src/Pure/drule.ML
author wenzelm
Thu Jun 09 23:12:02 2011 +0200 (2011-06-09 ago)
changeset 43333 2bdec7f430d3
parent 43330 c6bbeca3ee06
child 43559 c1966f322105
permissions -rw-r--r--
renamed Drule.instantiate to Drule.instantiate_normalize to emphasize its meaning as opposed to plain Thm.instantiate;
wenzelm@252
     1
(*  Title:      Pure/drule.ML
wenzelm@252
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     3
wenzelm@3766
     4
Derived rules and other operations on theorems.
clasohm@0
     5
*)
clasohm@0
     6
wenzelm@21578
     7
infix 0 RS RSN RL RLN MRS MRL OF COMP INCR_COMP COMP_INCR;
clasohm@0
     8
wenzelm@5903
     9
signature BASIC_DRULE =
wenzelm@3766
    10
sig
wenzelm@18179
    11
  val mk_implies: cterm * cterm -> cterm
wenzelm@18179
    12
  val list_implies: cterm list * cterm -> cterm
wenzelm@18179
    13
  val strip_imp_prems: cterm -> cterm list
wenzelm@18179
    14
  val strip_imp_concl: cterm -> cterm
wenzelm@18179
    15
  val cprems_of: thm -> cterm list
wenzelm@18179
    16
  val cterm_fun: (term -> term) -> (cterm -> cterm)
wenzelm@18179
    17
  val ctyp_fun: (typ -> typ) -> (ctyp -> ctyp)
wenzelm@18179
    18
  val forall_intr_list: cterm list -> thm -> thm
wenzelm@18179
    19
  val forall_intr_vars: thm -> thm
wenzelm@18179
    20
  val forall_elim_list: cterm list -> thm -> thm
wenzelm@18179
    21
  val gen_all: thm -> thm
wenzelm@18179
    22
  val lift_all: cterm -> thm -> thm
wenzelm@33832
    23
  val legacy_freeze_thaw: thm -> thm * (thm -> thm)
wenzelm@33832
    24
  val legacy_freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
wenzelm@18179
    25
  val implies_elim_list: thm -> thm list -> thm
wenzelm@18179
    26
  val implies_intr_list: cterm list -> thm -> thm
wenzelm@43333
    27
  val instantiate_normalize: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@21603
    28
  val zero_var_indexes_list: thm list -> thm list
wenzelm@18179
    29
  val zero_var_indexes: thm -> thm
wenzelm@18179
    30
  val implies_intr_hyps: thm -> thm
wenzelm@18179
    31
  val rotate_prems: int -> thm -> thm
wenzelm@18179
    32
  val rearrange_prems: int list -> thm -> thm
wenzelm@18179
    33
  val RSN: thm * (int * thm) -> thm
wenzelm@18179
    34
  val RS: thm * thm -> thm
wenzelm@18179
    35
  val RLN: thm list * (int * thm list) -> thm list
wenzelm@18179
    36
  val RL: thm list * thm list -> thm list
wenzelm@18179
    37
  val MRS: thm list * thm -> thm
wenzelm@18179
    38
  val MRL: thm list list * thm list -> thm list
wenzelm@18179
    39
  val OF: thm * thm list -> thm
wenzelm@18179
    40
  val compose: thm * int * thm -> thm list
wenzelm@18179
    41
  val COMP: thm * thm -> thm
wenzelm@21578
    42
  val INCR_COMP: thm * thm -> thm
wenzelm@21578
    43
  val COMP_INCR: thm * thm -> thm
wenzelm@18179
    44
  val cterm_instantiate: (cterm*cterm)list -> thm -> thm
wenzelm@18179
    45
  val size_of_thm: thm -> int
wenzelm@18179
    46
  val reflexive_thm: thm
wenzelm@18179
    47
  val symmetric_thm: thm
wenzelm@18179
    48
  val transitive_thm: thm
wenzelm@18179
    49
  val symmetric_fun: thm -> thm
wenzelm@18179
    50
  val extensional: thm -> thm
wenzelm@18820
    51
  val equals_cong: thm
wenzelm@18179
    52
  val imp_cong: thm
wenzelm@18179
    53
  val swap_prems_eq: thm
wenzelm@18179
    54
  val asm_rl: thm
wenzelm@18179
    55
  val cut_rl: thm
wenzelm@18179
    56
  val revcut_rl: thm
wenzelm@18179
    57
  val thin_rl: thm
wenzelm@4285
    58
  val triv_forall_equality: thm
wenzelm@19051
    59
  val distinct_prems_rl: thm
wenzelm@18179
    60
  val swap_prems_rl: thm
wenzelm@18179
    61
  val equal_intr_rule: thm
wenzelm@18179
    62
  val equal_elim_rule1: thm
wenzelm@19421
    63
  val equal_elim_rule2: thm
wenzelm@18179
    64
  val instantiate': ctyp option list -> cterm option list -> thm -> thm
wenzelm@5903
    65
end;
wenzelm@5903
    66
wenzelm@5903
    67
signature DRULE =
wenzelm@5903
    68
sig
wenzelm@5903
    69
  include BASIC_DRULE
wenzelm@19999
    70
  val generalize: string list * string list -> thm -> thm
paulson@15949
    71
  val list_comb: cterm * cterm list -> cterm
berghofe@12908
    72
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    73
  val strip_type: ctyp -> ctyp list * ctyp
paulson@15949
    74
  val beta_conv: cterm -> cterm -> cterm
wenzelm@27156
    75
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
berghofe@17713
    76
  val flexflex_unique: thm -> thm
wenzelm@35021
    77
  val export_without_context: thm -> thm
wenzelm@35021
    78
  val export_without_context_open: thm -> thm
wenzelm@33277
    79
  val store_thm: binding -> thm -> thm
wenzelm@33277
    80
  val store_standard_thm: binding -> thm -> thm
wenzelm@33277
    81
  val store_thm_open: binding -> thm -> thm
wenzelm@33277
    82
  val store_standard_thm_open: binding -> thm -> thm
wenzelm@11975
    83
  val compose_single: thm * int * thm -> thm
wenzelm@18468
    84
  val imp_cong_rule: thm -> thm -> thm
wenzelm@22939
    85
  val arg_cong_rule: cterm -> thm -> thm
wenzelm@23568
    86
  val binop_cong_rule: cterm -> thm -> thm -> thm
wenzelm@22939
    87
  val fun_cong_rule: thm -> cterm -> thm
skalberg@15001
    88
  val beta_eta_conversion: cterm -> thm
berghofe@15925
    89
  val eta_long_conversion: cterm -> thm
paulson@20861
    90
  val eta_contraction_rule: thm -> thm
wenzelm@11975
    91
  val norm_hhf_eq: thm
wenzelm@28618
    92
  val norm_hhf_eqs: thm list
wenzelm@12800
    93
  val is_norm_hhf: term -> bool
wenzelm@16425
    94
  val norm_hhf: theory -> term -> term
wenzelm@20298
    95
  val norm_hhf_cterm: cterm -> cterm
wenzelm@18025
    96
  val protect: cterm -> cterm
wenzelm@18025
    97
  val protectI: thm
wenzelm@18025
    98
  val protectD: thm
wenzelm@18179
    99
  val protect_cong: thm
wenzelm@18025
   100
  val implies_intr_protected: cterm list -> thm -> thm
wenzelm@19775
   101
  val termI: thm
wenzelm@19775
   102
  val mk_term: cterm -> thm
wenzelm@19775
   103
  val dest_term: thm -> cterm
wenzelm@21519
   104
  val cterm_rule: (thm -> thm) -> cterm -> cterm
wenzelm@20881
   105
  val term_rule: theory -> (thm -> thm) -> term -> term
wenzelm@24005
   106
  val dummy_thm: thm
wenzelm@28618
   107
  val sort_constraintI: thm
wenzelm@28618
   108
  val sort_constraint_eq: thm
wenzelm@23423
   109
  val with_subgoal: int -> (thm -> thm) -> thm -> thm
wenzelm@29344
   110
  val comp_no_flatten: thm * int -> int -> thm -> thm
berghofe@14081
   111
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   112
  val rename_bvars': string option list -> thm -> thm
wenzelm@19124
   113
  val incr_indexes: thm -> thm -> thm
wenzelm@19124
   114
  val incr_indexes2: thm -> thm -> thm -> thm
wenzelm@12297
   115
  val remdups_rl: thm
wenzelm@18225
   116
  val multi_resolve: thm list -> thm -> thm Seq.seq
wenzelm@18225
   117
  val multi_resolves: thm list -> thm list -> thm Seq.seq
berghofe@13325
   118
  val abs_def: thm -> thm
wenzelm@3766
   119
end;
clasohm@0
   120
wenzelm@5903
   121
structure Drule: DRULE =
clasohm@0
   122
struct
clasohm@0
   123
wenzelm@3991
   124
wenzelm@16682
   125
(** some cterm->cterm operations: faster than calling cterm_of! **)
lcp@708
   126
lcp@708
   127
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   128
fun strip_imp_prems ct =
wenzelm@22906
   129
  let val (cA, cB) = Thm.dest_implies ct
wenzelm@20579
   130
  in cA :: strip_imp_prems cB end
wenzelm@20579
   131
  handle TERM _ => [];
lcp@708
   132
paulson@2004
   133
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   134
fun strip_imp_concl ct =
wenzelm@20579
   135
  (case Thm.term_of ct of
wenzelm@20579
   136
    Const ("==>", _) $ _ $ _ => strip_imp_concl (Thm.dest_arg ct)
wenzelm@20579
   137
  | _ => ct);
paulson@2004
   138
lcp@708
   139
(*The premises of a theorem, as a cterm list*)
berghofe@13659
   140
val cprems_of = strip_imp_prems o cprop_of;
lcp@708
   141
wenzelm@26627
   142
fun cterm_fun f ct = Thm.cterm_of (Thm.theory_of_cterm ct) (f (Thm.term_of ct));
wenzelm@26627
   143
fun ctyp_fun f cT = Thm.ctyp_of (Thm.theory_of_ctyp cT) (f (Thm.typ_of cT));
berghofe@15797
   144
wenzelm@26487
   145
fun certify t = Thm.cterm_of (Context.the_theory (Context.the_thread_data ())) t;
paulson@9547
   146
wenzelm@27333
   147
val implies = certify Logic.implies;
wenzelm@19183
   148
fun mk_implies (A, B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   149
paulson@9547
   150
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   151
fun list_implies([], B) = B
paulson@9547
   152
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   153
paulson@15949
   154
(*cterm version of list_comb: maps  (f, [t1,...,tn])  to  f(t1,...,tn) *)
paulson@15949
   155
fun list_comb (f, []) = f
paulson@15949
   156
  | list_comb (f, t::ts) = list_comb (Thm.capply f t, ts);
paulson@15949
   157
berghofe@12908
   158
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
wenzelm@18179
   159
fun strip_comb ct =
berghofe@12908
   160
  let
berghofe@12908
   161
    fun stripc (p as (ct, cts)) =
berghofe@12908
   162
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   163
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   164
  in stripc (ct, []) end;
berghofe@12908
   165
berghofe@15262
   166
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   167
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   168
    Type ("fun", _) =>
berghofe@15262
   169
      let
berghofe@15262
   170
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   171
        val (cTs, cT') = strip_type cT2
berghofe@15262
   172
      in (cT1 :: cTs, cT') end
berghofe@15262
   173
  | _ => ([], cT));
berghofe@15262
   174
paulson@15949
   175
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
paulson@15949
   176
  of the meta-equality returned by the beta_conversion rule.*)
wenzelm@18179
   177
fun beta_conv x y =
wenzelm@20579
   178
  Thm.dest_arg (cprop_of (Thm.beta_conversion false (Thm.capply x y)));
paulson@15949
   179
wenzelm@15875
   180
lcp@708
   181
wenzelm@252
   182
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   183
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   184
     type variables) when reading another term.
clasohm@0
   185
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   186
***)
clasohm@0
   187
clasohm@0
   188
fun types_sorts thm =
wenzelm@20329
   189
  let
wenzelm@22695
   190
    val vars = Thm.fold_terms Term.add_vars thm [];
wenzelm@22695
   191
    val frees = Thm.fold_terms Term.add_frees thm [];
wenzelm@22695
   192
    val tvars = Thm.fold_terms Term.add_tvars thm [];
wenzelm@22695
   193
    val tfrees = Thm.fold_terms Term.add_tfrees thm [];
wenzelm@20329
   194
    fun types (a, i) =
wenzelm@20329
   195
      if i < 0 then AList.lookup (op =) frees a else AList.lookup (op =) vars (a, i);
wenzelm@20329
   196
    fun sorts (a, i) =
wenzelm@20329
   197
      if i < 0 then AList.lookup (op =) tfrees a else AList.lookup (op =) tvars (a, i);
wenzelm@20329
   198
  in (types, sorts) end;
clasohm@0
   199
wenzelm@15669
   200
wenzelm@7636
   201
wenzelm@9455
   202
clasohm@0
   203
(** Standardization of rules **)
clasohm@0
   204
wenzelm@19730
   205
(*Generalization over a list of variables*)
wenzelm@36944
   206
val forall_intr_list = fold_rev Thm.forall_intr;
clasohm@0
   207
wenzelm@18535
   208
(*Generalization over Vars -- canonical order*)
wenzelm@18535
   209
fun forall_intr_vars th =
wenzelm@36944
   210
  fold Thm.forall_intr
wenzelm@22695
   211
    (map (Thm.cterm_of (Thm.theory_of_thm th) o Var) (Thm.fold_terms Term.add_vars th [])) th;
wenzelm@18535
   212
wenzelm@18025
   213
fun outer_params t =
wenzelm@20077
   214
  let val vs = Term.strip_all_vars t
wenzelm@20077
   215
  in Name.variant_list [] (map (Name.clean o #1) vs) ~~ map #2 vs end;
wenzelm@18025
   216
wenzelm@18025
   217
(*generalize outermost parameters*)
wenzelm@18025
   218
fun gen_all th =
wenzelm@12719
   219
  let
wenzelm@26627
   220
    val thy = Thm.theory_of_thm th;
wenzelm@26627
   221
    val {prop, maxidx, ...} = Thm.rep_thm th;
wenzelm@18025
   222
    val cert = Thm.cterm_of thy;
wenzelm@18025
   223
    fun elim (x, T) = Thm.forall_elim (cert (Var ((x, maxidx + 1), T)));
wenzelm@18025
   224
  in fold elim (outer_params prop) th end;
wenzelm@18025
   225
wenzelm@18025
   226
(*lift vars wrt. outermost goal parameters
wenzelm@18118
   227
  -- reverses the effect of gen_all modulo higher-order unification*)
wenzelm@18025
   228
fun lift_all goal th =
wenzelm@18025
   229
  let
wenzelm@18025
   230
    val thy = Theory.merge (Thm.theory_of_cterm goal, Thm.theory_of_thm th);
wenzelm@18025
   231
    val cert = Thm.cterm_of thy;
wenzelm@19421
   232
    val maxidx = Thm.maxidx_of th;
wenzelm@18025
   233
    val ps = outer_params (Thm.term_of goal)
wenzelm@18025
   234
      |> map (fn (x, T) => Var ((x, maxidx + 1), Logic.incr_tvar (maxidx + 1) T));
wenzelm@18025
   235
    val Ts = map Term.fastype_of ps;
wenzelm@22695
   236
    val inst = Thm.fold_terms Term.add_vars th [] |> map (fn (xi, T) =>
wenzelm@18025
   237
      (cert (Var (xi, T)), cert (Term.list_comb (Var (xi, Ts ---> T), ps))));
wenzelm@18025
   238
  in
wenzelm@18025
   239
    th |> Thm.instantiate ([], inst)
wenzelm@18025
   240
    |> fold_rev (Thm.forall_intr o cert) ps
wenzelm@18025
   241
  end;
wenzelm@18025
   242
wenzelm@19999
   243
(*direct generalization*)
wenzelm@19999
   244
fun generalize names th = Thm.generalize names (Thm.maxidx_of th + 1) th;
wenzelm@9554
   245
wenzelm@16949
   246
(*specialization over a list of cterms*)
wenzelm@36944
   247
val forall_elim_list = fold Thm.forall_elim;
clasohm@0
   248
wenzelm@16949
   249
(*maps A1,...,An |- B  to  [| A1;...;An |] ==> B*)
wenzelm@36944
   250
val implies_intr_list = fold_rev Thm.implies_intr;
clasohm@0
   251
wenzelm@16949
   252
(*maps [| A1;...;An |] ==> B and [A1,...,An]  to  B*)
wenzelm@24978
   253
fun implies_elim_list impth ths = fold Thm.elim_implies ths impth;
clasohm@0
   254
clasohm@0
   255
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@21603
   256
fun zero_var_indexes_list [] = []
wenzelm@21603
   257
  | zero_var_indexes_list ths =
wenzelm@21603
   258
      let
wenzelm@21603
   259
        val thy = Theory.merge_list (map Thm.theory_of_thm ths);
wenzelm@21603
   260
        val certT = Thm.ctyp_of thy and cert = Thm.cterm_of thy;
wenzelm@31977
   261
        val (instT, inst) = Term_Subst.zero_var_indexes_inst (map Thm.full_prop_of ths);
wenzelm@21603
   262
        val cinstT = map (fn (v, T) => (certT (TVar v), certT T)) instT;
wenzelm@21603
   263
        val cinst = map (fn (v, t) => (cert (Var v), cert t)) inst;
wenzelm@21603
   264
      in map (Thm.adjust_maxidx_thm ~1 o Thm.instantiate (cinstT, cinst)) ths end;
wenzelm@21603
   265
wenzelm@21603
   266
val zero_var_indexes = singleton zero_var_indexes_list;
clasohm@0
   267
clasohm@0
   268
paulson@14394
   269
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   270
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   271
wenzelm@16595
   272
(*Discharge all hypotheses.*)
wenzelm@16595
   273
fun implies_intr_hyps th =
wenzelm@16595
   274
  fold Thm.implies_intr (#hyps (Thm.crep_thm th)) th;
wenzelm@16595
   275
paulson@14394
   276
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   277
  This step can lose information.*)
paulson@14387
   278
fun flexflex_unique th =
wenzelm@38709
   279
  if null (Thm.tpairs_of th) then th else
wenzelm@36944
   280
    case distinct Thm.eq_thm (Seq.list_of (Thm.flexflex_rule th)) of
paulson@23439
   281
      [th] => th
paulson@23439
   282
    | []   => raise THM("flexflex_unique: impossible constraints", 0, [th])
paulson@23439
   283
    |  _   => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
paulson@14387
   284
wenzelm@21603
   285
wenzelm@35021
   286
(* old-style export without context *)
wenzelm@21603
   287
wenzelm@35021
   288
val export_without_context_open =
wenzelm@16949
   289
  implies_intr_hyps
wenzelm@35985
   290
  #> Thm.forall_intr_frees
wenzelm@19421
   291
  #> `Thm.maxidx_of
wenzelm@16949
   292
  #-> (fn maxidx =>
wenzelm@26653
   293
    Thm.forall_elim_vars (maxidx + 1)
wenzelm@20904
   294
    #> Thm.strip_shyps
wenzelm@16949
   295
    #> zero_var_indexes
wenzelm@35845
   296
    #> Thm.varifyT_global);
wenzelm@1218
   297
wenzelm@35021
   298
val export_without_context =
wenzelm@21600
   299
  flexflex_unique
wenzelm@35021
   300
  #> export_without_context_open
wenzelm@26627
   301
  #> Thm.close_derivation;
berghofe@11512
   302
clasohm@0
   303
wenzelm@8328
   304
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   305
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   306
  Similar code in type/freeze_thaw*)
paulson@15495
   307
wenzelm@33832
   308
fun legacy_freeze_thaw_robust th =
wenzelm@36615
   309
 let val fth = Thm.legacy_freezeT th
wenzelm@26627
   310
     val thy = Thm.theory_of_thm fth
wenzelm@26627
   311
     val {prop, tpairs, ...} = rep_thm fth
paulson@15495
   312
 in
wenzelm@29265
   313
   case List.foldr OldTerm.add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@15495
   314
       [] => (fth, fn i => fn x => x)   (*No vars: nothing to do!*)
paulson@15495
   315
     | vars =>
paulson@19753
   316
         let fun newName (Var(ix,_)) = (ix, gensym (string_of_indexname ix))
paulson@19753
   317
             val alist = map newName vars
paulson@15495
   318
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   319
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   320
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
paulson@15495
   321
             val insts = map mk_inst vars
paulson@15495
   322
             fun thaw i th' = (*i is non-negative increment for Var indexes*)
paulson@15495
   323
                 th' |> forall_intr_list (map #2 insts)
wenzelm@22906
   324
                     |> forall_elim_list (map (Thm.incr_indexes_cterm i o #1) insts)
paulson@15495
   325
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@15495
   326
 end;
paulson@15495
   327
paulson@15495
   328
(*Basic version of the function above. No option to rename Vars apart in thaw.
wenzelm@33832
   329
  The Frees created from Vars have nice names.*)
wenzelm@33832
   330
fun legacy_freeze_thaw th =
wenzelm@36615
   331
 let val fth = Thm.legacy_freezeT th
wenzelm@26627
   332
     val thy = Thm.theory_of_thm fth
wenzelm@26627
   333
     val {prop, tpairs, ...} = rep_thm fth
paulson@7248
   334
 in
wenzelm@29265
   335
   case List.foldr OldTerm.add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@7248
   336
       [] => (fth, fn x => x)
paulson@7248
   337
     | vars =>
wenzelm@8328
   338
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@43324
   339
                   let val v = singleton (Name.variant_list used) (string_of_indexname ix)
wenzelm@8328
   340
                   in  ((ix,v)::pairs, v::used)  end;
wenzelm@29270
   341
             val (alist, _) = List.foldr newName ([], Library.foldr OldTerm.add_term_names
skalberg@15574
   342
               (prop :: Thm.terms_of_tpairs tpairs, [])) vars
wenzelm@8328
   343
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   344
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   345
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
wenzelm@8328
   346
             val insts = map mk_inst vars
wenzelm@8328
   347
             fun thaw th' =
wenzelm@8328
   348
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   349
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   350
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   351
 end;
paulson@4610
   352
paulson@7248
   353
(*Rotates a rule's premises to the left by k*)
wenzelm@23537
   354
fun rotate_prems 0 = I
wenzelm@31945
   355
  | rotate_prems k = Thm.permute_prems 0 k;
wenzelm@23537
   356
wenzelm@23423
   357
fun with_subgoal i f = rotate_prems (i - 1) #> f #> rotate_prems (1 - i);
paulson@4610
   358
wenzelm@31945
   359
(*Permute prems, where the i-th position in the argument list (counting from 0)
wenzelm@31945
   360
  gives the position within the original thm to be transferred to position i.
wenzelm@31945
   361
  Any remaining trailing positions are left unchanged.*)
wenzelm@31945
   362
val rearrange_prems =
wenzelm@31945
   363
  let
wenzelm@31945
   364
    fun rearr new [] thm = thm
wenzelm@31945
   365
      | rearr new (p :: ps) thm =
wenzelm@31945
   366
          rearr (new + 1)
wenzelm@31945
   367
            (map (fn q => if new <= q andalso q < p then q + 1 else q) ps)
wenzelm@31945
   368
            (Thm.permute_prems (new + 1) (new - p) (Thm.permute_prems new (p - new) thm))
oheimb@11163
   369
  in rearr 0 end;
paulson@4610
   370
wenzelm@252
   371
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   372
fun tha RSN (i,thb) =
wenzelm@31945
   373
  case Seq.chop 2 (Thm.biresolution false [(false,tha)] i thb) of
clasohm@0
   374
      ([th],_) => th
clasohm@0
   375
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   376
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   377
clasohm@0
   378
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   379
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   380
clasohm@0
   381
(*For joining lists of rules*)
wenzelm@252
   382
fun thas RLN (i,thbs) =
wenzelm@31945
   383
  let val resolve = Thm.biresolution false (map (pair false) thas) i
wenzelm@4270
   384
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
wenzelm@19482
   385
  in maps resb thbs end;
clasohm@0
   386
clasohm@0
   387
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   388
lcp@11
   389
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   390
  makes proof trees*)
wenzelm@252
   391
fun rls MRS bottom_rl =
lcp@11
   392
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   393
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   394
  in  rs_aux 1 rls  end;
lcp@11
   395
lcp@11
   396
(*As above, but for rule lists*)
wenzelm@252
   397
fun rlss MRL bottom_rls =
lcp@11
   398
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   399
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   400
  in  rs_aux 1 rlss  end;
lcp@11
   401
wenzelm@9288
   402
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   403
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   404
wenzelm@252
   405
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   406
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   407
  ALWAYS deletes premise i *)
wenzelm@252
   408
fun compose(tha,i,thb) =
wenzelm@31945
   409
    distinct Thm.eq_thm (Seq.list_of (Thm.bicompose false (false,tha,0) i thb));
clasohm@0
   410
wenzelm@6946
   411
fun compose_single (tha,i,thb) =
paulson@24426
   412
  case compose (tha,i,thb) of
wenzelm@6946
   413
    [th] => th
paulson@24426
   414
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]);
wenzelm@6946
   415
clasohm@0
   416
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   417
fun tha COMP thb =
paulson@24426
   418
    case compose(tha,1,thb) of
wenzelm@252
   419
        [th] => th
clasohm@0
   420
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   421
wenzelm@13105
   422
wenzelm@4016
   423
(** theorem equality **)
clasohm@0
   424
clasohm@0
   425
(*Useful "distance" function for BEST_FIRST*)
wenzelm@16720
   426
val size_of_thm = size_of_term o Thm.full_prop_of;
clasohm@0
   427
lcp@1194
   428
lcp@1194
   429
clasohm@0
   430
(*** Meta-Rewriting Rules ***)
clasohm@0
   431
wenzelm@33384
   432
val read_prop = certify o Simple_Syntax.read_prop;
wenzelm@26487
   433
wenzelm@26487
   434
fun store_thm name th =
wenzelm@39557
   435
  Context.>>> (Context.map_theory_result (Global_Theory.store_thm (name, th)));
paulson@4610
   436
wenzelm@26487
   437
fun store_thm_open name th =
wenzelm@39557
   438
  Context.>>> (Context.map_theory_result (Global_Theory.store_thm_open (name, th)));
wenzelm@26487
   439
wenzelm@35021
   440
fun store_standard_thm name th = store_thm name (export_without_context th);
wenzelm@35021
   441
fun store_standard_thm_open name thm = store_thm_open name (export_without_context_open thm);
wenzelm@4016
   442
clasohm@0
   443
val reflexive_thm =
wenzelm@26487
   444
  let val cx = certify (Var(("x",0),TVar(("'a",0),[])))
wenzelm@33277
   445
  in store_standard_thm_open (Binding.name "reflexive") (Thm.reflexive cx) end;
clasohm@0
   446
clasohm@0
   447
val symmetric_thm =
wenzelm@33277
   448
  let
wenzelm@33277
   449
    val xy = read_prop "x::'a == y::'a";
wenzelm@33277
   450
    val thm = Thm.implies_intr xy (Thm.symmetric (Thm.assume xy));
wenzelm@33277
   451
  in store_standard_thm_open (Binding.name "symmetric") thm end;
clasohm@0
   452
clasohm@0
   453
val transitive_thm =
wenzelm@33277
   454
  let
wenzelm@33277
   455
    val xy = read_prop "x::'a == y::'a";
wenzelm@33277
   456
    val yz = read_prop "y::'a == z::'a";
wenzelm@33277
   457
    val xythm = Thm.assume xy;
wenzelm@33277
   458
    val yzthm = Thm.assume yz;
wenzelm@33277
   459
    val thm = Thm.implies_intr yz (Thm.transitive xythm yzthm);
wenzelm@33277
   460
  in store_standard_thm_open (Binding.name "transitive") thm end;
clasohm@0
   461
nipkow@4679
   462
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   463
berghofe@11512
   464
fun extensional eq =
berghofe@11512
   465
  let val eq' =
wenzelm@36944
   466
    Thm.abstract_rule "x" (Thm.dest_arg (fst (Thm.dest_equals (cprop_of eq)))) eq
wenzelm@36944
   467
  in Thm.equal_elim (Thm.eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   468
wenzelm@18820
   469
val equals_cong =
wenzelm@33277
   470
  store_standard_thm_open (Binding.name "equals_cong")
wenzelm@33277
   471
    (Thm.reflexive (read_prop "x::'a == y::'a"));
wenzelm@18820
   472
berghofe@10414
   473
val imp_cong =
berghofe@10414
   474
  let
wenzelm@24241
   475
    val ABC = read_prop "A ==> B::prop == C::prop"
wenzelm@24241
   476
    val AB = read_prop "A ==> B"
wenzelm@24241
   477
    val AC = read_prop "A ==> C"
wenzelm@24241
   478
    val A = read_prop "A"
berghofe@10414
   479
  in
wenzelm@36944
   480
    store_standard_thm_open (Binding.name "imp_cong") (Thm.implies_intr ABC (Thm.equal_intr
wenzelm@36944
   481
      (Thm.implies_intr AB (Thm.implies_intr A
wenzelm@36944
   482
        (Thm.equal_elim (Thm.implies_elim (Thm.assume ABC) (Thm.assume A))
wenzelm@36944
   483
          (Thm.implies_elim (Thm.assume AB) (Thm.assume A)))))
wenzelm@36944
   484
      (Thm.implies_intr AC (Thm.implies_intr A
wenzelm@36944
   485
        (Thm.equal_elim (Thm.symmetric (Thm.implies_elim (Thm.assume ABC) (Thm.assume A)))
wenzelm@36944
   486
          (Thm.implies_elim (Thm.assume AC) (Thm.assume A)))))))
berghofe@10414
   487
  end;
berghofe@10414
   488
berghofe@10414
   489
val swap_prems_eq =
berghofe@10414
   490
  let
wenzelm@24241
   491
    val ABC = read_prop "A ==> B ==> C"
wenzelm@24241
   492
    val BAC = read_prop "B ==> A ==> C"
wenzelm@24241
   493
    val A = read_prop "A"
wenzelm@24241
   494
    val B = read_prop "B"
berghofe@10414
   495
  in
wenzelm@33277
   496
    store_standard_thm_open (Binding.name "swap_prems_eq")
wenzelm@36944
   497
      (Thm.equal_intr
wenzelm@36944
   498
        (Thm.implies_intr ABC (Thm.implies_intr B (Thm.implies_intr A
wenzelm@36944
   499
          (Thm.implies_elim (Thm.implies_elim (Thm.assume ABC) (Thm.assume A)) (Thm.assume B)))))
wenzelm@36944
   500
        (Thm.implies_intr BAC (Thm.implies_intr A (Thm.implies_intr B
wenzelm@36944
   501
          (Thm.implies_elim (Thm.implies_elim (Thm.assume BAC) (Thm.assume B)) (Thm.assume A))))))
berghofe@10414
   502
  end;
lcp@229
   503
wenzelm@22938
   504
val imp_cong_rule = Thm.combination o Thm.combination (Thm.reflexive implies);
wenzelm@22938
   505
wenzelm@23537
   506
fun arg_cong_rule ct th = Thm.combination (Thm.reflexive ct) th;    (*AP_TERM in LCF/HOL*)
wenzelm@23537
   507
fun fun_cong_rule th ct = Thm.combination th (Thm.reflexive ct);    (*AP_THM in LCF/HOL*)
wenzelm@23568
   508
fun binop_cong_rule ct th1 th2 = Thm.combination (arg_cong_rule ct th1) th2;
clasohm@0
   509
skalberg@15001
   510
local
wenzelm@22906
   511
  val dest_eq = Thm.dest_equals o cprop_of
skalberg@15001
   512
  val rhs_of = snd o dest_eq
skalberg@15001
   513
in
skalberg@15001
   514
fun beta_eta_conversion t =
wenzelm@36944
   515
  let val thm = Thm.beta_conversion true t
wenzelm@36944
   516
  in Thm.transitive thm (Thm.eta_conversion (rhs_of thm)) end
skalberg@15001
   517
end;
skalberg@15001
   518
wenzelm@36944
   519
fun eta_long_conversion ct =
wenzelm@36944
   520
  Thm.transitive
wenzelm@36944
   521
    (beta_eta_conversion ct)
wenzelm@36944
   522
    (Thm.symmetric (beta_eta_conversion (cterm_fun (Pattern.eta_long []) ct)));
berghofe@15925
   523
paulson@20861
   524
(*Contract all eta-redexes in the theorem, lest they give rise to needless abstractions*)
paulson@20861
   525
fun eta_contraction_rule th =
wenzelm@36944
   526
  Thm.equal_elim (Thm.eta_conversion (cprop_of th)) th;
paulson@20861
   527
wenzelm@24947
   528
wenzelm@24947
   529
(* abs_def *)
wenzelm@24947
   530
wenzelm@24947
   531
(*
wenzelm@24947
   532
   f ?x1 ... ?xn == u
wenzelm@24947
   533
  --------------------
wenzelm@24947
   534
   f == %x1 ... xn. u
wenzelm@24947
   535
*)
wenzelm@24947
   536
wenzelm@24947
   537
local
wenzelm@24947
   538
wenzelm@24947
   539
fun contract_lhs th =
wenzelm@24947
   540
  Thm.transitive (Thm.symmetric (beta_eta_conversion
wenzelm@24947
   541
    (fst (Thm.dest_equals (cprop_of th))))) th;
wenzelm@24947
   542
wenzelm@24947
   543
fun var_args ct =
wenzelm@24947
   544
  (case try Thm.dest_comb ct of
wenzelm@24947
   545
    SOME (f, arg) =>
wenzelm@24947
   546
      (case Thm.term_of arg of
wenzelm@24947
   547
        Var ((x, _), _) => update (eq_snd (op aconvc)) (x, arg) (var_args f)
wenzelm@24947
   548
      | _ => [])
wenzelm@24947
   549
  | NONE => []);
wenzelm@24947
   550
wenzelm@24947
   551
in
wenzelm@24947
   552
wenzelm@24947
   553
fun abs_def th =
wenzelm@18337
   554
  let
wenzelm@24947
   555
    val th' = contract_lhs th;
wenzelm@24947
   556
    val args = var_args (Thm.lhs_of th');
wenzelm@24947
   557
  in contract_lhs (fold (uncurry Thm.abstract_rule) args th') end;
wenzelm@24947
   558
wenzelm@24947
   559
end;
wenzelm@24947
   560
wenzelm@18337
   561
wenzelm@18468
   562
wenzelm@15669
   563
(*** Some useful meta-theorems ***)
clasohm@0
   564
clasohm@0
   565
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@33277
   566
val asm_rl = store_standard_thm_open (Binding.name "asm_rl") (Thm.trivial (read_prop "?psi"));
clasohm@0
   567
clasohm@0
   568
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   569
val cut_rl =
wenzelm@33277
   570
  store_standard_thm_open (Binding.name "cut_rl")
wenzelm@24241
   571
    (Thm.trivial (read_prop "?psi ==> ?theta"));
clasohm@0
   572
wenzelm@252
   573
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   574
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   575
val revcut_rl =
wenzelm@33277
   576
  let
wenzelm@33277
   577
    val V = read_prop "V";
wenzelm@33277
   578
    val VW = read_prop "V ==> W";
wenzelm@4016
   579
  in
wenzelm@33277
   580
    store_standard_thm_open (Binding.name "revcut_rl")
wenzelm@36944
   581
      (Thm.implies_intr V (Thm.implies_intr VW (Thm.implies_elim (Thm.assume VW) (Thm.assume V))))
clasohm@0
   582
  end;
clasohm@0
   583
lcp@668
   584
(*for deleting an unwanted assumption*)
lcp@668
   585
val thin_rl =
wenzelm@33277
   586
  let
wenzelm@33277
   587
    val V = read_prop "V";
wenzelm@33277
   588
    val W = read_prop "W";
wenzelm@36944
   589
    val thm = Thm.implies_intr V (Thm.implies_intr W (Thm.assume W));
wenzelm@33277
   590
  in store_standard_thm_open (Binding.name "thin_rl") thm end;
lcp@668
   591
clasohm@0
   592
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   593
val triv_forall_equality =
wenzelm@33277
   594
  let
wenzelm@33277
   595
    val V = read_prop "V";
wenzelm@33277
   596
    val QV = read_prop "!!x::'a. V";
wenzelm@33277
   597
    val x = certify (Free ("x", Term.aT []));
wenzelm@4016
   598
  in
wenzelm@33277
   599
    store_standard_thm_open (Binding.name "triv_forall_equality")
wenzelm@36944
   600
      (Thm.equal_intr (Thm.implies_intr QV (Thm.forall_elim x (Thm.assume QV)))
wenzelm@36944
   601
        (Thm.implies_intr V (Thm.forall_intr x (Thm.assume V))))
clasohm@0
   602
  end;
clasohm@0
   603
wenzelm@19051
   604
(* (PROP ?Phi ==> PROP ?Phi ==> PROP ?Psi) ==>
wenzelm@19051
   605
   (PROP ?Phi ==> PROP ?Psi)
wenzelm@19051
   606
*)
wenzelm@19051
   607
val distinct_prems_rl =
wenzelm@19051
   608
  let
wenzelm@33277
   609
    val AAB = read_prop "Phi ==> Phi ==> Psi";
wenzelm@24241
   610
    val A = read_prop "Phi";
wenzelm@19051
   611
  in
wenzelm@33277
   612
    store_standard_thm_open (Binding.name "distinct_prems_rl")
wenzelm@36944
   613
      (implies_intr_list [AAB, A] (implies_elim_list (Thm.assume AAB) [Thm.assume A, Thm.assume A]))
wenzelm@19051
   614
  end;
wenzelm@19051
   615
nipkow@1756
   616
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   617
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   618
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   619
*)
nipkow@1756
   620
val swap_prems_rl =
wenzelm@33277
   621
  let
wenzelm@33277
   622
    val cmajor = read_prop "PhiA ==> PhiB ==> Psi";
wenzelm@36944
   623
    val major = Thm.assume cmajor;
wenzelm@33277
   624
    val cminor1 = read_prop "PhiA";
wenzelm@36944
   625
    val minor1 = Thm.assume cminor1;
wenzelm@33277
   626
    val cminor2 = read_prop "PhiB";
wenzelm@36944
   627
    val minor2 = Thm.assume cminor2;
wenzelm@33277
   628
  in
wenzelm@33277
   629
    store_standard_thm_open (Binding.name "swap_prems_rl")
wenzelm@36944
   630
      (Thm.implies_intr cmajor (Thm.implies_intr cminor2 (Thm.implies_intr cminor1
wenzelm@36944
   631
        (Thm.implies_elim (Thm.implies_elim major minor1) minor2))))
nipkow@1756
   632
  end;
nipkow@1756
   633
nipkow@3653
   634
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   635
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   636
   Introduction rule for == as a meta-theorem.
nipkow@3653
   637
*)
nipkow@3653
   638
val equal_intr_rule =
wenzelm@33277
   639
  let
wenzelm@33277
   640
    val PQ = read_prop "phi ==> psi";
wenzelm@33277
   641
    val QP = read_prop "psi ==> phi";
wenzelm@4016
   642
  in
wenzelm@33277
   643
    store_standard_thm_open (Binding.name "equal_intr_rule")
wenzelm@36944
   644
      (Thm.implies_intr PQ (Thm.implies_intr QP (Thm.equal_intr (Thm.assume PQ) (Thm.assume QP))))
nipkow@3653
   645
  end;
nipkow@3653
   646
wenzelm@19421
   647
(* PROP ?phi == PROP ?psi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@13368
   648
val equal_elim_rule1 =
wenzelm@33277
   649
  let
wenzelm@33277
   650
    val eq = read_prop "phi::prop == psi::prop";
wenzelm@33277
   651
    val P = read_prop "phi";
wenzelm@33277
   652
  in
wenzelm@33277
   653
    store_standard_thm_open (Binding.name "equal_elim_rule1")
wenzelm@36944
   654
      (Thm.equal_elim (Thm.assume eq) (Thm.assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   655
  end;
wenzelm@4285
   656
wenzelm@19421
   657
(* PROP ?psi == PROP ?phi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@19421
   658
val equal_elim_rule2 =
wenzelm@33277
   659
  store_standard_thm_open (Binding.name "equal_elim_rule2")
wenzelm@33277
   660
    (symmetric_thm RS equal_elim_rule1);
wenzelm@19421
   661
wenzelm@28618
   662
(* PROP ?phi ==> PROP ?phi ==> PROP ?psi ==> PROP ?psi *)
wenzelm@12297
   663
val remdups_rl =
wenzelm@33277
   664
  let
wenzelm@33277
   665
    val P = read_prop "phi";
wenzelm@33277
   666
    val Q = read_prop "psi";
wenzelm@33277
   667
    val thm = implies_intr_list [P, P, Q] (Thm.assume Q);
wenzelm@33277
   668
  in store_standard_thm_open (Binding.name "remdups_rl") thm end;
wenzelm@12297
   669
wenzelm@12297
   670
wenzelm@28618
   671
wenzelm@28618
   672
(** embedded terms and types **)
wenzelm@28618
   673
wenzelm@28618
   674
local
wenzelm@28618
   675
  val A = certify (Free ("A", propT));
wenzelm@35845
   676
  val axiom = Thm.unvarify_global o Thm.axiom (Context.the_theory (Context.the_thread_data ()));
wenzelm@28674
   677
  val prop_def = axiom "Pure.prop_def";
wenzelm@28674
   678
  val term_def = axiom "Pure.term_def";
wenzelm@28674
   679
  val sort_constraint_def = axiom "Pure.sort_constraint_def";
wenzelm@28618
   680
  val C = Thm.lhs_of sort_constraint_def;
wenzelm@28618
   681
  val T = Thm.dest_arg C;
wenzelm@28618
   682
  val CA = mk_implies (C, A);
wenzelm@28618
   683
in
wenzelm@28618
   684
wenzelm@28618
   685
(* protect *)
wenzelm@28618
   686
wenzelm@28618
   687
val protect = Thm.capply (certify Logic.protectC);
wenzelm@28618
   688
wenzelm@33277
   689
val protectI =
wenzelm@35021
   690
  store_standard_thm (Binding.conceal (Binding.name "protectI"))
wenzelm@35021
   691
    (Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A));
wenzelm@28618
   692
wenzelm@33277
   693
val protectD =
wenzelm@35021
   694
  store_standard_thm (Binding.conceal (Binding.name "protectD"))
wenzelm@35021
   695
    (Thm.equal_elim prop_def (Thm.assume (protect A)));
wenzelm@28618
   696
wenzelm@33277
   697
val protect_cong =
wenzelm@33277
   698
  store_standard_thm_open (Binding.name "protect_cong") (Thm.reflexive (protect A));
wenzelm@28618
   699
wenzelm@28618
   700
fun implies_intr_protected asms th =
wenzelm@28618
   701
  let val asms' = map protect asms in
wenzelm@28618
   702
    implies_elim_list
wenzelm@28618
   703
      (implies_intr_list asms th)
wenzelm@28618
   704
      (map (fn asm' => Thm.assume asm' RS protectD) asms')
wenzelm@28618
   705
    |> implies_intr_list asms'
wenzelm@28618
   706
  end;
wenzelm@28618
   707
wenzelm@28618
   708
wenzelm@28618
   709
(* term *)
wenzelm@28618
   710
wenzelm@33277
   711
val termI =
wenzelm@35021
   712
  store_standard_thm (Binding.conceal (Binding.name "termI"))
wenzelm@35021
   713
    (Thm.equal_elim (Thm.symmetric term_def) (Thm.forall_intr A (Thm.trivial A)));
wenzelm@9554
   714
wenzelm@28618
   715
fun mk_term ct =
wenzelm@28618
   716
  let
wenzelm@28618
   717
    val thy = Thm.theory_of_cterm ct;
wenzelm@28618
   718
    val cert = Thm.cterm_of thy;
wenzelm@28618
   719
    val certT = Thm.ctyp_of thy;
wenzelm@28618
   720
    val T = Thm.typ_of (Thm.ctyp_of_term ct);
wenzelm@28618
   721
    val a = certT (TVar (("'a", 0), []));
wenzelm@28618
   722
    val x = cert (Var (("x", 0), T));
wenzelm@28618
   723
  in Thm.instantiate ([(a, certT T)], [(x, ct)]) termI end;
wenzelm@28618
   724
wenzelm@28618
   725
fun dest_term th =
wenzelm@28618
   726
  let val cprop = strip_imp_concl (Thm.cprop_of th) in
wenzelm@28618
   727
    if can Logic.dest_term (Thm.term_of cprop) then
wenzelm@28618
   728
      Thm.dest_arg cprop
wenzelm@28618
   729
    else raise THM ("dest_term", 0, [th])
wenzelm@28618
   730
  end;
wenzelm@28618
   731
wenzelm@28618
   732
fun cterm_rule f = dest_term o f o mk_term;
wenzelm@28618
   733
fun term_rule thy f t = Thm.term_of (cterm_rule f (Thm.cterm_of thy t));
wenzelm@28618
   734
wenzelm@28618
   735
val dummy_thm = mk_term (certify (Term.dummy_pattern propT));
wenzelm@28618
   736
wenzelm@28618
   737
wenzelm@28618
   738
(* sort_constraint *)
wenzelm@28618
   739
wenzelm@33277
   740
val sort_constraintI =
wenzelm@35021
   741
  store_standard_thm (Binding.conceal (Binding.name "sort_constraintI"))
wenzelm@35021
   742
    (Thm.equal_elim (Thm.symmetric sort_constraint_def) (mk_term T));
wenzelm@28618
   743
wenzelm@33277
   744
val sort_constraint_eq =
wenzelm@35021
   745
  store_standard_thm (Binding.conceal (Binding.name "sort_constraint_eq"))
wenzelm@35021
   746
    (Thm.equal_intr
wenzelm@35845
   747
      (Thm.implies_intr CA (Thm.implies_elim (Thm.assume CA)
wenzelm@35845
   748
        (Thm.unvarify_global sort_constraintI)))
wenzelm@35021
   749
      (implies_intr_list [A, C] (Thm.assume A)));
wenzelm@28618
   750
wenzelm@28618
   751
end;
wenzelm@28618
   752
wenzelm@28618
   753
wenzelm@28618
   754
(* HHF normalization *)
wenzelm@28618
   755
wenzelm@28618
   756
(* (PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x)) *)
wenzelm@9554
   757
val norm_hhf_eq =
wenzelm@9554
   758
  let
wenzelm@14854
   759
    val aT = TFree ("'a", []);
wenzelm@9554
   760
    val all = Term.all aT;
wenzelm@9554
   761
    val x = Free ("x", aT);
wenzelm@9554
   762
    val phi = Free ("phi", propT);
wenzelm@9554
   763
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   764
wenzelm@26487
   765
    val cx = certify x;
wenzelm@26487
   766
    val cphi = certify phi;
wenzelm@26487
   767
    val lhs = certify (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@26487
   768
    val rhs = certify (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   769
  in
wenzelm@9554
   770
    Thm.equal_intr
wenzelm@9554
   771
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   772
        |> Thm.forall_elim cx
wenzelm@9554
   773
        |> Thm.implies_intr cphi
wenzelm@9554
   774
        |> Thm.forall_intr cx
wenzelm@9554
   775
        |> Thm.implies_intr lhs)
wenzelm@9554
   776
      (Thm.implies_elim
wenzelm@9554
   777
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   778
        |> Thm.forall_intr cx
wenzelm@9554
   779
        |> Thm.implies_intr cphi
wenzelm@9554
   780
        |> Thm.implies_intr rhs)
wenzelm@33277
   781
    |> store_standard_thm_open (Binding.name "norm_hhf_eq")
wenzelm@9554
   782
  end;
wenzelm@9554
   783
wenzelm@18179
   784
val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq);
wenzelm@28618
   785
val norm_hhf_eqs = [norm_hhf_eq, sort_constraint_eq];
wenzelm@18179
   786
wenzelm@30553
   787
fun is_norm_hhf (Const ("Pure.sort_constraint", _)) = false
wenzelm@30553
   788
  | is_norm_hhf (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
wenzelm@30553
   789
  | is_norm_hhf (Abs _ $ _) = false
wenzelm@30553
   790
  | is_norm_hhf (t $ u) = is_norm_hhf t andalso is_norm_hhf u
wenzelm@30553
   791
  | is_norm_hhf (Abs (_, _, t)) = is_norm_hhf t
wenzelm@30553
   792
  | is_norm_hhf _ = true;
wenzelm@12800
   793
wenzelm@16425
   794
fun norm_hhf thy t =
wenzelm@12800
   795
  if is_norm_hhf t then t
wenzelm@18179
   796
  else Pattern.rewrite_term thy [norm_hhf_prop] [] t;
wenzelm@18179
   797
wenzelm@20298
   798
fun norm_hhf_cterm ct =
wenzelm@20298
   799
  if is_norm_hhf (Thm.term_of ct) then ct
wenzelm@20298
   800
  else cterm_fun (Pattern.rewrite_term (Thm.theory_of_cterm ct) [norm_hhf_prop] []) ct;
wenzelm@20298
   801
wenzelm@12800
   802
wenzelm@21603
   803
(* var indexes *)
wenzelm@21603
   804
wenzelm@21603
   805
fun incr_indexes th = Thm.incr_indexes (Thm.maxidx_of th + 1);
wenzelm@21603
   806
wenzelm@21603
   807
fun incr_indexes2 th1 th2 =
wenzelm@21603
   808
  Thm.incr_indexes (Int.max (Thm.maxidx_of th1, Thm.maxidx_of th2) + 1);
wenzelm@21603
   809
wenzelm@21603
   810
fun th1 INCR_COMP th2 = incr_indexes th2 th1 COMP th2;
wenzelm@21603
   811
fun th1 COMP_INCR th2 = th1 COMP incr_indexes th1 th2;
wenzelm@21603
   812
wenzelm@29344
   813
fun comp_no_flatten (th, n) i rule =
wenzelm@29344
   814
  (case distinct Thm.eq_thm (Seq.list_of
wenzelm@29344
   815
      (Thm.compose_no_flatten false (th, n) i (incr_indexes th rule))) of
wenzelm@29344
   816
    [th'] => th'
wenzelm@29344
   817
  | [] => raise THM ("comp_no_flatten", i, [th, rule])
wenzelm@29344
   818
  | _ => raise THM ("comp_no_flatten: unique result expected", i, [th, rule]));
wenzelm@29344
   819
wenzelm@29344
   820
wenzelm@9554
   821
wenzelm@16425
   822
(*** Instantiate theorem th, reading instantiations in theory thy ****)
paulson@8129
   823
wenzelm@43333
   824
fun instantiate_normalize instpair th =
wenzelm@21603
   825
  Thm.adjust_maxidx_thm ~1 (Thm.instantiate instpair th COMP_INCR asm_rl);
paulson@8129
   826
paulson@8129
   827
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   828
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   829
local
wenzelm@16425
   830
  fun add_types ((ct,cu), (thy,tye,maxidx)) =
wenzelm@26627
   831
    let
wenzelm@26627
   832
        val thyt = Thm.theory_of_cterm ct;
wenzelm@26627
   833
        val thyu = Thm.theory_of_cterm cu;
wenzelm@26627
   834
        val {t, T, maxidx = maxt, ...} = Thm.rep_cterm ct;
wenzelm@26627
   835
        val {t = u, T = U, maxidx = maxu, ...} = Thm.rep_cterm cu;
paulson@8129
   836
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
wenzelm@16425
   837
        val thy' = Theory.merge(thy, Theory.merge(thyt, thyu))
wenzelm@16949
   838
        val (tye',maxi') = Sign.typ_unify thy' (T, U) (tye, maxi)
berghofe@25470
   839
          handle Type.TUNIFY => raise TYPE ("Ill-typed instantiation:\nType\n" ^
wenzelm@26939
   840
            Syntax.string_of_typ_global thy' (Envir.norm_type tye T) ^
berghofe@25470
   841
            "\nof variable " ^
wenzelm@26939
   842
            Syntax.string_of_term_global thy' (Term.map_types (Envir.norm_type tye) t) ^
berghofe@25470
   843
            "\ncannot be unified with type\n" ^
wenzelm@26939
   844
            Syntax.string_of_typ_global thy' (Envir.norm_type tye U) ^ "\nof term " ^
wenzelm@26939
   845
            Syntax.string_of_term_global thy' (Term.map_types (Envir.norm_type tye) u),
berghofe@25470
   846
            [T, U], [t, u])
wenzelm@16425
   847
    in  (thy', tye', maxi')  end;
paulson@8129
   848
in
paulson@22561
   849
fun cterm_instantiate [] th = th
paulson@22561
   850
  | cterm_instantiate ctpairs0 th =
wenzelm@23178
   851
  let val (thy,tye,_) = List.foldr add_types (Thm.theory_of_thm th, Vartab.empty, 0) ctpairs0
wenzelm@18179
   852
      fun instT(ct,cu) =
paulson@22287
   853
        let val inst = cterm_of thy o Term.map_types (Envir.norm_type tye) o term_of
paulson@14340
   854
        in (inst ct, inst cu) end
paulson@22307
   855
      fun ctyp2 (ixn, (S, T)) = (ctyp_of thy (TVar (ixn, S)), ctyp_of thy (Envir.norm_type tye T))
wenzelm@43333
   856
  in  instantiate_normalize (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   857
  handle TERM _ =>
wenzelm@16425
   858
           raise THM("cterm_instantiate: incompatible theories",0,[th])
paulson@8129
   859
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   860
end;
paulson@8129
   861
paulson@8129
   862
wenzelm@4789
   863
wenzelm@5688
   864
(** variations on instantiate **)
wenzelm@4285
   865
wenzelm@4285
   866
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   867
wenzelm@4285
   868
fun instantiate' cTs cts thm =
wenzelm@4285
   869
  let
wenzelm@4285
   870
    fun err msg =
wenzelm@4285
   871
      raise TYPE ("instantiate': " ^ msg,
wenzelm@19482
   872
        map_filter (Option.map Thm.typ_of) cTs,
wenzelm@19482
   873
        map_filter (Option.map Thm.term_of) cts);
wenzelm@4285
   874
wenzelm@4285
   875
    fun inst_of (v, ct) =
wenzelm@16425
   876
      (Thm.cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
wenzelm@4285
   877
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   878
berghofe@15797
   879
    fun tyinst_of (v, cT) =
wenzelm@16425
   880
      (Thm.ctyp_of (Thm.theory_of_ctyp cT) (TVar v), cT)
berghofe@15797
   881
        handle TYPE (msg, _, _) => err msg;
berghofe@15797
   882
wenzelm@20298
   883
    fun zip_vars xs ys =
wenzelm@40722
   884
      zip_options xs ys handle ListPair.UnequalLengths =>
wenzelm@20298
   885
        err "more instantiations than variables in thm";
wenzelm@4285
   886
wenzelm@4285
   887
    (*instantiate types first!*)
wenzelm@4285
   888
    val thm' =
wenzelm@4285
   889
      if forall is_none cTs then thm
wenzelm@20298
   890
      else Thm.instantiate
wenzelm@22695
   891
        (map tyinst_of (zip_vars (rev (Thm.fold_terms Term.add_tvars thm [])) cTs), []) thm;
wenzelm@20579
   892
    val thm'' =
wenzelm@4285
   893
      if forall is_none cts then thm'
wenzelm@20298
   894
      else Thm.instantiate
wenzelm@22695
   895
        ([], map inst_of (zip_vars (rev (Thm.fold_terms Term.add_vars thm' [])) cts)) thm';
wenzelm@20298
   896
    in thm'' end;
wenzelm@4285
   897
wenzelm@4285
   898
berghofe@14081
   899
berghofe@14081
   900
(** renaming of bound variables **)
berghofe@14081
   901
berghofe@14081
   902
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
   903
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
   904
berghofe@14081
   905
fun rename_bvars [] thm = thm
berghofe@14081
   906
  | rename_bvars vs thm =
wenzelm@26627
   907
      let
wenzelm@26627
   908
        val cert = Thm.cterm_of (Thm.theory_of_thm thm);
wenzelm@26627
   909
        fun ren (Abs (x, T, t)) = Abs (AList.lookup (op =) vs x |> the_default x, T, ren t)
wenzelm@26627
   910
          | ren (t $ u) = ren t $ ren u
wenzelm@26627
   911
          | ren t = t;
wenzelm@36944
   912
      in Thm.equal_elim (Thm.reflexive (cert (ren (Thm.prop_of thm)))) thm end;
berghofe@14081
   913
berghofe@14081
   914
berghofe@14081
   915
(* renaming in left-to-right order *)
berghofe@14081
   916
berghofe@14081
   917
fun rename_bvars' xs thm =
berghofe@14081
   918
  let
wenzelm@26627
   919
    val cert = Thm.cterm_of (Thm.theory_of_thm thm);
wenzelm@26627
   920
    val prop = Thm.prop_of thm;
berghofe@14081
   921
    fun rename [] t = ([], t)
berghofe@14081
   922
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
   923
          let val (xs', t') = rename xs t
wenzelm@18929
   924
          in (xs', Abs (the_default x x', T, t')) end
berghofe@14081
   925
      | rename xs (t $ u) =
berghofe@14081
   926
          let
berghofe@14081
   927
            val (xs', t') = rename xs t;
berghofe@14081
   928
            val (xs'', u') = rename xs' u
berghofe@14081
   929
          in (xs'', t' $ u') end
berghofe@14081
   930
      | rename xs t = (xs, t);
berghofe@14081
   931
  in case rename xs prop of
wenzelm@36944
   932
      ([], prop') => Thm.equal_elim (Thm.reflexive (cert prop')) thm
berghofe@14081
   933
    | _ => error "More names than abstractions in theorem"
berghofe@14081
   934
  end;
berghofe@14081
   935
berghofe@14081
   936
wenzelm@11975
   937
wenzelm@18225
   938
(** multi_resolve **)
wenzelm@18225
   939
wenzelm@18225
   940
local
wenzelm@18225
   941
wenzelm@18225
   942
fun res th i rule =
wenzelm@18225
   943
  Thm.biresolution false [(false, th)] i rule handle THM _ => Seq.empty;
wenzelm@18225
   944
wenzelm@18225
   945
fun multi_res _ [] rule = Seq.single rule
wenzelm@18225
   946
  | multi_res i (th :: ths) rule = Seq.maps (res th i) (multi_res (i + 1) ths rule);
wenzelm@18225
   947
wenzelm@18225
   948
in
wenzelm@18225
   949
wenzelm@18225
   950
val multi_resolve = multi_res 1;
wenzelm@18225
   951
fun multi_resolves facts rules = Seq.maps (multi_resolve facts) (Seq.of_list rules);
wenzelm@18225
   952
wenzelm@18225
   953
end;
wenzelm@18225
   954
wenzelm@11975
   955
end;
wenzelm@5903
   956
wenzelm@35021
   957
structure Basic_Drule: BASIC_DRULE = Drule;
wenzelm@35021
   958
open Basic_Drule;