author  wenzelm 
Tue, 29 Sep 2009 22:48:24 +0200  
changeset 32765  3032c0308019 
parent 32091  30e2ffbba718 
child 32957  675c0c7e6a37 
permissions  rwrr 
12191  1 
(* Title: ZF/Tools/inductive_package.ML 
6051  2 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory 
3 

4 
Fixedpoint definition module  for Inductive/Coinductive Definitions 

5 

6 
The functor will be instantiated for normal sums/products (inductive defs) 

7 
and nonstandard sums/products (coinductive defs) 

8 

9 
Sums are used only for mutual recursion; 

10 
Products are used only to derive "streamlined" induction rules for relations 

11 
*) 

12 

13 
type inductive_result = 

14 
{defs : thm list, (*definitions made in thy*) 

15 
bnd_mono : thm, (*monotonicity for the lfp definition*) 

16 
dom_subset : thm, (*inclusion of recursive set in dom*) 

17 
intrs : thm list, (*introduction rules*) 

18 
elim : thm, (*case analysis theorem*) 

19 
induct : thm, (*main induction rule*) 

20 
mutual_induct : thm}; (*mutual induction rule*) 

21 

22 

23 
(*Functor's result signature*) 

24 
signature INDUCTIVE_PACKAGE = 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

25 
sig 
6051  26 
(*Insert definitions for the recursive sets, which 
27 
must *already* be declared as constants in parent theory!*) 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

28 
val add_inductive_i: bool > term list * term > 
29579  29 
((binding * term) * attribute list) list > 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

30 
thm list * thm list * thm list * thm list > theory > theory * inductive_result 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

31 
val add_inductive: string list * string > 
29579  32 
((binding * string) * Attrib.src list) list > 
26336
a0e2b706ce73
renamed datatype thmref to Facts.ref, tuned interfaces;
wenzelm
parents:
26287
diff
changeset

33 
(Facts.ref * Attrib.src list) list * (Facts.ref * Attrib.src list) list * 
a0e2b706ce73
renamed datatype thmref to Facts.ref, tuned interfaces;
wenzelm
parents:
26287
diff
changeset

34 
(Facts.ref * Attrib.src list) list * (Facts.ref * Attrib.src list) list > 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

35 
theory > theory * inductive_result 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

36 
end; 
6051  37 

38 

39 
(*Declares functions to add fixedpoint/constructor defs to a theory. 

40 
Recursive sets must *already* be declared as constants.*) 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

41 
functor Add_inductive_def_Fun 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

42 
(structure Fp: FP and Pr : PR and CP: CARTPROD and Su : SU val coind: bool) 
6051  43 
: INDUCTIVE_PACKAGE = 
44 
struct 

12183  45 

16855  46 
open Ind_Syntax; 
6051  47 

12227  48 
val co_prefix = if coind then "co" else ""; 
49 

7695  50 

51 
(* utils *) 

52 

53 
(*make distinct individual variables a1, a2, a3, ..., an. *) 

54 
fun mk_frees a [] = [] 

12902  55 
 mk_frees a (T::Ts) = Free(a,T) :: mk_frees (Symbol.bump_string a) Ts; 
7695  56 

57 

58 
(* add_inductive(_i) *) 

59 

6051  60 
(*internal version, accepting terms*) 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

61 
fun add_inductive_i verbose (rec_tms, dom_sum) 
28083
103d9282a946
explicit type Name.binding for higherspecification elements;
wenzelm
parents:
27691
diff
changeset

62 
raw_intr_specs (monos, con_defs, type_intrs, type_elims) thy = 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

63 
let 
26056
6a0801279f4c
Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
25985
diff
changeset

64 
val _ = Theory.requires thy "Inductive_ZF" "(co)inductive definitions"; 
26189  65 
val ctxt = ProofContext.init thy; 
6051  66 

30223
24d975352879
renamed Binding.name_pos to Binding.make, renamed Binding.base_name to Binding.name_of, renamed Binding.map_base to Binding.map_name, added mandatory flag to Binding.qualify;
wenzelm
parents:
30190
diff
changeset

67 
val intr_specs = map (apfst (apfst Binding.name_of)) raw_intr_specs; 
12191  68 
val (intr_names, intr_tms) = split_list (map fst intr_specs); 
69 
val case_names = RuleCases.case_names intr_names; 

6051  70 

71 
(*recT and rec_params should agree for all mutually recursive components*) 

72 
val rec_hds = map head_of rec_tms; 

73 

74 
val dummy = assert_all is_Const rec_hds 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

75 
(fn t => "Recursive set not previously declared as constant: " ^ 
26189  76 
Syntax.string_of_term ctxt t); 
6051  77 

78 
(*Now we know they are all Consts, so get their names, type and params*) 

79 
val rec_names = map (#1 o dest_Const) rec_hds 

80 
and (Const(_,recT),rec_params) = strip_comb (hd rec_tms); 

81 

30364
577edc39b501
moved basic algebra of long names from structure NameSpace to Long_Name;
wenzelm
parents:
30345
diff
changeset

82 
val rec_base_names = map Long_Name.base_name rec_names; 
6051  83 
val dummy = assert_all Syntax.is_identifier rec_base_names 
84 
(fn a => "Base name of recursive set not an identifier: " ^ a); 

85 

86 
local (*Checking the introduction rules*) 

20342  87 
val intr_sets = map (#2 o rule_concl_msg thy) intr_tms; 
6051  88 
fun intr_ok set = 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

89 
case head_of set of Const(a,recT) => a mem rec_names  _ => false; 
6051  90 
in 
91 
val dummy = assert_all intr_ok intr_sets 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

92 
(fn t => "Conclusion of rule does not name a recursive set: " ^ 
26189  93 
Syntax.string_of_term ctxt t); 
6051  94 
end; 
95 

96 
val dummy = assert_all is_Free rec_params 

97 
(fn t => "Param in recursion term not a free variable: " ^ 

26189  98 
Syntax.string_of_term ctxt t); 
6051  99 

100 
(*** Construct the fixedpoint definition ***) 

30190  101 
val mk_variant = Name.variant (List.foldr OldTerm.add_term_names [] intr_tms); 
6051  102 

103 
val z' = mk_variant"z" and X' = mk_variant"X" and w' = mk_variant"w"; 

104 

105 
fun dest_tprop (Const("Trueprop",_) $ P) = P 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

106 
 dest_tprop Q = error ("Illformed premise of introduction rule: " ^ 
26189  107 
Syntax.string_of_term ctxt Q); 
6051  108 

109 
(*Makes a disjunct from an introduction rule*) 

110 
fun fp_part intr = (*quantify over rule's free vars except parameters*) 

16855  111 
let val prems = map dest_tprop (Logic.strip_imp_prems intr) 
15570  112 
val dummy = List.app (fn rec_hd => List.app (chk_prem rec_hd) prems) rec_hds 
29265
5b4247055bd7
moved old add_term_vars, add_term_frees etc. to structure OldTerm;
wenzelm
parents:
29006
diff
changeset

113 
val exfrees = OldTerm.term_frees intr \\ rec_params 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

114 
val zeq = FOLogic.mk_eq (Free(z',iT), #1 (rule_concl intr)) 
30190  115 
in List.foldr FOLogic.mk_exists 
32765  116 
(Balanced_Tree.make FOLogic.mk_conj (zeq::prems)) exfrees 
6051  117 
end; 
118 

119 
(*The Part(A,h) terms  compose injections to make h*) 

120 
fun mk_Part (Bound 0) = Free(X',iT) (*no mutual rec, no Part needed*) 

26189  121 
 mk_Part h = @{const Part} $ Free(X',iT) $ Abs(w',iT,h); 
6051  122 

123 
(*Access to balanced disjoint sums via injections*) 

23419  124 
val parts = map mk_Part 
32765  125 
(Balanced_Tree.accesses {left = fn t => Su.inl $ t, right = fn t => Su.inr $ t, init = Bound 0} 
23419  126 
(length rec_tms)); 
6051  127 

128 
(*replace each set by the corresponding Part(A,h)*) 

129 
val part_intrs = map (subst_free (rec_tms ~~ parts) o fp_part) intr_tms; 

130 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

131 
val fp_abs = absfree(X', iT, 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

132 
mk_Collect(z', dom_sum, 
32765  133 
Balanced_Tree.make FOLogic.mk_disj part_intrs)); 
6051  134 

135 
val fp_rhs = Fp.oper $ dom_sum $ fp_abs 

136 

22567
1565d476a9e2
removed assert/deny (avoid clash with Alice keywords and confusion due to strict evaluation);
wenzelm
parents:
22101
diff
changeset

137 
val dummy = List.app (fn rec_hd => (Logic.occs (rec_hd, fp_rhs) andalso 
1565d476a9e2
removed assert/deny (avoid clash with Alice keywords and confusion due to strict evaluation);
wenzelm
parents:
22101
diff
changeset

138 
error "Illegal occurrence of recursion operator"; ())) 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

139 
rec_hds; 
6051  140 

141 
(*** Make the new theory ***) 

142 

143 
(*A key definition: 

144 
If no mutual recursion then it equals the one recursive set. 

145 
If mutual recursion then it differs from all the recursive sets. *) 

146 
val big_rec_base_name = space_implode "_" rec_base_names; 

20342  147 
val big_rec_name = Sign.intern_const thy big_rec_base_name; 
6051  148 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

149 

21962  150 
val _ = 
151 
if verbose then 

152 
writeln ((if coind then "Coind" else "Ind") ^ "uctive definition " ^ quote big_rec_name) 

153 
else (); 

6051  154 

155 
(*Big_rec... is the union of the mutually recursive sets*) 

156 
val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params); 

157 

158 
(*The individual sets must already be declared*) 

24255  159 
val axpairs = map PrimitiveDefs.mk_defpair 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

160 
((big_rec_tm, fp_rhs) :: 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

161 
(case parts of 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

162 
[_] => [] (*no mutual recursion*) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

163 
 _ => rec_tms ~~ (*define the sets as Parts*) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

164 
map (subst_atomic [(Free(X',iT),big_rec_tm)]) parts)); 
6051  165 

166 
(*tracing: print the fixedpoint definition*) 

167 
val dummy = if !Ind_Syntax.trace then 

26189  168 
writeln (cat_lines (map (Syntax.string_of_term ctxt o #2) axpairs)) 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

169 
else () 
6051  170 

171 
(*add definitions of the inductive sets*) 

18377  172 
val (_, thy1) = 
173 
thy 

24712
64ed05609568
proper Sign operations instead of Theory aliases;
wenzelm
parents:
24255
diff
changeset

174 
> Sign.add_path big_rec_base_name 
29579  175 
> PureThy.add_defs false (map (Thm.no_attributes o apfst Binding.name) axpairs); 
26189  176 

177 
val ctxt1 = ProofContext.init thy1; 

6051  178 

179 

180 
(*fetch fp definitions from the theory*) 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

181 
val big_rec_def::part_rec_defs = 
30345  182 
map (Drule.get_def thy1) 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

183 
(case rec_names of [_] => rec_names 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

184 
 _ => big_rec_base_name::rec_names); 
6051  185 

186 

187 
(********) 

188 
val dummy = writeln " Proving monotonicity..."; 

189 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

190 
val bnd_mono = 
20342  191 
Goal.prove_global thy1 [] [] (FOLogic.mk_Trueprop (Fp.bnd_mono $ dom_sum $ fp_abs)) 
17985  192 
(fn _ => EVERY 
24893  193 
[rtac (@{thm Collect_subset} RS @{thm bnd_monoI}) 1, 
194 
REPEAT (ares_tac (@{thms basic_monos} @ monos) 1)]); 

6051  195 

196 
val dom_subset = standard (big_rec_def RS Fp.subs); 

197 

198 
val unfold = standard ([big_rec_def, bnd_mono] MRS Fp.Tarski); 

199 

200 
(********) 

201 
val dummy = writeln " Proving the introduction rules..."; 

202 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

203 
(*Mutual recursion? Helps to derive subset rules for the 
6051  204 
individual sets.*) 
205 
val Part_trans = 

206 
case rec_names of 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

207 
[_] => asm_rl 
24893  208 
 _ => standard (@{thm Part_subset} RS @{thm subset_trans}); 
6051  209 

210 
(*To typecheck recursive occurrences of the inductive sets, possibly 

211 
enclosed in some monotonic operator M.*) 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

212 
val rec_typechecks = 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

213 
[dom_subset] RL (asm_rl :: ([Part_trans] RL monos)) 
24893  214 
RL [@{thm subsetD}]; 
6051  215 

216 
(*Typechecking is hardest aspect of proof; 

217 
disjIn selects the correct disjunct after unfolding*) 

17985  218 
fun intro_tacsf disjIn = 
219 
[DETERM (stac unfold 1), 

24893  220 
REPEAT (resolve_tac [@{thm Part_eqI}, @{thm CollectI}] 1), 
6051  221 
(*Now 23 subgoals: typechecking, the disjunction, perhaps equality.*) 
222 
rtac disjIn 2, 

223 
(*Not ares_tac, since refl must be tried before equality assumptions; 

224 
backtracking may occur if the premises have extra variables!*) 

225 
DEPTH_SOLVE_1 (resolve_tac [refl,exI,conjI] 2 APPEND assume_tac 2), 

226 
(*Now solve the equations like Tcons(a,f) = Inl(?b4)*) 

227 
rewrite_goals_tac con_defs, 

26189  228 
REPEAT (rtac @{thm refl} 2), 
6051  229 
(*Typechecking; this can fail*) 
6172  230 
if !Ind_Syntax.trace then print_tac "The typechecking subgoal:" 
6051  231 
else all_tac, 
232 
REPEAT (FIRSTGOAL ( dresolve_tac rec_typechecks 

30595
c87a3350f5a9
proper spacing before ML antiquotations  note that @ may be part of symbolic ML identifiers;
wenzelm
parents:
30364
diff
changeset

233 
ORELSE' eresolve_tac (asm_rl :: @{thm PartE} :: @{thm SigmaE2} :: 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

234 
type_elims) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

235 
ORELSE' hyp_subst_tac)), 
6051  236 
if !Ind_Syntax.trace then print_tac "The subgoal after monos, type_elims:" 
237 
else all_tac, 

30595
c87a3350f5a9
proper spacing before ML antiquotations  note that @ may be part of symbolic ML identifiers;
wenzelm
parents:
30364
diff
changeset

238 
DEPTH_SOLVE (swap_res_tac (@{thm SigmaI} :: @{thm subsetI} :: type_intrs) 1)]; 
6051  239 

240 
(*combines disjI1 and disjI2 to get the corresponding nested disjunct...*) 

32765  241 
val mk_disj_rls = Balanced_Tree.accesses 
26189  242 
{left = fn rl => rl RS @{thm disjI1}, 
243 
right = fn rl => rl RS @{thm disjI2}, 

244 
init = @{thm asm_rl}}; 

6051  245 

17985  246 
val intrs = 
247 
(intr_tms, map intro_tacsf (mk_disj_rls (length intr_tms))) 

248 
> ListPair.map (fn (t, tacs) => 

20342  249 
Goal.prove_global thy1 [] [] t 
32091
30e2ffbba718
proper context for Display.pretty_thm etc. or oldstyle versions Display.pretty_thm_global, Display.pretty_thm_without_context etc.;
wenzelm
parents:
30609
diff
changeset

250 
(fn _ => EVERY (rewrite_goals_tac part_rec_defs :: tacs))); 
6051  251 

252 
(********) 

253 
val dummy = writeln " Proving the elimination rule..."; 

254 

255 
(*Breaks down logical connectives in the monotonic function*) 

256 
val basic_elim_tac = 

257 
REPEAT (SOMEGOAL (eresolve_tac (Ind_Syntax.elim_rls @ Su.free_SEs) 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

258 
ORELSE' bound_hyp_subst_tac)) 
6051  259 
THEN prune_params_tac 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

260 
(*Mutual recursion: collapse references to Part(D,h)*) 
28839
32d498cf7595
eliminated rewrite_tac/fold_tac, which are not wellformed tactics due to change of main conclusion;
wenzelm
parents:
28678
diff
changeset

261 
THEN (PRIMITIVE (fold_rule part_rec_defs)); 
6051  262 

263 
(*Elimination*) 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

264 
val elim = rule_by_tactic basic_elim_tac 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

265 
(unfold RS Ind_Syntax.equals_CollectD) 
6051  266 

267 
(*Applies freeness of the given constructors, which *must* be unfolded by 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

268 
the given defs. Cannot simply use the local con_defs because 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

269 
con_defs=[] for inference systems. 
12175  270 
Proposition A should have the form t:Si where Si is an inductive set*) 
271 
fun make_cases ss A = 

272 
rule_by_tactic 

273 
(basic_elim_tac THEN ALLGOALS (asm_full_simp_tac ss) THEN basic_elim_tac) 

274 
(Thm.assume A RS elim) 

275 
> Drule.standard'; 

6051  276 

277 
fun induction_rules raw_induct thy = 

278 
let 

279 
val dummy = writeln " Proving the induction rule..."; 

280 

281 
(*** Prove the main induction rule ***) 

282 

283 
val pred_name = "P"; (*name for predicate variables*) 

284 

285 
(*Used to make induction rules; 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

286 
ind_alist = [(rec_tm1,pred1),...] associates predicates with rec ops 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

287 
prem is a premise of an intr rule*) 
26189  288 
fun add_induct_prem ind_alist (prem as Const (@{const_name Trueprop}, _) $ 
289 
(Const (@{const_name mem}, _) $ t $ X), iprems) = 

17314  290 
(case AList.lookup (op aconv) ind_alist X of 
15531  291 
SOME pred => prem :: FOLogic.mk_Trueprop (pred $ t) :: iprems 
292 
 NONE => (*possibly membership in M(rec_tm), for M monotone*) 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

293 
let fun mk_sb (rec_tm,pred) = 
26189  294 
(rec_tm, @{const Collect} $ rec_tm $ pred) 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

295 
in subst_free (map mk_sb ind_alist) prem :: iprems end) 
6051  296 
 add_induct_prem ind_alist (prem,iprems) = prem :: iprems; 
297 

298 
(*Make a premise of the induction rule.*) 

299 
fun induct_prem ind_alist intr = 

29265
5b4247055bd7
moved old add_term_vars, add_term_frees etc. to structure OldTerm;
wenzelm
parents:
29006
diff
changeset

300 
let val quantfrees = map dest_Free (OldTerm.term_frees intr \\ rec_params) 
30190  301 
val iprems = List.foldr (add_induct_prem ind_alist) [] 
15574
b1d1b5bfc464
Removed practically all references to Library.foldr.
skalberg
parents:
15570
diff
changeset

302 
(Logic.strip_imp_prems intr) 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

303 
val (t,X) = Ind_Syntax.rule_concl intr 
17314  304 
val (SOME pred) = AList.lookup (op aconv) ind_alist X 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

305 
val concl = FOLogic.mk_Trueprop (pred $ t) 
6051  306 
in list_all_free (quantfrees, Logic.list_implies (iprems,concl)) end 
307 
handle Bind => error"Recursion term not found in conclusion"; 

308 

309 
(*Minimizes backtracking by delivering the correct premise to each goal. 

310 
Intro rules with extra Vars in premises still cause some backtracking *) 

311 
fun ind_tac [] 0 = all_tac 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

312 
 ind_tac(prem::prems) i = 
13747
bf308fcfd08e
Better treatment of equality in premises of inductive definitions. Less
paulson
parents:
13627
diff
changeset

313 
DEPTH_SOLVE_1 (ares_tac [prem, refl] i) THEN ind_tac prems (i1); 
6051  314 

315 
val pred = Free(pred_name, Ind_Syntax.iT > FOLogic.oT); 

316 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

317 
val ind_prems = map (induct_prem (map (rpair pred) rec_tms)) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

318 
intr_tms; 
6051  319 

32091
30e2ffbba718
proper context for Display.pretty_thm etc. or oldstyle versions Display.pretty_thm_global, Display.pretty_thm_without_context etc.;
wenzelm
parents:
30609
diff
changeset

320 
val dummy = 
30e2ffbba718
proper context for Display.pretty_thm etc. or oldstyle versions Display.pretty_thm_global, Display.pretty_thm_without_context etc.;
wenzelm
parents:
30609
diff
changeset

321 
if ! Ind_Syntax.trace then 
30e2ffbba718
proper context for Display.pretty_thm etc. or oldstyle versions Display.pretty_thm_global, Display.pretty_thm_without_context etc.;
wenzelm
parents:
30609
diff
changeset

322 
writeln (cat_lines 
30e2ffbba718
proper context for Display.pretty_thm etc. or oldstyle versions Display.pretty_thm_global, Display.pretty_thm_without_context etc.;
wenzelm
parents:
30609
diff
changeset

323 
(["ind_prems:"] @ map (Syntax.string_of_term ctxt1) ind_prems @ 
30e2ffbba718
proper context for Display.pretty_thm etc. or oldstyle versions Display.pretty_thm_global, Display.pretty_thm_without_context etc.;
wenzelm
parents:
30609
diff
changeset

324 
["raw_induct:", Display.string_of_thm ctxt1 raw_induct])) 
30e2ffbba718
proper context for Display.pretty_thm etc. or oldstyle versions Display.pretty_thm_global, Display.pretty_thm_without_context etc.;
wenzelm
parents:
30609
diff
changeset

325 
else (); 
6051  326 

327 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

328 
(*We use a MINIMAL simpset. Even FOL_ss contains too many simpules. 
6051  329 
If the premises get simplified, then the proofs could fail.*) 
17892  330 
val min_ss = Simplifier.theory_context thy empty_ss 
12725  331 
setmksimps (map mk_eq o ZF_atomize o gen_all) 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

332 
setSolver (mk_solver "minimal" 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

333 
(fn prems => resolve_tac (triv_rls@prems) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

334 
ORELSE' assume_tac 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

335 
ORELSE' etac FalseE)); 
6051  336 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

337 
val quant_induct = 
20342  338 
Goal.prove_global thy1 [] ind_prems 
17985  339 
(FOLogic.mk_Trueprop (Ind_Syntax.mk_all_imp (big_rec_tm, pred))) 
26712
e2dcda7b0401
adapted to ProofContext.revert_skolem: extra Name.clean required;
wenzelm
parents:
26336
diff
changeset

340 
(fn {prems, ...} => EVERY 
17985  341 
[rewrite_goals_tac part_rec_defs, 
26189  342 
rtac (@{thm impI} RS @{thm allI}) 1, 
17985  343 
DETERM (etac raw_induct 1), 
344 
(*Push Part inside Collect*) 

24893  345 
full_simp_tac (min_ss addsimps [@{thm Part_Collect}]) 1, 
17985  346 
(*This CollectE and disjE separates out the introduction rules*) 
26189  347 
REPEAT (FIRSTGOAL (eresolve_tac [@{thm CollectE}, @{thm disjE}])), 
17985  348 
(*Now break down the individual cases. No disjE here in case 
349 
some premise involves disjunction.*) 

26189  350 
REPEAT (FIRSTGOAL (eresolve_tac [@{thm CollectE}, @{thm exE}, @{thm conjE}] 
17985  351 
ORELSE' bound_hyp_subst_tac)), 
20046  352 
ind_tac (rev (map (rewrite_rule part_rec_defs) prems)) (length prems)]); 
6051  353 

32091
30e2ffbba718
proper context for Display.pretty_thm etc. or oldstyle versions Display.pretty_thm_global, Display.pretty_thm_without_context etc.;
wenzelm
parents:
30609
diff
changeset

354 
val dummy = 
30e2ffbba718
proper context for Display.pretty_thm etc. or oldstyle versions Display.pretty_thm_global, Display.pretty_thm_without_context etc.;
wenzelm
parents:
30609
diff
changeset

355 
if ! Ind_Syntax.trace then 
30e2ffbba718
proper context for Display.pretty_thm etc. or oldstyle versions Display.pretty_thm_global, Display.pretty_thm_without_context etc.;
wenzelm
parents:
30609
diff
changeset

356 
writeln ("quant_induct:\n" ^ Display.string_of_thm ctxt1 quant_induct) 
30e2ffbba718
proper context for Display.pretty_thm etc. or oldstyle versions Display.pretty_thm_global, Display.pretty_thm_without_context etc.;
wenzelm
parents:
30609
diff
changeset

357 
else (); 
6051  358 

359 

360 
(*** Prove the simultaneous induction rule ***) 

361 

362 
(*Make distinct predicates for each inductive set*) 

363 

364 
(*The components of the element type, several if it is a product*) 

365 
val elem_type = CP.pseudo_type dom_sum; 

366 
val elem_factors = CP.factors elem_type; 

367 
val elem_frees = mk_frees "za" elem_factors; 

368 
val elem_tuple = CP.mk_tuple Pr.pair elem_type elem_frees; 

369 

370 
(*Given a recursive set and its domain, return the "fsplit" predicate 

371 
and a conclusion for the simultaneous induction rule. 

372 
NOTE. This will not work for mutually recursive predicates. Previously 

373 
a summand 'domt' was also an argument, but this required the domain of 

374 
mutual recursion to invariably be a disjoint sum.*) 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

375 
fun mk_predpair rec_tm = 
6051  376 
let val rec_name = (#1 o dest_Const o head_of) rec_tm 
30364
577edc39b501
moved basic algebra of long names from structure NameSpace to Long_Name;
wenzelm
parents:
30345
diff
changeset

377 
val pfree = Free(pred_name ^ "_" ^ Long_Name.base_name rec_name, 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

378 
elem_factors > FOLogic.oT) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

379 
val qconcl = 
30190  380 
List.foldr FOLogic.mk_all 
15574
b1d1b5bfc464
Removed practically all references to Library.foldr.
skalberg
parents:
15570
diff
changeset

381 
(FOLogic.imp $ 
26189  382 
(@{const mem} $ elem_tuple $ rec_tm) 
15574
b1d1b5bfc464
Removed practically all references to Library.foldr.
skalberg
parents:
15570
diff
changeset

383 
$ (list_comb (pfree, elem_frees))) elem_frees 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

384 
in (CP.ap_split elem_type FOLogic.oT pfree, 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

385 
qconcl) 
6051  386 
end; 
387 

388 
val (preds,qconcls) = split_list (map mk_predpair rec_tms); 

389 

390 
(*Used to form simultaneous induction lemma*) 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

391 
fun mk_rec_imp (rec_tm,pred) = 
26189  392 
FOLogic.imp $ (@{const mem} $ Bound 0 $ rec_tm) $ 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

393 
(pred $ Bound 0); 
6051  394 

395 
(*To instantiate the main induction rule*) 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

396 
val induct_concl = 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

397 
FOLogic.mk_Trueprop 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

398 
(Ind_Syntax.mk_all_imp 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

399 
(big_rec_tm, 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

400 
Abs("z", Ind_Syntax.iT, 
32765  401 
Balanced_Tree.make FOLogic.mk_conj 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

402 
(ListPair.map mk_rec_imp (rec_tms, preds))))) 
6051  403 
and mutual_induct_concl = 
32765  404 
FOLogic.mk_Trueprop (Balanced_Tree.make FOLogic.mk_conj qconcls); 
6051  405 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

406 
val dummy = if !Ind_Syntax.trace then 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

407 
(writeln ("induct_concl = " ^ 
26189  408 
Syntax.string_of_term ctxt1 induct_concl); 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

409 
writeln ("mutual_induct_concl = " ^ 
26189  410 
Syntax.string_of_term ctxt1 mutual_induct_concl)) 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

411 
else (); 
6051  412 

413 

26189  414 
val lemma_tac = FIRST' [eresolve_tac [@{thm asm_rl}, @{thm conjE}, @{thm PartE}, @{thm mp}], 
415 
resolve_tac [@{thm allI}, @{thm impI}, @{thm conjI}, @{thm Part_eqI}], 

416 
dresolve_tac [@{thm spec}, @{thm mp}, Pr.fsplitD]]; 

6051  417 

418 
val need_mutual = length rec_names > 1; 

419 

420 
val lemma = (*makes the link between the two induction rules*) 

421 
if need_mutual then 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

422 
(writeln " Proving the mutual induction rule..."; 
20342  423 
Goal.prove_global thy1 [] [] 
17985  424 
(Logic.mk_implies (induct_concl, mutual_induct_concl)) 
425 
(fn _ => EVERY 

426 
[rewrite_goals_tac part_rec_defs, 

20046  427 
REPEAT (rewrite_goals_tac [Pr.split_eq] THEN lemma_tac 1)])) 
26189  428 
else (writeln " [ No mutual induction rule needed ]"; @{thm TrueI}); 
6051  429 

32091
30e2ffbba718
proper context for Display.pretty_thm etc. or oldstyle versions Display.pretty_thm_global, Display.pretty_thm_without_context etc.;
wenzelm
parents:
30609
diff
changeset

430 
val dummy = 
30e2ffbba718
proper context for Display.pretty_thm etc. or oldstyle versions Display.pretty_thm_global, Display.pretty_thm_without_context etc.;
wenzelm
parents:
30609
diff
changeset

431 
if ! Ind_Syntax.trace then 
30e2ffbba718
proper context for Display.pretty_thm etc. or oldstyle versions Display.pretty_thm_global, Display.pretty_thm_without_context etc.;
wenzelm
parents:
30609
diff
changeset

432 
writeln ("lemma: " ^ Display.string_of_thm ctxt1 lemma) 
30e2ffbba718
proper context for Display.pretty_thm etc. or oldstyle versions Display.pretty_thm_global, Display.pretty_thm_without_context etc.;
wenzelm
parents:
30609
diff
changeset

433 
else (); 
6051  434 

435 

436 
(*Mutual induction follows by freeness of Inl/Inr.*) 

437 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

438 
(*Simplification largely reduces the mutual induction rule to the 
6051  439 
standard rule*) 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

440 
val mut_ss = 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

441 
min_ss addsimps [Su.distinct, Su.distinct', Su.inl_iff, Su.inr_iff]; 
6051  442 

443 
val all_defs = con_defs @ part_rec_defs; 

444 

445 
(*Removes Collects caused by Moperators in the intro rules. It is very 

446 
hard to simplify 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

447 
list({v: tf. (v : t > P_t(v)) & (v : f > P_f(v))}) 
6051  448 
where t==Part(tf,Inl) and f==Part(tf,Inr) to list({v: tf. P_t(v)}). 
449 
Instead the following rules extract the relevant conjunct. 

450 
*) 

24893  451 
val cmonos = [@{thm subset_refl} RS @{thm Collect_mono}] RL monos 
452 
RLN (2,[@{thm rev_subsetD}]); 

6051  453 

454 
(*Minimizes backtracking by delivering the correct premise to each goal*) 

455 
fun mutual_ind_tac [] 0 = all_tac 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

456 
 mutual_ind_tac(prem::prems) i = 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

457 
DETERM 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

458 
(SELECT_GOAL 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

459 
( 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

460 
(*Simplify the assumptions and goal by unfolding Part and 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

461 
using freeness of the Sum constructors; proves all but one 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

462 
conjunct by contradiction*) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

463 
rewrite_goals_tac all_defs THEN 
24893  464 
simp_tac (mut_ss addsimps [@{thm Part_iff}]) 1 THEN 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

465 
IF_UNSOLVED (*simp_tac may have finished it off!*) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

466 
((*simplify assumptions*) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

467 
(*some risk of excessive simplification here  might have 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

468 
to identify the bare minimum set of rewrites*) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

469 
full_simp_tac 
26287  470 
(mut_ss addsimps @{thms conj_simps} @ @{thms imp_simps} @ @{thms quant_simps}) 1 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

471 
THEN 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

472 
(*unpackage and use "prem" in the corresponding place*) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

473 
REPEAT (rtac impI 1) THEN 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

474 
rtac (rewrite_rule all_defs prem) 1 THEN 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

475 
(*prem must not be REPEATed below: could loop!*) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

476 
DEPTH_SOLVE (FIRSTGOAL (ares_tac [impI] ORELSE' 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

477 
eresolve_tac (conjE::mp::cmonos)))) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

478 
) i) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

479 
THEN mutual_ind_tac prems (i1); 
6051  480 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

481 
val mutual_induct_fsplit = 
6051  482 
if need_mutual then 
20342  483 
Goal.prove_global thy1 [] (map (induct_prem (rec_tms~~preds)) intr_tms) 
17985  484 
mutual_induct_concl 
26712
e2dcda7b0401
adapted to ProofContext.revert_skolem: extra Name.clean required;
wenzelm
parents:
26336
diff
changeset

485 
(fn {prems, ...} => EVERY 
17985  486 
[rtac (quant_induct RS lemma) 1, 
20046  487 
mutual_ind_tac (rev prems) (length prems)]) 
6051  488 
else TrueI; 
489 

490 
(** Uncurrying the predicate in the ordinary induction rule **) 

491 

492 
(*instantiate the variable to a tuple, if it is nontrivial, in order to 

493 
allow the predicate to be "opened up". 

494 
The name "x.1" comes from the "RS spec" !*) 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

495 
val inst = 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

496 
case elem_frees of [_] => I 
20342  497 
 _ => instantiate ([], [(cterm_of thy1 (Var(("x",1), Ind_Syntax.iT)), 
498 
cterm_of thy1 elem_tuple)]); 

6051  499 

500 
(*strip quantifier and the implication*) 

26189  501 
val induct0 = inst (quant_induct RS spec RSN (2, @{thm rev_mp})); 
6051  502 

26189  503 
val Const (@{const_name Trueprop}, _) $ (pred_var $ _) = concl_of induct0 
6051  504 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

505 
val induct = CP.split_rule_var(pred_var, elem_type>FOLogic.oT, induct0) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

506 
> standard 
6051  507 
and mutual_induct = CP.remove_split mutual_induct_fsplit 
8438  508 

18377  509 
val ([induct', mutual_induct'], thy') = 
510 
thy 

29579  511 
> PureThy.add_thms [((Binding.name (co_prefix ^ "induct"), induct), 
24861
cc669ca5f382
tuned Induct interface: prefer pred'' over set'';
wenzelm
parents:
24830
diff
changeset

512 
[case_names, Induct.induct_pred big_rec_name]), 
29579  513 
((Binding.name "mutual_induct", mutual_induct), [case_names])]; 
12227  514 
in ((thy', induct'), mutual_induct') 
6051  515 
end; (*of induction_rules*) 
516 

517 
val raw_induct = standard ([big_rec_def, bnd_mono] MRS Fp.induct) 

518 

12227  519 
val ((thy2, induct), mutual_induct) = 
520 
if not coind then induction_rules raw_induct thy1 

18377  521 
else 
522 
(thy1 

29579  523 
> PureThy.add_thms [((Binding.name (co_prefix ^ "induct"), raw_induct), [])] 
18377  524 
> apfst hd > Library.swap, TrueI) 
6051  525 
and defs = big_rec_def :: part_rec_defs 
526 

527 

18377  528 
val (([bnd_mono', dom_subset', elim'], [defs', intrs']), thy3) = 
8438  529 
thy2 
12183  530 
> IndCases.declare big_rec_name make_cases 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

531 
> PureThy.add_thms 
29579  532 
[((Binding.name "bnd_mono", bnd_mono), []), 
533 
((Binding.name "dom_subset", dom_subset), []), 

534 
((Binding.name "cases", elim), [case_names, Induct.cases_pred big_rec_name])] 

18377  535 
>> (PureThy.add_thmss o map Thm.no_attributes) 
29579  536 
[(Binding.name "defs", defs), 
537 
(Binding.name "intros", intrs)]; 

18377  538 
val (intrs'', thy4) = 
539 
thy3 

29579  540 
> PureThy.add_thms ((map Binding.name intr_names ~~ intrs') ~~ map #2 intr_specs) 
24712
64ed05609568
proper Sign operations instead of Theory aliases;
wenzelm
parents:
24255
diff
changeset

541 
> Sign.parent_path; 
8438  542 
in 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

543 
(thy4, 
8438  544 
{defs = defs', 
545 
bnd_mono = bnd_mono', 

546 
dom_subset = dom_subset', 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

547 
intrs = intrs'', 
8438  548 
elim = elim', 
549 
induct = induct, 

550 
mutual_induct = mutual_induct}) 

551 
end; 

6051  552 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

553 
(*source version*) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

554 
fun add_inductive (srec_tms, sdom_sum) intr_srcs 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

555 
(raw_monos, raw_con_defs, raw_type_intrs, raw_type_elims) thy = 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

556 
let 
24726  557 
val ctxt = ProofContext.init thy; 
558 
val read_terms = map (Syntax.parse_term ctxt #> TypeInfer.constrain Ind_Syntax.iT) 

559 
#> Syntax.check_terms ctxt; 

560 

18728  561 
val intr_atts = map (map (Attrib.attribute thy) o snd) intr_srcs; 
17937  562 
val sintrs = map fst intr_srcs ~~ intr_atts; 
24726  563 
val rec_tms = read_terms srec_tms; 
564 
val dom_sum = singleton read_terms sdom_sum; 

565 
val intr_tms = Syntax.read_props ctxt (map (snd o fst) sintrs); 

17937  566 
val intr_specs = (map (fst o fst) sintrs ~~ intr_tms) ~~ map snd sintrs; 
24726  567 
val monos = Attrib.eval_thms ctxt raw_monos; 
568 
val con_defs = Attrib.eval_thms ctxt raw_con_defs; 

569 
val type_intrs = Attrib.eval_thms ctxt raw_type_intrs; 

570 
val type_elims = Attrib.eval_thms ctxt raw_type_elims; 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

571 
in 
18418
bf448d999b7e
rearranged tuples (theory * 'a) to ('a * theory) in Pure
haftmann
parents:
18377
diff
changeset

572 
thy 
24726  573 
> add_inductive_i true (rec_tms, dom_sum) intr_specs (monos, con_defs, type_intrs, type_elims) 
18418
bf448d999b7e
rearranged tuples (theory * 'a) to ('a * theory) in Pure
haftmann
parents:
18377
diff
changeset

574 
end; 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

575 

1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

576 

1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

577 
(* outer syntax *) 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

578 

17057  579 
local structure P = OuterParse and K = OuterKeyword in 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

580 

27354  581 
val _ = List.app OuterKeyword.keyword 
24867  582 
["domains", "intros", "monos", "con_defs", "type_intros", "type_elims"]; 
583 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

584 
fun mk_ind (((((doms, intrs), monos), con_defs), type_intrs), type_elims) = 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

585 
#1 o add_inductive doms (map P.triple_swap intrs) (monos, con_defs, type_intrs, type_elims); 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

586 

1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

587 
val ind_decl = 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

588 
(P.$$$ "domains"  P.!!! (P.enum1 "+" P.term  
25985  589 
((P.$$$ "\<subseteq>"  P.$$$ "<=")  P.term)))  
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

590 
(P.$$$ "intros"  
22101  591 
P.!!! (Scan.repeat1 (SpecParse.opt_thm_name ":"  P.prop)))  
592 
Scan.optional (P.$$$ "monos"  P.!!! SpecParse.xthms1) []  

593 
Scan.optional (P.$$$ "con_defs"  P.!!! SpecParse.xthms1) []  

594 
Scan.optional (P.$$$ "type_intros"  P.!!! SpecParse.xthms1) []  

595 
Scan.optional (P.$$$ "type_elims"  P.!!! SpecParse.xthms1) [] 

12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

596 
>> (Toplevel.theory o mk_ind); 
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

597 

24867  598 
val _ = OuterSyntax.command (co_prefix ^ "inductive") 
12227  599 
("define " ^ co_prefix ^ "inductive sets") K.thy_decl ind_decl; 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

600 

6051  601 
end; 
12132
1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

602 

1ef58b332ca9
support co/inductive definitions in newstyle theories;
wenzelm
parents:
11680
diff
changeset

603 
end; 
15705  604 