm@19051
   725
*)
wenzelm@19051
   726
val distinct_prems_rl =
wenzelm@19051
   727
  let
wenzelm@19051
   728
    val AAB = read_prop "PROP Phi ==> PROP Phi ==> PROP Psi"
wenzelm@19051
   729
    val A = read_prop "PROP Phi";
wenzelm@19051
   730
  in
wenzelm@19051
   731
    store_standard_thm_open "distinct_prems_rl"
wenzelm@19051
   732
      (implies_intr_list [AAB, A] (implies_elim_list (assume AAB) [assume A, assume A]))
wenzelm@19051
   733
  end;
wenzelm@19051
   734
nipkow@1756
   735
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   736
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   737
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   738
*)
nipkow@1756
   739
val swap_prems_rl =
paulson@4610
   740
  let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
nipkow@1756
   741
      val major = assume cmajor;
paulson@4610
   742
      val cminor1 = read_prop "PROP PhiA";
nipkow@1756
   743
      val minor1 = assume cminor1;
paulson@4610
   744
      val cminor2 = read_prop "PROP PhiB";
nipkow@1756
   745
      val minor2 = assume cminor2;
wenzelm@12135
   746
  in store_standard_thm_open "swap_prems_rl"
nipkow@1756
   747
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   748
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   749
  end;
nipkow@1756
   750
nipkow@3653
   751
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   752
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   753
   Introduction rule for == as a meta-theorem.
nipkow@3653
   754
*)
nipkow@3653
   755
val equal_intr_rule =
paulson@4610
   756
  let val PQ = read_prop "PROP phi ==> PROP psi"
paulson@4610
   757
      and QP = read_prop "PROP psi ==> PROP phi"
wenzelm@4016
   758
  in
wenzelm@12135
   759
    store_standard_thm_open "equal_intr_rule"
wenzelm@4016
   760
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   761
  end;
nipkow@3653
   762
wenzelm@19421
   763
(* PROP ?phi == PROP ?psi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@13368
   764
val equal_elim_rule1 =
wenzelm@13368
   765
  let val eq = read_prop "PROP phi == PROP psi"
wenzelm@13368
   766
      and P = read_prop "PROP phi"
wenzelm@13368
   767
  in store_standard_thm_open "equal_elim_rule1"
wenzelm@13368
   768
    (Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   769
  end;
wenzelm@4285
   770
wenzelm@19421
   771
(* PROP ?psi == PROP ?phi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@19421
   772
val equal_elim_rule2 =
wenzelm@19421
   773
  store_standard_thm_open "equal_elim_rule2" (symmetric_thm RS equal_elim_rule1);
wenzelm@19421
   774
wenzelm@12297
   775
(* "[| PROP ?phi; PROP ?phi; PROP ?psi |] ==> PROP ?psi" *)
wenzelm@12297
   776
val remdups_rl =
wenzelm@12297
   777
  let val P = read_prop "PROP phi" and Q = read_prop "PROP psi";
wenzelm@12297
   778
  in store_standard_thm_open "remdups_rl" (implies_intr_list [P, P, Q] (Thm.assume Q)) end;
wenzelm@12297
   779
wenzelm@12297
   780
wenzelm@9554
   781
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
wenzelm@12297
   782
  Rewrite rule for HHF normalization.*)
wenzelm@9554
   783
wenzelm@9554
   784
val norm_hhf_eq =
wenzelm@9554
   785
  let
wenzelm@14854
   786
    val aT = TFree ("'a", []);
wenzelm@9554
   787
    val all = Term.all aT;
wenzelm@9554
   788
    val x = Free ("x", aT);
wenzelm@9554
   789
    val phi = Free ("phi", propT);
wenzelm@9554
   790
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   791
wenzelm@9554
   792
    val cx = cert x;
wenzelm@9554
   793
    val cphi = cert phi;
wenzelm@9554
   794
    val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@9554
   795
    val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   796
  in
wenzelm@9554
   797
    Thm.equal_intr
wenzelm@9554
   798
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   799
        |> Thm.forall_elim cx
wenzelm@9554
   800
        |> Thm.implies_intr cphi
wenzelm@9554
   801
        |> Thm.forall_intr cx
wenzelm@9554
   802
        |> Thm.implies_intr lhs)
wenzelm@9554
   803
      (Thm.implies_elim
wenzelm@9554
   804
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   805
        |> Thm.forall_intr cx
wenzelm@9554
   806
        |> Thm.implies_intr cphi
wenzelm@9554
   807
        |> Thm.implies_intr rhs)
wenzelm@12135
   808
    |> store_standard_thm_open "norm_hhf_eq"
wenzelm@9554
   809
  end;
wenzelm@9554
   810
wenzelm@18179
   811
val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq);
wenzelm@18179
   812
wenzelm@12800
   813
fun is_norm_hhf tm =
wenzelm@12800
   814
  let
wenzelm@12800
   815
    fun is_norm (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
wenzelm@12800
   816
      | is_norm (t $ u) = is_norm t andalso is_norm u
wenzelm@12800
   817
      | is_norm (Abs (_, _, t)) = is_norm t
wenzelm@12800
   818
      | is_norm _ = true;
wenzelm@18929
   819
  in is_norm (Envir.beta_eta_contract tm) end;
wenzelm@12800
   820
wenzelm@16425
   821
fun norm_hhf thy t =
wenzelm@12800
   822
  if is_norm_hhf t then t
wenzelm@18179
   823
  else Pattern.rewrite_term thy [norm_hhf_prop] [] t;
wenzelm@18179
   824
wenzelm@20298
   825
fun norm_hhf_cterm ct =
wenzelm@20298
   826
  if is_norm_hhf (Thm.term_of ct) then ct
wenzelm@20298
   827
  else cterm_fun (Pattern.rewrite_term (Thm.theory_of_cterm ct) [norm_hhf_prop] []) ct;
wenzelm@20298
   828
wenzelm@12800
   829
wenzelm@21603
   830
(* var indexes *)
wenzelm@21603
   831
wenzelm@21603
   832
fun incr_indexes th = Thm.incr_indexes (Thm.maxidx_of th + 1);
wenzelm@21603
   833
wenzelm@21603
   834
fun incr_indexes2 th1 th2 =
wenzelm@21603
   835
  Thm.incr_indexes (Int.max (Thm.maxidx_of th1, Thm.maxidx_of th2) + 1);
wenzelm@21603
   836
wenzelm@21603
   837
fun th1 INCR_COMP th2 = incr_indexes th2 th1 COMP th2;
wenzelm@21603
   838
fun th1 COMP_INCR th2 = th1 COMP incr_indexes th1 th2;
wenzelm@21603
   839
wenzelm@9554
   840
wenzelm@16425
   841
(*** Instantiate theorem th, reading instantiations in theory thy ****)
paulson@8129
   842
paulson@8129
   843
(*Version that normalizes the result: Thm.instantiate no longer does that*)
wenzelm@21603
   844
fun instantiate instpair th =
wenzelm@21603
   845
  Thm.adjust_maxidx_thm ~1 (Thm.instantiate instpair th COMP_INCR asm_rl);
paulson@8129
   846
wenzelm@16425
   847
fun read_instantiate_sg' thy sinsts th =
paulson@8129
   848
    let val ts = types_sorts th;
wenzelm@15669
   849
        val used = add_used th [];
wenzelm@16425
   850
    in  instantiate (read_insts thy ts ts used sinsts) th  end;
berghofe@15797
   851
wenzelm@16425
   852
fun read_instantiate_sg thy sinsts th =
wenzelm@20298
   853
  read_instantiate_sg' thy (map (apfst Syntax.read_indexname) sinsts) th;
paulson@8129
   854
paulson@8129
   855
(*Instantiate theorem th, reading instantiations under theory of th*)
paulson@8129
   856
fun read_instantiate sinsts th =
wenzelm@16425
   857
    read_instantiate_sg (Thm.theory_of_thm th) sinsts th;
paulson@8129
   858
berghofe@15797
   859
fun read_instantiate' sinsts th =
wenzelm@16425
   860
    read_instantiate_sg' (Thm.theory_of_thm th) sinsts th;
berghofe@15797
   861
paulson@8129
   862
paulson@8129
   863
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   864
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   865
local
wenzelm@16425
   866
  fun add_types ((ct,cu), (thy,tye,maxidx)) =
wenzelm@16425
   867
    let val {thy=thyt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
wenzelm@16425
   868
        and {thy=thyu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
paulson@8129
   869
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
wenzelm@16425
   870
        val thy' = Theory.merge(thy, Theory.merge(thyt, thyu))
wenzelm@16949
   871
        val (tye',maxi') = Sign.typ_unify thy' (T, U) (tye, maxi)
wenzelm@10403
   872
          handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
wenzelm@16425
   873
    in  (thy', tye', maxi')  end;
paulson@8129
   874
in
paulson@22561
   875
fun cterm_instantiate [] th = th
paulson@22561
   876
  | cterm_instantiate ctpairs0 th =
wenzelm@16425
   877
  let val (thy,tye,_) = foldr add_types (Thm.theory_of_thm th, Vartab.empty, 0) ctpairs0
wenzelm@18179
   878
      fun instT(ct,cu) =
paulson@22287
   879
        let val inst = cterm_of thy o Term.map_types (Envir.norm_type tye) o term_of
paulson@14340
   880
        in (inst ct, inst cu) end
paulson@22307
   881
      fun ctyp2 (ixn, (S, T)) = (ctyp_of thy (TVar (ixn, S)), ctyp_of thy (Envir.norm_type tye T))
berghofe@8406
   882
  in  instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   883
  handle TERM _ =>
wenzelm@16425
   884
           raise THM("cterm_instantiate: incompatible theories",0,[th])
paulson@8129
   885
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   886
end;
paulson@8129
   887
paulson@8129
   888
wenzelm@19878
   889
(* global schematic variables *)
wenzelm@19878
   890
wenzelm@19878
   891
fun unvarify th =
wenzelm@19878
   892
  let
wenzelm@19878
   893
    val thy = Thm.theory_of_thm th;
wenzelm@19878
   894
    val cert = Thm.cterm_of thy;
wenzelm@19878
   895
    val certT = Thm.ctyp_of thy;
wenzelm@19878
   896
wenzelm@19878
   897
    val prop = Thm.full_prop_of th;
wenzelm@19878
   898
    val _ = map Logic.unvarify (prop :: Thm.hyps_of th)
wenzelm@19878
   899
      handle TERM (msg, _) => raise THM (msg, 0, [th]);
wenzelm@19878
   900
wenzelm@19878
   901
    val instT0 = rev (Term.add_tvars prop []) |> map (fn v as ((a, _), S) => (v, TFree (a, S)));
wenzelm@19878
   902
    val instT = map (fn (v, T) => (certT (TVar v), certT T)) instT0;
wenzelm@19878
   903
    val inst = rev (Term.add_vars prop []) |> map (fn ((a, i), T) =>
wenzelm@20509
   904
      let val T' = TermSubst.instantiateT instT0 T
wenzelm@19878
   905
      in (cert (Var ((a, i), T')), cert (Free ((a, T')))) end);
wenzelm@19878
   906
  in Thm.instantiate (instT, inst) th end;
wenzelm@19878
   907
wenzelm@19878
   908
wenzelm@19775
   909
(** protected propositions and embedded terms **)
wenzelm@4789
   910
wenzelm@4789
   911
local
wenzelm@18025
   912
  val A = cert (Free ("A", propT));
wenzelm@19878
   913
  val prop_def = unvarify ProtoPure.prop_def;
wenzelm@19878
   914
  val term_def = unvarify ProtoPure.term_def;
wenzelm@4789
   915
in
wenzelm@18025
   916
  val protect = Thm.capply (cert Logic.protectC);
wenzelm@21437
   917
  val protectI = store_thm "protectI" (PureThy.kind_rule Thm.internalK (standard
wenzelm@18025
   918
      (Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A))));
wenzelm@21437
   919
  val protectD = store_thm "protectD" (PureThy.kind_rule Thm.internalK (standard
wenzelm@18025
   920
      (Thm.equal_elim prop_def (Thm.assume (protect A)))));
wenzelm@18179
   921
  val protect_cong = store_standard_thm_open "protect_cong" (Thm.reflexive (protect A));
wenzelm@19775
   922
wenzelm@21437
   923
  val termI = store_thm "termI" (PureThy.kind_rule Thm.internalK (standard
wenzelm@19775
   924
      (Thm.equal_elim (Thm.symmetric term_def) (Thm.forall_intr A (Thm.trivial A)))));
wenzelm@4789
   925
end;
wenzelm@4789
   926
wenzelm@18025
   927
fun implies_intr_protected asms th =
wenzelm@18118
   928
  let val asms' = map protect asms in
wenzelm@18118
   929
    implies_elim_list
wenzelm@18118
   930
      (implies_intr_list asms th)
wenzelm@18118
   931
      (map (fn asm' => Thm.assume asm' RS protectD) asms')
wenzelm@18118
   932
    |> implies_intr_list asms'
wenzelm@18118
   933
  end;
wenzelm@11815
   934
wenzelm@19775
   935
fun mk_term ct =
wenzelm@19775
   936
  let
wenzelm@19775
   937
    val {thy, T, ...} = Thm.rep_cterm ct;
wenzelm@19775
   938
    val cert = Thm.cterm_of thy;
wenzelm@19775
   939
    val certT = Thm.ctyp_of thy;
wenzelm@19775
   940
    val a = certT (TVar (("'a", 0), []));
wenzelm@19775
   941
    val x = cert (Var (("x", 0), T));
wenzelm@19775
   942
  in Thm.instantiate ([(a, certT T)], [(x, ct)]) termI end;
wenzelm@19775
   943
wenzelm@19775
   944
fun dest_term th =
wenzelm@21566
   945
  let val cprop = strip_imp_concl (Thm.cprop_of th) in
wenzelm@19775
   946
    if can Logic.dest_term (Thm.term_of cprop) then
wenzelm@20579
   947
      Thm.dest_arg cprop
wenzelm@19775
   948
    else raise THM ("dest_term", 0, [th])
wenzelm@19775
   949
  end;
wenzelm@19775
   950
wenzelm@21519
   951
fun cterm_rule f = dest_term o f o mk_term;
wenzelm@21519
   952
fun term_rule thy f t = Thm.term_of (cterm_rule f (Thm.cterm_of thy t));
wenzelm@20881
   953
wenzelm@19775
   954
wenzelm@4789
   955
wenzelm@5688
   956
(** variations on instantiate **)
wenzelm@4285
   957
wenzelm@4285
   958
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   959
wenzelm@4285
   960
fun instantiate' cTs cts thm =
wenzelm@4285
   961
  let
wenzelm@4285
   962
    fun err msg =
wenzelm@4285
   963
      raise TYPE ("instantiate': " ^ msg,
wenzelm@19482
   964
        map_filter (Option.map Thm.typ_of) cTs,
wenzelm@19482
   965
        map_filter (Option.map Thm.term_of) cts);
wenzelm@4285
   966
wenzelm@4285
   967
    fun inst_of (v, ct) =
wenzelm@16425
   968
      (Thm.cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
wenzelm@4285
   969
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   970
berghofe@15797
   971
    fun tyinst_of (v, cT) =
wenzelm@16425
   972
      (Thm.ctyp_of (Thm.theory_of_ctyp cT) (TVar v), cT)
berghofe@15797
   973
        handle TYPE (msg, _, _) => err msg;
berghofe@15797
   974
wenzelm@20298
   975
    fun zip_vars xs ys =
wenzelm@20298
   976
      zip_options xs ys handle Library.UnequalLengths =>
wenzelm@20298
   977
        err "more instantiations than variables in thm";
wenzelm@4285
   978
wenzelm@4285
   979
    (*instantiate types first!*)
wenzelm@4285
   980
    val thm' =
wenzelm@4285
   981
      if forall is_none cTs then thm
wenzelm@20298
   982
      else Thm.instantiate
wenzelm@22695
   983
        (map tyinst_of (zip_vars (rev (Thm.fold_terms Term.add_tvars thm [])) cTs), []) thm;
wenzelm@20579
   984
    val thm'' =
wenzelm@4285
   985
      if forall is_none cts then thm'
wenzelm@20298
   986
      else Thm.instantiate
wenzelm@22695
   987
        ([], map inst_of (zip_vars (rev (Thm.fold_terms Term.add_vars thm' [])) cts)) thm';
wenzelm@20298
   988
    in thm'' end;
wenzelm@4285
   989
wenzelm@4285
   990
berghofe@14081
   991
berghofe@14081
   992
(** renaming of bound variables **)
berghofe@14081
   993
berghofe@14081
   994
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
   995
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
   996
berghofe@14081
   997
fun rename_bvars [] thm = thm
berghofe@14081
   998
  | rename_bvars vs thm =
berghofe@14081
   999
    let
wenzelm@16425
  1000
      val {thy, prop, ...} = rep_thm thm;
haftmann@17325
  1001
      fun ren (Abs (x, T, t)) = Abs (AList.lookup (op =) vs x |> the_default x, T, ren t)
berghofe@14081
  1002
        | ren (t $ u) = ren t $ ren u
berghofe@14081
  1003
        | ren t = t;
wenzelm@16425
  1004
    in equal_elim (reflexive (cterm_of thy (ren prop))) thm end;
berghofe@14081
  1005
berghofe@14081
  1006
berghofe@14081
  1007
(* renaming in left-to-right order *)
berghofe@14081
  1008
berghofe@14081
  1009
fun rename_bvars' xs thm =
berghofe@14081
  1010
  let
wenzelm@16425
  1011
    val {thy, prop, ...} = rep_thm thm;
berghofe@14081
  1012
    fun rename [] t = ([], t)
berghofe@14081
  1013
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
  1014
          let val (xs', t') = rename xs t
wenzelm@18929
  1015
          in (xs', Abs (the_default x x', T, t')) end
berghofe@14081
  1016
      | rename xs (t $ u) =
berghofe@14081
  1017
          let
berghofe@14081
  1018
            val (xs', t') = rename xs t;
berghofe@14081
  1019
            val (xs'', u') = rename xs' u
berghofe@14081
  1020
          in (xs'', t' $ u') end
berghofe@14081
  1021
      | rename xs t = (xs, t);
berghofe@14081
  1022
  in case rename xs prop of
wenzelm@16425
  1023
      ([], prop') => equal_elim (reflexive (cterm_of thy prop')) thm
berghofe@14081
  1024
    | _ => error "More names than abstractions in theorem"
berghofe@14081
  1025
  end;
berghofe@14081
  1026
berghofe@14081
  1027
wenzelm@11975
  1028
wenzelm@18225
  1029
(** multi_resolve **)
wenzelm@18225
  1030
wenzelm@18225
  1031
local
wenzelm@18225
  1032
wenzelm@18225
  1033
fun res th i rule =
wenzelm@18225
  1034
  Thm.biresolution false [(false, th)] i rule handle THM _ => Seq.empty;
wenzelm@18225
  1035
wenzelm@18225
  1036
fun multi_res _ [] rule = Seq.single rule
wenzelm@18225
  1037
  | multi_res i (th :: ths) rule = Seq.maps (res th i) (multi_res (i + 1) ths rule);
wenzelm@18225
  1038
wenzelm@18225
  1039
in
wenzelm@18225
  1040
wenzelm@18225
  1041
val multi_resolve = multi_res 1;
wenzelm@18225
  1042
fun multi_resolves facts rules = Seq.maps (multi_resolve facts) (Seq.of_list rules);
wenzelm@18225
  1043
wenzelm@18225
  1044
end;
wenzelm@18225
  1045
wenzelm@11975
  1046
end;
wenzelm@5903
  1047
wenzelm@5903
  1048
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
  1049
open BasicDrule;