src/Pure/drule.ML
author wenzelm
Fri May 11 18:49:15 2007 +0200 (2007-05-11 ago)
changeset 22939 2afc93a3d8f4
parent 22938 454f1678bf5f
child 23178 07ba6b58b3d2
permissions -rw-r--r--
proper type for fun/arg_cong_rule;
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
wenzelm@3766
     6
Derived rules and other operations on theorems.
clasohm@0
     7
*)
clasohm@0
     8
wenzelm@21578
     9
infix 0 RS RSN RL RLN MRS MRL OF COMP INCR_COMP COMP_INCR;
clasohm@0
    10
wenzelm@5903
    11
signature BASIC_DRULE =
wenzelm@3766
    12
sig
wenzelm@18179
    13
  val mk_implies: cterm * cterm -> cterm
wenzelm@18179
    14
  val list_implies: cterm list * cterm -> cterm
wenzelm@18179
    15
  val strip_imp_prems: cterm -> cterm list
wenzelm@18179
    16
  val strip_imp_concl: cterm -> cterm
wenzelm@18179
    17
  val cprems_of: thm -> cterm list
wenzelm@18179
    18
  val cterm_fun: (term -> term) -> (cterm -> cterm)
wenzelm@18179
    19
  val ctyp_fun: (typ -> typ) -> (ctyp -> ctyp)
wenzelm@18206
    20
  val read_insts: theory -> (indexname -> typ option) * (indexname -> sort option) ->
wenzelm@18206
    21
    (indexname -> typ option) * (indexname -> sort option) -> string list ->
wenzelm@18206
    22
    (indexname * string) list -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@4285
    23
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
wenzelm@18179
    24
  val forall_intr_list: cterm list -> thm -> thm
wenzelm@18179
    25
  val forall_intr_frees: thm -> thm
wenzelm@18179
    26
  val forall_intr_vars: thm -> thm
wenzelm@18179
    27
  val forall_elim_list: cterm list -> thm -> thm
wenzelm@18179
    28
  val forall_elim_var: int -> thm -> thm
wenzelm@18179
    29
  val forall_elim_vars: int -> thm -> thm
wenzelm@18179
    30
  val gen_all: thm -> thm
wenzelm@18179
    31
  val lift_all: cterm -> thm -> thm
wenzelm@18179
    32
  val freeze_thaw: thm -> thm * (thm -> thm)
paulson@15495
    33
  val freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
wenzelm@18179
    34
  val implies_elim_list: thm -> thm list -> thm
wenzelm@18179
    35
  val implies_intr_list: cterm list -> thm -> thm
wenzelm@18206
    36
  val instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@21603
    37
  val zero_var_indexes_list: thm list -> thm list
wenzelm@18179
    38
  val zero_var_indexes: thm -> thm
wenzelm@18179
    39
  val implies_intr_hyps: thm -> thm
wenzelm@18179
    40
  val standard: thm -> thm
wenzelm@18179
    41
  val standard': thm -> thm
wenzelm@18179
    42
  val rotate_prems: int -> thm -> thm
wenzelm@18179
    43
  val rearrange_prems: int list -> thm -> thm
wenzelm@18179
    44
  val RSN: thm * (int * thm) -> thm
wenzelm@18179
    45
  val RS: thm * thm -> thm
wenzelm@18179
    46
  val RLN: thm list * (int * thm list) -> thm list
wenzelm@18179
    47
  val RL: thm list * thm list -> thm list
wenzelm@18179
    48
  val MRS: thm list * thm -> thm
wenzelm@18179
    49
  val MRL: thm list list * thm list -> thm list
wenzelm@18179
    50
  val OF: thm * thm list -> thm
wenzelm@18179
    51
  val compose: thm * int * thm -> thm list
wenzelm@18179
    52
  val COMP: thm * thm -> thm
wenzelm@21578
    53
  val INCR_COMP: thm * thm -> thm
wenzelm@21578
    54
  val COMP_INCR: thm * thm -> thm
wenzelm@16425
    55
  val read_instantiate_sg: theory -> (string*string)list -> thm -> thm
wenzelm@18179
    56
  val read_instantiate: (string*string)list -> thm -> thm
wenzelm@18179
    57
  val cterm_instantiate: (cterm*cterm)list -> thm -> thm
wenzelm@18179
    58
  val size_of_thm: thm -> int
wenzelm@18179
    59
  val reflexive_thm: thm
wenzelm@18179
    60
  val symmetric_thm: thm
wenzelm@18179
    61
  val transitive_thm: thm
wenzelm@18179
    62
  val symmetric_fun: thm -> thm
wenzelm@18179
    63
  val extensional: thm -> thm
wenzelm@18820
    64
  val equals_cong: thm
wenzelm@18179
    65
  val imp_cong: thm
wenzelm@18179
    66
  val swap_prems_eq: thm
wenzelm@18179
    67
  val asm_rl: thm
wenzelm@18179
    68
  val cut_rl: thm
wenzelm@18179
    69
  val revcut_rl: thm
wenzelm@18179
    70
  val thin_rl: thm
wenzelm@4285
    71
  val triv_forall_equality: thm
wenzelm@19051
    72
  val distinct_prems_rl: thm
wenzelm@18179
    73
  val swap_prems_rl: thm
wenzelm@18179
    74
  val equal_intr_rule: thm
wenzelm@18179
    75
  val equal_elim_rule1: thm
wenzelm@19421
    76
  val equal_elim_rule2: thm
wenzelm@18179
    77
  val instantiate': ctyp option list -> cterm option list -> thm -> thm
wenzelm@5903
    78
end;
wenzelm@5903
    79
wenzelm@5903
    80
signature DRULE =
wenzelm@5903
    81
sig
wenzelm@5903
    82
  include BASIC_DRULE
wenzelm@19999
    83
  val generalize: string list * string list -> thm -> thm
paulson@15949
    84
  val list_comb: cterm * cterm list -> cterm
berghofe@12908
    85
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    86
  val strip_type: ctyp -> ctyp list * ctyp
paulson@15949
    87
  val beta_conv: cterm -> cterm -> cterm
wenzelm@15669
    88
  val add_used: thm -> string list -> string list
berghofe@17713
    89
  val flexflex_unique: thm -> thm
wenzelm@11975
    90
  val close_derivation: thm -> thm
wenzelm@19421
    91
  val store_thm: bstring -> thm -> thm
wenzelm@19421
    92
  val store_standard_thm: bstring -> thm -> thm
wenzelm@19421
    93
  val store_thm_open: bstring -> thm -> thm
wenzelm@19421
    94
  val store_standard_thm_open: bstring -> thm -> thm
wenzelm@11975
    95
  val compose_single: thm * int * thm -> thm
wenzelm@12373
    96
  val add_rule: thm -> thm list -> thm list
wenzelm@12373
    97
  val del_rule: thm -> thm list -> thm list
wenzelm@11975
    98
  val merge_rules: thm list * thm list -> thm list
wenzelm@18468
    99
  val imp_cong_rule: thm -> thm -> thm
wenzelm@22939
   100
  val arg_cong_rule: cterm -> thm -> thm
wenzelm@22939
   101
  val fun_cong_rule: thm -> cterm -> thm
skalberg@15001
   102
  val beta_eta_conversion: cterm -> thm
berghofe@15925
   103
  val eta_long_conversion: cterm -> thm
paulson@20861
   104
  val eta_contraction_rule: thm -> thm
wenzelm@11975
   105
  val norm_hhf_eq: thm
wenzelm@12800
   106
  val is_norm_hhf: term -> bool
wenzelm@16425
   107
  val norm_hhf: theory -> term -> term
wenzelm@20298
   108
  val norm_hhf_cterm: cterm -> cterm
wenzelm@19878
   109
  val unvarify: thm -> thm
wenzelm@18025
   110
  val protect: cterm -> cterm
wenzelm@18025
   111
  val protectI: thm
wenzelm@18025
   112
  val protectD: thm
wenzelm@18179
   113
  val protect_cong: thm
wenzelm@18025
   114
  val implies_intr_protected: cterm list -> thm -> thm
wenzelm@19775
   115
  val termI: thm
wenzelm@19775
   116
  val mk_term: cterm -> thm
wenzelm@19775
   117
  val dest_term: thm -> cterm
wenzelm@21519
   118
  val cterm_rule: (thm -> thm) -> cterm -> cterm
wenzelm@20881
   119
  val term_rule: theory -> (thm -> thm) -> term -> term
wenzelm@19523
   120
  val sort_triv: theory -> typ * sort -> thm list
wenzelm@19504
   121
  val unconstrainTs: thm -> thm
berghofe@14081
   122
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   123
  val rename_bvars': string option list -> thm -> thm
wenzelm@19124
   124
  val incr_indexes: thm -> thm -> thm
wenzelm@19124
   125
  val incr_indexes2: thm -> thm -> thm -> thm
wenzelm@12297
   126
  val remdups_rl: thm
wenzelm@18225
   127
  val multi_resolve: thm list -> thm -> thm Seq.seq
wenzelm@18225
   128
  val multi_resolves: thm list -> thm list -> thm Seq.seq
berghofe@13325
   129
  val abs_def: thm -> thm
wenzelm@16425
   130
  val read_instantiate_sg': theory -> (indexname * string) list -> thm -> thm
berghofe@15797
   131
  val read_instantiate': (indexname * string) list -> thm -> thm
wenzelm@3766
   132
end;
clasohm@0
   133
wenzelm@5903
   134
structure Drule: DRULE =
clasohm@0
   135
struct
clasohm@0
   136
wenzelm@3991
   137
wenzelm@16682
   138
(** some cterm->cterm operations: faster than calling cterm_of! **)
lcp@708
   139
lcp@708
   140
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   141
fun strip_imp_prems ct =
wenzelm@22906
   142
  let val (cA, cB) = Thm.dest_implies ct
wenzelm@20579
   143
  in cA :: strip_imp_prems cB end
wenzelm@20579
   144
  handle TERM _ => [];
lcp@708
   145
paulson@2004
   146
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   147
fun strip_imp_concl ct =
wenzelm@20579
   148
  (case Thm.term_of ct of
wenzelm@20579
   149
    Const ("==>", _) $ _ $ _ => strip_imp_concl (Thm.dest_arg ct)
wenzelm@20579
   150
  | _ => ct);
paulson@2004
   151
lcp@708
   152
(*The premises of a theorem, as a cterm list*)
berghofe@13659
   153
val cprems_of = strip_imp_prems o cprop_of;
lcp@708
   154
berghofe@15797
   155
fun cterm_fun f ct =
wenzelm@16425
   156
  let val {t, thy, ...} = Thm.rep_cterm ct
wenzelm@16425
   157
  in Thm.cterm_of thy (f t) end;
berghofe@15797
   158
berghofe@15797
   159
fun ctyp_fun f cT =
wenzelm@16425
   160
  let val {T, thy, ...} = Thm.rep_ctyp cT
wenzelm@16425
   161
  in Thm.ctyp_of thy (f T) end;
berghofe@15797
   162
wenzelm@19421
   163
val cert = cterm_of ProtoPure.thy;
paulson@9547
   164
wenzelm@19421
   165
val implies = cert Term.implies;
wenzelm@19183
   166
fun mk_implies (A, B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   167
paulson@9547
   168
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   169
fun list_implies([], B) = B
paulson@9547
   170
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   171
paulson@15949
   172
(*cterm version of list_comb: maps  (f, [t1,...,tn])  to  f(t1,...,tn) *)
paulson@15949
   173
fun list_comb (f, []) = f
paulson@15949
   174
  | list_comb (f, t::ts) = list_comb (Thm.capply f t, ts);
paulson@15949
   175
berghofe@12908
   176
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
wenzelm@18179
   177
fun strip_comb ct =
berghofe@12908
   178
  let
berghofe@12908
   179
    fun stripc (p as (ct, cts)) =
berghofe@12908
   180
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   181
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   182
  in stripc (ct, []) end;
berghofe@12908
   183
berghofe@15262
   184
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   185
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   186
    Type ("fun", _) =>
berghofe@15262
   187
      let
berghofe@15262
   188
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   189
        val (cTs, cT') = strip_type cT2
berghofe@15262
   190
      in (cT1 :: cTs, cT') end
berghofe@15262
   191
  | _ => ([], cT));
berghofe@15262
   192
paulson@15949
   193
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
paulson@15949
   194
  of the meta-equality returned by the beta_conversion rule.*)
wenzelm@18179
   195
fun beta_conv x y =
wenzelm@20579
   196
  Thm.dest_arg (cprop_of (Thm.beta_conversion false (Thm.capply x y)));
paulson@15949
   197
wenzelm@15875
   198
lcp@708
   199
lcp@229
   200
(** reading of instantiations **)
lcp@229
   201
lcp@229
   202
fun absent ixn =
wenzelm@22681
   203
  error("No such variable in term: " ^ Term.string_of_vname ixn);
lcp@229
   204
lcp@229
   205
fun inst_failure ixn =
wenzelm@22681
   206
  error("Instantiation of " ^ Term.string_of_vname ixn ^ " fails");
lcp@229
   207
wenzelm@16425
   208
fun read_insts thy (rtypes,rsorts) (types,sorts) used insts =
wenzelm@10403
   209
let
berghofe@15442
   210
    fun is_tv ((a, _), _) =
berghofe@15442
   211
      (case Symbol.explode a of "'" :: _ => true | _ => false);
skalberg@15570
   212
    val (tvs, vs) = List.partition is_tv insts;
berghofe@15797
   213
    fun sort_of ixn = case rsorts ixn of SOME S => S | NONE => absent ixn;
berghofe@15442
   214
    fun readT (ixn, st) =
berghofe@15797
   215
        let val S = sort_of ixn;
wenzelm@22681
   216
            val T = Sign.read_def_typ (thy,sorts) st;
wenzelm@16425
   217
        in if Sign.typ_instance thy (T, TVar(ixn,S)) then (ixn,T)
nipkow@4281
   218
           else inst_failure ixn
nipkow@4281
   219
        end
nipkow@4281
   220
    val tye = map readT tvs;
nipkow@4281
   221
    fun mkty(ixn,st) = (case rtypes ixn of
skalberg@15531
   222
                          SOME T => (ixn,(st,typ_subst_TVars tye T))
skalberg@15531
   223
                        | NONE => absent ixn);
nipkow@4281
   224
    val ixnsTs = map mkty vs;
nipkow@4281
   225
    val ixns = map fst ixnsTs
nipkow@4281
   226
    and sTs  = map snd ixnsTs
wenzelm@22681
   227
    val (cts,tye2) = Thm.read_def_cterms(thy,types,sorts) used false sTs;
nipkow@4281
   228
    fun mkcVar(ixn,T) =
nipkow@4281
   229
        let val U = typ_subst_TVars tye2 T
wenzelm@16425
   230
        in cterm_of thy (Var(ixn,U)) end
nipkow@4281
   231
    val ixnTs = ListPair.zip(ixns, map snd sTs)
wenzelm@16425
   232
in (map (fn (ixn, T) => (ctyp_of thy (TVar (ixn, sort_of ixn)),
wenzelm@16425
   233
      ctyp_of thy T)) (tye2 @ tye),
nipkow@4281
   234
    ListPair.zip(map mkcVar ixnTs,cts))
nipkow@4281
   235
end;
lcp@229
   236
lcp@229
   237
wenzelm@252
   238
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   239
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   240
     type variables) when reading another term.
clasohm@0
   241
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   242
***)
clasohm@0
   243
clasohm@0
   244
fun types_sorts thm =
wenzelm@20329
   245
  let
wenzelm@22695
   246
    val vars = Thm.fold_terms Term.add_vars thm [];
wenzelm@22695
   247
    val frees = Thm.fold_terms Term.add_frees thm [];
wenzelm@22695
   248
    val tvars = Thm.fold_terms Term.add_tvars thm [];
wenzelm@22695
   249
    val tfrees = Thm.fold_terms Term.add_tfrees thm [];
wenzelm@20329
   250
    fun types (a, i) =
wenzelm@20329
   251
      if i < 0 then AList.lookup (op =) frees a else AList.lookup (op =) vars (a, i);
wenzelm@20329
   252
    fun sorts (a, i) =
wenzelm@20329
   253
      if i < 0 then AList.lookup (op =) tfrees a else AList.lookup (op =) tvars (a, i);
wenzelm@20329
   254
  in (types, sorts) end;
clasohm@0
   255
wenzelm@20329
   256
val add_used =
wenzelm@22695
   257
  (Thm.fold_terms o fold_types o fold_atyps)
wenzelm@20329
   258
    (fn TFree (a, _) => insert (op =) a
wenzelm@20329
   259
      | TVar ((a, _), _) => insert (op =) a
wenzelm@20329
   260
      | _ => I);
wenzelm@15669
   261
wenzelm@7636
   262
wenzelm@9455
   263
clasohm@0
   264
(** Standardization of rules **)
clasohm@0
   265
wenzelm@19523
   266
(* type classes and sorts *)
wenzelm@19523
   267
wenzelm@19523
   268
fun sort_triv thy (T, S) =
wenzelm@19523
   269
  let
wenzelm@19523
   270
    val certT = Thm.ctyp_of thy;
wenzelm@19523
   271
    val cT = certT T;
wenzelm@19523
   272
    fun class_triv c =
wenzelm@19523
   273
      Thm.class_triv thy c
wenzelm@19523
   274
      |> Thm.instantiate ([(certT (TVar (("'a", 0), [c])), cT)], []);
wenzelm@19523
   275
  in map class_triv S end;
wenzelm@19523
   276
wenzelm@19504
   277
fun unconstrainTs th =
wenzelm@20298
   278
  fold (Thm.unconstrainT o Thm.ctyp_of (Thm.theory_of_thm th) o TVar)
wenzelm@22695
   279
    (Thm.fold_terms Term.add_tvars th []) th;
wenzelm@19504
   280
wenzelm@19730
   281
(*Generalization over a list of variables*)
wenzelm@19730
   282
val forall_intr_list = fold_rev forall_intr;
clasohm@0
   283
clasohm@0
   284
(*Generalization over all suitable Free variables*)
clasohm@0
   285
fun forall_intr_frees th =
wenzelm@19730
   286
    let
wenzelm@19730
   287
      val {prop, hyps, tpairs, thy,...} = rep_thm th;
wenzelm@19730
   288
      val fixed = fold Term.add_frees (Thm.terms_of_tpairs tpairs @ hyps) [];
wenzelm@19730
   289
      val frees = Term.fold_aterms (fn Free v =>
wenzelm@19730
   290
        if member (op =) fixed v then I else insert (op =) v | _ => I) prop [];
wenzelm@19730
   291
    in fold (forall_intr o cterm_of thy o Free) frees th end;
clasohm@0
   292
wenzelm@18535
   293
(*Generalization over Vars -- canonical order*)
wenzelm@18535
   294
fun forall_intr_vars th =
wenzelm@20298
   295
  fold forall_intr
wenzelm@22695
   296
    (map (Thm.cterm_of (Thm.theory_of_thm th) o Var) (Thm.fold_terms Term.add_vars th [])) th;
wenzelm@18535
   297
wenzelm@7898
   298
val forall_elim_var = PureThy.forall_elim_var;
wenzelm@7898
   299
val forall_elim_vars = PureThy.forall_elim_vars;
clasohm@0
   300
wenzelm@18025
   301
fun outer_params t =
wenzelm@20077
   302
  let val vs = Term.strip_all_vars t
wenzelm@20077
   303
  in Name.variant_list [] (map (Name.clean o #1) vs) ~~ map #2 vs end;
wenzelm@18025
   304
wenzelm@18025
   305
(*generalize outermost parameters*)
wenzelm@18025
   306
fun gen_all th =
wenzelm@12719
   307
  let
wenzelm@18025
   308
    val {thy, prop, maxidx, ...} = Thm.rep_thm th;
wenzelm@18025
   309
    val cert = Thm.cterm_of thy;
wenzelm@18025
   310
    fun elim (x, T) = Thm.forall_elim (cert (Var ((x, maxidx + 1), T)));
wenzelm@18025
   311
  in fold elim (outer_params prop) th end;
wenzelm@18025
   312
wenzelm@18025
   313
(*lift vars wrt. outermost goal parameters
wenzelm@18118
   314
  -- reverses the effect of gen_all modulo higher-order unification*)
wenzelm@18025
   315
fun lift_all goal th =
wenzelm@18025
   316
  let
wenzelm@18025
   317
    val thy = Theory.merge (Thm.theory_of_cterm goal, Thm.theory_of_thm th);
wenzelm@18025
   318
    val cert = Thm.cterm_of thy;
wenzelm@19421
   319
    val maxidx = Thm.maxidx_of th;
wenzelm@18025
   320
    val ps = outer_params (Thm.term_of goal)
wenzelm@18025
   321
      |> map (fn (x, T) => Var ((x, maxidx + 1), Logic.incr_tvar (maxidx + 1) T));
wenzelm@18025
   322
    val Ts = map Term.fastype_of ps;
wenzelm@22695
   323
    val inst = Thm.fold_terms Term.add_vars th [] |> map (fn (xi, T) =>
wenzelm@18025
   324
      (cert (Var (xi, T)), cert (Term.list_comb (Var (xi, Ts ---> T), ps))));
wenzelm@18025
   325
  in
wenzelm@18025
   326
    th |> Thm.instantiate ([], inst)
wenzelm@18025
   327
    |> fold_rev (Thm.forall_intr o cert) ps
wenzelm@18025
   328
  end;
wenzelm@18025
   329
wenzelm@19999
   330
(*direct generalization*)
wenzelm@19999
   331
fun generalize names th = Thm.generalize names (Thm.maxidx_of th + 1) th;
wenzelm@9554
   332
wenzelm@16949
   333
(*specialization over a list of cterms*)
wenzelm@16949
   334
val forall_elim_list = fold forall_elim;
clasohm@0
   335
wenzelm@16949
   336
(*maps A1,...,An |- B  to  [| A1;...;An |] ==> B*)
wenzelm@16949
   337
val implies_intr_list = fold_rev implies_intr;
clasohm@0
   338
wenzelm@16949
   339
(*maps [| A1;...;An |] ==> B and [A1,...,An]  to  B*)
skalberg@15570
   340
fun implies_elim_list impth ths = Library.foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   341
clasohm@0
   342
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@21603
   343
fun zero_var_indexes_list [] = []
wenzelm@21603
   344
  | zero_var_indexes_list ths =
wenzelm@21603
   345
      let
wenzelm@21603
   346
        val thy = Theory.merge_list (map Thm.theory_of_thm ths);
wenzelm@21603
   347
        val certT = Thm.ctyp_of thy and cert = Thm.cterm_of thy;
wenzelm@21603
   348
        val (instT, inst) = TermSubst.zero_var_indexes_inst (map Thm.full_prop_of ths);
wenzelm@21603
   349
        val cinstT = map (fn (v, T) => (certT (TVar v), certT T)) instT;
wenzelm@21603
   350
        val cinst = map (fn (v, t) => (cert (Var v), cert t)) inst;
wenzelm@21603
   351
      in map (Thm.adjust_maxidx_thm ~1 o Thm.instantiate (cinstT, cinst)) ths end;
wenzelm@21603
   352
wenzelm@21603
   353
val zero_var_indexes = singleton zero_var_indexes_list;
clasohm@0
   354
clasohm@0
   355
paulson@14394
   356
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   357
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   358
wenzelm@16595
   359
(*Discharge all hypotheses.*)
wenzelm@16595
   360
fun implies_intr_hyps th =
wenzelm@16595
   361
  fold Thm.implies_intr (#hyps (Thm.crep_thm th)) th;
wenzelm@16595
   362
paulson@14394
   363
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   364
  This step can lose information.*)
paulson@14387
   365
fun flexflex_unique th =
berghofe@17713
   366
  if null (tpairs_of th) then th else
wenzelm@19861
   367
    case Seq.chop 2 (flexflex_rule th) of
paulson@14387
   368
      ([th],_) => th
paulson@14387
   369
    | ([],_)   => raise THM("flexflex_unique: impossible constraints", 0, [th])
paulson@14387
   370
    |      _   => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
paulson@14387
   371
wenzelm@10515
   372
fun close_derivation thm =
wenzelm@21646
   373
  if Thm.get_name thm = "" then Thm.put_name "" thm
wenzelm@10515
   374
  else thm;
wenzelm@10515
   375
wenzelm@21603
   376
wenzelm@21603
   377
(* legacy standard operations *)
wenzelm@21603
   378
wenzelm@16949
   379
val standard' =
wenzelm@16949
   380
  implies_intr_hyps
wenzelm@16949
   381
  #> forall_intr_frees
wenzelm@19421
   382
  #> `Thm.maxidx_of
wenzelm@16949
   383
  #-> (fn maxidx =>
wenzelm@16949
   384
    forall_elim_vars (maxidx + 1)
wenzelm@20904
   385
    #> Thm.strip_shyps
wenzelm@16949
   386
    #> zero_var_indexes
wenzelm@16949
   387
    #> Thm.varifyT
wenzelm@21600
   388
    #> Thm.compress);
wenzelm@1218
   389
wenzelm@16949
   390
val standard =
wenzelm@21600
   391
  flexflex_unique
wenzelm@16949
   392
  #> standard'
wenzelm@16949
   393
  #> close_derivation;
berghofe@11512
   394
clasohm@0
   395
wenzelm@8328
   396
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   397
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   398
  Similar code in type/freeze_thaw*)
paulson@15495
   399
paulson@15495
   400
fun freeze_thaw_robust th =
wenzelm@19878
   401
 let val fth = Thm.freezeT th
wenzelm@16425
   402
     val {prop, tpairs, thy, ...} = rep_thm fth
paulson@15495
   403
 in
skalberg@15574
   404
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@15495
   405
       [] => (fth, fn i => fn x => x)   (*No vars: nothing to do!*)
paulson@15495
   406
     | vars =>
paulson@19753
   407
         let fun newName (Var(ix,_)) = (ix, gensym (string_of_indexname ix))
paulson@19753
   408
             val alist = map newName vars
paulson@15495
   409
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   410
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   411
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
paulson@15495
   412
             val insts = map mk_inst vars
paulson@15495
   413
             fun thaw i th' = (*i is non-negative increment for Var indexes*)
paulson@15495
   414
                 th' |> forall_intr_list (map #2 insts)
wenzelm@22906
   415
                     |> forall_elim_list (map (Thm.incr_indexes_cterm i o #1) insts)
paulson@15495
   416
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@15495
   417
 end;
paulson@15495
   418
paulson@15495
   419
(*Basic version of the function above. No option to rename Vars apart in thaw.
wenzelm@19999
   420
  The Frees created from Vars have nice names. FIXME: does not check for
paulson@19753
   421
  clashes with variables in the assumptions, so delete and use freeze_thaw_robust instead?*)
paulson@4610
   422
fun freeze_thaw th =
wenzelm@19878
   423
 let val fth = Thm.freezeT th
wenzelm@16425
   424
     val {prop, tpairs, thy, ...} = rep_thm fth
paulson@7248
   425
 in
skalberg@15574
   426
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@7248
   427
       [] => (fth, fn x => x)
paulson@7248
   428
     | vars =>
wenzelm@8328
   429
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@20077
   430
                   let val v = Name.variant used (string_of_indexname ix)
wenzelm@8328
   431
                   in  ((ix,v)::pairs, v::used)  end;
skalberg@15574
   432
             val (alist, _) = foldr newName ([], Library.foldr add_term_names
skalberg@15574
   433
               (prop :: Thm.terms_of_tpairs tpairs, [])) vars
wenzelm@8328
   434
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   435
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   436
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
wenzelm@8328
   437
             val insts = map mk_inst vars
wenzelm@8328
   438
             fun thaw th' =
wenzelm@8328
   439
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   440
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   441
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   442
 end;
paulson@4610
   443
paulson@7248
   444
(*Rotates a rule's premises to the left by k*)
paulson@7248
   445
val rotate_prems = permute_prems 0;
paulson@4610
   446
oheimb@11163
   447
(* permute prems, where the i-th position in the argument list (counting from 0)
oheimb@11163
   448
   gives the position within the original thm to be transferred to position i.
oheimb@11163
   449
   Any remaining trailing positions are left unchanged. *)
oheimb@11163
   450
val rearrange_prems = let
oheimb@11163
   451
  fun rearr new []      thm = thm
wenzelm@11815
   452
  |   rearr new (p::ps) thm = rearr (new+1)
oheimb@11163
   453
     (map (fn q => if new<=q andalso q<p then q+1 else q) ps)
oheimb@11163
   454
     (permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
oheimb@11163
   455
  in rearr 0 end;
paulson@4610
   456
wenzelm@252
   457
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   458
fun tha RSN (i,thb) =
wenzelm@19861
   459
  case Seq.chop 2 (biresolution false [(false,tha)] i thb) of
clasohm@0
   460
      ([th],_) => th
clasohm@0
   461
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   462
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   463
clasohm@0
   464
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   465
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   466
clasohm@0
   467
(*For joining lists of rules*)
wenzelm@252
   468
fun thas RLN (i,thbs) =
clasohm@0
   469
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   470
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
wenzelm@19482
   471
  in maps resb thbs end;
clasohm@0
   472
clasohm@0
   473
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   474
lcp@11
   475
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   476
  makes proof trees*)
wenzelm@252
   477
fun rls MRS bottom_rl =
lcp@11
   478
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   479
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   480
  in  rs_aux 1 rls  end;
lcp@11
   481
lcp@11
   482
(*As above, but for rule lists*)
wenzelm@252
   483
fun rlss MRL bottom_rls =
lcp@11
   484
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   485
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   486
  in  rs_aux 1 rlss  end;
lcp@11
   487
wenzelm@9288
   488
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   489
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   490
wenzelm@252
   491
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   492
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   493
  ALWAYS deletes premise i *)
wenzelm@252
   494
fun compose(tha,i,thb) =
wenzelm@4270
   495
    Seq.list_of (bicompose false (false,tha,0) i thb);
clasohm@0
   496
wenzelm@6946
   497
fun compose_single (tha,i,thb) =
wenzelm@6946
   498
  (case compose (tha,i,thb) of
wenzelm@6946
   499
    [th] => th
wenzelm@6946
   500
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]));
wenzelm@6946
   501
clasohm@0
   502
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   503
fun tha COMP thb =
wenzelm@22360
   504
    case distinct Thm.eq_thm (compose(tha,1,thb)) of
wenzelm@252
   505
        [th] => th
clasohm@0
   506
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   507
wenzelm@13105
   508
wenzelm@4016
   509
(** theorem equality **)
clasohm@0
   510
clasohm@0
   511
(*Useful "distance" function for BEST_FIRST*)
wenzelm@16720
   512
val size_of_thm = size_of_term o Thm.full_prop_of;
clasohm@0
   513
wenzelm@9829
   514
(*maintain lists of theorems --- preserving canonical order*)
wenzelm@22360
   515
val del_rule = remove Thm.eq_thm_prop;
wenzelm@18922
   516
fun add_rule th = cons th o del_rule th;
wenzelm@22360
   517
val merge_rules = Library.merge Thm.eq_thm_prop;
wenzelm@9829
   518
lcp@1194
   519
lcp@1194
   520
clasohm@0
   521
(*** Meta-Rewriting Rules ***)
clasohm@0
   522
wenzelm@22681
   523
fun read_prop s = Thm.read_cterm ProtoPure.thy (s, propT);
paulson@4610
   524
wenzelm@9455
   525
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
wenzelm@9455
   526
fun store_standard_thm name thm = store_thm name (standard thm);
wenzelm@12135
   527
fun store_thm_open name thm = hd (PureThy.smart_store_thms_open (name, [thm]));
wenzelm@12135
   528
fun store_standard_thm_open name thm = store_thm_open name (standard' thm);
wenzelm@4016
   529
clasohm@0
   530
val reflexive_thm =
wenzelm@19421
   531
  let val cx = cert (Var(("x",0),TVar(("'a",0),[])))
wenzelm@12135
   532
  in store_standard_thm_open "reflexive" (Thm.reflexive cx) end;
clasohm@0
   533
clasohm@0
   534
val symmetric_thm =
wenzelm@14854
   535
  let val xy = read_prop "x == y"
wenzelm@16595
   536
  in store_standard_thm_open "symmetric" (Thm.implies_intr xy (Thm.symmetric (Thm.assume xy))) end;
clasohm@0
   537
clasohm@0
   538
val transitive_thm =
wenzelm@14854
   539
  let val xy = read_prop "x == y"
wenzelm@14854
   540
      val yz = read_prop "y == z"
clasohm@0
   541
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
wenzelm@12135
   542
  in store_standard_thm_open "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
clasohm@0
   543
nipkow@4679
   544
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   545
berghofe@11512
   546
fun extensional eq =
berghofe@11512
   547
  let val eq' =
wenzelm@22906
   548
    abstract_rule "x" (Thm.dest_arg (fst (Thm.dest_equals (cprop_of eq)))) eq
berghofe@11512
   549
  in equal_elim (eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   550
wenzelm@18820
   551
val equals_cong =
wenzelm@18820
   552
  store_standard_thm_open "equals_cong" (Thm.reflexive (read_prop "x == y"));
wenzelm@18820
   553
berghofe@10414
   554
val imp_cong =
berghofe@10414
   555
  let
berghofe@10414
   556
    val ABC = read_prop "PROP A ==> PROP B == PROP C"
berghofe@10414
   557
    val AB = read_prop "PROP A ==> PROP B"
berghofe@10414
   558
    val AC = read_prop "PROP A ==> PROP C"
berghofe@10414
   559
    val A = read_prop "PROP A"
berghofe@10414
   560
  in
wenzelm@12135
   561
    store_standard_thm_open "imp_cong" (implies_intr ABC (equal_intr
berghofe@10414
   562
      (implies_intr AB (implies_intr A
berghofe@10414
   563
        (equal_elim (implies_elim (assume ABC) (assume A))
berghofe@10414
   564
          (implies_elim (assume AB) (assume A)))))
berghofe@10414
   565
      (implies_intr AC (implies_intr A
berghofe@10414
   566
        (equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
berghofe@10414
   567
          (implies_elim (assume AC) (assume A)))))))
berghofe@10414
   568
  end;
berghofe@10414
   569
berghofe@10414
   570
val swap_prems_eq =
berghofe@10414
   571
  let
berghofe@10414
   572
    val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
berghofe@10414
   573
    val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
berghofe@10414
   574
    val A = read_prop "PROP A"
berghofe@10414
   575
    val B = read_prop "PROP B"
berghofe@10414
   576
  in
wenzelm@12135
   577
    store_standard_thm_open "swap_prems_eq" (equal_intr
berghofe@10414
   578
      (implies_intr ABC (implies_intr B (implies_intr A
berghofe@10414
   579
        (implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
berghofe@10414
   580
      (implies_intr BAC (implies_intr A (implies_intr B
berghofe@10414
   581
        (implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
berghofe@10414
   582
  end;
lcp@229
   583
wenzelm@22938
   584
val imp_cong_rule = Thm.combination o Thm.combination (Thm.reflexive implies);
wenzelm@22938
   585
wenzelm@22938
   586
fun arg_cong_rule ct th = Thm.combination (Thm.reflexive ct) th;    (*AP_TERM*)
wenzelm@22938
   587
fun fun_cong_rule th ct = Thm.combination th (Thm.reflexive ct);    (*AP_THM*)
clasohm@0
   588
skalberg@15001
   589
local
wenzelm@22906
   590
  val dest_eq = Thm.dest_equals o cprop_of
skalberg@15001
   591
  val rhs_of = snd o dest_eq
skalberg@15001
   592
in
skalberg@15001
   593
fun beta_eta_conversion t =
skalberg@15001
   594
  let val thm = beta_conversion true t
skalberg@15001
   595
  in transitive thm (eta_conversion (rhs_of thm)) end
skalberg@15001
   596
end;
skalberg@15001
   597
berghofe@15925
   598
fun eta_long_conversion ct = transitive (beta_eta_conversion ct)
berghofe@15925
   599
  (symmetric (beta_eta_conversion (cterm_fun (Pattern.eta_long []) ct)));
berghofe@15925
   600
paulson@20861
   601
(*Contract all eta-redexes in the theorem, lest they give rise to needless abstractions*)
paulson@20861
   602
fun eta_contraction_rule th =
paulson@20861
   603
  equal_elim (eta_conversion (cprop_of th)) th;
paulson@20861
   604
wenzelm@18337
   605
val abs_def =
wenzelm@18337
   606
  let
wenzelm@18337
   607
    fun contract_lhs th =
wenzelm@22906
   608
      Thm.transitive (Thm.symmetric (beta_eta_conversion
wenzelm@22906
   609
        (fst (Thm.dest_equals (cprop_of th))))) th;
wenzelm@18777
   610
    fun abstract cx th = Thm.abstract_rule
wenzelm@18777
   611
        (case Thm.term_of cx of Var ((x, _), _) => x | Free (x, _) => x | _ => "x") cx th
wenzelm@18777
   612
      handle THM _ => raise THM ("Malformed definitional equation", 0, [th]);
wenzelm@18337
   613
  in
wenzelm@18337
   614
    contract_lhs
wenzelm@22906
   615
    #> `(snd o strip_comb o fst o Thm.dest_equals o cprop_of)
wenzelm@18337
   616
    #-> fold_rev abstract
wenzelm@18337
   617
    #> contract_lhs
wenzelm@18337
   618
  end;
wenzelm@18337
   619
wenzelm@18468
   620
wenzelm@15669
   621
(*** Some useful meta-theorems ***)
clasohm@0
   622
clasohm@0
   623
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@12135
   624
val asm_rl = store_standard_thm_open "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
wenzelm@7380
   625
val _ = store_thm "_" asm_rl;
clasohm@0
   626
clasohm@0
   627
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   628
val cut_rl =
wenzelm@12135
   629
  store_standard_thm_open "cut_rl"
wenzelm@9455
   630
    (Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
clasohm@0
   631
wenzelm@252
   632
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   633
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   634
val revcut_rl =
paulson@4610
   635
  let val V = read_prop "PROP V"
paulson@4610
   636
      and VW = read_prop "PROP V ==> PROP W";
wenzelm@4016
   637
  in
wenzelm@12135
   638
    store_standard_thm_open "revcut_rl"
wenzelm@4016
   639
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   640
  end;
clasohm@0
   641
lcp@668
   642
(*for deleting an unwanted assumption*)
lcp@668
   643
val thin_rl =
paulson@4610
   644
  let val V = read_prop "PROP V"
paulson@4610
   645
      and W = read_prop "PROP W";
wenzelm@12135
   646
  in store_standard_thm_open "thin_rl" (implies_intr V (implies_intr W (assume W))) end;
lcp@668
   647
clasohm@0
   648
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   649
val triv_forall_equality =
paulson@4610
   650
  let val V  = read_prop "PROP V"
paulson@4610
   651
      and QV = read_prop "!!x::'a. PROP V"
wenzelm@19421
   652
      and x  = cert (Free ("x", Term.aT []));
wenzelm@4016
   653
  in
wenzelm@12135
   654
    store_standard_thm_open "triv_forall_equality"
berghofe@11512
   655
      (equal_intr (implies_intr QV (forall_elim x (assume QV)))
berghofe@11512
   656
        (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   657
  end;
clasohm@0
   658
wenzelm@19051
   659
(* (PROP ?Phi ==> PROP ?Phi ==> PROP ?Psi) ==>
wenzelm@19051
   660
   (PROP ?Phi ==> PROP ?Psi)
wenzelm@19051
   661
*)
wenzelm@19051
   662
val distinct_prems_rl =
wenzelm@19051
   663
  let
wenzelm@19051
   664
    val AAB = read_prop "PROP Phi ==> PROP Phi ==> PROP Psi"
wenzelm@19051
   665
    val A = read_prop "PROP Phi";
wenzelm@19051
   666
  in
wenzelm@19051
   667
    store_standard_thm_open "distinct_prems_rl"
wenzelm@19051
   668
      (implies_intr_list [AAB, A] (implies_elim_list (assume AAB) [assume A, assume A]))
wenzelm@19051
   669
  end;
wenzelm@19051
   670
nipkow@1756
   671
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   672
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   673
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   674
*)
nipkow@1756
   675
val swap_prems_rl =
paulson@4610
   676
  let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
nipkow@1756
   677
      val major = assume cmajor;
paulson@4610
   678
      val cminor1 = read_prop "PROP PhiA";
nipkow@1756
   679
      val minor1 = assume cminor1;
paulson@4610
   680
      val cminor2 = read_prop "PROP PhiB";
nipkow@1756
   681
      val minor2 = assume cminor2;
wenzelm@12135
   682
  in store_standard_thm_open "swap_prems_rl"
nipkow@1756
   683
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   684
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   685
  end;
nipkow@1756
   686
nipkow@3653
   687
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   688
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   689
   Introduction rule for == as a meta-theorem.
nipkow@3653
   690
*)
nipkow@3653
   691
val equal_intr_rule =
paulson@4610
   692
  let val PQ = read_prop "PROP phi ==> PROP psi"
paulson@4610
   693
      and QP = read_prop "PROP psi ==> PROP phi"
wenzelm@4016
   694
  in
wenzelm@12135
   695
    store_standard_thm_open "equal_intr_rule"
wenzelm@4016
   696
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   697
  end;
nipkow@3653
   698
wenzelm@19421
   699
(* PROP ?phi == PROP ?psi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@13368
   700
val equal_elim_rule1 =
wenzelm@13368
   701
  let val eq = read_prop "PROP phi == PROP psi"
wenzelm@13368
   702
      and P = read_prop "PROP phi"
wenzelm@13368
   703
  in store_standard_thm_open "equal_elim_rule1"
wenzelm@13368
   704
    (Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   705
  end;
wenzelm@4285
   706
wenzelm@19421
   707
(* PROP ?psi == PROP ?phi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@19421
   708
val equal_elim_rule2 =
wenzelm@19421
   709
  store_standard_thm_open "equal_elim_rule2" (symmetric_thm RS equal_elim_rule1);
wenzelm@19421
   710
wenzelm@12297
   711
(* "[| PROP ?phi; PROP ?phi; PROP ?psi |] ==> PROP ?psi" *)
wenzelm@12297
   712
val remdups_rl =
wenzelm@12297
   713
  let val P = read_prop "PROP phi" and Q = read_prop "PROP psi";
wenzelm@12297
   714
  in store_standard_thm_open "remdups_rl" (implies_intr_list [P, P, Q] (Thm.assume Q)) end;
wenzelm@12297
   715
wenzelm@12297
   716
wenzelm@9554
   717
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
wenzelm@12297
   718
  Rewrite rule for HHF normalization.*)
wenzelm@9554
   719
wenzelm@9554
   720
val norm_hhf_eq =
wenzelm@9554
   721
  let
wenzelm@14854
   722
    val aT = TFree ("'a", []);
wenzelm@9554
   723
    val all = Term.all aT;
wenzelm@9554
   724
    val x = Free ("x", aT);
wenzelm@9554
   725
    val phi = Free ("phi", propT);
wenzelm@9554
   726
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   727
wenzelm@9554
   728
    val cx = cert x;
wenzelm@9554
   729
    val cphi = cert phi;
wenzelm@9554
   730
    val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@9554
   731
    val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   732
  in
wenzelm@9554
   733
    Thm.equal_intr
wenzelm@9554
   734
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   735
        |> Thm.forall_elim cx
wenzelm@9554
   736
        |> Thm.implies_intr cphi
wenzelm@9554
   737
        |> Thm.forall_intr cx
wenzelm@9554
   738
        |> Thm.implies_intr lhs)
wenzelm@9554
   739
      (Thm.implies_elim
wenzelm@9554
   740
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   741
        |> Thm.forall_intr cx
wenzelm@9554
   742
        |> Thm.implies_intr cphi
wenzelm@9554
   743
        |> Thm.implies_intr rhs)
wenzelm@12135
   744
    |> store_standard_thm_open "norm_hhf_eq"
wenzelm@9554
   745
  end;
wenzelm@9554
   746
wenzelm@18179
   747
val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq);
wenzelm@18179
   748
wenzelm@12800
   749
fun is_norm_hhf tm =
wenzelm@12800
   750
  let
wenzelm@12800
   751
    fun is_norm (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
wenzelm@12800
   752
      | is_norm (t $ u) = is_norm t andalso is_norm u
wenzelm@12800
   753
      | is_norm (Abs (_, _, t)) = is_norm t
wenzelm@12800
   754
      | is_norm _ = true;
wenzelm@18929
   755
  in is_norm (Envir.beta_eta_contract tm) end;
wenzelm@12800
   756
wenzelm@16425
   757
fun norm_hhf thy t =
wenzelm@12800
   758
  if is_norm_hhf t then t
wenzelm@18179
   759
  else Pattern.rewrite_term thy [norm_hhf_prop] [] t;
wenzelm@18179
   760
wenzelm@20298
   761
fun norm_hhf_cterm ct =
wenzelm@20298
   762
  if is_norm_hhf (Thm.term_of ct) then ct
wenzelm@20298
   763
  else cterm_fun (Pattern.rewrite_term (Thm.theory_of_cterm ct) [norm_hhf_prop] []) ct;
wenzelm@20298
   764
wenzelm@12800
   765
wenzelm@21603
   766
(* var indexes *)
wenzelm@21603
   767
wenzelm@21603
   768
fun incr_indexes th = Thm.incr_indexes (Thm.maxidx_of th + 1);
wenzelm@21603
   769
wenzelm@21603
   770
fun incr_indexes2 th1 th2 =
wenzelm@21603
   771
  Thm.incr_indexes (Int.max (Thm.maxidx_of th1, Thm.maxidx_of th2) + 1);
wenzelm@21603
   772
wenzelm@21603
   773
fun th1 INCR_COMP th2 = incr_indexes th2 th1 COMP th2;
wenzelm@21603
   774
fun th1 COMP_INCR th2 = th1 COMP incr_indexes th1 th2;
wenzelm@21603
   775
wenzelm@9554
   776
wenzelm@16425
   777
(*** Instantiate theorem th, reading instantiations in theory thy ****)
paulson@8129
   778
paulson@8129
   779
(*Version that normalizes the result: Thm.instantiate no longer does that*)
wenzelm@21603
   780
fun instantiate instpair th =
wenzelm@21603
   781
  Thm.adjust_maxidx_thm ~1 (Thm.instantiate instpair th COMP_INCR asm_rl);
paulson@8129
   782
wenzelm@16425
   783
fun read_instantiate_sg' thy sinsts th =
paulson@8129
   784
    let val ts = types_sorts th;
wenzelm@15669
   785
        val used = add_used th [];
wenzelm@16425
   786
    in  instantiate (read_insts thy ts ts used sinsts) th  end;
berghofe@15797
   787
wenzelm@16425
   788
fun read_instantiate_sg thy sinsts th =
wenzelm@20298
   789
  read_instantiate_sg' thy (map (apfst Syntax.read_indexname) sinsts) th;
paulson@8129
   790
paulson@8129
   791
(*Instantiate theorem th, reading instantiations under theory of th*)
paulson@8129
   792
fun read_instantiate sinsts th =
wenzelm@16425
   793
    read_instantiate_sg (Thm.theory_of_thm th) sinsts th;
paulson@8129
   794
berghofe@15797
   795
fun read_instantiate' sinsts th =
wenzelm@16425
   796
    read_instantiate_sg' (Thm.theory_of_thm th) sinsts th;
berghofe@15797
   797
paulson@8129
   798
paulson@8129
   799
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   800
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   801
local
wenzelm@16425
   802
  fun add_types ((ct,cu), (thy,tye,maxidx)) =
wenzelm@16425
   803
    let val {thy=thyt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
wenzelm@16425
   804
        and {thy=thyu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
paulson@8129
   805
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
wenzelm@16425
   806
        val thy' = Theory.merge(thy, Theory.merge(thyt, thyu))
wenzelm@16949
   807
        val (tye',maxi') = Sign.typ_unify thy' (T, U) (tye, maxi)
wenzelm@10403
   808
          handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
wenzelm@16425
   809
    in  (thy', tye', maxi')  end;
paulson@8129
   810
in
paulson@22561
   811
fun cterm_instantiate [] th = th
paulson@22561
   812
  | cterm_instantiate ctpairs0 th =
wenzelm@16425
   813
  let val (thy,tye,_) = foldr add_types (Thm.theory_of_thm th, Vartab.empty, 0) ctpairs0
wenzelm@18179
   814
      fun instT(ct,cu) =
paulson@22287
   815
        let val inst = cterm_of thy o Term.map_types (Envir.norm_type tye) o term_of
paulson@14340
   816
        in (inst ct, inst cu) end
paulson@22307
   817
      fun ctyp2 (ixn, (S, T)) = (ctyp_of thy (TVar (ixn, S)), ctyp_of thy (Envir.norm_type tye T))
berghofe@8406
   818
  in  instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   819
  handle TERM _ =>
wenzelm@16425
   820
           raise THM("cterm_instantiate: incompatible theories",0,[th])
paulson@8129
   821
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   822
end;
paulson@8129
   823
paulson@8129
   824
wenzelm@19878
   825
(* global schematic variables *)
wenzelm@19878
   826
wenzelm@19878
   827
fun unvarify th =
wenzelm@19878
   828
  let
wenzelm@19878
   829
    val thy = Thm.theory_of_thm th;
wenzelm@19878
   830
    val cert = Thm.cterm_of thy;
wenzelm@19878
   831
    val certT = Thm.ctyp_of thy;
wenzelm@19878
   832
wenzelm@19878
   833
    val prop = Thm.full_prop_of th;
wenzelm@19878
   834
    val _ = map Logic.unvarify (prop :: Thm.hyps_of th)
wenzelm@19878
   835
      handle TERM (msg, _) => raise THM (msg, 0, [th]);
wenzelm@19878
   836
wenzelm@19878
   837
    val instT0 = rev (Term.add_tvars prop []) |> map (fn v as ((a, _), S) => (v, TFree (a, S)));
wenzelm@19878
   838
    val instT = map (fn (v, T) => (certT (TVar v), certT T)) instT0;
wenzelm@19878
   839
    val inst = rev (Term.add_vars prop []) |> map (fn ((a, i), T) =>
wenzelm@20509
   840
      let val T' = TermSubst.instantiateT instT0 T
wenzelm@19878
   841
      in (cert (Var ((a, i), T')), cert (Free ((a, T')))) end);
wenzelm@19878
   842
  in Thm.instantiate (instT, inst) th end;
wenzelm@19878
   843
wenzelm@19878
   844
wenzelm@19775
   845
(** protected propositions and embedded terms **)
wenzelm@4789
   846
wenzelm@4789
   847
local
wenzelm@18025
   848
  val A = cert (Free ("A", propT));
wenzelm@19878
   849
  val prop_def = unvarify ProtoPure.prop_def;
wenzelm@19878
   850
  val term_def = unvarify ProtoPure.term_def;
wenzelm@4789
   851
in
wenzelm@18025
   852
  val protect = Thm.capply (cert Logic.protectC);
wenzelm@21437
   853
  val protectI = store_thm "protectI" (PureThy.kind_rule Thm.internalK (standard
wenzelm@18025
   854
      (Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A))));
wenzelm@21437
   855
  val protectD = store_thm "protectD" (PureThy.kind_rule Thm.internalK (standard
wenzelm@18025
   856
      (Thm.equal_elim prop_def (Thm.assume (protect A)))));
wenzelm@18179
   857
  val protect_cong = store_standard_thm_open "protect_cong" (Thm.reflexive (protect A));
wenzelm@19775
   858
wenzelm@21437
   859
  val termI = store_thm "termI" (PureThy.kind_rule Thm.internalK (standard
wenzelm@19775
   860
      (Thm.equal_elim (Thm.symmetric term_def) (Thm.forall_intr A (Thm.trivial A)))));
wenzelm@4789
   861
end;
wenzelm@4789
   862
wenzelm@18025
   863
fun implies_intr_protected asms th =
wenzelm@18118
   864
  let val asms' = map protect asms in
wenzelm@18118
   865
    implies_elim_list
wenzelm@18118
   866
      (implies_intr_list asms th)
wenzelm@18118
   867
      (map (fn asm' => Thm.assume asm' RS protectD) asms')
wenzelm@18118
   868
    |> implies_intr_list asms'
wenzelm@18118
   869
  end;
wenzelm@11815
   870
wenzelm@19775
   871
fun mk_term ct =
wenzelm@19775
   872
  let
wenzelm@19775
   873
    val {thy, T, ...} = Thm.rep_cterm ct;
wenzelm@19775
   874
    val cert = Thm.cterm_of thy;
wenzelm@19775
   875
    val certT = Thm.ctyp_of thy;
wenzelm@19775
   876
    val a = certT (TVar (("'a", 0), []));
wenzelm@19775
   877
    val x = cert (Var (("x", 0), T));
wenzelm@19775
   878
  in Thm.instantiate ([(a, certT T)], [(x, ct)]) termI end;
wenzelm@19775
   879
wenzelm@19775
   880
fun dest_term th =
wenzelm@21566
   881
  let val cprop = strip_imp_concl (Thm.cprop_of th) in
wenzelm@19775
   882
    if can Logic.dest_term (Thm.term_of cprop) then
wenzelm@20579
   883
      Thm.dest_arg cprop
wenzelm@19775
   884
    else raise THM ("dest_term", 0, [th])
wenzelm@19775
   885
  end;
wenzelm@19775
   886
wenzelm@21519
   887
fun cterm_rule f = dest_term o f o mk_term;
wenzelm@21519
   888
fun term_rule thy f t = Thm.term_of (cterm_rule f (Thm.cterm_of thy t));
wenzelm@20881
   889
wenzelm@19775
   890
wenzelm@4789
   891
wenzelm@5688
   892
(** variations on instantiate **)
wenzelm@4285
   893
wenzelm@4285
   894
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   895
wenzelm@4285
   896
fun instantiate' cTs cts thm =
wenzelm@4285
   897
  let
wenzelm@4285
   898
    fun err msg =
wenzelm@4285
   899
      raise TYPE ("instantiate': " ^ msg,
wenzelm@19482
   900
        map_filter (Option.map Thm.typ_of) cTs,
wenzelm@19482
   901
        map_filter (Option.map Thm.term_of) cts);
wenzelm@4285
   902
wenzelm@4285
   903
    fun inst_of (v, ct) =
wenzelm@16425
   904
      (Thm.cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
wenzelm@4285
   905
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   906
berghofe@15797
   907
    fun tyinst_of (v, cT) =
wenzelm@16425
   908
      (Thm.ctyp_of (Thm.theory_of_ctyp cT) (TVar v), cT)
berghofe@15797
   909
        handle TYPE (msg, _, _) => err msg;
berghofe@15797
   910
wenzelm@20298
   911
    fun zip_vars xs ys =
wenzelm@20298
   912
      zip_options xs ys handle Library.UnequalLengths =>
wenzelm@20298
   913
        err "more instantiations than variables in thm";
wenzelm@4285
   914
wenzelm@4285
   915
    (*instantiate types first!*)
wenzelm@4285
   916
    val thm' =
wenzelm@4285
   917
      if forall is_none cTs then thm
wenzelm@20298
   918
      else Thm.instantiate
wenzelm@22695
   919
        (map tyinst_of (zip_vars (rev (Thm.fold_terms Term.add_tvars thm [])) cTs), []) thm;
wenzelm@20579
   920
    val thm'' =
wenzelm@4285
   921
      if forall is_none cts then thm'
wenzelm@20298
   922
      else Thm.instantiate
wenzelm@22695
   923
        ([], map inst_of (zip_vars (rev (Thm.fold_terms Term.add_vars thm' [])) cts)) thm';
wenzelm@20298
   924
    in thm'' end;
wenzelm@4285
   925
wenzelm@4285
   926
berghofe@14081
   927
berghofe@14081
   928
(** renaming of bound variables **)
berghofe@14081
   929
berghofe@14081
   930
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
   931
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
   932
berghofe@14081
   933
fun rename_bvars [] thm = thm
berghofe@14081
   934
  | rename_bvars vs thm =
berghofe@14081
   935
    let
wenzelm@16425
   936
      val {thy, prop, ...} = rep_thm thm;
haftmann@17325
   937
      fun ren (Abs (x, T, t)) = Abs (AList.lookup (op =) vs x |> the_default x, T, ren t)
berghofe@14081
   938
        | ren (t $ u) = ren t $ ren u
berghofe@14081
   939
        | ren t = t;
wenzelm@16425
   940
    in equal_elim (reflexive (cterm_of thy (ren prop))) thm end;
berghofe@14081
   941
berghofe@14081
   942
berghofe@14081
   943
(* renaming in left-to-right order *)
berghofe@14081
   944
berghofe@14081
   945
fun rename_bvars' xs thm =
berghofe@14081
   946
  let
wenzelm@16425
   947
    val {thy, prop, ...} = rep_thm thm;
berghofe@14081
   948
    fun rename [] t = ([], t)
berghofe@14081
   949
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
   950
          let val (xs', t') = rename xs t
wenzelm@18929
   951
          in (xs', Abs (the_default x x', T, t')) end
berghofe@14081
   952
      | rename xs (t $ u) =
berghofe@14081
   953
          let
berghofe@14081
   954
            val (xs', t') = rename xs t;
berghofe@14081
   955
            val (xs'', u') = rename xs' u
berghofe@14081
   956
          in (xs'', t' $ u') end
berghofe@14081
   957
      | rename xs t = (xs, t);
berghofe@14081
   958
  in case rename xs prop of
wenzelm@16425
   959
      ([], prop') => equal_elim (reflexive (cterm_of thy prop')) thm
berghofe@14081
   960
    | _ => error "More names than abstractions in theorem"
berghofe@14081
   961
  end;
berghofe@14081
   962
berghofe@14081
   963
wenzelm@11975
   964
wenzelm@18225
   965
(** multi_resolve **)
wenzelm@18225
   966
wenzelm@18225
   967
local
wenzelm@18225
   968
wenzelm@18225
   969
fun res th i rule =
wenzelm@18225
   970
  Thm.biresolution false [(false, th)] i rule handle THM _ => Seq.empty;
wenzelm@18225
   971
wenzelm@18225
   972
fun multi_res _ [] rule = Seq.single rule
wenzelm@18225
   973
  | multi_res i (th :: ths) rule = Seq.maps (res th i) (multi_res (i + 1) ths rule);
wenzelm@18225
   974
wenzelm@18225
   975
in
wenzelm@18225
   976
wenzelm@18225
   977
val multi_resolve = multi_res 1;
wenzelm@18225
   978
fun multi_resolves facts rules = Seq.maps (multi_resolve facts) (Seq.of_list rules);
wenzelm@18225
   979
wenzelm@18225
   980
end;
wenzelm@18225
   981
wenzelm@11975
   982
end;
wenzelm@5903
   983
wenzelm@5903
   984
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
   985
open BasicDrule;