src/Pure/drule.ML
author wenzelm
Fri Jun 17 18:33:08 2005 +0200 (2005-06-17 ago)
changeset 16425 2427be27cc60
parent 15949 fd02dd265b78
child 16595 e64fb2cf50cb
permissions -rw-r--r--
accomodate identification of type Sign.sg and theory;
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
wenzelm@3766
     6
Derived rules and other operations on theorems.
clasohm@0
     7
*)
clasohm@0
     8
berghofe@13606
     9
infix 0 RS RSN RL RLN MRS MRL OF COMP;
clasohm@0
    10
wenzelm@5903
    11
signature BASIC_DRULE =
wenzelm@3766
    12
sig
paulson@9547
    13
  val mk_implies        : cterm * cterm -> cterm
paulson@9547
    14
  val list_implies      : cterm list * cterm -> cterm
wenzelm@4285
    15
  val dest_implies      : cterm -> cterm * cterm
berghofe@10414
    16
  val dest_equals       : cterm -> cterm * cterm
wenzelm@8328
    17
  val strip_imp_prems   : cterm -> cterm list
berghofe@10414
    18
  val strip_imp_concl   : cterm -> cterm
wenzelm@8328
    19
  val cprems_of         : thm -> cterm list
berghofe@15797
    20
  val cterm_fun         : (term -> term) -> (cterm -> cterm)
berghofe@15797
    21
  val ctyp_fun          : (typ -> typ) -> (ctyp -> ctyp)
wenzelm@8328
    22
  val read_insts        :
wenzelm@16425
    23
          theory -> (indexname -> typ option) * (indexname -> sort option)
wenzelm@4285
    24
                  -> (indexname -> typ option) * (indexname -> sort option)
berghofe@15442
    25
                  -> string list -> (indexname * string) list
berghofe@15797
    26
                  -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@4285
    27
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
wenzelm@7636
    28
  val strip_shyps_warning : thm -> thm
wenzelm@8328
    29
  val forall_intr_list  : cterm list -> thm -> thm
wenzelm@8328
    30
  val forall_intr_frees : thm -> thm
wenzelm@8328
    31
  val forall_intr_vars  : thm -> thm
wenzelm@8328
    32
  val forall_elim_list  : cterm list -> thm -> thm
wenzelm@8328
    33
  val forall_elim_var   : int -> thm -> thm
wenzelm@8328
    34
  val forall_elim_vars  : int -> thm -> thm
wenzelm@12725
    35
  val gen_all           : thm -> thm
wenzelm@8328
    36
  val freeze_thaw       : thm -> thm * (thm -> thm)
paulson@15495
    37
  val freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
wenzelm@8328
    38
  val implies_elim_list : thm -> thm list -> thm
wenzelm@8328
    39
  val implies_intr_list : cterm list -> thm -> thm
paulson@8129
    40
  val instantiate       :
berghofe@15797
    41
    (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@8328
    42
  val zero_var_indexes  : thm -> thm
wenzelm@8328
    43
  val standard          : thm -> thm
berghofe@11512
    44
  val standard'         : thm -> thm
paulson@4610
    45
  val rotate_prems      : int -> thm -> thm
oheimb@11163
    46
  val rearrange_prems   : int list -> thm -> thm
wenzelm@8328
    47
  val assume_ax         : theory -> string -> thm
wenzelm@8328
    48
  val RSN               : thm * (int * thm) -> thm
wenzelm@8328
    49
  val RS                : thm * thm -> thm
wenzelm@8328
    50
  val RLN               : thm list * (int * thm list) -> thm list
wenzelm@8328
    51
  val RL                : thm list * thm list -> thm list
wenzelm@8328
    52
  val MRS               : thm list * thm -> thm
wenzelm@8328
    53
  val MRL               : thm list list * thm list -> thm list
wenzelm@9288
    54
  val OF                : thm * thm list -> thm
wenzelm@8328
    55
  val compose           : thm * int * thm -> thm list
wenzelm@8328
    56
  val COMP              : thm * thm -> thm
wenzelm@16425
    57
  val read_instantiate_sg: theory -> (string*string)list -> thm -> thm
wenzelm@8328
    58
  val read_instantiate  : (string*string)list -> thm -> thm
wenzelm@8328
    59
  val cterm_instantiate : (cterm*cterm)list -> thm -> thm
wenzelm@16425
    60
  val eq_thm_thy        : thm * thm -> bool
wenzelm@13105
    61
  val eq_thm_prop	: thm * thm -> bool
wenzelm@8328
    62
  val weak_eq_thm       : thm * thm -> bool
wenzelm@8328
    63
  val size_of_thm       : thm -> int
wenzelm@8328
    64
  val reflexive_thm     : thm
wenzelm@8328
    65
  val symmetric_thm     : thm
wenzelm@8328
    66
  val transitive_thm    : thm
nipkow@4679
    67
  val symmetric_fun     : thm -> thm
berghofe@11512
    68
  val extensional       : thm -> thm
berghofe@10414
    69
  val imp_cong          : thm
berghofe@10414
    70
  val swap_prems_eq     : thm
wenzelm@8328
    71
  val equal_abs_elim    : cterm  -> thm -> thm
wenzelm@4285
    72
  val equal_abs_elim_list: cterm list -> thm -> thm
wenzelm@8328
    73
  val asm_rl            : thm
wenzelm@8328
    74
  val cut_rl            : thm
wenzelm@8328
    75
  val revcut_rl         : thm
wenzelm@8328
    76
  val thin_rl           : thm
wenzelm@4285
    77
  val triv_forall_equality: thm
nipkow@1756
    78
  val swap_prems_rl     : thm
wenzelm@4285
    79
  val equal_intr_rule   : thm
wenzelm@13368
    80
  val equal_elim_rule1  : thm
paulson@8550
    81
  val inst              : string -> string -> thm -> thm
wenzelm@8328
    82
  val instantiate'      : ctyp option list -> cterm option list -> thm -> thm
wenzelm@8328
    83
  val incr_indexes_wrt  : int list -> ctyp list -> cterm list -> thm list -> thm -> thm
wenzelm@5903
    84
end;
wenzelm@5903
    85
wenzelm@5903
    86
signature DRULE =
wenzelm@5903
    87
sig
wenzelm@5903
    88
  include BASIC_DRULE
paulson@15949
    89
  val list_comb: cterm * cterm list -> cterm
berghofe@12908
    90
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    91
  val strip_type: ctyp -> ctyp list * ctyp
paulson@15949
    92
  val beta_conv: cterm -> cterm -> cterm
wenzelm@15875
    93
  val plain_prop_of: thm -> term
wenzelm@15669
    94
  val add_used: thm -> string list -> string list
wenzelm@11975
    95
  val rule_attribute: ('a -> thm -> thm) -> 'a attribute
wenzelm@11975
    96
  val tag_rule: tag -> thm -> thm
wenzelm@11975
    97
  val untag_rule: string -> thm -> thm
wenzelm@11975
    98
  val tag: tag -> 'a attribute
wenzelm@11975
    99
  val untag: string -> 'a attribute
wenzelm@11975
   100
  val get_kind: thm -> string
wenzelm@11975
   101
  val kind: string -> 'a attribute
wenzelm@11975
   102
  val theoremK: string
wenzelm@11975
   103
  val lemmaK: string
wenzelm@11975
   104
  val corollaryK: string
wenzelm@11975
   105
  val internalK: string
wenzelm@11975
   106
  val kind_internal: 'a attribute
wenzelm@11975
   107
  val has_internal: tag list -> bool
wenzelm@11975
   108
  val impose_hyps: cterm list -> thm -> thm
wenzelm@13389
   109
  val satisfy_hyps: thm list -> thm -> thm
wenzelm@11975
   110
  val close_derivation: thm -> thm
wenzelm@12005
   111
  val local_standard: thm -> thm
wenzelm@11975
   112
  val compose_single: thm * int * thm -> thm
wenzelm@12373
   113
  val add_rule: thm -> thm list -> thm list
wenzelm@12373
   114
  val del_rule: thm -> thm list -> thm list
wenzelm@11975
   115
  val add_rules: thm list -> thm list -> thm list
wenzelm@11975
   116
  val del_rules: thm list -> thm list -> thm list
wenzelm@11975
   117
  val merge_rules: thm list * thm list -> thm list
skalberg@15001
   118
  val imp_cong'         : thm -> thm -> thm
skalberg@15001
   119
  val beta_eta_conversion: cterm -> thm
berghofe@15925
   120
  val eta_long_conversion: cterm -> thm
skalberg@15001
   121
  val goals_conv        : (int -> bool) -> (cterm -> thm) -> cterm -> thm
skalberg@15001
   122
  val forall_conv       : (cterm -> thm) -> cterm -> thm
skalberg@15001
   123
  val fconv_rule        : (cterm -> thm) -> thm -> thm
wenzelm@11975
   124
  val norm_hhf_eq: thm
wenzelm@12800
   125
  val is_norm_hhf: term -> bool
wenzelm@16425
   126
  val norm_hhf: theory -> term -> term
wenzelm@11975
   127
  val triv_goal: thm
wenzelm@11975
   128
  val rev_triv_goal: thm
wenzelm@11815
   129
  val implies_intr_goals: cterm list -> thm -> thm
wenzelm@11975
   130
  val freeze_all: thm -> thm
wenzelm@11975
   131
  val mk_triv_goal: cterm -> thm
wenzelm@11975
   132
  val tvars_of_terms: term list -> (indexname * sort) list
wenzelm@11975
   133
  val vars_of_terms: term list -> (indexname * typ) list
wenzelm@11975
   134
  val tvars_of: thm -> (indexname * sort) list
wenzelm@11975
   135
  val vars_of: thm -> (indexname * typ) list
berghofe@14081
   136
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   137
  val rename_bvars': string option list -> thm -> thm
wenzelm@11975
   138
  val unvarifyT: thm -> thm
wenzelm@11975
   139
  val unvarify: thm -> thm
berghofe@15797
   140
  val tvars_intr_list: string list -> thm -> thm * (string * (indexname * sort)) list
wenzelm@12297
   141
  val remdups_rl: thm
wenzelm@11975
   142
  val conj_intr: thm -> thm -> thm
wenzelm@11975
   143
  val conj_intr_list: thm list -> thm
wenzelm@11975
   144
  val conj_elim: thm -> thm * thm
wenzelm@11975
   145
  val conj_elim_list: thm -> thm list
wenzelm@12135
   146
  val conj_elim_precise: int -> thm -> thm list
wenzelm@12135
   147
  val conj_intr_thm: thm
berghofe@13325
   148
  val abs_def: thm -> thm
wenzelm@16425
   149
  val read_instantiate_sg': theory -> (indexname * string) list -> thm -> thm
berghofe@15797
   150
  val read_instantiate': (indexname * string) list -> thm -> thm
wenzelm@3766
   151
end;
clasohm@0
   152
wenzelm@5903
   153
structure Drule: DRULE =
clasohm@0
   154
struct
clasohm@0
   155
wenzelm@3991
   156
lcp@708
   157
(** some cterm->cterm operations: much faster than calling cterm_of! **)
lcp@708
   158
paulson@2004
   159
(** SAME NAMES as in structure Logic: use compound identifiers! **)
paulson@2004
   160
clasohm@1703
   161
(*dest_implies for cterms. Note T=prop below*)
paulson@2004
   162
fun dest_implies ct =
wenzelm@8328
   163
    case term_of ct of
wenzelm@8328
   164
        (Const("==>", _) $ _ $ _) =>
wenzelm@10767
   165
            let val (ct1,ct2) = Thm.dest_comb ct
wenzelm@10767
   166
            in  (#2 (Thm.dest_comb ct1), ct2)  end
paulson@2004
   167
      | _ => raise TERM ("dest_implies", [term_of ct]) ;
clasohm@1703
   168
berghofe@10414
   169
fun dest_equals ct =
berghofe@10414
   170
    case term_of ct of
berghofe@10414
   171
        (Const("==", _) $ _ $ _) =>
wenzelm@10767
   172
            let val (ct1,ct2) = Thm.dest_comb ct
wenzelm@10767
   173
            in  (#2 (Thm.dest_comb ct1), ct2)  end
berghofe@10414
   174
      | _ => raise TERM ("dest_equals", [term_of ct]) ;
berghofe@10414
   175
clasohm@1703
   176
lcp@708
   177
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   178
fun strip_imp_prems ct =
paulson@2004
   179
    let val (cA,cB) = dest_implies ct
paulson@2004
   180
    in  cA :: strip_imp_prems cB  end
lcp@708
   181
    handle TERM _ => [];
lcp@708
   182
paulson@2004
   183
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   184
fun strip_imp_concl ct =
wenzelm@8328
   185
    case term_of ct of (Const("==>", _) $ _ $ _) =>
wenzelm@10767
   186
        strip_imp_concl (#2 (Thm.dest_comb ct))
paulson@2004
   187
  | _ => ct;
paulson@2004
   188
lcp@708
   189
(*The premises of a theorem, as a cterm list*)
berghofe@13659
   190
val cprems_of = strip_imp_prems o cprop_of;
lcp@708
   191
berghofe@15797
   192
fun cterm_fun f ct =
wenzelm@16425
   193
  let val {t, thy, ...} = Thm.rep_cterm ct
wenzelm@16425
   194
  in Thm.cterm_of thy (f t) end;
berghofe@15797
   195
berghofe@15797
   196
fun ctyp_fun f cT =
wenzelm@16425
   197
  let val {T, thy, ...} = Thm.rep_ctyp cT
wenzelm@16425
   198
  in Thm.ctyp_of thy (f T) end;
berghofe@15797
   199
wenzelm@16425
   200
val implies = cterm_of ProtoPure.thy Term.implies;
paulson@9547
   201
paulson@9547
   202
(*cterm version of mk_implies*)
wenzelm@10767
   203
fun mk_implies(A,B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   204
paulson@9547
   205
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   206
fun list_implies([], B) = B
paulson@9547
   207
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   208
paulson@15949
   209
(*cterm version of list_comb: maps  (f, [t1,...,tn])  to  f(t1,...,tn) *)
paulson@15949
   210
fun list_comb (f, []) = f
paulson@15949
   211
  | list_comb (f, t::ts) = list_comb (Thm.capply f t, ts);
paulson@15949
   212
berghofe@12908
   213
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
berghofe@12908
   214
fun strip_comb ct = 
berghofe@12908
   215
  let
berghofe@12908
   216
    fun stripc (p as (ct, cts)) =
berghofe@12908
   217
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   218
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   219
  in stripc (ct, []) end;
berghofe@12908
   220
berghofe@15262
   221
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   222
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   223
    Type ("fun", _) =>
berghofe@15262
   224
      let
berghofe@15262
   225
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   226
        val (cTs, cT') = strip_type cT2
berghofe@15262
   227
      in (cT1 :: cTs, cT') end
berghofe@15262
   228
  | _ => ([], cT));
berghofe@15262
   229
paulson@15949
   230
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
paulson@15949
   231
  of the meta-equality returned by the beta_conversion rule.*)
paulson@15949
   232
fun beta_conv x y = 
paulson@15949
   233
    #2 (Thm.dest_comb (cprop_of (Thm.beta_conversion false (Thm.capply x y))));
paulson@15949
   234
wenzelm@15875
   235
fun plain_prop_of raw_thm =
wenzelm@15875
   236
  let
wenzelm@15875
   237
    val thm = Thm.strip_shyps raw_thm;
wenzelm@15875
   238
    fun err msg = raise THM ("plain_prop_of: " ^ msg, 0, [thm]);
wenzelm@15875
   239
    val {hyps, prop, tpairs, ...} = Thm.rep_thm thm;
wenzelm@15875
   240
  in
wenzelm@15875
   241
    if not (null hyps) then
wenzelm@15875
   242
      err "theorem may not contain hypotheses"
wenzelm@15875
   243
    else if not (null (Thm.extra_shyps thm)) then
wenzelm@15875
   244
      err "theorem may not contain sort hypotheses"
wenzelm@15875
   245
    else if not (null tpairs) then
wenzelm@15875
   246
      err "theorem may not contain flex-flex pairs"
wenzelm@15875
   247
    else prop
wenzelm@15875
   248
  end;
wenzelm@15875
   249
wenzelm@15875
   250
lcp@708
   251
lcp@229
   252
(** reading of instantiations **)
lcp@229
   253
lcp@229
   254
fun absent ixn =
lcp@229
   255
  error("No such variable in term: " ^ Syntax.string_of_vname ixn);
lcp@229
   256
lcp@229
   257
fun inst_failure ixn =
lcp@229
   258
  error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
lcp@229
   259
wenzelm@16425
   260
fun read_insts thy (rtypes,rsorts) (types,sorts) used insts =
wenzelm@10403
   261
let
berghofe@15442
   262
    fun is_tv ((a, _), _) =
berghofe@15442
   263
      (case Symbol.explode a of "'" :: _ => true | _ => false);
skalberg@15570
   264
    val (tvs, vs) = List.partition is_tv insts;
berghofe@15797
   265
    fun sort_of ixn = case rsorts ixn of SOME S => S | NONE => absent ixn;
berghofe@15442
   266
    fun readT (ixn, st) =
berghofe@15797
   267
        let val S = sort_of ixn;
wenzelm@16425
   268
            val T = Sign.read_typ (thy,sorts) st;
wenzelm@16425
   269
        in if Sign.typ_instance thy (T, TVar(ixn,S)) then (ixn,T)
nipkow@4281
   270
           else inst_failure ixn
nipkow@4281
   271
        end
nipkow@4281
   272
    val tye = map readT tvs;
nipkow@4281
   273
    fun mkty(ixn,st) = (case rtypes ixn of
skalberg@15531
   274
                          SOME T => (ixn,(st,typ_subst_TVars tye T))
skalberg@15531
   275
                        | NONE => absent ixn);
nipkow@4281
   276
    val ixnsTs = map mkty vs;
nipkow@4281
   277
    val ixns = map fst ixnsTs
nipkow@4281
   278
    and sTs  = map snd ixnsTs
wenzelm@16425
   279
    val (cts,tye2) = read_def_cterms(thy,types,sorts) used false sTs;
nipkow@4281
   280
    fun mkcVar(ixn,T) =
nipkow@4281
   281
        let val U = typ_subst_TVars tye2 T
wenzelm@16425
   282
        in cterm_of thy (Var(ixn,U)) end
nipkow@4281
   283
    val ixnTs = ListPair.zip(ixns, map snd sTs)
wenzelm@16425
   284
in (map (fn (ixn, T) => (ctyp_of thy (TVar (ixn, sort_of ixn)),
wenzelm@16425
   285
      ctyp_of thy T)) (tye2 @ tye),
nipkow@4281
   286
    ListPair.zip(map mkcVar ixnTs,cts))
nipkow@4281
   287
end;
lcp@229
   288
lcp@229
   289
wenzelm@252
   290
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   291
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   292
     type variables) when reading another term.
clasohm@0
   293
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   294
***)
clasohm@0
   295
clasohm@0
   296
fun types_sorts thm =
wenzelm@15669
   297
    let val {prop, hyps, tpairs, ...} = Thm.rep_thm thm;
wenzelm@15669
   298
        (* bogus term! *)
paulson@15949
   299
        val big = Term.list_comb 
paulson@15949
   300
                    (Term.list_comb (prop, hyps), Thm.terms_of_tpairs tpairs);
wenzelm@252
   301
        val vars = map dest_Var (term_vars big);
wenzelm@252
   302
        val frees = map dest_Free (term_frees big);
wenzelm@252
   303
        val tvars = term_tvars big;
wenzelm@252
   304
        val tfrees = term_tfrees big;
wenzelm@252
   305
        fun typ(a,i) = if i<0 then assoc(frees,a) else assoc(vars,(a,i));
wenzelm@252
   306
        fun sort(a,i) = if i<0 then assoc(tfrees,a) else assoc(tvars,(a,i));
clasohm@0
   307
    in (typ,sort) end;
clasohm@0
   308
wenzelm@15669
   309
fun add_used thm used =
wenzelm@15669
   310
  let val {prop, hyps, tpairs, ...} = Thm.rep_thm thm in
wenzelm@15669
   311
    add_term_tvarnames (prop, used)
wenzelm@15669
   312
    |> fold (curry add_term_tvarnames) hyps
wenzelm@15669
   313
    |> fold (curry add_term_tvarnames) (Thm.terms_of_tpairs tpairs)
wenzelm@15669
   314
  end;
wenzelm@15669
   315
wenzelm@7636
   316
wenzelm@9455
   317
wenzelm@9455
   318
(** basic attributes **)
wenzelm@9455
   319
wenzelm@9455
   320
(* dependent rules *)
wenzelm@9455
   321
wenzelm@9455
   322
fun rule_attribute f (x, thm) = (x, (f x thm));
wenzelm@9455
   323
wenzelm@9455
   324
wenzelm@9455
   325
(* add / delete tags *)
wenzelm@9455
   326
wenzelm@9455
   327
fun map_tags f thm =
wenzelm@9455
   328
  Thm.put_name_tags (Thm.name_of_thm thm, f (#2 (Thm.get_name_tags thm))) thm;
wenzelm@9455
   329
wenzelm@9455
   330
fun tag_rule tg = map_tags (fn tgs => if tg mem tgs then tgs else tgs @ [tg]);
wenzelm@9455
   331
fun untag_rule s = map_tags (filter_out (equal s o #1));
wenzelm@9455
   332
wenzelm@9455
   333
fun tag tg x = rule_attribute (K (tag_rule tg)) x;
wenzelm@9455
   334
fun untag s x = rule_attribute (K (untag_rule s)) x;
wenzelm@9455
   335
wenzelm@9455
   336
fun simple_tag name x = tag (name, []) x;
wenzelm@9455
   337
wenzelm@11741
   338
wenzelm@11741
   339
(* theorem kinds *)
wenzelm@11741
   340
wenzelm@11741
   341
val theoremK = "theorem";
wenzelm@11741
   342
val lemmaK = "lemma";
wenzelm@11741
   343
val corollaryK = "corollary";
wenzelm@11741
   344
val internalK = "internal";
wenzelm@9455
   345
wenzelm@11741
   346
fun get_kind thm =
wenzelm@11741
   347
  (case Library.assoc (#2 (Thm.get_name_tags thm), "kind") of
skalberg@15531
   348
    SOME (k :: _) => k
wenzelm@11741
   349
  | _ => "unknown");
wenzelm@11741
   350
wenzelm@11741
   351
fun kind_rule k = tag_rule ("kind", [k]) o untag_rule "kind";
wenzelm@12710
   352
fun kind k x = if k = "" then x else rule_attribute (K (kind_rule k)) x;
wenzelm@11741
   353
fun kind_internal x = kind internalK x;
wenzelm@11741
   354
fun has_internal tags = exists (equal internalK o fst) tags;
wenzelm@9455
   355
wenzelm@9455
   356
wenzelm@9455
   357
clasohm@0
   358
(** Standardization of rules **)
clasohm@0
   359
wenzelm@7636
   360
(*Strip extraneous shyps as far as possible*)
wenzelm@7636
   361
fun strip_shyps_warning thm =
wenzelm@7636
   362
  let
wenzelm@16425
   363
    val str_of_sort = Pretty.str_of o Sign.pretty_sort (Thm.theory_of_thm thm);
wenzelm@7636
   364
    val thm' = Thm.strip_shyps thm;
wenzelm@7636
   365
    val xshyps = Thm.extra_shyps thm';
wenzelm@7636
   366
  in
wenzelm@7636
   367
    if null xshyps then ()
wenzelm@7636
   368
    else warning ("Pending sort hypotheses: " ^ commas (map str_of_sort xshyps));
wenzelm@7636
   369
    thm'
wenzelm@7636
   370
  end;
wenzelm@7636
   371
clasohm@0
   372
(*Generalization over a list of variables, IGNORING bad ones*)
clasohm@0
   373
fun forall_intr_list [] th = th
clasohm@0
   374
  | forall_intr_list (y::ys) th =
wenzelm@252
   375
        let val gth = forall_intr_list ys th
wenzelm@252
   376
        in  forall_intr y gth   handle THM _ =>  gth  end;
clasohm@0
   377
clasohm@0
   378
(*Generalization over all suitable Free variables*)
clasohm@0
   379
fun forall_intr_frees th =
wenzelm@16425
   380
    let val {prop,thy,...} = rep_thm th
clasohm@0
   381
    in  forall_intr_list
wenzelm@16425
   382
         (map (cterm_of thy) (sort (make_ord atless) (term_frees prop)))
clasohm@0
   383
         th
clasohm@0
   384
    end;
clasohm@0
   385
wenzelm@7898
   386
val forall_elim_var = PureThy.forall_elim_var;
wenzelm@7898
   387
val forall_elim_vars = PureThy.forall_elim_vars;
clasohm@0
   388
wenzelm@12725
   389
fun gen_all thm =
wenzelm@12719
   390
  let
wenzelm@16425
   391
    val {thy, prop, maxidx, ...} = Thm.rep_thm thm;
wenzelm@16425
   392
    fun elim (th, (x, T)) = Thm.forall_elim (Thm.cterm_of thy (Var ((x, maxidx + 1), T))) th;
wenzelm@12719
   393
    val vs = Term.strip_all_vars prop;
skalberg@15570
   394
  in Library.foldl elim (thm, Term.variantlist (map #1 vs, []) ~~ map #2 vs) end;
wenzelm@9554
   395
clasohm@0
   396
(*Specialization over a list of cterms*)
skalberg@15574
   397
fun forall_elim_list cts th = foldr (uncurry forall_elim) th (rev cts);
clasohm@0
   398
wenzelm@11815
   399
(* maps A1,...,An |- B   to   [| A1;...;An |] ==> B  *)
skalberg@15574
   400
fun implies_intr_list cAs th = foldr (uncurry implies_intr) th cAs;
clasohm@0
   401
clasohm@0
   402
(* maps [| A1;...;An |] ==> B and [A1,...,An]   to   B *)
skalberg@15570
   403
fun implies_elim_list impth ths = Library.foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   404
wenzelm@11960
   405
(* maps |- B to A1,...,An |- B *)
wenzelm@11960
   406
fun impose_hyps chyps th =
wenzelm@12092
   407
  let val chyps' = gen_rems (op aconv o apfst Thm.term_of) (chyps, #hyps (Thm.rep_thm th))
wenzelm@12092
   408
  in implies_elim_list (implies_intr_list chyps' th) (map Thm.assume chyps') end;
wenzelm@11960
   409
wenzelm@13389
   410
(* maps A1,...,An and A1,...,An |- B to |- B *)
wenzelm@13389
   411
fun satisfy_hyps ths th =
wenzelm@13389
   412
  implies_elim_list (implies_intr_list (map (#prop o Thm.crep_thm) ths) th) ths;
wenzelm@13389
   413
clasohm@0
   414
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@252
   415
fun zero_var_indexes th =
wenzelm@16425
   416
    let val {prop,thy,tpairs,...} = rep_thm th;
dixon@15545
   417
        val (tpair_l, tpair_r) = Library.split_list tpairs;
skalberg@15574
   418
        val vars = foldr add_term_vars 
skalberg@15574
   419
                         (foldr add_term_vars (term_vars prop) tpair_l) tpair_r;
skalberg@15570
   420
        val bs = Library.foldl add_new_id ([], map (fn Var((a,_),_)=>a) vars)
dixon@15545
   421
        val inrs = 
skalberg@15574
   422
            foldr add_term_tvars 
skalberg@15574
   423
                  (foldr add_term_tvars (term_tvars prop) tpair_l) tpair_r;
skalberg@15570
   424
        val nms' = rev(Library.foldl add_new_id ([], map (#1 o #1) inrs));
berghofe@15797
   425
        val tye = ListPair.map (fn ((v, rs), a) => (TVar (v, rs), TVar ((a, 0), rs)))
wenzelm@8328
   426
                     (inrs, nms')
wenzelm@16425
   427
        val ctye = map (pairself (ctyp_of thy)) tye;
wenzelm@252
   428
        fun varpairs([],[]) = []
wenzelm@252
   429
          | varpairs((var as Var(v,T)) :: vars, b::bs) =
berghofe@15797
   430
                let val T' = typ_subst_atomic tye T
wenzelm@16425
   431
                in (cterm_of thy (Var(v,T')),
wenzelm@16425
   432
                    cterm_of thy (Var((b,0),T'))) :: varpairs(vars,bs)
wenzelm@252
   433
                end
wenzelm@252
   434
          | varpairs _ = raise TERM("varpairs", []);
paulson@8129
   435
    in Thm.instantiate (ctye, varpairs(vars,rev bs)) th end;
clasohm@0
   436
clasohm@0
   437
paulson@14394
   438
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   439
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   440
paulson@14394
   441
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   442
  This step can lose information.*)
paulson@14387
   443
fun flexflex_unique th =
paulson@14387
   444
    case Seq.chop (2, flexflex_rule th) of
paulson@14387
   445
      ([th],_) => th
paulson@14387
   446
    | ([],_)   => raise THM("flexflex_unique: impossible constraints", 0, [th])
paulson@14387
   447
    |      _   => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
paulson@14387
   448
wenzelm@10515
   449
fun close_derivation thm =
wenzelm@10515
   450
  if Thm.get_name_tags thm = ("", []) then Thm.name_thm ("", thm)
wenzelm@10515
   451
  else thm;
wenzelm@10515
   452
berghofe@11512
   453
fun standard' th =
wenzelm@10515
   454
  let val {maxidx,...} = rep_thm th in
wenzelm@10515
   455
    th
berghofe@14391
   456
    |> implies_intr_hyps
wenzelm@10515
   457
    |> forall_intr_frees |> forall_elim_vars (maxidx + 1)
wenzelm@10515
   458
    |> strip_shyps_warning
berghofe@11512
   459
    |> zero_var_indexes |> Thm.varifyT |> Thm.compress
wenzelm@1218
   460
  end;
wenzelm@1218
   461
berghofe@14391
   462
val standard = close_derivation o standard' o flexflex_unique;
berghofe@11512
   463
wenzelm@12005
   464
fun local_standard th =
wenzelm@12221
   465
  th |> strip_shyps |> zero_var_indexes
wenzelm@12005
   466
  |> Thm.compress |> close_derivation;
wenzelm@12005
   467
clasohm@0
   468
wenzelm@8328
   469
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   470
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   471
  Similar code in type/freeze_thaw*)
paulson@15495
   472
paulson@15495
   473
fun freeze_thaw_robust th =
paulson@15495
   474
 let val fth = freezeT th
wenzelm@16425
   475
     val {prop, tpairs, thy, ...} = rep_thm fth
paulson@15495
   476
 in
skalberg@15574
   477
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@15495
   478
       [] => (fth, fn i => fn x => x)   (*No vars: nothing to do!*)
paulson@15495
   479
     | vars =>
paulson@15495
   480
         let fun newName (Var(ix,_), pairs) =
paulson@15495
   481
                   let val v = gensym (string_of_indexname ix)
paulson@15495
   482
                   in  ((ix,v)::pairs)  end;
skalberg@15574
   483
             val alist = foldr newName [] vars
paulson@15495
   484
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   485
                 (cterm_of thy (Var(v,T)),
wenzelm@16425
   486
                  cterm_of thy (Free(valOf (assoc(alist,v)), T)))
paulson@15495
   487
             val insts = map mk_inst vars
paulson@15495
   488
             fun thaw i th' = (*i is non-negative increment for Var indexes*)
paulson@15495
   489
                 th' |> forall_intr_list (map #2 insts)
paulson@15495
   490
                     |> forall_elim_list (map (Thm.cterm_incr_indexes i o #1) insts)
paulson@15495
   491
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@15495
   492
 end;
paulson@15495
   493
paulson@15495
   494
(*Basic version of the function above. No option to rename Vars apart in thaw.
paulson@15495
   495
  The Frees created from Vars have nice names.*)
paulson@4610
   496
fun freeze_thaw th =
paulson@7248
   497
 let val fth = freezeT th
wenzelm@16425
   498
     val {prop, tpairs, thy, ...} = rep_thm fth
paulson@7248
   499
 in
skalberg@15574
   500
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@7248
   501
       [] => (fth, fn x => x)
paulson@7248
   502
     | vars =>
wenzelm@8328
   503
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@8328
   504
                   let val v = variant used (string_of_indexname ix)
wenzelm@8328
   505
                   in  ((ix,v)::pairs, v::used)  end;
skalberg@15574
   506
             val (alist, _) = foldr newName ([], Library.foldr add_term_names
skalberg@15574
   507
               (prop :: Thm.terms_of_tpairs tpairs, [])) vars
wenzelm@8328
   508
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   509
                 (cterm_of thy (Var(v,T)),
wenzelm@16425
   510
                  cterm_of thy (Free(valOf (assoc(alist,v)), T)))
wenzelm@8328
   511
             val insts = map mk_inst vars
wenzelm@8328
   512
             fun thaw th' =
wenzelm@8328
   513
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   514
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   515
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   516
 end;
paulson@4610
   517
paulson@7248
   518
(*Rotates a rule's premises to the left by k*)
paulson@7248
   519
val rotate_prems = permute_prems 0;
paulson@4610
   520
oheimb@11163
   521
(* permute prems, where the i-th position in the argument list (counting from 0)
oheimb@11163
   522
   gives the position within the original thm to be transferred to position i.
oheimb@11163
   523
   Any remaining trailing positions are left unchanged. *)
oheimb@11163
   524
val rearrange_prems = let
oheimb@11163
   525
  fun rearr new []      thm = thm
wenzelm@11815
   526
  |   rearr new (p::ps) thm = rearr (new+1)
oheimb@11163
   527
     (map (fn q => if new<=q andalso q<p then q+1 else q) ps)
oheimb@11163
   528
     (permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
oheimb@11163
   529
  in rearr 0 end;
paulson@4610
   530
wenzelm@252
   531
(*Assume a new formula, read following the same conventions as axioms.
clasohm@0
   532
  Generalizes over Free variables,
clasohm@0
   533
  creates the assumption, and then strips quantifiers.
clasohm@0
   534
  Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
wenzelm@252
   535
             [ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ]    *)
clasohm@0
   536
fun assume_ax thy sP =
wenzelm@16425
   537
  let val prop = Logic.close_form (term_of (read_cterm thy (sP, propT)))
wenzelm@16425
   538
  in forall_elim_vars 0 (Thm.assume (cterm_of thy prop)) end;
clasohm@0
   539
wenzelm@252
   540
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   541
fun tha RSN (i,thb) =
wenzelm@4270
   542
  case Seq.chop (2, biresolution false [(false,tha)] i thb) of
clasohm@0
   543
      ([th],_) => th
clasohm@0
   544
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   545
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   546
clasohm@0
   547
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   548
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   549
clasohm@0
   550
(*For joining lists of rules*)
wenzelm@252
   551
fun thas RLN (i,thbs) =
clasohm@0
   552
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   553
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
paulson@2672
   554
  in  List.concat (map resb thbs)  end;
clasohm@0
   555
clasohm@0
   556
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   557
lcp@11
   558
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   559
  makes proof trees*)
wenzelm@252
   560
fun rls MRS bottom_rl =
lcp@11
   561
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   562
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   563
  in  rs_aux 1 rls  end;
lcp@11
   564
lcp@11
   565
(*As above, but for rule lists*)
wenzelm@252
   566
fun rlss MRL bottom_rls =
lcp@11
   567
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   568
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   569
  in  rs_aux 1 rlss  end;
lcp@11
   570
wenzelm@9288
   571
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   572
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   573
wenzelm@252
   574
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   575
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   576
  ALWAYS deletes premise i *)
wenzelm@252
   577
fun compose(tha,i,thb) =
wenzelm@4270
   578
    Seq.list_of (bicompose false (false,tha,0) i thb);
clasohm@0
   579
wenzelm@6946
   580
fun compose_single (tha,i,thb) =
wenzelm@6946
   581
  (case compose (tha,i,thb) of
wenzelm@6946
   582
    [th] => th
wenzelm@6946
   583
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]));
wenzelm@6946
   584
clasohm@0
   585
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   586
fun tha COMP thb =
clasohm@0
   587
    case compose(tha,1,thb) of
wenzelm@252
   588
        [th] => th
clasohm@0
   589
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   590
wenzelm@13105
   591
wenzelm@4016
   592
(** theorem equality **)
clasohm@0
   593
wenzelm@16425
   594
(*True if the two theorems have the same theory.*)
wenzelm@16425
   595
val eq_thm_thy = eq_thy o pairself Thm.theory_of_thm;
paulson@13650
   596
paulson@13650
   597
(*True if the two theorems have the same prop field, ignoring hyps, der, etc.*)
wenzelm@13105
   598
val eq_thm_prop = op aconv o pairself Thm.prop_of;
clasohm@0
   599
clasohm@0
   600
(*Useful "distance" function for BEST_FIRST*)
wenzelm@12800
   601
val size_of_thm = size_of_term o prop_of;
clasohm@0
   602
wenzelm@9829
   603
(*maintain lists of theorems --- preserving canonical order*)
wenzelm@13105
   604
fun del_rules rs rules = Library.gen_rems eq_thm_prop (rules, rs);
wenzelm@9862
   605
fun add_rules rs rules = rs @ del_rules rs rules;
wenzelm@12373
   606
val del_rule = del_rules o single;
wenzelm@12373
   607
val add_rule = add_rules o single;
wenzelm@13105
   608
fun merge_rules (rules1, rules2) = gen_merge_lists' eq_thm_prop rules1 rules2;
wenzelm@9829
   609
lcp@1194
   610
(** Mark Staples's weaker version of eq_thm: ignores variable renaming and
lcp@1194
   611
    (some) type variable renaming **)
lcp@1194
   612
lcp@1194
   613
 (* Can't use term_vars, because it sorts the resulting list of variable names.
lcp@1194
   614
    We instead need the unique list noramlised by the order of appearance
lcp@1194
   615
    in the term. *)
lcp@1194
   616
fun term_vars' (t as Var(v,T)) = [t]
lcp@1194
   617
  | term_vars' (Abs(_,_,b)) = term_vars' b
lcp@1194
   618
  | term_vars' (f$a) = (term_vars' f) @ (term_vars' a)
lcp@1194
   619
  | term_vars' _ = [];
lcp@1194
   620
lcp@1194
   621
fun forall_intr_vars th =
wenzelm@16425
   622
  let val {prop,thy,...} = rep_thm th;
lcp@1194
   623
      val vars = distinct (term_vars' prop);
wenzelm@16425
   624
  in forall_intr_list (map (cterm_of thy) vars) th end;
lcp@1194
   625
wenzelm@13105
   626
val weak_eq_thm = Thm.eq_thm o pairself (forall_intr_vars o freezeT);
lcp@1194
   627
lcp@1194
   628
clasohm@0
   629
(*** Meta-Rewriting Rules ***)
clasohm@0
   630
wenzelm@16425
   631
fun read_prop s = read_cterm ProtoPure.thy (s, propT);
paulson@4610
   632
wenzelm@9455
   633
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
wenzelm@9455
   634
fun store_standard_thm name thm = store_thm name (standard thm);
wenzelm@12135
   635
fun store_thm_open name thm = hd (PureThy.smart_store_thms_open (name, [thm]));
wenzelm@12135
   636
fun store_standard_thm_open name thm = store_thm_open name (standard' thm);
wenzelm@4016
   637
clasohm@0
   638
val reflexive_thm =
wenzelm@16425
   639
  let val cx = cterm_of ProtoPure.thy (Var(("x",0),TVar(("'a",0),[])))
wenzelm@12135
   640
  in store_standard_thm_open "reflexive" (Thm.reflexive cx) end;
clasohm@0
   641
clasohm@0
   642
val symmetric_thm =
wenzelm@14854
   643
  let val xy = read_prop "x == y"
wenzelm@12135
   644
  in store_standard_thm_open "symmetric" (Thm.implies_intr_hyps (Thm.symmetric (Thm.assume xy))) end;
clasohm@0
   645
clasohm@0
   646
val transitive_thm =
wenzelm@14854
   647
  let val xy = read_prop "x == y"
wenzelm@14854
   648
      val yz = read_prop "y == z"
clasohm@0
   649
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
wenzelm@12135
   650
  in store_standard_thm_open "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
clasohm@0
   651
nipkow@4679
   652
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   653
berghofe@11512
   654
fun extensional eq =
berghofe@11512
   655
  let val eq' =
berghofe@11512
   656
    abstract_rule "x" (snd (Thm.dest_comb (fst (dest_equals (cprop_of eq))))) eq
berghofe@11512
   657
  in equal_elim (eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   658
berghofe@10414
   659
val imp_cong =
berghofe@10414
   660
  let
berghofe@10414
   661
    val ABC = read_prop "PROP A ==> PROP B == PROP C"
berghofe@10414
   662
    val AB = read_prop "PROP A ==> PROP B"
berghofe@10414
   663
    val AC = read_prop "PROP A ==> PROP C"
berghofe@10414
   664
    val A = read_prop "PROP A"
berghofe@10414
   665
  in
wenzelm@12135
   666
    store_standard_thm_open "imp_cong" (implies_intr ABC (equal_intr
berghofe@10414
   667
      (implies_intr AB (implies_intr A
berghofe@10414
   668
        (equal_elim (implies_elim (assume ABC) (assume A))
berghofe@10414
   669
          (implies_elim (assume AB) (assume A)))))
berghofe@10414
   670
      (implies_intr AC (implies_intr A
berghofe@10414
   671
        (equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
berghofe@10414
   672
          (implies_elim (assume AC) (assume A)))))))
berghofe@10414
   673
  end;
berghofe@10414
   674
berghofe@10414
   675
val swap_prems_eq =
berghofe@10414
   676
  let
berghofe@10414
   677
    val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
berghofe@10414
   678
    val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
berghofe@10414
   679
    val A = read_prop "PROP A"
berghofe@10414
   680
    val B = read_prop "PROP B"
berghofe@10414
   681
  in
wenzelm@12135
   682
    store_standard_thm_open "swap_prems_eq" (equal_intr
berghofe@10414
   683
      (implies_intr ABC (implies_intr B (implies_intr A
berghofe@10414
   684
        (implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
berghofe@10414
   685
      (implies_intr BAC (implies_intr A (implies_intr B
berghofe@10414
   686
        (implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
berghofe@10414
   687
  end;
lcp@229
   688
skalberg@15001
   689
val imp_cong' = combination o combination (reflexive implies)
clasohm@0
   690
berghofe@13325
   691
fun abs_def thm =
berghofe@13325
   692
  let
berghofe@13325
   693
    val (_, cvs) = strip_comb (fst (dest_equals (cprop_of thm)));
skalberg@15574
   694
    val thm' = foldr (fn (ct, thm) => Thm.abstract_rule
berghofe@13325
   695
      (case term_of ct of Var ((a, _), _) => a | Free (a, _) => a | _ => "x")
skalberg@15574
   696
        ct thm) thm cvs
berghofe@13325
   697
  in transitive
berghofe@13325
   698
    (symmetric (eta_conversion (fst (dest_equals (cprop_of thm'))))) thm'
berghofe@13325
   699
  end;
berghofe@13325
   700
clasohm@0
   701
skalberg@15001
   702
local
skalberg@15001
   703
  val dest_eq = dest_equals o cprop_of
skalberg@15001
   704
  val rhs_of = snd o dest_eq
skalberg@15001
   705
in
skalberg@15001
   706
fun beta_eta_conversion t =
skalberg@15001
   707
  let val thm = beta_conversion true t
skalberg@15001
   708
  in transitive thm (eta_conversion (rhs_of thm)) end
skalberg@15001
   709
end;
skalberg@15001
   710
berghofe@15925
   711
fun eta_long_conversion ct = transitive (beta_eta_conversion ct)
berghofe@15925
   712
  (symmetric (beta_eta_conversion (cterm_fun (Pattern.eta_long []) ct)));
berghofe@15925
   713
skalberg@15001
   714
(*In [A1,...,An]==>B, rewrite the selected A's only -- for rewrite_goals_tac*)
skalberg@15001
   715
fun goals_conv pred cv =
skalberg@15001
   716
  let fun gconv i ct =
skalberg@15001
   717
        let val (A,B) = dest_implies ct
skalberg@15001
   718
        in imp_cong' (if pred i then cv A else reflexive A) (gconv (i+1) B) end
skalberg@15001
   719
        handle TERM _ => reflexive ct
skalberg@15001
   720
  in gconv 1 end
skalberg@15001
   721
skalberg@15001
   722
(* Rewrite A in !!x1,...,xn. A *)
skalberg@15001
   723
fun forall_conv cv ct =
skalberg@15001
   724
  let val p as (ct1, ct2) = Thm.dest_comb ct
skalberg@15001
   725
  in (case pairself term_of p of
skalberg@15001
   726
      (Const ("all", _), Abs (s, _, _)) =>
skalberg@15531
   727
         let val (v, ct') = Thm.dest_abs (SOME "@") ct2;
skalberg@15001
   728
         in Thm.combination (Thm.reflexive ct1)
skalberg@15001
   729
           (Thm.abstract_rule s v (forall_conv cv ct'))
skalberg@15001
   730
         end
skalberg@15001
   731
    | _ => cv ct)
skalberg@15001
   732
  end handle TERM _ => cv ct;
skalberg@15001
   733
skalberg@15001
   734
(*Use a conversion to transform a theorem*)
skalberg@15001
   735
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
skalberg@15001
   736
wenzelm@15669
   737
(*** Some useful meta-theorems ***)
clasohm@0
   738
clasohm@0
   739
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@12135
   740
val asm_rl = store_standard_thm_open "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
wenzelm@7380
   741
val _ = store_thm "_" asm_rl;
clasohm@0
   742
clasohm@0
   743
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   744
val cut_rl =
wenzelm@12135
   745
  store_standard_thm_open "cut_rl"
wenzelm@9455
   746
    (Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
clasohm@0
   747
wenzelm@252
   748
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   749
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   750
val revcut_rl =
paulson@4610
   751
  let val V = read_prop "PROP V"
paulson@4610
   752
      and VW = read_prop "PROP V ==> PROP W";
wenzelm@4016
   753
  in
wenzelm@12135
   754
    store_standard_thm_open "revcut_rl"
wenzelm@4016
   755
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   756
  end;
clasohm@0
   757
lcp@668
   758
(*for deleting an unwanted assumption*)
lcp@668
   759
val thin_rl =
paulson@4610
   760
  let val V = read_prop "PROP V"
paulson@4610
   761
      and W = read_prop "PROP W";
wenzelm@12135
   762
  in store_standard_thm_open "thin_rl" (implies_intr V (implies_intr W (assume W))) end;
lcp@668
   763
clasohm@0
   764
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   765
val triv_forall_equality =
paulson@4610
   766
  let val V  = read_prop "PROP V"
paulson@4610
   767
      and QV = read_prop "!!x::'a. PROP V"
wenzelm@16425
   768
      and x  = read_cterm ProtoPure.thy ("x", TypeInfer.logicT);
wenzelm@4016
   769
  in
wenzelm@12135
   770
    store_standard_thm_open "triv_forall_equality"
berghofe@11512
   771
      (equal_intr (implies_intr QV (forall_elim x (assume QV)))
berghofe@11512
   772
        (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   773
  end;
clasohm@0
   774
nipkow@1756
   775
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   776
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   777
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   778
*)
nipkow@1756
   779
val swap_prems_rl =
paulson@4610
   780
  let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
nipkow@1756
   781
      val major = assume cmajor;
paulson@4610
   782
      val cminor1 = read_prop "PROP PhiA";
nipkow@1756
   783
      val minor1 = assume cminor1;
paulson@4610
   784
      val cminor2 = read_prop "PROP PhiB";
nipkow@1756
   785
      val minor2 = assume cminor2;
wenzelm@12135
   786
  in store_standard_thm_open "swap_prems_rl"
nipkow@1756
   787
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   788
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   789
  end;
nipkow@1756
   790
nipkow@3653
   791
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   792
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   793
   Introduction rule for == as a meta-theorem.
nipkow@3653
   794
*)
nipkow@3653
   795
val equal_intr_rule =
paulson@4610
   796
  let val PQ = read_prop "PROP phi ==> PROP psi"
paulson@4610
   797
      and QP = read_prop "PROP psi ==> PROP phi"
wenzelm@4016
   798
  in
wenzelm@12135
   799
    store_standard_thm_open "equal_intr_rule"
wenzelm@4016
   800
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   801
  end;
nipkow@3653
   802
wenzelm@13368
   803
(* [| PROP ?phi == PROP ?psi; PROP ?phi |] ==> PROP ?psi *)
wenzelm@13368
   804
val equal_elim_rule1 =
wenzelm@13368
   805
  let val eq = read_prop "PROP phi == PROP psi"
wenzelm@13368
   806
      and P = read_prop "PROP phi"
wenzelm@13368
   807
  in store_standard_thm_open "equal_elim_rule1"
wenzelm@13368
   808
    (Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   809
  end;
wenzelm@4285
   810
wenzelm@12297
   811
(* "[| PROP ?phi; PROP ?phi; PROP ?psi |] ==> PROP ?psi" *)
wenzelm@12297
   812
wenzelm@12297
   813
val remdups_rl =
wenzelm@12297
   814
  let val P = read_prop "PROP phi" and Q = read_prop "PROP psi";
wenzelm@12297
   815
  in store_standard_thm_open "remdups_rl" (implies_intr_list [P, P, Q] (Thm.assume Q)) end;
wenzelm@12297
   816
wenzelm@12297
   817
wenzelm@9554
   818
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
wenzelm@12297
   819
  Rewrite rule for HHF normalization.*)
wenzelm@9554
   820
wenzelm@9554
   821
val norm_hhf_eq =
wenzelm@9554
   822
  let
wenzelm@16425
   823
    val cert = Thm.cterm_of ProtoPure.thy;
wenzelm@14854
   824
    val aT = TFree ("'a", []);
wenzelm@9554
   825
    val all = Term.all aT;
wenzelm@9554
   826
    val x = Free ("x", aT);
wenzelm@9554
   827
    val phi = Free ("phi", propT);
wenzelm@9554
   828
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   829
wenzelm@9554
   830
    val cx = cert x;
wenzelm@9554
   831
    val cphi = cert phi;
wenzelm@9554
   832
    val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@9554
   833
    val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   834
  in
wenzelm@9554
   835
    Thm.equal_intr
wenzelm@9554
   836
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   837
        |> Thm.forall_elim cx
wenzelm@9554
   838
        |> Thm.implies_intr cphi
wenzelm@9554
   839
        |> Thm.forall_intr cx
wenzelm@9554
   840
        |> Thm.implies_intr lhs)
wenzelm@9554
   841
      (Thm.implies_elim
wenzelm@9554
   842
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   843
        |> Thm.forall_intr cx
wenzelm@9554
   844
        |> Thm.implies_intr cphi
wenzelm@9554
   845
        |> Thm.implies_intr rhs)
wenzelm@12135
   846
    |> store_standard_thm_open "norm_hhf_eq"
wenzelm@9554
   847
  end;
wenzelm@9554
   848
wenzelm@12800
   849
fun is_norm_hhf tm =
wenzelm@12800
   850
  let
wenzelm@12800
   851
    fun is_norm (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
wenzelm@12800
   852
      | is_norm (t $ u) = is_norm t andalso is_norm u
wenzelm@12800
   853
      | is_norm (Abs (_, _, t)) = is_norm t
wenzelm@12800
   854
      | is_norm _ = true;
wenzelm@12800
   855
  in is_norm (Pattern.beta_eta_contract tm) end;
wenzelm@12800
   856
wenzelm@16425
   857
fun norm_hhf thy t =
wenzelm@12800
   858
  if is_norm_hhf t then t
wenzelm@16425
   859
  else Pattern.rewrite_term (Sign.tsig_of thy) [Logic.dest_equals (prop_of norm_hhf_eq)] [] t;
wenzelm@12800
   860
wenzelm@9554
   861
wenzelm@16425
   862
(*** Instantiate theorem th, reading instantiations in theory thy ****)
paulson@8129
   863
paulson@8129
   864
(*Version that normalizes the result: Thm.instantiate no longer does that*)
paulson@8129
   865
fun instantiate instpair th = Thm.instantiate instpair th  COMP   asm_rl;
paulson@8129
   866
wenzelm@16425
   867
fun read_instantiate_sg' thy sinsts th =
paulson@8129
   868
    let val ts = types_sorts th;
wenzelm@15669
   869
        val used = add_used th [];
wenzelm@16425
   870
    in  instantiate (read_insts thy ts ts used sinsts) th  end;
berghofe@15797
   871
wenzelm@16425
   872
fun read_instantiate_sg thy sinsts th =
wenzelm@16425
   873
  read_instantiate_sg' thy (map (apfst Syntax.indexname) sinsts) th;
paulson@8129
   874
paulson@8129
   875
(*Instantiate theorem th, reading instantiations under theory of th*)
paulson@8129
   876
fun read_instantiate sinsts th =
wenzelm@16425
   877
    read_instantiate_sg (Thm.theory_of_thm th) sinsts th;
paulson@8129
   878
berghofe@15797
   879
fun read_instantiate' sinsts th =
wenzelm@16425
   880
    read_instantiate_sg' (Thm.theory_of_thm th) sinsts th;
berghofe@15797
   881
paulson@8129
   882
paulson@8129
   883
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   884
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   885
local
wenzelm@16425
   886
  fun add_types ((ct,cu), (thy,tye,maxidx)) =
wenzelm@16425
   887
    let val {thy=thyt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
wenzelm@16425
   888
        and {thy=thyu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
paulson@8129
   889
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
wenzelm@16425
   890
        val thy' = Theory.merge(thy, Theory.merge(thyt, thyu))
wenzelm@16425
   891
        val (tye',maxi') = Type.unify (Sign.tsig_of thy') (tye, maxi) (T, U)
wenzelm@10403
   892
          handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
wenzelm@16425
   893
    in  (thy', tye', maxi')  end;
paulson@8129
   894
in
paulson@8129
   895
fun cterm_instantiate ctpairs0 th =
wenzelm@16425
   896
  let val (thy,tye,_) = foldr add_types (Thm.theory_of_thm th, Vartab.empty, 0) ctpairs0
paulson@14340
   897
      fun instT(ct,cu) = 
wenzelm@16425
   898
        let val inst = cterm_of thy o Envir.subst_TVars tye o term_of
paulson@14340
   899
        in (inst ct, inst cu) end
wenzelm@16425
   900
      fun ctyp2 (ixn, (S, T)) = (ctyp_of thy (TVar (ixn, S)), ctyp_of thy T)
berghofe@8406
   901
  in  instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   902
  handle TERM _ =>
wenzelm@16425
   903
           raise THM("cterm_instantiate: incompatible theories",0,[th])
paulson@8129
   904
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   905
end;
paulson@8129
   906
paulson@8129
   907
paulson@8129
   908
(** Derived rules mainly for METAHYPS **)
paulson@8129
   909
paulson@8129
   910
(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
paulson@8129
   911
fun equal_abs_elim ca eqth =
wenzelm@16425
   912
  let val {thy=thya, t=a, ...} = rep_cterm ca
paulson@8129
   913
      and combth = combination eqth (reflexive ca)
wenzelm@16425
   914
      val {thy,prop,...} = rep_thm eqth
paulson@8129
   915
      val (abst,absu) = Logic.dest_equals prop
wenzelm@16425
   916
      val cterm = cterm_of (Theory.merge (thy,thya))
berghofe@10414
   917
  in  transitive (symmetric (beta_conversion false (cterm (abst$a))))
berghofe@10414
   918
           (transitive combth (beta_conversion false (cterm (absu$a))))
paulson@8129
   919
  end
paulson@8129
   920
  handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
paulson@8129
   921
paulson@8129
   922
(*Calling equal_abs_elim with multiple terms*)
skalberg@15574
   923
fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) th (rev cts);
paulson@8129
   924
paulson@8129
   925
wenzelm@10667
   926
(*** Goal (PROP A) <==> PROP A ***)
wenzelm@4789
   927
wenzelm@4789
   928
local
wenzelm@16425
   929
  val cert = Thm.cterm_of ProtoPure.thy;
wenzelm@10667
   930
  val A = Free ("A", propT);
wenzelm@10667
   931
  val G = Logic.mk_goal A;
wenzelm@4789
   932
  val (G_def, _) = freeze_thaw ProtoPure.Goal_def;
wenzelm@4789
   933
in
wenzelm@11741
   934
  val triv_goal = store_thm "triv_goal" (kind_rule internalK (standard
wenzelm@10667
   935
      (Thm.equal_elim (Thm.symmetric G_def) (Thm.assume (cert A)))));
wenzelm@11741
   936
  val rev_triv_goal = store_thm "rev_triv_goal" (kind_rule internalK (standard
wenzelm@10667
   937
      (Thm.equal_elim G_def (Thm.assume (cert G)))));
wenzelm@4789
   938
end;
wenzelm@4789
   939
wenzelm@16425
   940
val mk_cgoal = Thm.capply (Thm.cterm_of ProtoPure.thy Logic.goal_const);
wenzelm@6995
   941
fun assume_goal ct = Thm.assume (mk_cgoal ct) RS rev_triv_goal;
wenzelm@6995
   942
wenzelm@11815
   943
fun implies_intr_goals cprops thm =
wenzelm@11815
   944
  implies_elim_list (implies_intr_list cprops thm) (map assume_goal cprops)
wenzelm@11815
   945
  |> implies_intr_list (map mk_cgoal cprops);
wenzelm@11815
   946
wenzelm@4789
   947
wenzelm@4285
   948
wenzelm@5688
   949
(** variations on instantiate **)
wenzelm@4285
   950
paulson@8550
   951
(*shorthand for instantiating just one variable in the current theory*)
wenzelm@16425
   952
fun inst x t = read_instantiate_sg (the_context()) [(x,t)];
paulson@8550
   953
paulson@8550
   954
wenzelm@12495
   955
(* collect vars in left-to-right order *)
wenzelm@4285
   956
skalberg@15570
   957
fun tvars_of_terms ts = rev (Library.foldl Term.add_tvars ([], ts));
skalberg@15570
   958
fun vars_of_terms ts = rev (Library.foldl Term.add_vars ([], ts));
wenzelm@5903
   959
wenzelm@12800
   960
fun tvars_of thm = tvars_of_terms [prop_of thm];
wenzelm@12800
   961
fun vars_of thm = vars_of_terms [prop_of thm];
wenzelm@4285
   962
wenzelm@4285
   963
wenzelm@4285
   964
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   965
wenzelm@4285
   966
fun instantiate' cTs cts thm =
wenzelm@4285
   967
  let
wenzelm@4285
   968
    fun err msg =
wenzelm@4285
   969
      raise TYPE ("instantiate': " ^ msg,
skalberg@15570
   970
        List.mapPartial (Option.map Thm.typ_of) cTs,
skalberg@15570
   971
        List.mapPartial (Option.map Thm.term_of) cts);
wenzelm@4285
   972
wenzelm@4285
   973
    fun inst_of (v, ct) =
wenzelm@16425
   974
      (Thm.cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
wenzelm@4285
   975
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   976
berghofe@15797
   977
    fun tyinst_of (v, cT) =
wenzelm@16425
   978
      (Thm.ctyp_of (Thm.theory_of_ctyp cT) (TVar v), cT)
berghofe@15797
   979
        handle TYPE (msg, _, _) => err msg;
berghofe@15797
   980
wenzelm@4285
   981
    fun zip_vars _ [] = []
skalberg@15531
   982
      | zip_vars (_ :: vs) (NONE :: opt_ts) = zip_vars vs opt_ts
skalberg@15531
   983
      | zip_vars (v :: vs) (SOME t :: opt_ts) = (v, t) :: zip_vars vs opt_ts
wenzelm@4285
   984
      | zip_vars [] _ = err "more instantiations than variables in thm";
wenzelm@4285
   985
wenzelm@4285
   986
    (*instantiate types first!*)
wenzelm@4285
   987
    val thm' =
wenzelm@4285
   988
      if forall is_none cTs then thm
berghofe@15797
   989
      else Thm.instantiate (map tyinst_of (zip_vars (tvars_of thm) cTs), []) thm;
wenzelm@4285
   990
    in
wenzelm@4285
   991
      if forall is_none cts then thm'
wenzelm@4285
   992
      else Thm.instantiate ([], map inst_of (zip_vars (vars_of thm') cts)) thm'
wenzelm@4285
   993
    end;
wenzelm@4285
   994
wenzelm@4285
   995
berghofe@14081
   996
berghofe@14081
   997
(** renaming of bound variables **)
berghofe@14081
   998
berghofe@14081
   999
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
  1000
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
  1001
berghofe@14081
  1002
fun rename_bvars [] thm = thm
berghofe@14081
  1003
  | rename_bvars vs thm =
berghofe@14081
  1004
    let
wenzelm@16425
  1005
      val {thy, prop, ...} = rep_thm thm;
skalberg@15570
  1006
      fun ren (Abs (x, T, t)) = Abs (getOpt (assoc (vs, x), x), T, ren t)
berghofe@14081
  1007
        | ren (t $ u) = ren t $ ren u
berghofe@14081
  1008
        | ren t = t;
wenzelm@16425
  1009
    in equal_elim (reflexive (cterm_of thy (ren prop))) thm end;
berghofe@14081
  1010
berghofe@14081
  1011
berghofe@14081
  1012
(* renaming in left-to-right order *)
berghofe@14081
  1013
berghofe@14081
  1014
fun rename_bvars' xs thm =
berghofe@14081
  1015
  let
wenzelm@16425
  1016
    val {thy, prop, ...} = rep_thm thm;
berghofe@14081
  1017
    fun rename [] t = ([], t)
berghofe@14081
  1018
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
  1019
          let val (xs', t') = rename xs t
skalberg@15570
  1020
          in (xs', Abs (getOpt (x',x), T, t')) end
berghofe@14081
  1021
      | rename xs (t $ u) =
berghofe@14081
  1022
          let
berghofe@14081
  1023
            val (xs', t') = rename xs t;
berghofe@14081
  1024
            val (xs'', u') = rename xs' u
berghofe@14081
  1025
          in (xs'', t' $ u') end
berghofe@14081
  1026
      | rename xs t = (xs, t);
berghofe@14081
  1027
  in case rename xs prop of
wenzelm@16425
  1028
      ([], prop') => equal_elim (reflexive (cterm_of thy prop')) thm
berghofe@14081
  1029
    | _ => error "More names than abstractions in theorem"
berghofe@14081
  1030
  end;
berghofe@14081
  1031
berghofe@14081
  1032
berghofe@14081
  1033
wenzelm@5688
  1034
(* unvarify(T) *)
wenzelm@5688
  1035
wenzelm@5688
  1036
(*assume thm in standard form, i.e. no frees, 0 var indexes*)
wenzelm@5688
  1037
wenzelm@5688
  1038
fun unvarifyT thm =
wenzelm@5688
  1039
  let
wenzelm@16425
  1040
    val cT = Thm.ctyp_of (Thm.theory_of_thm thm);
skalberg@15531
  1041
    val tfrees = map (fn ((x, _), S) => SOME (cT (TFree (x, S)))) (tvars_of thm);
wenzelm@5688
  1042
  in instantiate' tfrees [] thm end;
wenzelm@5688
  1043
wenzelm@5688
  1044
fun unvarify raw_thm =
wenzelm@5688
  1045
  let
wenzelm@5688
  1046
    val thm = unvarifyT raw_thm;
wenzelm@16425
  1047
    val ct = Thm.cterm_of (Thm.theory_of_thm thm);
skalberg@15531
  1048
    val frees = map (fn ((x, _), T) => SOME (ct (Free (x, T)))) (vars_of thm);
wenzelm@5688
  1049
  in instantiate' [] frees thm end;
wenzelm@5688
  1050
wenzelm@5688
  1051
wenzelm@8605
  1052
(* tvars_intr_list *)
wenzelm@8605
  1053
wenzelm@8605
  1054
fun tfrees_of thm =
wenzelm@8605
  1055
  let val {hyps, prop, ...} = Thm.rep_thm thm
berghofe@15797
  1056
  in foldr Term.add_term_tfrees [] (prop :: hyps) end;
wenzelm@8605
  1057
wenzelm@8605
  1058
fun tvars_intr_list tfrees thm =
berghofe@15797
  1059
  apsnd (map (fn ((s, S), ixn) => (s, (ixn, S)))) (Thm.varifyT'
berghofe@15797
  1060
    (gen_rems (op = o apfst fst) (tfrees_of thm, tfrees)) thm);
wenzelm@8605
  1061
wenzelm@8605
  1062
wenzelm@6435
  1063
(* increment var indexes *)
wenzelm@6435
  1064
wenzelm@6435
  1065
fun incr_indexes_wrt is cTs cts thms =
wenzelm@6435
  1066
  let
wenzelm@6435
  1067
    val maxidx =
skalberg@15570
  1068
      Library.foldl Int.max (~1, is @
wenzelm@6435
  1069
        map (maxidx_of_typ o #T o Thm.rep_ctyp) cTs @
wenzelm@6435
  1070
        map (#maxidx o Thm.rep_cterm) cts @
wenzelm@6435
  1071
        map (#maxidx o Thm.rep_thm) thms);
berghofe@10414
  1072
  in Thm.incr_indexes (maxidx + 1) end;
wenzelm@6435
  1073
wenzelm@6435
  1074
wenzelm@8328
  1075
(* freeze_all *)
wenzelm@8328
  1076
wenzelm@8328
  1077
(*freeze all (T)Vars; assumes thm in standard form*)
wenzelm@8328
  1078
wenzelm@8328
  1079
fun freeze_all_TVars thm =
wenzelm@8328
  1080
  (case tvars_of thm of
wenzelm@8328
  1081
    [] => thm
wenzelm@8328
  1082
  | tvars =>
wenzelm@16425
  1083
      let val cert = Thm.ctyp_of (Thm.theory_of_thm thm)
skalberg@15531
  1084
      in instantiate' (map (fn ((x, _), S) => SOME (cert (TFree (x, S)))) tvars) [] thm end);
wenzelm@8328
  1085
wenzelm@8328
  1086
fun freeze_all_Vars thm =
wenzelm@8328
  1087
  (case vars_of thm of
wenzelm@8328
  1088
    [] => thm
wenzelm@8328
  1089
  | vars =>
wenzelm@16425
  1090
      let val cert = Thm.cterm_of (Thm.theory_of_thm thm)
skalberg@15531
  1091
      in instantiate' [] (map (fn ((x, _), T) => SOME (cert (Free (x, T)))) vars) thm end);
wenzelm@8328
  1092
wenzelm@8328
  1093
val freeze_all = freeze_all_Vars o freeze_all_TVars;
wenzelm@8328
  1094
wenzelm@8328
  1095
wenzelm@5688
  1096
(* mk_triv_goal *)
wenzelm@5688
  1097
wenzelm@5688
  1098
(*make an initial proof state, "PROP A ==> (PROP A)" *)
skalberg@15531
  1099
fun mk_triv_goal ct = instantiate' [] [SOME ct] triv_goal;
paulson@5311
  1100
wenzelm@11975
  1101
wenzelm@11975
  1102
wenzelm@11975
  1103
(** meta-level conjunction **)
wenzelm@11975
  1104
wenzelm@11975
  1105
local
wenzelm@11975
  1106
  val A = read_prop "PROP A";
wenzelm@11975
  1107
  val B = read_prop "PROP B";
wenzelm@11975
  1108
  val C = read_prop "PROP C";
wenzelm@11975
  1109
  val ABC = read_prop "PROP A ==> PROP B ==> PROP C";
wenzelm@11975
  1110
wenzelm@11975
  1111
  val proj1 =
wenzelm@11975
  1112
    forall_intr_list [A, B] (implies_intr_list [A, B] (Thm.assume A))
wenzelm@11975
  1113
    |> forall_elim_vars 0;
wenzelm@11975
  1114
wenzelm@11975
  1115
  val proj2 =
wenzelm@11975
  1116
    forall_intr_list [A, B] (implies_intr_list [A, B] (Thm.assume B))
wenzelm@11975
  1117
    |> forall_elim_vars 0;
wenzelm@11975
  1118
wenzelm@11975
  1119
  val conj_intr_rule =
wenzelm@11975
  1120
    forall_intr_list [A, B] (implies_intr_list [A, B]
wenzelm@11975
  1121
      (Thm.forall_intr C (Thm.implies_intr ABC
wenzelm@11975
  1122
        (implies_elim_list (Thm.assume ABC) [Thm.assume A, Thm.assume B]))))
wenzelm@11975
  1123
    |> forall_elim_vars 0;
wenzelm@11975
  1124
wenzelm@11975
  1125
  val incr = incr_indexes_wrt [] [] [];
wenzelm@11975
  1126
in
wenzelm@11975
  1127
wenzelm@11975
  1128
fun conj_intr tha thb = thb COMP (tha COMP incr [tha, thb] conj_intr_rule);
wenzelm@12756
  1129
wenzelm@12756
  1130
fun conj_intr_list [] = asm_rl
wenzelm@12756
  1131
  | conj_intr_list ths = foldr1 (uncurry conj_intr) ths;
wenzelm@11975
  1132
wenzelm@11975
  1133
fun conj_elim th =
wenzelm@11975
  1134
  let val th' = forall_elim_var (#maxidx (Thm.rep_thm th) + 1) th
wenzelm@11975
  1135
  in (incr [th'] proj1 COMP th', incr [th'] proj2 COMP th') end;
wenzelm@11975
  1136
wenzelm@11975
  1137
fun conj_elim_list th =
wenzelm@11975
  1138
  let val (th1, th2) = conj_elim th
wenzelm@11975
  1139
  in conj_elim_list th1 @ conj_elim_list th2 end handle THM _ => [th];
wenzelm@11975
  1140
wenzelm@12756
  1141
fun conj_elim_precise 0 _ = []
wenzelm@12756
  1142
  | conj_elim_precise 1 th = [th]
wenzelm@12135
  1143
  | conj_elim_precise n th =
wenzelm@12135
  1144
      let val (th1, th2) = conj_elim th
wenzelm@12135
  1145
      in th1 :: conj_elim_precise (n - 1) th2 end;
wenzelm@12135
  1146
wenzelm@12135
  1147
val conj_intr_thm = store_standard_thm_open "conjunctionI"
wenzelm@12135
  1148
  (implies_intr_list [A, B] (conj_intr (Thm.assume A) (Thm.assume B)));
wenzelm@12135
  1149
clasohm@0
  1150
end;
wenzelm@252
  1151
wenzelm@11975
  1152
end;
wenzelm@5903
  1153
wenzelm@5903
  1154
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
  1155
open BasicDrule;