src/HOL/Matrix/Matrix.thy
author nipkow
Thu Jul 07 12:39:17 2005 +0200 (2005-07-07 ago)
changeset 16733 236dfafbeb63
parent 15481 fc075ae929e4
child 17915 e38947f9ba5e
permissions -rw-r--r--
linear arithmetic now takes "&" in assumptions apart.
obua@14593
     1
(*  Title:      HOL/Matrix/Matrix.thy
obua@14593
     2
    ID:         $Id$
obua@14593
     3
    Author:     Steven Obua
obua@14593
     4
*)
obua@14593
     5
obua@14940
     6
theory Matrix=MatrixGeneral:
obua@14940
     7
obua@14940
     8
instance matrix :: (minus) minus 
obua@14940
     9
by intro_classes
obua@14940
    10
obua@14940
    11
instance matrix :: (plus) plus
obua@14940
    12
by (intro_classes)
obua@14593
    13
obua@14940
    14
instance matrix :: ("{plus,times}") times
obua@14940
    15
by (intro_classes)
obua@14940
    16
obua@14940
    17
defs (overloaded)
obua@14940
    18
  plus_matrix_def: "A + B == combine_matrix (op +) A B"
obua@14940
    19
  diff_matrix_def: "A - B == combine_matrix (op -) A B"
obua@14940
    20
  minus_matrix_def: "- A == apply_matrix uminus A"
obua@14940
    21
  times_matrix_def: "A * B == mult_matrix (op *) (op +) A B"
obua@14940
    22
obua@14940
    23
lemma is_meet_combine_matrix_meet: "is_meet (combine_matrix meet)"
obua@15178
    24
  by (simp_all add: is_meet_def le_matrix_def meet_left_le meet_right_le meet_imp_le)
obua@15178
    25
obua@15178
    26
lemma is_join_combine_matrix_join: "is_join (combine_matrix join)"
obua@15178
    27
  by (simp_all add: is_join_def le_matrix_def join_left_le join_right_le join_imp_le)
obua@14593
    28
obua@14940
    29
instance matrix :: (lordered_ab_group) lordered_ab_group_meet
obua@14940
    30
proof 
obua@14940
    31
  fix A B C :: "('a::lordered_ab_group) matrix"
obua@14940
    32
  show "A + B + C = A + (B + C)"    
obua@14940
    33
    apply (simp add: plus_matrix_def)
obua@14940
    34
    apply (rule combine_matrix_assoc[simplified associative_def, THEN spec, THEN spec, THEN spec])
obua@14940
    35
    apply (simp_all add: add_assoc)
obua@14940
    36
    done
obua@14940
    37
  show "A + B = B + A"
obua@14940
    38
    apply (simp add: plus_matrix_def)
obua@14940
    39
    apply (rule combine_matrix_commute[simplified commutative_def, THEN spec, THEN spec])
obua@14940
    40
    apply (simp_all add: add_commute)
obua@14940
    41
    done
obua@14940
    42
  show "0 + A = A"
obua@14940
    43
    apply (simp add: plus_matrix_def)
obua@14940
    44
    apply (rule combine_matrix_zero_l_neutral[simplified zero_l_neutral_def, THEN spec])
obua@14940
    45
    apply (simp)
obua@14940
    46
    done
obua@14940
    47
  show "- A + A = 0" 
obua@14940
    48
    by (simp add: plus_matrix_def minus_matrix_def Rep_matrix_inject[symmetric] ext)
obua@14940
    49
  show "A - B = A + - B" 
obua@14940
    50
    by (simp add: plus_matrix_def diff_matrix_def minus_matrix_def Rep_matrix_inject[symmetric] ext)
obua@14940
    51
  show "\<exists>m\<Colon>'a matrix \<Rightarrow> 'a matrix \<Rightarrow> 'a matrix. is_meet m"
obua@14940
    52
    by (auto intro: is_meet_combine_matrix_meet)
obua@14940
    53
  assume "A <= B"
obua@14940
    54
  then show "C + A <= C + B"
obua@14940
    55
    apply (simp add: plus_matrix_def)
obua@14940
    56
    apply (rule le_left_combine_matrix)
obua@14940
    57
    apply (simp_all)
obua@14940
    58
    done
obua@14940
    59
qed
obua@14593
    60
obua@14593
    61
defs (overloaded)
obua@14940
    62
  abs_matrix_def: "abs (A::('a::lordered_ab_group) matrix) == join A (- A)"
obua@14593
    63
obua@14940
    64
instance matrix :: (lordered_ring) lordered_ring
obua@14940
    65
proof
obua@14940
    66
  fix A B C :: "('a :: lordered_ring) matrix"
obua@14940
    67
  show "A * B * C = A * (B * C)"
obua@14940
    68
    apply (simp add: times_matrix_def)
obua@14940
    69
    apply (rule mult_matrix_assoc)
obua@14940
    70
    apply (simp_all add: associative_def ring_eq_simps)
obua@14940
    71
    done
obua@14940
    72
  show "(A + B) * C = A * C + B * C"
obua@14940
    73
    apply (simp add: times_matrix_def plus_matrix_def)
obua@14940
    74
    apply (rule l_distributive_matrix[simplified l_distributive_def, THEN spec, THEN spec, THEN spec])
obua@14940
    75
    apply (simp_all add: associative_def commutative_def ring_eq_simps)
obua@14940
    76
    done
obua@14940
    77
  show "A * (B + C) = A * B + A * C"
obua@14940
    78
    apply (simp add: times_matrix_def plus_matrix_def)
obua@14940
    79
    apply (rule r_distributive_matrix[simplified r_distributive_def, THEN spec, THEN spec, THEN spec])
obua@14940
    80
    apply (simp_all add: associative_def commutative_def ring_eq_simps)
obua@14940
    81
    done  
obua@14940
    82
  show "abs A = join A (-A)" 
obua@14940
    83
    by (simp add: abs_matrix_def)
obua@14940
    84
  assume a: "A \<le> B"
obua@14940
    85
  assume b: "0 \<le> C"
obua@14940
    86
  from a b show "C * A \<le> C * B"
obua@14940
    87
    apply (simp add: times_matrix_def)
obua@14940
    88
    apply (rule le_left_mult)
obua@14940
    89
    apply (simp_all add: add_mono mult_left_mono)
obua@14940
    90
    done
obua@14940
    91
  from a b show "A * C \<le> B * C"
obua@14940
    92
    apply (simp add: times_matrix_def)
obua@14940
    93
    apply (rule le_right_mult)
obua@14940
    94
    apply (simp_all add: add_mono mult_right_mono)
obua@14940
    95
    done
obua@14593
    96
qed
obua@14593
    97
obua@14940
    98
lemma Rep_matrix_add[simp]: "Rep_matrix ((a::('a::lordered_ab_group)matrix)+b) j i  = (Rep_matrix a j i) + (Rep_matrix b j i)"
obua@14940
    99
by (simp add: plus_matrix_def)
obua@14593
   100
obua@14940
   101
lemma Rep_matrix_mult: "Rep_matrix ((a::('a::lordered_ring) matrix) * b) j i = 
obua@14940
   102
  foldseq (op +) (% k.  (Rep_matrix a j k) * (Rep_matrix b k i)) (max (ncols a) (nrows b))"
obua@14940
   103
apply (simp add: times_matrix_def)
obua@14940
   104
apply (simp add: Rep_mult_matrix)
obua@14940
   105
done
obua@14940
   106
 
obua@14593
   107
obua@14940
   108
lemma apply_matrix_add: "! x y. f (x+y) = (f x) + (f y) \<Longrightarrow> f 0 = (0::'a) \<Longrightarrow> apply_matrix f ((a::('a::lordered_ab_group) matrix) + b) = (apply_matrix f a) + (apply_matrix f b)"
obua@14940
   109
apply (subst Rep_matrix_inject[symmetric])
obua@14593
   110
apply (rule ext)+
obua@14940
   111
apply (simp)
obua@14940
   112
done
obua@14593
   113
obua@14940
   114
lemma singleton_matrix_add: "singleton_matrix j i ((a::_::lordered_ab_group)+b) = (singleton_matrix j i a) + (singleton_matrix j i b)"
obua@14940
   115
apply (subst Rep_matrix_inject[symmetric])
obua@14940
   116
apply (rule ext)+
obua@14940
   117
apply (simp)
obua@14940
   118
done
obua@14593
   119
obua@14940
   120
lemma nrows_mult: "nrows ((A::('a::lordered_ring) matrix) * B) <= nrows A"
obua@14593
   121
by (simp add: times_matrix_def mult_nrows)
obua@14593
   122
obua@14940
   123
lemma ncols_mult: "ncols ((A::('a::lordered_ring) matrix) * B) <= ncols B"
obua@14593
   124
by (simp add: times_matrix_def mult_ncols)
obua@14593
   125
obua@14593
   126
constdefs
obua@14940
   127
  one_matrix :: "nat \<Rightarrow> ('a::{zero,one}) matrix"
obua@14593
   128
  "one_matrix n == Abs_matrix (% j i. if j = i & j < n then 1 else 0)"
obua@14593
   129
obua@14593
   130
lemma Rep_one_matrix[simp]: "Rep_matrix (one_matrix n) j i = (if (j = i & j < n) then 1 else 0)"
obua@14593
   131
apply (simp add: one_matrix_def)
paulson@15481
   132
apply (simplesubst RepAbs_matrix)
obua@14593
   133
apply (rule exI[of _ n], simp add: split_if)+
nipkow@16733
   134
by (simp add: split_if)
obua@14593
   135
obua@14940
   136
lemma nrows_one_matrix[simp]: "nrows ((one_matrix n) :: ('a::axclass_0_neq_1)matrix) = n" (is "?r = _")
obua@14593
   137
proof -
obua@14593
   138
  have "?r <= n" by (simp add: nrows_le)
obua@14940
   139
  moreover have "n <= ?r" by (simp add:le_nrows, arith)
obua@14593
   140
  ultimately show "?r = n" by simp
obua@14593
   141
qed
obua@14593
   142
obua@14940
   143
lemma ncols_one_matrix[simp]: "ncols ((one_matrix n) :: ('a::axclass_0_neq_1)matrix) = n" (is "?r = _")
obua@14593
   144
proof -
obua@14593
   145
  have "?r <= n" by (simp add: ncols_le)
obua@14593
   146
  moreover have "n <= ?r" by (simp add: le_ncols, arith)
obua@14593
   147
  ultimately show "?r = n" by simp
obua@14593
   148
qed
obua@14593
   149
obua@14940
   150
lemma one_matrix_mult_right[simp]: "ncols A <= n \<Longrightarrow> (A::('a::{lordered_ring,ring_1}) matrix) * (one_matrix n) = A"
obua@14593
   151
apply (subst Rep_matrix_inject[THEN sym])
obua@14593
   152
apply (rule ext)+
obua@14593
   153
apply (simp add: times_matrix_def Rep_mult_matrix)
obua@14593
   154
apply (rule_tac j1="xa" in ssubst[OF foldseq_almostzero])
obua@14593
   155
apply (simp_all)
obua@14593
   156
by (simp add: max_def ncols)
obua@14593
   157
obua@14940
   158
lemma one_matrix_mult_left[simp]: "nrows A <= n \<Longrightarrow> (one_matrix n) * A = (A::('a::{lordered_ring, ring_1}) matrix)"
obua@14593
   159
apply (subst Rep_matrix_inject[THEN sym])
obua@14593
   160
apply (rule ext)+
obua@14593
   161
apply (simp add: times_matrix_def Rep_mult_matrix)
obua@14593
   162
apply (rule_tac j1="x" in ssubst[OF foldseq_almostzero])
obua@14593
   163
apply (simp_all)
obua@14593
   164
by (simp add: max_def nrows)
obua@14593
   165
obua@14940
   166
lemma transpose_matrix_mult: "transpose_matrix ((A::('a::{lordered_ring,comm_ring}) matrix)*B) = (transpose_matrix B) * (transpose_matrix A)"
obua@14940
   167
apply (simp add: times_matrix_def)
obua@14940
   168
apply (subst transpose_mult_matrix)
obua@14940
   169
apply (simp_all add: mult_commute)
obua@14940
   170
done
obua@14940
   171
obua@14940
   172
lemma transpose_matrix_add: "transpose_matrix ((A::('a::lordered_ab_group) matrix)+B) = transpose_matrix A + transpose_matrix B"
obua@14940
   173
by (simp add: plus_matrix_def transpose_combine_matrix)
obua@14940
   174
obua@14940
   175
lemma transpose_matrix_diff: "transpose_matrix ((A::('a::lordered_ab_group) matrix)-B) = transpose_matrix A - transpose_matrix B"
obua@14940
   176
by (simp add: diff_matrix_def transpose_combine_matrix)
obua@14940
   177
obua@14940
   178
lemma transpose_matrix_minus: "transpose_matrix (-(A::('a::lordered_ring) matrix)) = - transpose_matrix (A::('a::lordered_ring) matrix)"
obua@14940
   179
by (simp add: minus_matrix_def transpose_apply_matrix)
obua@14940
   180
obua@14940
   181
constdefs 
obua@14940
   182
  right_inverse_matrix :: "('a::{lordered_ring, ring_1}) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
obua@14940
   183
  "right_inverse_matrix A X == (A * X = one_matrix (max (nrows A) (ncols X))) \<and> nrows X \<le> ncols A" 
obua@14940
   184
  left_inverse_matrix :: "('a::{lordered_ring, ring_1}) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
obua@14940
   185
  "left_inverse_matrix A X == (X * A = one_matrix (max(nrows X) (ncols A))) \<and> ncols X \<le> nrows A" 
obua@14940
   186
  inverse_matrix :: "('a::{lordered_ring, ring_1}) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
obua@14940
   187
  "inverse_matrix A X == (right_inverse_matrix A X) \<and> (left_inverse_matrix A X)"
obua@14593
   188
obua@14593
   189
lemma right_inverse_matrix_dim: "right_inverse_matrix A X \<Longrightarrow> nrows A = ncols X"
obua@14593
   190
apply (insert ncols_mult[of A X], insert nrows_mult[of A X])
obua@14593
   191
by (simp add: right_inverse_matrix_def)
obua@14593
   192
obua@14940
   193
lemma left_inverse_matrix_dim: "left_inverse_matrix A Y \<Longrightarrow> ncols A = nrows Y"
obua@14940
   194
apply (insert ncols_mult[of Y A], insert nrows_mult[of Y A]) 
obua@14940
   195
by (simp add: left_inverse_matrix_def)
obua@14940
   196
obua@14940
   197
lemma left_right_inverse_matrix_unique: 
obua@14940
   198
  assumes "left_inverse_matrix A Y" "right_inverse_matrix A X"
obua@14940
   199
  shows "X = Y"
obua@14940
   200
proof -
obua@14940
   201
  have "Y = Y * one_matrix (nrows A)" 
obua@14940
   202
    apply (subst one_matrix_mult_right)
obua@14940
   203
    apply (insert prems)
obua@14940
   204
    by (simp_all add: left_inverse_matrix_def)
obua@14940
   205
  also have "\<dots> = Y * (A * X)" 
obua@14940
   206
    apply (insert prems)
obua@14940
   207
    apply (frule right_inverse_matrix_dim)
obua@14940
   208
    by (simp add: right_inverse_matrix_def)
obua@14940
   209
  also have "\<dots> = (Y * A) * X" by (simp add: mult_assoc)
obua@14940
   210
  also have "\<dots> = X" 
obua@14940
   211
    apply (insert prems)
obua@14940
   212
    apply (frule left_inverse_matrix_dim)
obua@14940
   213
    apply (simp_all add:  left_inverse_matrix_def right_inverse_matrix_def one_matrix_mult_left)
obua@14940
   214
    done
obua@14940
   215
  ultimately show "X = Y" by (simp)
obua@14940
   216
qed
obua@14940
   217
obua@14940
   218
lemma inverse_matrix_inject: "\<lbrakk> inverse_matrix A X; inverse_matrix A Y \<rbrakk> \<Longrightarrow> X = Y"
obua@14940
   219
  by (auto simp add: inverse_matrix_def left_right_inverse_matrix_unique)
obua@14940
   220
obua@14940
   221
lemma one_matrix_inverse: "inverse_matrix (one_matrix n) (one_matrix n)"
obua@14940
   222
  by (simp add: inverse_matrix_def left_inverse_matrix_def right_inverse_matrix_def)
obua@14940
   223
obua@14940
   224
lemma zero_imp_mult_zero: "(a::'a::ring) = 0 | b = 0 \<Longrightarrow> a * b = 0"
obua@14940
   225
by auto
obua@14940
   226
obua@14940
   227
lemma Rep_matrix_zero_imp_mult_zero:
obua@14940
   228
  "! j i k. (Rep_matrix A j k = 0) | (Rep_matrix B k i) = 0  \<Longrightarrow> A * B = (0::('a::lordered_ring) matrix)"
obua@14940
   229
apply (subst Rep_matrix_inject[symmetric])
obua@14940
   230
apply (rule ext)+
obua@14940
   231
apply (auto simp add: Rep_matrix_mult foldseq_zero zero_imp_mult_zero)
obua@14940
   232
done
obua@14940
   233
obua@14940
   234
lemma add_nrows: "nrows (A::('a::comm_monoid_add) matrix) <= u \<Longrightarrow> nrows B <= u \<Longrightarrow> nrows (A + B) <= u"
obua@14940
   235
apply (simp add: plus_matrix_def)
obua@14940
   236
apply (rule combine_nrows)
obua@14940
   237
apply (simp_all)
obua@14940
   238
done
obua@14940
   239
obua@14940
   240
lemma move_matrix_row_mult: "move_matrix ((A::('a::lordered_ring) matrix) * B) j 0 = (move_matrix A j 0) * B"
obua@14940
   241
apply (subst Rep_matrix_inject[symmetric])
obua@14940
   242
apply (rule ext)+
obua@14940
   243
apply (auto simp add: Rep_matrix_mult foldseq_zero)
obua@14940
   244
apply (rule_tac foldseq_zerotail[symmetric])
obua@14940
   245
apply (auto simp add: nrows zero_imp_mult_zero max2)
obua@14940
   246
apply (rule order_trans)
obua@14940
   247
apply (rule ncols_move_matrix_le)
obua@14940
   248
apply (simp add: max1)
obua@14940
   249
done
obua@14940
   250
obua@14940
   251
lemma move_matrix_col_mult: "move_matrix ((A::('a::lordered_ring) matrix) * B) 0 i = A * (move_matrix B 0 i)"
obua@14940
   252
apply (subst Rep_matrix_inject[symmetric])
obua@14940
   253
apply (rule ext)+
obua@14940
   254
apply (auto simp add: Rep_matrix_mult foldseq_zero)
obua@14940
   255
apply (rule_tac foldseq_zerotail[symmetric])
obua@14940
   256
apply (auto simp add: ncols zero_imp_mult_zero max1)
obua@14940
   257
apply (rule order_trans)
obua@14940
   258
apply (rule nrows_move_matrix_le)
obua@14940
   259
apply (simp add: max2)
obua@14940
   260
done
obua@14940
   261
obua@14940
   262
lemma move_matrix_add: "((move_matrix (A + B) j i)::(('a::lordered_ab_group) matrix)) = (move_matrix A j i) + (move_matrix B j i)" 
obua@14940
   263
apply (subst Rep_matrix_inject[symmetric])
obua@14940
   264
apply (rule ext)+
obua@14940
   265
apply (simp)
obua@14940
   266
done
obua@14940
   267
obua@14940
   268
lemma move_matrix_mult: "move_matrix ((A::('a::lordered_ring) matrix)*B) j i = (move_matrix A j 0) * (move_matrix B 0 i)"
obua@14940
   269
by (simp add: move_matrix_ortho[of "A*B"] move_matrix_col_mult move_matrix_row_mult)
obua@14940
   270
obua@14940
   271
constdefs
obua@14940
   272
  scalar_mult :: "('a::lordered_ring) \<Rightarrow> 'a matrix \<Rightarrow> 'a matrix"
obua@14940
   273
  "scalar_mult a m == apply_matrix (op * a) m"
obua@14940
   274
obua@14940
   275
lemma scalar_mult_zero[simp]: "scalar_mult y 0 = 0" 
obua@14940
   276
  by (simp add: scalar_mult_def)
obua@14940
   277
obua@14940
   278
lemma scalar_mult_add: "scalar_mult y (a+b) = (scalar_mult y a) + (scalar_mult y b)"
obua@14940
   279
  by (simp add: scalar_mult_def apply_matrix_add ring_eq_simps)
obua@14940
   280
obua@14940
   281
lemma Rep_scalar_mult[simp]: "Rep_matrix (scalar_mult y a) j i = y * (Rep_matrix a j i)" 
obua@14940
   282
  by (simp add: scalar_mult_def)
obua@14940
   283
obua@14940
   284
lemma scalar_mult_singleton[simp]: "scalar_mult y (singleton_matrix j i x) = singleton_matrix j i (y * x)"
obua@14940
   285
  apply (subst Rep_matrix_inject[symmetric])
obua@14940
   286
  apply (rule ext)+
obua@14940
   287
  apply (auto)
obua@14940
   288
  done
obua@14940
   289
obua@15178
   290
lemma Rep_minus[simp]: "Rep_matrix (-(A::_::lordered_ab_group)) x y = - (Rep_matrix A x y)"
obua@15178
   291
  by (simp add: minus_matrix_def)
obua@14940
   292
obua@15178
   293
lemma join_matrix: "join (A::('a::lordered_ring) matrix) B = combine_matrix join A B"  
obua@15178
   294
  apply (insert join_unique[of "(combine_matrix join)::('a matrix \<Rightarrow> 'a matrix \<Rightarrow> 'a matrix)", simplified is_join_combine_matrix_join])
obua@15178
   295
  apply (simp)
obua@15178
   296
  done
obua@14940
   297
obua@15178
   298
lemma meet_matrix: "meet (A::('a::lordered_ring) matrix) B = combine_matrix meet A B"
obua@15178
   299
  apply (insert meet_unique[of "(combine_matrix meet)::('a matrix \<Rightarrow> 'a matrix \<Rightarrow> 'a matrix)", simplified is_meet_combine_matrix_meet])
obua@15178
   300
  apply (simp)
obua@15178
   301
  done
obua@15178
   302
obua@15178
   303
lemma Rep_abs[simp]: "Rep_matrix (abs (A::_::lordered_ring)) x y = abs (Rep_matrix A x y)"
obua@15178
   304
  by (simp add: abs_lattice join_matrix)
obua@14940
   305
obua@14593
   306
end