src/HOL/Library/While_Combinator.thy
author wenzelm
Wed Jan 03 21:24:29 2001 +0100 (2001-01-03 ago)
changeset 10774 4de3a0d3ae28
parent 10673 337c00fd385b
child 10984 8f49dcbec859
permissions -rw-r--r--
recdef_tc;
wenzelm@10251
     1
(*  Title:      HOL/Library/While.thy
wenzelm@10251
     2
    ID:         $Id$
wenzelm@10251
     3
    Author:     Tobias Nipkow
wenzelm@10251
     4
    Copyright   2000 TU Muenchen
wenzelm@10251
     5
*)
wenzelm@10251
     6
wenzelm@10251
     7
header {*
wenzelm@10251
     8
 \title{A general ``while'' combinator}
wenzelm@10251
     9
 \author{Tobias Nipkow}
wenzelm@10251
    10
*}
wenzelm@10251
    11
wenzelm@10251
    12
theory While_Combinator = Main:
wenzelm@10251
    13
wenzelm@10251
    14
text {*
wenzelm@10251
    15
 We define a while-combinator @{term while} and prove: (a) an
wenzelm@10251
    16
 unrestricted unfolding law (even if while diverges!)  (I got this
wenzelm@10251
    17
 idea from Wolfgang Goerigk), and (b) the invariant rule for reasoning
wenzelm@10251
    18
 about @{term while}.
wenzelm@10251
    19
*}
wenzelm@10251
    20
wenzelm@10251
    21
consts while_aux :: "('a => bool) \<times> ('a => 'a) \<times> 'a => 'a"
wenzelm@10251
    22
recdef while_aux
wenzelm@10251
    23
  "same_fst (\<lambda>b. True) (\<lambda>b. same_fst (\<lambda>c. True) (\<lambda>c.
wenzelm@10251
    24
      {(t, s).  b s \<and> c s = t \<and>
wenzelm@10251
    25
        \<not> (\<exists>f. f 0 = s \<and> (\<forall>i. b (f i) \<and> c (f i) = f (i + 1)))}))"
wenzelm@10251
    26
  "while_aux (b, c, s) =
wenzelm@10251
    27
    (if (\<exists>f. f 0 = s \<and> (\<forall>i. b (f i) \<and> c (f i) = f (i + 1)))
wenzelm@10251
    28
      then arbitrary
wenzelm@10251
    29
      else if b s then while_aux (b, c, c s)
wenzelm@10251
    30
      else s)"
wenzelm@10251
    31
wenzelm@10774
    32
recdef_tc while_aux_tc: while_aux
wenzelm@10774
    33
  apply (rule wf_same_fst)
wenzelm@10774
    34
  apply (rule wf_same_fst)
wenzelm@10774
    35
  apply (simp add: wf_iff_no_infinite_down_chain)
wenzelm@10774
    36
  apply blast
wenzelm@10774
    37
  done
wenzelm@10774
    38
wenzelm@10251
    39
constdefs
wenzelm@10251
    40
  while :: "('a => bool) => ('a => 'a) => 'a => 'a"
wenzelm@10251
    41
  "while b c s == while_aux (b, c, s)"
wenzelm@10251
    42
wenzelm@10251
    43
lemma while_aux_unfold:
wenzelm@10251
    44
  "while_aux (b, c, s) =
wenzelm@10251
    45
    (if \<exists>f. f 0 = s \<and> (\<forall>i. b (f i) \<and> c (f i) = f (i + 1))
wenzelm@10251
    46
      then arbitrary
wenzelm@10251
    47
      else if b s then while_aux (b, c, c s)
wenzelm@10251
    48
      else s)"
wenzelm@10251
    49
  apply (rule while_aux_tc [THEN while_aux.simps [THEN trans]])
wenzelm@10251
    50
   apply (simp add: same_fst_def)
wenzelm@10251
    51
  apply (rule refl)
wenzelm@10251
    52
  done
wenzelm@10251
    53
wenzelm@10251
    54
text {*
wenzelm@10251
    55
 The recursion equation for @{term while}: directly executable!
wenzelm@10251
    56
*}
wenzelm@10251
    57
wenzelm@10251
    58
theorem while_unfold:
wenzelm@10251
    59
    "while b c s = (if b s then while b c (c s) else s)"
wenzelm@10251
    60
  apply (unfold while_def)
wenzelm@10251
    61
  apply (rule while_aux_unfold [THEN trans])
wenzelm@10251
    62
  apply auto
wenzelm@10251
    63
  apply (subst while_aux_unfold)
wenzelm@10251
    64
  apply simp
wenzelm@10251
    65
  apply clarify
wenzelm@10251
    66
  apply (erule_tac x = "\<lambda>i. f (Suc i)" in allE)
wenzelm@10251
    67
  apply blast
wenzelm@10251
    68
  done
wenzelm@10251
    69
wenzelm@10251
    70
text {*
wenzelm@10251
    71
 The proof rule for @{term while}, where @{term P} is the invariant.
wenzelm@10251
    72
*}
wenzelm@10251
    73
nipkow@10653
    74
theorem while_rule_lemma[rule_format]:
wenzelm@10251
    75
  "(!!s. P s ==> b s ==> P (c s)) ==>
wenzelm@10251
    76
    (!!s. P s ==> \<not> b s ==> Q s) ==>
wenzelm@10251
    77
    wf {(t, s). P s \<and> b s \<and> t = c s} ==>
wenzelm@10251
    78
    P s --> Q (while b c s)"
wenzelm@10251
    79
proof -
wenzelm@10251
    80
  case antecedent
wenzelm@10251
    81
  assume wf: "wf {(t, s). P s \<and> b s \<and> t = c s}"
wenzelm@10251
    82
  show ?thesis
wenzelm@10251
    83
    apply (induct s rule: wf [THEN wf_induct])
wenzelm@10251
    84
    apply simp
wenzelm@10251
    85
    apply clarify
wenzelm@10251
    86
    apply (subst while_unfold)
wenzelm@10251
    87
    apply (simp add: antecedent)
wenzelm@10251
    88
    done
wenzelm@10251
    89
qed
wenzelm@10251
    90
nipkow@10653
    91
theorem while_rule:
wenzelm@10673
    92
  "[| P s; !!s. [| P s; b s  |] ==> P (c s);
wenzelm@10673
    93
    !!s. [| P s; \<not> b s  |] ==> Q s;
wenzelm@10673
    94
    wf r;  !!s. [| P s; b s  |] ==> (c s, s) \<in> r |] ==>
nipkow@10653
    95
    Q (while b c s)"
nipkow@10653
    96
apply (rule while_rule_lemma)
nipkow@10653
    97
prefer 4 apply assumption
nipkow@10653
    98
apply blast
nipkow@10653
    99
apply blast
nipkow@10653
   100
apply(erule wf_subset)
nipkow@10653
   101
apply blast
nipkow@10653
   102
done
nipkow@10653
   103
wenzelm@10251
   104
hide const while_aux
wenzelm@10251
   105
wenzelm@10251
   106
end