src/Pure/drule.ML
author wenzelm
Thu Apr 07 09:27:20 2005 +0200 (2005-04-07 ago)
changeset 15669 2b1f1902505d
parent 15574 b1d1b5bfc464
child 15797 a63605582573
permissions -rw-r--r--
added add_used; include tpairs;
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
wenzelm@3766
     6
Derived rules and other operations on theorems.
clasohm@0
     7
*)
clasohm@0
     8
berghofe@13606
     9
infix 0 RS RSN RL RLN MRS MRL OF COMP;
clasohm@0
    10
wenzelm@5903
    11
signature BASIC_DRULE =
wenzelm@3766
    12
sig
paulson@9547
    13
  val mk_implies        : cterm * cterm -> cterm
paulson@9547
    14
  val list_implies      : cterm list * cterm -> cterm
wenzelm@4285
    15
  val dest_implies      : cterm -> cterm * cterm
berghofe@10414
    16
  val dest_equals       : cterm -> cterm * cterm
wenzelm@8328
    17
  val strip_imp_prems   : cterm -> cterm list
berghofe@10414
    18
  val strip_imp_concl   : cterm -> cterm
wenzelm@8328
    19
  val cprems_of         : thm -> cterm list
wenzelm@8328
    20
  val read_insts        :
wenzelm@4285
    21
          Sign.sg -> (indexname -> typ option) * (indexname -> sort option)
wenzelm@4285
    22
                  -> (indexname -> typ option) * (indexname -> sort option)
berghofe@15442
    23
                  -> string list -> (indexname * string) list
wenzelm@4285
    24
                  -> (indexname*ctyp)list * (cterm*cterm)list
wenzelm@4285
    25
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
wenzelm@7636
    26
  val strip_shyps_warning : thm -> thm
wenzelm@8328
    27
  val forall_intr_list  : cterm list -> thm -> thm
wenzelm@8328
    28
  val forall_intr_frees : thm -> thm
wenzelm@8328
    29
  val forall_intr_vars  : thm -> thm
wenzelm@8328
    30
  val forall_elim_list  : cterm list -> thm -> thm
wenzelm@8328
    31
  val forall_elim_var   : int -> thm -> thm
wenzelm@8328
    32
  val forall_elim_vars  : int -> thm -> thm
wenzelm@12725
    33
  val gen_all           : thm -> thm
wenzelm@8328
    34
  val freeze_thaw       : thm -> thm * (thm -> thm)
paulson@15495
    35
  val freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
wenzelm@8328
    36
  val implies_elim_list : thm -> thm list -> thm
wenzelm@8328
    37
  val implies_intr_list : cterm list -> thm -> thm
paulson@8129
    38
  val instantiate       :
paulson@8129
    39
    (indexname * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@8328
    40
  val zero_var_indexes  : thm -> thm
wenzelm@8328
    41
  val standard          : thm -> thm
berghofe@11512
    42
  val standard'         : thm -> thm
paulson@4610
    43
  val rotate_prems      : int -> thm -> thm
oheimb@11163
    44
  val rearrange_prems   : int list -> thm -> thm
wenzelm@8328
    45
  val assume_ax         : theory -> string -> thm
wenzelm@8328
    46
  val RSN               : thm * (int * thm) -> thm
wenzelm@8328
    47
  val RS                : thm * thm -> thm
wenzelm@8328
    48
  val RLN               : thm list * (int * thm list) -> thm list
wenzelm@8328
    49
  val RL                : thm list * thm list -> thm list
wenzelm@8328
    50
  val MRS               : thm list * thm -> thm
wenzelm@8328
    51
  val MRL               : thm list list * thm list -> thm list
wenzelm@9288
    52
  val OF                : thm * thm list -> thm
wenzelm@8328
    53
  val compose           : thm * int * thm -> thm list
wenzelm@8328
    54
  val COMP              : thm * thm -> thm
clasohm@0
    55
  val read_instantiate_sg: Sign.sg -> (string*string)list -> thm -> thm
wenzelm@8328
    56
  val read_instantiate  : (string*string)list -> thm -> thm
wenzelm@8328
    57
  val cterm_instantiate : (cterm*cterm)list -> thm -> thm
wenzelm@13105
    58
  val eq_thm_sg         : thm * thm -> bool
wenzelm@13105
    59
  val eq_thm_prop	: thm * thm -> bool
wenzelm@8328
    60
  val weak_eq_thm       : thm * thm -> bool
wenzelm@8328
    61
  val size_of_thm       : thm -> int
wenzelm@8328
    62
  val reflexive_thm     : thm
wenzelm@8328
    63
  val symmetric_thm     : thm
wenzelm@8328
    64
  val transitive_thm    : thm
nipkow@4679
    65
  val symmetric_fun     : thm -> thm
berghofe@11512
    66
  val extensional       : thm -> thm
berghofe@10414
    67
  val imp_cong          : thm
berghofe@10414
    68
  val swap_prems_eq     : thm
wenzelm@8328
    69
  val equal_abs_elim    : cterm  -> thm -> thm
wenzelm@4285
    70
  val equal_abs_elim_list: cterm list -> thm -> thm
wenzelm@8328
    71
  val asm_rl            : thm
wenzelm@8328
    72
  val cut_rl            : thm
wenzelm@8328
    73
  val revcut_rl         : thm
wenzelm@8328
    74
  val thin_rl           : thm
wenzelm@4285
    75
  val triv_forall_equality: thm
nipkow@1756
    76
  val swap_prems_rl     : thm
wenzelm@4285
    77
  val equal_intr_rule   : thm
wenzelm@13368
    78
  val equal_elim_rule1  : thm
paulson@8550
    79
  val inst              : string -> string -> thm -> thm
wenzelm@8328
    80
  val instantiate'      : ctyp option list -> cterm option list -> thm -> thm
wenzelm@8328
    81
  val incr_indexes_wrt  : int list -> ctyp list -> cterm list -> thm list -> thm -> thm
wenzelm@5903
    82
end;
wenzelm@5903
    83
wenzelm@5903
    84
signature DRULE =
wenzelm@5903
    85
sig
wenzelm@5903
    86
  include BASIC_DRULE
berghofe@12908
    87
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    88
  val strip_type: ctyp -> ctyp list * ctyp
wenzelm@15669
    89
  val add_used: thm -> string list -> string list
wenzelm@11975
    90
  val rule_attribute: ('a -> thm -> thm) -> 'a attribute
wenzelm@11975
    91
  val tag_rule: tag -> thm -> thm
wenzelm@11975
    92
  val untag_rule: string -> thm -> thm
wenzelm@11975
    93
  val tag: tag -> 'a attribute
wenzelm@11975
    94
  val untag: string -> 'a attribute
wenzelm@11975
    95
  val get_kind: thm -> string
wenzelm@11975
    96
  val kind: string -> 'a attribute
wenzelm@11975
    97
  val theoremK: string
wenzelm@11975
    98
  val lemmaK: string
wenzelm@11975
    99
  val corollaryK: string
wenzelm@11975
   100
  val internalK: string
wenzelm@11975
   101
  val kind_internal: 'a attribute
wenzelm@11975
   102
  val has_internal: tag list -> bool
wenzelm@11975
   103
  val impose_hyps: cterm list -> thm -> thm
wenzelm@13389
   104
  val satisfy_hyps: thm list -> thm -> thm
wenzelm@11975
   105
  val close_derivation: thm -> thm
wenzelm@12005
   106
  val local_standard: thm -> thm
wenzelm@11975
   107
  val compose_single: thm * int * thm -> thm
wenzelm@12373
   108
  val add_rule: thm -> thm list -> thm list
wenzelm@12373
   109
  val del_rule: thm -> thm list -> thm list
wenzelm@11975
   110
  val add_rules: thm list -> thm list -> thm list
wenzelm@11975
   111
  val del_rules: thm list -> thm list -> thm list
wenzelm@11975
   112
  val merge_rules: thm list * thm list -> thm list
skalberg@15001
   113
  val imp_cong'         : thm -> thm -> thm
skalberg@15001
   114
  val beta_eta_conversion: cterm -> thm
skalberg@15001
   115
  val goals_conv        : (int -> bool) -> (cterm -> thm) -> cterm -> thm
skalberg@15001
   116
  val forall_conv       : (cterm -> thm) -> cterm -> thm
skalberg@15001
   117
  val fconv_rule        : (cterm -> thm) -> thm -> thm
wenzelm@11975
   118
  val norm_hhf_eq: thm
wenzelm@12800
   119
  val is_norm_hhf: term -> bool
wenzelm@12800
   120
  val norm_hhf: Sign.sg -> term -> term
wenzelm@11975
   121
  val triv_goal: thm
wenzelm@11975
   122
  val rev_triv_goal: thm
wenzelm@11815
   123
  val implies_intr_goals: cterm list -> thm -> thm
wenzelm@11975
   124
  val freeze_all: thm -> thm
wenzelm@11975
   125
  val mk_triv_goal: cterm -> thm
wenzelm@11975
   126
  val tvars_of_terms: term list -> (indexname * sort) list
wenzelm@11975
   127
  val vars_of_terms: term list -> (indexname * typ) list
wenzelm@11975
   128
  val tvars_of: thm -> (indexname * sort) list
wenzelm@11975
   129
  val vars_of: thm -> (indexname * typ) list
berghofe@14081
   130
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   131
  val rename_bvars': string option list -> thm -> thm
wenzelm@11975
   132
  val unvarifyT: thm -> thm
wenzelm@11975
   133
  val unvarify: thm -> thm
wenzelm@12495
   134
  val tvars_intr_list: string list -> thm -> thm * (string * indexname) list
wenzelm@12297
   135
  val remdups_rl: thm
wenzelm@11975
   136
  val conj_intr: thm -> thm -> thm
wenzelm@11975
   137
  val conj_intr_list: thm list -> thm
wenzelm@11975
   138
  val conj_elim: thm -> thm * thm
wenzelm@11975
   139
  val conj_elim_list: thm -> thm list
wenzelm@12135
   140
  val conj_elim_precise: int -> thm -> thm list
wenzelm@12135
   141
  val conj_intr_thm: thm
berghofe@13325
   142
  val abs_def: thm -> thm
wenzelm@3766
   143
end;
clasohm@0
   144
wenzelm@5903
   145
structure Drule: DRULE =
clasohm@0
   146
struct
clasohm@0
   147
wenzelm@3991
   148
lcp@708
   149
(** some cterm->cterm operations: much faster than calling cterm_of! **)
lcp@708
   150
paulson@2004
   151
(** SAME NAMES as in structure Logic: use compound identifiers! **)
paulson@2004
   152
clasohm@1703
   153
(*dest_implies for cterms. Note T=prop below*)
paulson@2004
   154
fun dest_implies ct =
wenzelm@8328
   155
    case term_of ct of
wenzelm@8328
   156
        (Const("==>", _) $ _ $ _) =>
wenzelm@10767
   157
            let val (ct1,ct2) = Thm.dest_comb ct
wenzelm@10767
   158
            in  (#2 (Thm.dest_comb ct1), ct2)  end
paulson@2004
   159
      | _ => raise TERM ("dest_implies", [term_of ct]) ;
clasohm@1703
   160
berghofe@10414
   161
fun dest_equals ct =
berghofe@10414
   162
    case term_of ct of
berghofe@10414
   163
        (Const("==", _) $ _ $ _) =>
wenzelm@10767
   164
            let val (ct1,ct2) = Thm.dest_comb ct
wenzelm@10767
   165
            in  (#2 (Thm.dest_comb ct1), ct2)  end
berghofe@10414
   166
      | _ => raise TERM ("dest_equals", [term_of ct]) ;
berghofe@10414
   167
clasohm@1703
   168
lcp@708
   169
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   170
fun strip_imp_prems ct =
paulson@2004
   171
    let val (cA,cB) = dest_implies ct
paulson@2004
   172
    in  cA :: strip_imp_prems cB  end
lcp@708
   173
    handle TERM _ => [];
lcp@708
   174
paulson@2004
   175
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   176
fun strip_imp_concl ct =
wenzelm@8328
   177
    case term_of ct of (Const("==>", _) $ _ $ _) =>
wenzelm@10767
   178
        strip_imp_concl (#2 (Thm.dest_comb ct))
paulson@2004
   179
  | _ => ct;
paulson@2004
   180
lcp@708
   181
(*The premises of a theorem, as a cterm list*)
berghofe@13659
   182
val cprems_of = strip_imp_prems o cprop_of;
lcp@708
   183
paulson@9547
   184
val proto_sign = Theory.sign_of ProtoPure.thy;
paulson@9547
   185
paulson@9547
   186
val implies = cterm_of proto_sign Term.implies;
paulson@9547
   187
paulson@9547
   188
(*cterm version of mk_implies*)
wenzelm@10767
   189
fun mk_implies(A,B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   190
paulson@9547
   191
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   192
fun list_implies([], B) = B
paulson@9547
   193
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   194
berghofe@12908
   195
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
berghofe@12908
   196
fun strip_comb ct = 
berghofe@12908
   197
  let
berghofe@12908
   198
    fun stripc (p as (ct, cts)) =
berghofe@12908
   199
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   200
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   201
  in stripc (ct, []) end;
berghofe@12908
   202
berghofe@15262
   203
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   204
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   205
    Type ("fun", _) =>
berghofe@15262
   206
      let
berghofe@15262
   207
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   208
        val (cTs, cT') = strip_type cT2
berghofe@15262
   209
      in (cT1 :: cTs, cT') end
berghofe@15262
   210
  | _ => ([], cT));
berghofe@15262
   211
lcp@708
   212
lcp@229
   213
(** reading of instantiations **)
lcp@229
   214
lcp@229
   215
fun absent ixn =
lcp@229
   216
  error("No such variable in term: " ^ Syntax.string_of_vname ixn);
lcp@229
   217
lcp@229
   218
fun inst_failure ixn =
lcp@229
   219
  error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
lcp@229
   220
nipkow@4281
   221
fun read_insts sign (rtypes,rsorts) (types,sorts) used insts =
wenzelm@10403
   222
let
berghofe@15442
   223
    fun is_tv ((a, _), _) =
berghofe@15442
   224
      (case Symbol.explode a of "'" :: _ => true | _ => false);
skalberg@15570
   225
    val (tvs, vs) = List.partition is_tv insts;
berghofe@15442
   226
    fun readT (ixn, st) =
skalberg@15531
   227
        let val S = case rsorts ixn of SOME S => S | NONE => absent ixn;
nipkow@4281
   228
            val T = Sign.read_typ (sign,sorts) st;
wenzelm@10403
   229
        in if Sign.typ_instance sign (T, TVar(ixn,S)) then (ixn,T)
nipkow@4281
   230
           else inst_failure ixn
nipkow@4281
   231
        end
nipkow@4281
   232
    val tye = map readT tvs;
nipkow@4281
   233
    fun mkty(ixn,st) = (case rtypes ixn of
skalberg@15531
   234
                          SOME T => (ixn,(st,typ_subst_TVars tye T))
skalberg@15531
   235
                        | NONE => absent ixn);
nipkow@4281
   236
    val ixnsTs = map mkty vs;
nipkow@4281
   237
    val ixns = map fst ixnsTs
nipkow@4281
   238
    and sTs  = map snd ixnsTs
nipkow@4281
   239
    val (cts,tye2) = read_def_cterms(sign,types,sorts) used false sTs;
nipkow@4281
   240
    fun mkcVar(ixn,T) =
nipkow@4281
   241
        let val U = typ_subst_TVars tye2 T
nipkow@4281
   242
        in cterm_of sign (Var(ixn,U)) end
nipkow@4281
   243
    val ixnTs = ListPair.zip(ixns, map snd sTs)
nipkow@4281
   244
in (map (fn (ixn,T) => (ixn,ctyp_of sign T)) (tye2 @ tye),
nipkow@4281
   245
    ListPair.zip(map mkcVar ixnTs,cts))
nipkow@4281
   246
end;
lcp@229
   247
lcp@229
   248
wenzelm@252
   249
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   250
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   251
     type variables) when reading another term.
clasohm@0
   252
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   253
***)
clasohm@0
   254
clasohm@0
   255
fun types_sorts thm =
wenzelm@15669
   256
    let val {prop, hyps, tpairs, ...} = Thm.rep_thm thm;
wenzelm@15669
   257
        (* bogus term! *)
wenzelm@15669
   258
        val big = list_comb (list_comb (prop, hyps), Thm.terms_of_tpairs tpairs);
wenzelm@252
   259
        val vars = map dest_Var (term_vars big);
wenzelm@252
   260
        val frees = map dest_Free (term_frees big);
wenzelm@252
   261
        val tvars = term_tvars big;
wenzelm@252
   262
        val tfrees = term_tfrees big;
wenzelm@252
   263
        fun typ(a,i) = if i<0 then assoc(frees,a) else assoc(vars,(a,i));
wenzelm@252
   264
        fun sort(a,i) = if i<0 then assoc(tfrees,a) else assoc(tvars,(a,i));
clasohm@0
   265
    in (typ,sort) end;
clasohm@0
   266
wenzelm@15669
   267
fun add_used thm used =
wenzelm@15669
   268
  let val {prop, hyps, tpairs, ...} = Thm.rep_thm thm in
wenzelm@15669
   269
    add_term_tvarnames (prop, used)
wenzelm@15669
   270
    |> fold (curry add_term_tvarnames) hyps
wenzelm@15669
   271
    |> fold (curry add_term_tvarnames) (Thm.terms_of_tpairs tpairs)
wenzelm@15669
   272
  end;
wenzelm@15669
   273
wenzelm@7636
   274
wenzelm@9455
   275
wenzelm@9455
   276
(** basic attributes **)
wenzelm@9455
   277
wenzelm@9455
   278
(* dependent rules *)
wenzelm@9455
   279
wenzelm@9455
   280
fun rule_attribute f (x, thm) = (x, (f x thm));
wenzelm@9455
   281
wenzelm@9455
   282
wenzelm@9455
   283
(* add / delete tags *)
wenzelm@9455
   284
wenzelm@9455
   285
fun map_tags f thm =
wenzelm@9455
   286
  Thm.put_name_tags (Thm.name_of_thm thm, f (#2 (Thm.get_name_tags thm))) thm;
wenzelm@9455
   287
wenzelm@9455
   288
fun tag_rule tg = map_tags (fn tgs => if tg mem tgs then tgs else tgs @ [tg]);
wenzelm@9455
   289
fun untag_rule s = map_tags (filter_out (equal s o #1));
wenzelm@9455
   290
wenzelm@9455
   291
fun tag tg x = rule_attribute (K (tag_rule tg)) x;
wenzelm@9455
   292
fun untag s x = rule_attribute (K (untag_rule s)) x;
wenzelm@9455
   293
wenzelm@9455
   294
fun simple_tag name x = tag (name, []) x;
wenzelm@9455
   295
wenzelm@11741
   296
wenzelm@11741
   297
(* theorem kinds *)
wenzelm@11741
   298
wenzelm@11741
   299
val theoremK = "theorem";
wenzelm@11741
   300
val lemmaK = "lemma";
wenzelm@11741
   301
val corollaryK = "corollary";
wenzelm@11741
   302
val internalK = "internal";
wenzelm@9455
   303
wenzelm@11741
   304
fun get_kind thm =
wenzelm@11741
   305
  (case Library.assoc (#2 (Thm.get_name_tags thm), "kind") of
skalberg@15531
   306
    SOME (k :: _) => k
wenzelm@11741
   307
  | _ => "unknown");
wenzelm@11741
   308
wenzelm@11741
   309
fun kind_rule k = tag_rule ("kind", [k]) o untag_rule "kind";
wenzelm@12710
   310
fun kind k x = if k = "" then x else rule_attribute (K (kind_rule k)) x;
wenzelm@11741
   311
fun kind_internal x = kind internalK x;
wenzelm@11741
   312
fun has_internal tags = exists (equal internalK o fst) tags;
wenzelm@9455
   313
wenzelm@9455
   314
wenzelm@9455
   315
clasohm@0
   316
(** Standardization of rules **)
clasohm@0
   317
wenzelm@7636
   318
(*Strip extraneous shyps as far as possible*)
wenzelm@7636
   319
fun strip_shyps_warning thm =
wenzelm@7636
   320
  let
wenzelm@14824
   321
    val str_of_sort = Pretty.str_of o Sign.pretty_sort (Thm.sign_of_thm thm);
wenzelm@7636
   322
    val thm' = Thm.strip_shyps thm;
wenzelm@7636
   323
    val xshyps = Thm.extra_shyps thm';
wenzelm@7636
   324
  in
wenzelm@7636
   325
    if null xshyps then ()
wenzelm@7636
   326
    else warning ("Pending sort hypotheses: " ^ commas (map str_of_sort xshyps));
wenzelm@7636
   327
    thm'
wenzelm@7636
   328
  end;
wenzelm@7636
   329
clasohm@0
   330
(*Generalization over a list of variables, IGNORING bad ones*)
clasohm@0
   331
fun forall_intr_list [] th = th
clasohm@0
   332
  | forall_intr_list (y::ys) th =
wenzelm@252
   333
        let val gth = forall_intr_list ys th
wenzelm@252
   334
        in  forall_intr y gth   handle THM _ =>  gth  end;
clasohm@0
   335
clasohm@0
   336
(*Generalization over all suitable Free variables*)
clasohm@0
   337
fun forall_intr_frees th =
clasohm@0
   338
    let val {prop,sign,...} = rep_thm th
clasohm@0
   339
    in  forall_intr_list
wenzelm@4440
   340
         (map (cterm_of sign) (sort (make_ord atless) (term_frees prop)))
clasohm@0
   341
         th
clasohm@0
   342
    end;
clasohm@0
   343
wenzelm@7898
   344
val forall_elim_var = PureThy.forall_elim_var;
wenzelm@7898
   345
val forall_elim_vars = PureThy.forall_elim_vars;
clasohm@0
   346
wenzelm@12725
   347
fun gen_all thm =
wenzelm@12719
   348
  let
wenzelm@12719
   349
    val {sign, prop, maxidx, ...} = Thm.rep_thm thm;
wenzelm@12719
   350
    fun elim (th, (x, T)) = Thm.forall_elim (Thm.cterm_of sign (Var ((x, maxidx + 1), T))) th;
wenzelm@12719
   351
    val vs = Term.strip_all_vars prop;
skalberg@15570
   352
  in Library.foldl elim (thm, Term.variantlist (map #1 vs, []) ~~ map #2 vs) end;
wenzelm@9554
   353
clasohm@0
   354
(*Specialization over a list of cterms*)
skalberg@15574
   355
fun forall_elim_list cts th = foldr (uncurry forall_elim) th (rev cts);
clasohm@0
   356
wenzelm@11815
   357
(* maps A1,...,An |- B   to   [| A1;...;An |] ==> B  *)
skalberg@15574
   358
fun implies_intr_list cAs th = foldr (uncurry implies_intr) th cAs;
clasohm@0
   359
clasohm@0
   360
(* maps [| A1;...;An |] ==> B and [A1,...,An]   to   B *)
skalberg@15570
   361
fun implies_elim_list impth ths = Library.foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   362
wenzelm@11960
   363
(* maps |- B to A1,...,An |- B *)
wenzelm@11960
   364
fun impose_hyps chyps th =
wenzelm@12092
   365
  let val chyps' = gen_rems (op aconv o apfst Thm.term_of) (chyps, #hyps (Thm.rep_thm th))
wenzelm@12092
   366
  in implies_elim_list (implies_intr_list chyps' th) (map Thm.assume chyps') end;
wenzelm@11960
   367
wenzelm@13389
   368
(* maps A1,...,An and A1,...,An |- B to |- B *)
wenzelm@13389
   369
fun satisfy_hyps ths th =
wenzelm@13389
   370
  implies_elim_list (implies_intr_list (map (#prop o Thm.crep_thm) ths) th) ths;
wenzelm@13389
   371
clasohm@0
   372
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@252
   373
fun zero_var_indexes th =
dixon@15545
   374
    let val {prop,sign,tpairs,...} = rep_thm th;
dixon@15545
   375
        val (tpair_l, tpair_r) = Library.split_list tpairs;
skalberg@15574
   376
        val vars = foldr add_term_vars 
skalberg@15574
   377
                         (foldr add_term_vars (term_vars prop) tpair_l) tpair_r;
skalberg@15570
   378
        val bs = Library.foldl add_new_id ([], map (fn Var((a,_),_)=>a) vars)
dixon@15545
   379
        val inrs = 
skalberg@15574
   380
            foldr add_term_tvars 
skalberg@15574
   381
                  (foldr add_term_tvars (term_tvars prop) tpair_l) tpair_r;
skalberg@15570
   382
        val nms' = rev(Library.foldl add_new_id ([], map (#1 o #1) inrs));
paulson@2266
   383
        val tye = ListPair.map (fn ((v,rs),a) => (v, TVar((a,0),rs)))
wenzelm@8328
   384
                     (inrs, nms')
wenzelm@252
   385
        val ctye = map (fn (v,T) => (v,ctyp_of sign T)) tye;
wenzelm@252
   386
        fun varpairs([],[]) = []
wenzelm@252
   387
          | varpairs((var as Var(v,T)) :: vars, b::bs) =
wenzelm@252
   388
                let val T' = typ_subst_TVars tye T
wenzelm@252
   389
                in (cterm_of sign (Var(v,T')),
wenzelm@252
   390
                    cterm_of sign (Var((b,0),T'))) :: varpairs(vars,bs)
wenzelm@252
   391
                end
wenzelm@252
   392
          | varpairs _ = raise TERM("varpairs", []);
paulson@8129
   393
    in Thm.instantiate (ctye, varpairs(vars,rev bs)) th end;
clasohm@0
   394
clasohm@0
   395
paulson@14394
   396
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   397
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   398
paulson@14394
   399
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   400
  This step can lose information.*)
paulson@14387
   401
fun flexflex_unique th =
paulson@14387
   402
    case Seq.chop (2, flexflex_rule th) of
paulson@14387
   403
      ([th],_) => th
paulson@14387
   404
    | ([],_)   => raise THM("flexflex_unique: impossible constraints", 0, [th])
paulson@14387
   405
    |      _   => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
paulson@14387
   406
wenzelm@10515
   407
fun close_derivation thm =
wenzelm@10515
   408
  if Thm.get_name_tags thm = ("", []) then Thm.name_thm ("", thm)
wenzelm@10515
   409
  else thm;
wenzelm@10515
   410
berghofe@11512
   411
fun standard' th =
wenzelm@10515
   412
  let val {maxidx,...} = rep_thm th in
wenzelm@10515
   413
    th
berghofe@14391
   414
    |> implies_intr_hyps
wenzelm@10515
   415
    |> forall_intr_frees |> forall_elim_vars (maxidx + 1)
wenzelm@10515
   416
    |> strip_shyps_warning
berghofe@11512
   417
    |> zero_var_indexes |> Thm.varifyT |> Thm.compress
wenzelm@1218
   418
  end;
wenzelm@1218
   419
berghofe@14391
   420
val standard = close_derivation o standard' o flexflex_unique;
berghofe@11512
   421
wenzelm@12005
   422
fun local_standard th =
wenzelm@12221
   423
  th |> strip_shyps |> zero_var_indexes
wenzelm@12005
   424
  |> Thm.compress |> close_derivation;
wenzelm@12005
   425
clasohm@0
   426
wenzelm@8328
   427
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   428
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   429
  Similar code in type/freeze_thaw*)
paulson@15495
   430
paulson@15495
   431
fun freeze_thaw_robust th =
paulson@15495
   432
 let val fth = freezeT th
paulson@15495
   433
     val {prop, tpairs, sign, ...} = rep_thm fth
paulson@15495
   434
 in
skalberg@15574
   435
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@15495
   436
       [] => (fth, fn i => fn x => x)   (*No vars: nothing to do!*)
paulson@15495
   437
     | vars =>
paulson@15495
   438
         let fun newName (Var(ix,_), pairs) =
paulson@15495
   439
                   let val v = gensym (string_of_indexname ix)
paulson@15495
   440
                   in  ((ix,v)::pairs)  end;
skalberg@15574
   441
             val alist = foldr newName [] vars
paulson@15495
   442
             fun mk_inst (Var(v,T)) =
paulson@15495
   443
                 (cterm_of sign (Var(v,T)),
skalberg@15570
   444
                  cterm_of sign (Free(valOf (assoc(alist,v)), T)))
paulson@15495
   445
             val insts = map mk_inst vars
paulson@15495
   446
             fun thaw i th' = (*i is non-negative increment for Var indexes*)
paulson@15495
   447
                 th' |> forall_intr_list (map #2 insts)
paulson@15495
   448
                     |> forall_elim_list (map (Thm.cterm_incr_indexes i o #1) insts)
paulson@15495
   449
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@15495
   450
 end;
paulson@15495
   451
paulson@15495
   452
(*Basic version of the function above. No option to rename Vars apart in thaw.
paulson@15495
   453
  The Frees created from Vars have nice names.*)
paulson@4610
   454
fun freeze_thaw th =
paulson@7248
   455
 let val fth = freezeT th
berghofe@13659
   456
     val {prop, tpairs, sign, ...} = rep_thm fth
paulson@7248
   457
 in
skalberg@15574
   458
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@7248
   459
       [] => (fth, fn x => x)
paulson@7248
   460
     | vars =>
wenzelm@8328
   461
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@8328
   462
                   let val v = variant used (string_of_indexname ix)
wenzelm@8328
   463
                   in  ((ix,v)::pairs, v::used)  end;
skalberg@15574
   464
             val (alist, _) = foldr newName ([], Library.foldr add_term_names
skalberg@15574
   465
               (prop :: Thm.terms_of_tpairs tpairs, [])) vars
wenzelm@8328
   466
             fun mk_inst (Var(v,T)) =
wenzelm@8328
   467
                 (cterm_of sign (Var(v,T)),
skalberg@15570
   468
                  cterm_of sign (Free(valOf (assoc(alist,v)), T)))
wenzelm@8328
   469
             val insts = map mk_inst vars
wenzelm@8328
   470
             fun thaw th' =
wenzelm@8328
   471
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   472
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   473
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   474
 end;
paulson@4610
   475
paulson@7248
   476
(*Rotates a rule's premises to the left by k*)
paulson@7248
   477
val rotate_prems = permute_prems 0;
paulson@4610
   478
oheimb@11163
   479
(* permute prems, where the i-th position in the argument list (counting from 0)
oheimb@11163
   480
   gives the position within the original thm to be transferred to position i.
oheimb@11163
   481
   Any remaining trailing positions are left unchanged. *)
oheimb@11163
   482
val rearrange_prems = let
oheimb@11163
   483
  fun rearr new []      thm = thm
wenzelm@11815
   484
  |   rearr new (p::ps) thm = rearr (new+1)
oheimb@11163
   485
     (map (fn q => if new<=q andalso q<p then q+1 else q) ps)
oheimb@11163
   486
     (permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
oheimb@11163
   487
  in rearr 0 end;
paulson@4610
   488
wenzelm@252
   489
(*Assume a new formula, read following the same conventions as axioms.
clasohm@0
   490
  Generalizes over Free variables,
clasohm@0
   491
  creates the assumption, and then strips quantifiers.
clasohm@0
   492
  Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
wenzelm@252
   493
             [ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ]    *)
clasohm@0
   494
fun assume_ax thy sP =
wenzelm@6390
   495
    let val sign = Theory.sign_of thy
paulson@4610
   496
        val prop = Logic.close_form (term_of (read_cterm sign (sP, propT)))
lcp@229
   497
    in forall_elim_vars 0 (assume (cterm_of sign prop))  end;
clasohm@0
   498
wenzelm@252
   499
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   500
fun tha RSN (i,thb) =
wenzelm@4270
   501
  case Seq.chop (2, biresolution false [(false,tha)] i thb) of
clasohm@0
   502
      ([th],_) => th
clasohm@0
   503
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   504
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   505
clasohm@0
   506
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   507
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   508
clasohm@0
   509
(*For joining lists of rules*)
wenzelm@252
   510
fun thas RLN (i,thbs) =
clasohm@0
   511
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   512
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
paulson@2672
   513
  in  List.concat (map resb thbs)  end;
clasohm@0
   514
clasohm@0
   515
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   516
lcp@11
   517
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   518
  makes proof trees*)
wenzelm@252
   519
fun rls MRS bottom_rl =
lcp@11
   520
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   521
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   522
  in  rs_aux 1 rls  end;
lcp@11
   523
lcp@11
   524
(*As above, but for rule lists*)
wenzelm@252
   525
fun rlss MRL bottom_rls =
lcp@11
   526
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   527
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   528
  in  rs_aux 1 rlss  end;
lcp@11
   529
wenzelm@9288
   530
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   531
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   532
wenzelm@252
   533
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   534
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   535
  ALWAYS deletes premise i *)
wenzelm@252
   536
fun compose(tha,i,thb) =
wenzelm@4270
   537
    Seq.list_of (bicompose false (false,tha,0) i thb);
clasohm@0
   538
wenzelm@6946
   539
fun compose_single (tha,i,thb) =
wenzelm@6946
   540
  (case compose (tha,i,thb) of
wenzelm@6946
   541
    [th] => th
wenzelm@6946
   542
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]));
wenzelm@6946
   543
clasohm@0
   544
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   545
fun tha COMP thb =
clasohm@0
   546
    case compose(tha,1,thb) of
wenzelm@252
   547
        [th] => th
clasohm@0
   548
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   549
wenzelm@13105
   550
wenzelm@4016
   551
(** theorem equality **)
clasohm@0
   552
paulson@13650
   553
(*True if the two theorems have the same signature.*)
wenzelm@13105
   554
val eq_thm_sg = Sign.eq_sg o pairself Thm.sign_of_thm;
paulson@13650
   555
paulson@13650
   556
(*True if the two theorems have the same prop field, ignoring hyps, der, etc.*)
wenzelm@13105
   557
val eq_thm_prop = op aconv o pairself Thm.prop_of;
clasohm@0
   558
clasohm@0
   559
(*Useful "distance" function for BEST_FIRST*)
wenzelm@12800
   560
val size_of_thm = size_of_term o prop_of;
clasohm@0
   561
wenzelm@9829
   562
(*maintain lists of theorems --- preserving canonical order*)
wenzelm@13105
   563
fun del_rules rs rules = Library.gen_rems eq_thm_prop (rules, rs);
wenzelm@9862
   564
fun add_rules rs rules = rs @ del_rules rs rules;
wenzelm@12373
   565
val del_rule = del_rules o single;
wenzelm@12373
   566
val add_rule = add_rules o single;
wenzelm@13105
   567
fun merge_rules (rules1, rules2) = gen_merge_lists' eq_thm_prop rules1 rules2;
wenzelm@9829
   568
lcp@1194
   569
(** Mark Staples's weaker version of eq_thm: ignores variable renaming and
lcp@1194
   570
    (some) type variable renaming **)
lcp@1194
   571
lcp@1194
   572
 (* Can't use term_vars, because it sorts the resulting list of variable names.
lcp@1194
   573
    We instead need the unique list noramlised by the order of appearance
lcp@1194
   574
    in the term. *)
lcp@1194
   575
fun term_vars' (t as Var(v,T)) = [t]
lcp@1194
   576
  | term_vars' (Abs(_,_,b)) = term_vars' b
lcp@1194
   577
  | term_vars' (f$a) = (term_vars' f) @ (term_vars' a)
lcp@1194
   578
  | term_vars' _ = [];
lcp@1194
   579
lcp@1194
   580
fun forall_intr_vars th =
lcp@1194
   581
  let val {prop,sign,...} = rep_thm th;
lcp@1194
   582
      val vars = distinct (term_vars' prop);
lcp@1194
   583
  in forall_intr_list (map (cterm_of sign) vars) th end;
lcp@1194
   584
wenzelm@13105
   585
val weak_eq_thm = Thm.eq_thm o pairself (forall_intr_vars o freezeT);
lcp@1194
   586
lcp@1194
   587
clasohm@0
   588
(*** Meta-Rewriting Rules ***)
clasohm@0
   589
paulson@4610
   590
fun read_prop s = read_cterm proto_sign (s, propT);
paulson@4610
   591
wenzelm@9455
   592
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
wenzelm@9455
   593
fun store_standard_thm name thm = store_thm name (standard thm);
wenzelm@12135
   594
fun store_thm_open name thm = hd (PureThy.smart_store_thms_open (name, [thm]));
wenzelm@12135
   595
fun store_standard_thm_open name thm = store_thm_open name (standard' thm);
wenzelm@4016
   596
clasohm@0
   597
val reflexive_thm =
wenzelm@14854
   598
  let val cx = cterm_of proto_sign (Var(("x",0),TVar(("'a",0),[])))
wenzelm@12135
   599
  in store_standard_thm_open "reflexive" (Thm.reflexive cx) end;
clasohm@0
   600
clasohm@0
   601
val symmetric_thm =
wenzelm@14854
   602
  let val xy = read_prop "x == y"
wenzelm@12135
   603
  in store_standard_thm_open "symmetric" (Thm.implies_intr_hyps (Thm.symmetric (Thm.assume xy))) end;
clasohm@0
   604
clasohm@0
   605
val transitive_thm =
wenzelm@14854
   606
  let val xy = read_prop "x == y"
wenzelm@14854
   607
      val yz = read_prop "y == z"
clasohm@0
   608
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
wenzelm@12135
   609
  in store_standard_thm_open "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
clasohm@0
   610
nipkow@4679
   611
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   612
berghofe@11512
   613
fun extensional eq =
berghofe@11512
   614
  let val eq' =
berghofe@11512
   615
    abstract_rule "x" (snd (Thm.dest_comb (fst (dest_equals (cprop_of eq))))) eq
berghofe@11512
   616
  in equal_elim (eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   617
berghofe@10414
   618
val imp_cong =
berghofe@10414
   619
  let
berghofe@10414
   620
    val ABC = read_prop "PROP A ==> PROP B == PROP C"
berghofe@10414
   621
    val AB = read_prop "PROP A ==> PROP B"
berghofe@10414
   622
    val AC = read_prop "PROP A ==> PROP C"
berghofe@10414
   623
    val A = read_prop "PROP A"
berghofe@10414
   624
  in
wenzelm@12135
   625
    store_standard_thm_open "imp_cong" (implies_intr ABC (equal_intr
berghofe@10414
   626
      (implies_intr AB (implies_intr A
berghofe@10414
   627
        (equal_elim (implies_elim (assume ABC) (assume A))
berghofe@10414
   628
          (implies_elim (assume AB) (assume A)))))
berghofe@10414
   629
      (implies_intr AC (implies_intr A
berghofe@10414
   630
        (equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
berghofe@10414
   631
          (implies_elim (assume AC) (assume A)))))))
berghofe@10414
   632
  end;
berghofe@10414
   633
berghofe@10414
   634
val swap_prems_eq =
berghofe@10414
   635
  let
berghofe@10414
   636
    val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
berghofe@10414
   637
    val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
berghofe@10414
   638
    val A = read_prop "PROP A"
berghofe@10414
   639
    val B = read_prop "PROP B"
berghofe@10414
   640
  in
wenzelm@12135
   641
    store_standard_thm_open "swap_prems_eq" (equal_intr
berghofe@10414
   642
      (implies_intr ABC (implies_intr B (implies_intr A
berghofe@10414
   643
        (implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
berghofe@10414
   644
      (implies_intr BAC (implies_intr A (implies_intr B
berghofe@10414
   645
        (implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
berghofe@10414
   646
  end;
lcp@229
   647
skalberg@15001
   648
val imp_cong' = combination o combination (reflexive implies)
clasohm@0
   649
berghofe@13325
   650
fun abs_def thm =
berghofe@13325
   651
  let
berghofe@13325
   652
    val (_, cvs) = strip_comb (fst (dest_equals (cprop_of thm)));
skalberg@15574
   653
    val thm' = foldr (fn (ct, thm) => Thm.abstract_rule
berghofe@13325
   654
      (case term_of ct of Var ((a, _), _) => a | Free (a, _) => a | _ => "x")
skalberg@15574
   655
        ct thm) thm cvs
berghofe@13325
   656
  in transitive
berghofe@13325
   657
    (symmetric (eta_conversion (fst (dest_equals (cprop_of thm'))))) thm'
berghofe@13325
   658
  end;
berghofe@13325
   659
clasohm@0
   660
skalberg@15001
   661
local
skalberg@15001
   662
  val dest_eq = dest_equals o cprop_of
skalberg@15001
   663
  val rhs_of = snd o dest_eq
skalberg@15001
   664
in
skalberg@15001
   665
fun beta_eta_conversion t =
skalberg@15001
   666
  let val thm = beta_conversion true t
skalberg@15001
   667
  in transitive thm (eta_conversion (rhs_of thm)) end
skalberg@15001
   668
end;
skalberg@15001
   669
skalberg@15001
   670
(*In [A1,...,An]==>B, rewrite the selected A's only -- for rewrite_goals_tac*)
skalberg@15001
   671
fun goals_conv pred cv =
skalberg@15001
   672
  let fun gconv i ct =
skalberg@15001
   673
        let val (A,B) = dest_implies ct
skalberg@15001
   674
        in imp_cong' (if pred i then cv A else reflexive A) (gconv (i+1) B) end
skalberg@15001
   675
        handle TERM _ => reflexive ct
skalberg@15001
   676
  in gconv 1 end
skalberg@15001
   677
skalberg@15001
   678
(* Rewrite A in !!x1,...,xn. A *)
skalberg@15001
   679
fun forall_conv cv ct =
skalberg@15001
   680
  let val p as (ct1, ct2) = Thm.dest_comb ct
skalberg@15001
   681
  in (case pairself term_of p of
skalberg@15001
   682
      (Const ("all", _), Abs (s, _, _)) =>
skalberg@15531
   683
         let val (v, ct') = Thm.dest_abs (SOME "@") ct2;
skalberg@15001
   684
         in Thm.combination (Thm.reflexive ct1)
skalberg@15001
   685
           (Thm.abstract_rule s v (forall_conv cv ct'))
skalberg@15001
   686
         end
skalberg@15001
   687
    | _ => cv ct)
skalberg@15001
   688
  end handle TERM _ => cv ct;
skalberg@15001
   689
skalberg@15001
   690
(*Use a conversion to transform a theorem*)
skalberg@15001
   691
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
skalberg@15001
   692
wenzelm@15669
   693
(*** Some useful meta-theorems ***)
clasohm@0
   694
clasohm@0
   695
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@12135
   696
val asm_rl = store_standard_thm_open "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
wenzelm@7380
   697
val _ = store_thm "_" asm_rl;
clasohm@0
   698
clasohm@0
   699
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   700
val cut_rl =
wenzelm@12135
   701
  store_standard_thm_open "cut_rl"
wenzelm@9455
   702
    (Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
clasohm@0
   703
wenzelm@252
   704
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   705
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   706
val revcut_rl =
paulson@4610
   707
  let val V = read_prop "PROP V"
paulson@4610
   708
      and VW = read_prop "PROP V ==> PROP W";
wenzelm@4016
   709
  in
wenzelm@12135
   710
    store_standard_thm_open "revcut_rl"
wenzelm@4016
   711
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   712
  end;
clasohm@0
   713
lcp@668
   714
(*for deleting an unwanted assumption*)
lcp@668
   715
val thin_rl =
paulson@4610
   716
  let val V = read_prop "PROP V"
paulson@4610
   717
      and W = read_prop "PROP W";
wenzelm@12135
   718
  in store_standard_thm_open "thin_rl" (implies_intr V (implies_intr W (assume W))) end;
lcp@668
   719
clasohm@0
   720
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   721
val triv_forall_equality =
paulson@4610
   722
  let val V  = read_prop "PROP V"
paulson@4610
   723
      and QV = read_prop "!!x::'a. PROP V"
wenzelm@8086
   724
      and x  = read_cterm proto_sign ("x", TypeInfer.logicT);
wenzelm@4016
   725
  in
wenzelm@12135
   726
    store_standard_thm_open "triv_forall_equality"
berghofe@11512
   727
      (equal_intr (implies_intr QV (forall_elim x (assume QV)))
berghofe@11512
   728
        (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   729
  end;
clasohm@0
   730
nipkow@1756
   731
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   732
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   733
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   734
*)
nipkow@1756
   735
val swap_prems_rl =
paulson@4610
   736
  let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
nipkow@1756
   737
      val major = assume cmajor;
paulson@4610
   738
      val cminor1 = read_prop "PROP PhiA";
nipkow@1756
   739
      val minor1 = assume cminor1;
paulson@4610
   740
      val cminor2 = read_prop "PROP PhiB";
nipkow@1756
   741
      val minor2 = assume cminor2;
wenzelm@12135
   742
  in store_standard_thm_open "swap_prems_rl"
nipkow@1756
   743
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   744
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   745
  end;
nipkow@1756
   746
nipkow@3653
   747
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   748
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   749
   Introduction rule for == as a meta-theorem.
nipkow@3653
   750
*)
nipkow@3653
   751
val equal_intr_rule =
paulson@4610
   752
  let val PQ = read_prop "PROP phi ==> PROP psi"
paulson@4610
   753
      and QP = read_prop "PROP psi ==> PROP phi"
wenzelm@4016
   754
  in
wenzelm@12135
   755
    store_standard_thm_open "equal_intr_rule"
wenzelm@4016
   756
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   757
  end;
nipkow@3653
   758
wenzelm@13368
   759
(* [| PROP ?phi == PROP ?psi; PROP ?phi |] ==> PROP ?psi *)
wenzelm@13368
   760
val equal_elim_rule1 =
wenzelm@13368
   761
  let val eq = read_prop "PROP phi == PROP psi"
wenzelm@13368
   762
      and P = read_prop "PROP phi"
wenzelm@13368
   763
  in store_standard_thm_open "equal_elim_rule1"
wenzelm@13368
   764
    (Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   765
  end;
wenzelm@4285
   766
wenzelm@12297
   767
(* "[| PROP ?phi; PROP ?phi; PROP ?psi |] ==> PROP ?psi" *)
wenzelm@12297
   768
wenzelm@12297
   769
val remdups_rl =
wenzelm@12297
   770
  let val P = read_prop "PROP phi" and Q = read_prop "PROP psi";
wenzelm@12297
   771
  in store_standard_thm_open "remdups_rl" (implies_intr_list [P, P, Q] (Thm.assume Q)) end;
wenzelm@12297
   772
wenzelm@12297
   773
wenzelm@9554
   774
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
wenzelm@12297
   775
  Rewrite rule for HHF normalization.*)
wenzelm@9554
   776
wenzelm@9554
   777
val norm_hhf_eq =
wenzelm@9554
   778
  let
wenzelm@9554
   779
    val cert = Thm.cterm_of proto_sign;
wenzelm@14854
   780
    val aT = TFree ("'a", []);
wenzelm@9554
   781
    val all = Term.all aT;
wenzelm@9554
   782
    val x = Free ("x", aT);
wenzelm@9554
   783
    val phi = Free ("phi", propT);
wenzelm@9554
   784
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   785
wenzelm@9554
   786
    val cx = cert x;
wenzelm@9554
   787
    val cphi = cert phi;
wenzelm@9554
   788
    val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@9554
   789
    val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   790
  in
wenzelm@9554
   791
    Thm.equal_intr
wenzelm@9554
   792
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   793
        |> Thm.forall_elim cx
wenzelm@9554
   794
        |> Thm.implies_intr cphi
wenzelm@9554
   795
        |> Thm.forall_intr cx
wenzelm@9554
   796
        |> Thm.implies_intr lhs)
wenzelm@9554
   797
      (Thm.implies_elim
wenzelm@9554
   798
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   799
        |> Thm.forall_intr cx
wenzelm@9554
   800
        |> Thm.implies_intr cphi
wenzelm@9554
   801
        |> Thm.implies_intr rhs)
wenzelm@12135
   802
    |> store_standard_thm_open "norm_hhf_eq"
wenzelm@9554
   803
  end;
wenzelm@9554
   804
wenzelm@12800
   805
fun is_norm_hhf tm =
wenzelm@12800
   806
  let
wenzelm@12800
   807
    fun is_norm (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
wenzelm@12800
   808
      | is_norm (t $ u) = is_norm t andalso is_norm u
wenzelm@12800
   809
      | is_norm (Abs (_, _, t)) = is_norm t
wenzelm@12800
   810
      | is_norm _ = true;
wenzelm@12800
   811
  in is_norm (Pattern.beta_eta_contract tm) end;
wenzelm@12800
   812
wenzelm@12800
   813
fun norm_hhf sg t =
wenzelm@12800
   814
  if is_norm_hhf t then t
berghofe@13198
   815
  else Pattern.rewrite_term (Sign.tsig_of sg) [Logic.dest_equals (prop_of norm_hhf_eq)] [] t;
wenzelm@12800
   816
wenzelm@9554
   817
paulson@8129
   818
(*** Instantiate theorem th, reading instantiations under signature sg ****)
paulson@8129
   819
paulson@8129
   820
(*Version that normalizes the result: Thm.instantiate no longer does that*)
paulson@8129
   821
fun instantiate instpair th = Thm.instantiate instpair th  COMP   asm_rl;
paulson@8129
   822
paulson@8129
   823
fun read_instantiate_sg sg sinsts th =
paulson@8129
   824
    let val ts = types_sorts th;
wenzelm@15669
   825
        val used = add_used th [];
berghofe@15442
   826
        val sinsts' = map (apfst Syntax.indexname) sinsts
berghofe@15442
   827
    in  instantiate (read_insts sg ts ts used sinsts') th  end;
paulson@8129
   828
paulson@8129
   829
(*Instantiate theorem th, reading instantiations under theory of th*)
paulson@8129
   830
fun read_instantiate sinsts th =
wenzelm@14643
   831
    read_instantiate_sg (Thm.sign_of_thm th) sinsts th;
paulson@8129
   832
paulson@8129
   833
paulson@8129
   834
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   835
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   836
local
paulson@8129
   837
  fun add_types ((ct,cu), (sign,tye,maxidx)) =
paulson@8129
   838
    let val {sign=signt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
paulson@8129
   839
        and {sign=signu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
paulson@8129
   840
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
paulson@8129
   841
        val sign' = Sign.merge(sign, Sign.merge(signt, signu))
wenzelm@14643
   842
        val (tye',maxi') = Type.unify (Sign.tsig_of sign') (tye, maxi) (T, U)
wenzelm@10403
   843
          handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
paulson@8129
   844
    in  (sign', tye', maxi')  end;
paulson@8129
   845
in
paulson@8129
   846
fun cterm_instantiate ctpairs0 th =
skalberg@15574
   847
  let val (sign,tye,_) = foldr add_types (Thm.sign_of_thm th, Vartab.empty, 0) ctpairs0
paulson@14340
   848
      fun instT(ct,cu) = 
paulson@14340
   849
        let val inst = cterm_of sign o subst_TVars_Vartab tye o term_of
paulson@14340
   850
        in (inst ct, inst cu) end
paulson@8129
   851
      fun ctyp2 (ix,T) = (ix, ctyp_of sign T)
berghofe@8406
   852
  in  instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   853
  handle TERM _ =>
paulson@8129
   854
           raise THM("cterm_instantiate: incompatible signatures",0,[th])
paulson@8129
   855
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   856
end;
paulson@8129
   857
paulson@8129
   858
paulson@8129
   859
(** Derived rules mainly for METAHYPS **)
paulson@8129
   860
paulson@8129
   861
(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
paulson@8129
   862
fun equal_abs_elim ca eqth =
paulson@8129
   863
  let val {sign=signa, t=a, ...} = rep_cterm ca
paulson@8129
   864
      and combth = combination eqth (reflexive ca)
paulson@8129
   865
      val {sign,prop,...} = rep_thm eqth
paulson@8129
   866
      val (abst,absu) = Logic.dest_equals prop
paulson@8129
   867
      val cterm = cterm_of (Sign.merge (sign,signa))
berghofe@10414
   868
  in  transitive (symmetric (beta_conversion false (cterm (abst$a))))
berghofe@10414
   869
           (transitive combth (beta_conversion false (cterm (absu$a))))
paulson@8129
   870
  end
paulson@8129
   871
  handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
paulson@8129
   872
paulson@8129
   873
(*Calling equal_abs_elim with multiple terms*)
skalberg@15574
   874
fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) th (rev cts);
paulson@8129
   875
paulson@8129
   876
wenzelm@10667
   877
(*** Goal (PROP A) <==> PROP A ***)
wenzelm@4789
   878
wenzelm@4789
   879
local
wenzelm@10667
   880
  val cert = Thm.cterm_of proto_sign;
wenzelm@10667
   881
  val A = Free ("A", propT);
wenzelm@10667
   882
  val G = Logic.mk_goal A;
wenzelm@4789
   883
  val (G_def, _) = freeze_thaw ProtoPure.Goal_def;
wenzelm@4789
   884
in
wenzelm@11741
   885
  val triv_goal = store_thm "triv_goal" (kind_rule internalK (standard
wenzelm@10667
   886
      (Thm.equal_elim (Thm.symmetric G_def) (Thm.assume (cert A)))));
wenzelm@11741
   887
  val rev_triv_goal = store_thm "rev_triv_goal" (kind_rule internalK (standard
wenzelm@10667
   888
      (Thm.equal_elim G_def (Thm.assume (cert G)))));
wenzelm@4789
   889
end;
wenzelm@4789
   890
wenzelm@9460
   891
val mk_cgoal = Thm.capply (Thm.cterm_of proto_sign Logic.goal_const);
wenzelm@6995
   892
fun assume_goal ct = Thm.assume (mk_cgoal ct) RS rev_triv_goal;
wenzelm@6995
   893
wenzelm@11815
   894
fun implies_intr_goals cprops thm =
wenzelm@11815
   895
  implies_elim_list (implies_intr_list cprops thm) (map assume_goal cprops)
wenzelm@11815
   896
  |> implies_intr_list (map mk_cgoal cprops);
wenzelm@11815
   897
wenzelm@4789
   898
wenzelm@4285
   899
wenzelm@5688
   900
(** variations on instantiate **)
wenzelm@4285
   901
paulson@8550
   902
(*shorthand for instantiating just one variable in the current theory*)
paulson@8550
   903
fun inst x t = read_instantiate_sg (sign_of (the_context())) [(x,t)];
paulson@8550
   904
paulson@8550
   905
wenzelm@12495
   906
(* collect vars in left-to-right order *)
wenzelm@4285
   907
skalberg@15570
   908
fun tvars_of_terms ts = rev (Library.foldl Term.add_tvars ([], ts));
skalberg@15570
   909
fun vars_of_terms ts = rev (Library.foldl Term.add_vars ([], ts));
wenzelm@5903
   910
wenzelm@12800
   911
fun tvars_of thm = tvars_of_terms [prop_of thm];
wenzelm@12800
   912
fun vars_of thm = vars_of_terms [prop_of thm];
wenzelm@4285
   913
wenzelm@4285
   914
wenzelm@4285
   915
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   916
wenzelm@4285
   917
fun instantiate' cTs cts thm =
wenzelm@4285
   918
  let
wenzelm@4285
   919
    fun err msg =
wenzelm@4285
   920
      raise TYPE ("instantiate': " ^ msg,
skalberg@15570
   921
        List.mapPartial (Option.map Thm.typ_of) cTs,
skalberg@15570
   922
        List.mapPartial (Option.map Thm.term_of) cts);
wenzelm@4285
   923
wenzelm@4285
   924
    fun inst_of (v, ct) =
wenzelm@4285
   925
      (Thm.cterm_of (#sign (Thm.rep_cterm ct)) (Var v), ct)
wenzelm@4285
   926
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   927
wenzelm@4285
   928
    fun zip_vars _ [] = []
skalberg@15531
   929
      | zip_vars (_ :: vs) (NONE :: opt_ts) = zip_vars vs opt_ts
skalberg@15531
   930
      | zip_vars (v :: vs) (SOME t :: opt_ts) = (v, t) :: zip_vars vs opt_ts
wenzelm@4285
   931
      | zip_vars [] _ = err "more instantiations than variables in thm";
wenzelm@4285
   932
wenzelm@4285
   933
    (*instantiate types first!*)
wenzelm@4285
   934
    val thm' =
wenzelm@4285
   935
      if forall is_none cTs then thm
wenzelm@4285
   936
      else Thm.instantiate (zip_vars (map fst (tvars_of thm)) cTs, []) thm;
wenzelm@4285
   937
    in
wenzelm@4285
   938
      if forall is_none cts then thm'
wenzelm@4285
   939
      else Thm.instantiate ([], map inst_of (zip_vars (vars_of thm') cts)) thm'
wenzelm@4285
   940
    end;
wenzelm@4285
   941
wenzelm@4285
   942
berghofe@14081
   943
berghofe@14081
   944
(** renaming of bound variables **)
berghofe@14081
   945
berghofe@14081
   946
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
   947
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
   948
berghofe@14081
   949
fun rename_bvars [] thm = thm
berghofe@14081
   950
  | rename_bvars vs thm =
berghofe@14081
   951
    let
berghofe@14081
   952
      val {sign, prop, ...} = rep_thm thm;
skalberg@15570
   953
      fun ren (Abs (x, T, t)) = Abs (getOpt (assoc (vs, x), x), T, ren t)
berghofe@14081
   954
        | ren (t $ u) = ren t $ ren u
berghofe@14081
   955
        | ren t = t;
berghofe@14081
   956
    in equal_elim (reflexive (cterm_of sign (ren prop))) thm end;
berghofe@14081
   957
berghofe@14081
   958
berghofe@14081
   959
(* renaming in left-to-right order *)
berghofe@14081
   960
berghofe@14081
   961
fun rename_bvars' xs thm =
berghofe@14081
   962
  let
berghofe@14081
   963
    val {sign, prop, ...} = rep_thm thm;
berghofe@14081
   964
    fun rename [] t = ([], t)
berghofe@14081
   965
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
   966
          let val (xs', t') = rename xs t
skalberg@15570
   967
          in (xs', Abs (getOpt (x',x), T, t')) end
berghofe@14081
   968
      | rename xs (t $ u) =
berghofe@14081
   969
          let
berghofe@14081
   970
            val (xs', t') = rename xs t;
berghofe@14081
   971
            val (xs'', u') = rename xs' u
berghofe@14081
   972
          in (xs'', t' $ u') end
berghofe@14081
   973
      | rename xs t = (xs, t);
berghofe@14081
   974
  in case rename xs prop of
berghofe@14081
   975
      ([], prop') => equal_elim (reflexive (cterm_of sign prop')) thm
berghofe@14081
   976
    | _ => error "More names than abstractions in theorem"
berghofe@14081
   977
  end;
berghofe@14081
   978
berghofe@14081
   979
berghofe@14081
   980
wenzelm@5688
   981
(* unvarify(T) *)
wenzelm@5688
   982
wenzelm@5688
   983
(*assume thm in standard form, i.e. no frees, 0 var indexes*)
wenzelm@5688
   984
wenzelm@5688
   985
fun unvarifyT thm =
wenzelm@5688
   986
  let
wenzelm@5688
   987
    val cT = Thm.ctyp_of (Thm.sign_of_thm thm);
skalberg@15531
   988
    val tfrees = map (fn ((x, _), S) => SOME (cT (TFree (x, S)))) (tvars_of thm);
wenzelm@5688
   989
  in instantiate' tfrees [] thm end;
wenzelm@5688
   990
wenzelm@5688
   991
fun unvarify raw_thm =
wenzelm@5688
   992
  let
wenzelm@5688
   993
    val thm = unvarifyT raw_thm;
wenzelm@5688
   994
    val ct = Thm.cterm_of (Thm.sign_of_thm thm);
skalberg@15531
   995
    val frees = map (fn ((x, _), T) => SOME (ct (Free (x, T)))) (vars_of thm);
wenzelm@5688
   996
  in instantiate' [] frees thm end;
wenzelm@5688
   997
wenzelm@5688
   998
wenzelm@8605
   999
(* tvars_intr_list *)
wenzelm@8605
  1000
wenzelm@8605
  1001
fun tfrees_of thm =
wenzelm@8605
  1002
  let val {hyps, prop, ...} = Thm.rep_thm thm
skalberg@15574
  1003
  in foldr Term.add_term_tfree_names [] (prop :: hyps) end;
wenzelm@8605
  1004
wenzelm@8605
  1005
fun tvars_intr_list tfrees thm =
wenzelm@8605
  1006
  Thm.varifyT' (tfrees_of thm \\ tfrees) thm;
wenzelm@8605
  1007
wenzelm@8605
  1008
wenzelm@6435
  1009
(* increment var indexes *)
wenzelm@6435
  1010
wenzelm@6435
  1011
fun incr_indexes_wrt is cTs cts thms =
wenzelm@6435
  1012
  let
wenzelm@6435
  1013
    val maxidx =
skalberg@15570
  1014
      Library.foldl Int.max (~1, is @
wenzelm@6435
  1015
        map (maxidx_of_typ o #T o Thm.rep_ctyp) cTs @
wenzelm@6435
  1016
        map (#maxidx o Thm.rep_cterm) cts @
wenzelm@6435
  1017
        map (#maxidx o Thm.rep_thm) thms);
berghofe@10414
  1018
  in Thm.incr_indexes (maxidx + 1) end;
wenzelm@6435
  1019
wenzelm@6435
  1020
wenzelm@8328
  1021
(* freeze_all *)
wenzelm@8328
  1022
wenzelm@8328
  1023
(*freeze all (T)Vars; assumes thm in standard form*)
wenzelm@8328
  1024
wenzelm@8328
  1025
fun freeze_all_TVars thm =
wenzelm@8328
  1026
  (case tvars_of thm of
wenzelm@8328
  1027
    [] => thm
wenzelm@8328
  1028
  | tvars =>
wenzelm@8328
  1029
      let val cert = Thm.ctyp_of (Thm.sign_of_thm thm)
skalberg@15531
  1030
      in instantiate' (map (fn ((x, _), S) => SOME (cert (TFree (x, S)))) tvars) [] thm end);
wenzelm@8328
  1031
wenzelm@8328
  1032
fun freeze_all_Vars thm =
wenzelm@8328
  1033
  (case vars_of thm of
wenzelm@8328
  1034
    [] => thm
wenzelm@8328
  1035
  | vars =>
wenzelm@8328
  1036
      let val cert = Thm.cterm_of (Thm.sign_of_thm thm)
skalberg@15531
  1037
      in instantiate' [] (map (fn ((x, _), T) => SOME (cert (Free (x, T)))) vars) thm end);
wenzelm@8328
  1038
wenzelm@8328
  1039
val freeze_all = freeze_all_Vars o freeze_all_TVars;
wenzelm@8328
  1040
wenzelm@8328
  1041
wenzelm@5688
  1042
(* mk_triv_goal *)
wenzelm@5688
  1043
wenzelm@5688
  1044
(*make an initial proof state, "PROP A ==> (PROP A)" *)
skalberg@15531
  1045
fun mk_triv_goal ct = instantiate' [] [SOME ct] triv_goal;
paulson@5311
  1046
wenzelm@11975
  1047
wenzelm@11975
  1048
wenzelm@11975
  1049
(** meta-level conjunction **)
wenzelm@11975
  1050
wenzelm@11975
  1051
local
wenzelm@11975
  1052
  val A = read_prop "PROP A";
wenzelm@11975
  1053
  val B = read_prop "PROP B";
wenzelm@11975
  1054
  val C = read_prop "PROP C";
wenzelm@11975
  1055
  val ABC = read_prop "PROP A ==> PROP B ==> PROP C";
wenzelm@11975
  1056
wenzelm@11975
  1057
  val proj1 =
wenzelm@11975
  1058
    forall_intr_list [A, B] (implies_intr_list [A, B] (Thm.assume A))
wenzelm@11975
  1059
    |> forall_elim_vars 0;
wenzelm@11975
  1060
wenzelm@11975
  1061
  val proj2 =
wenzelm@11975
  1062
    forall_intr_list [A, B] (implies_intr_list [A, B] (Thm.assume B))
wenzelm@11975
  1063
    |> forall_elim_vars 0;
wenzelm@11975
  1064
wenzelm@11975
  1065
  val conj_intr_rule =
wenzelm@11975
  1066
    forall_intr_list [A, B] (implies_intr_list [A, B]
wenzelm@11975
  1067
      (Thm.forall_intr C (Thm.implies_intr ABC
wenzelm@11975
  1068
        (implies_elim_list (Thm.assume ABC) [Thm.assume A, Thm.assume B]))))
wenzelm@11975
  1069
    |> forall_elim_vars 0;
wenzelm@11975
  1070
wenzelm@11975
  1071
  val incr = incr_indexes_wrt [] [] [];
wenzelm@11975
  1072
in
wenzelm@11975
  1073
wenzelm@11975
  1074
fun conj_intr tha thb = thb COMP (tha COMP incr [tha, thb] conj_intr_rule);
wenzelm@12756
  1075
wenzelm@12756
  1076
fun conj_intr_list [] = asm_rl
wenzelm@12756
  1077
  | conj_intr_list ths = foldr1 (uncurry conj_intr) ths;
wenzelm@11975
  1078
wenzelm@11975
  1079
fun conj_elim th =
wenzelm@11975
  1080
  let val th' = forall_elim_var (#maxidx (Thm.rep_thm th) + 1) th
wenzelm@11975
  1081
  in (incr [th'] proj1 COMP th', incr [th'] proj2 COMP th') end;
wenzelm@11975
  1082
wenzelm@11975
  1083
fun conj_elim_list th =
wenzelm@11975
  1084
  let val (th1, th2) = conj_elim th
wenzelm@11975
  1085
  in conj_elim_list th1 @ conj_elim_list th2 end handle THM _ => [th];
wenzelm@11975
  1086
wenzelm@12756
  1087
fun conj_elim_precise 0 _ = []
wenzelm@12756
  1088
  | conj_elim_precise 1 th = [th]
wenzelm@12135
  1089
  | conj_elim_precise n th =
wenzelm@12135
  1090
      let val (th1, th2) = conj_elim th
wenzelm@12135
  1091
      in th1 :: conj_elim_precise (n - 1) th2 end;
wenzelm@12135
  1092
wenzelm@12135
  1093
val conj_intr_thm = store_standard_thm_open "conjunctionI"
wenzelm@12135
  1094
  (implies_intr_list [A, B] (conj_intr (Thm.assume A) (Thm.assume B)));
wenzelm@12135
  1095
clasohm@0
  1096
end;
wenzelm@252
  1097
wenzelm@11975
  1098
end;
wenzelm@5903
  1099
wenzelm@5903
  1100
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
  1101
open BasicDrule;