src/Pure/proofterm.ML
author wenzelm
Wed Aug 10 19:45:57 2011 +0200 (2011-08-10 ago)
changeset 44118 69e29cf993c0
parent 44116 c70257b4cb7e
child 44302 0a1934c5c104
permissions -rw-r--r--
avoid OldTerm operations -- with subtle changes of semantics;
berghofe@11519
     1
(*  Title:      Pure/proofterm.ML
wenzelm@11540
     2
    Author:     Stefan Berghofer, TU Muenchen
berghofe@11519
     3
wenzelm@11540
     4
LF style proof terms.
berghofe@11519
     5
*)
berghofe@11519
     6
berghofe@11615
     7
infix 8 % %% %>;
berghofe@11519
     8
berghofe@11519
     9
signature BASIC_PROOFTERM =
berghofe@11519
    10
sig
wenzelm@32738
    11
  val proofs: int Unsynchronized.ref
berghofe@11519
    12
berghofe@11519
    13
  datatype proof =
wenzelm@28803
    14
     MinProof
wenzelm@28803
    15
   | PBound of int
berghofe@11519
    16
   | Abst of string * typ option * proof
berghofe@11519
    17
   | AbsP of string * term option * proof
wenzelm@28803
    18
   | op % of proof * term option
wenzelm@28803
    19
   | op %% of proof * proof
berghofe@11519
    20
   | Hyp of term
berghofe@11519
    21
   | PAxm of string * term * typ list option
wenzelm@31943
    22
   | OfClass of typ * class
berghofe@11519
    23
   | Oracle of string * term * typ list option
wenzelm@28828
    24
   | Promise of serial * term * typ list
wenzelm@29635
    25
   | PThm of serial * ((string * term * typ list option) * proof_body future)
wenzelm@28803
    26
  and proof_body = PBody of
wenzelm@39687
    27
    {oracles: (string * term) Ord_List.T,
wenzelm@39687
    28
     thms: (serial * (string * term * proof_body future)) Ord_List.T,
wenzelm@28803
    29
     proof: proof}
berghofe@11519
    30
berghofe@11615
    31
  val %> : proof * term -> proof
berghofe@11519
    32
end;
berghofe@11519
    33
berghofe@11519
    34
signature PROOFTERM =
berghofe@11519
    35
sig
berghofe@11519
    36
  include BASIC_PROOFTERM
berghofe@11519
    37
wenzelm@28815
    38
  type oracle = string * term
wenzelm@29635
    39
  type pthm = serial * (string * term * proof_body future)
wenzelm@32094
    40
  val proof_of: proof_body -> proof
wenzelm@29635
    41
  val join_proof: proof_body future -> proof
wenzelm@30711
    42
  val fold_proof_atoms: bool -> (proof -> 'a -> 'a) -> proof list -> 'a -> 'a
wenzelm@32810
    43
  val fold_body_thms: (string * term * proof_body -> 'a -> 'a) -> proof_body list -> 'a -> 'a
wenzelm@32054
    44
  val join_bodies: proof_body list -> unit
wenzelm@30712
    45
  val status_of: proof_body list -> {failed: bool, oracle: bool, unfinished: bool}
wenzelm@28803
    46
wenzelm@28803
    47
  val oracle_ord: oracle * oracle -> order
wenzelm@28803
    48
  val thm_ord: pthm * pthm -> order
wenzelm@39687
    49
  val merge_oracles: oracle Ord_List.T -> oracle Ord_List.T -> oracle Ord_List.T
wenzelm@39687
    50
  val merge_thms: pthm Ord_List.T -> pthm Ord_List.T -> pthm Ord_List.T
wenzelm@39687
    51
  val all_oracles_of: proof_body -> oracle Ord_List.T
wenzelm@30716
    52
  val approximate_proof_body: proof -> proof_body
wenzelm@28803
    53
berghofe@11519
    54
  (** primitive operations **)
wenzelm@41698
    55
  val proofs_enabled: unit -> bool
wenzelm@28803
    56
  val proof_combt: proof * term list -> proof
wenzelm@28803
    57
  val proof_combt': proof * term option list -> proof
wenzelm@28803
    58
  val proof_combP: proof * proof list -> proof
wenzelm@28803
    59
  val strip_combt: proof -> proof * term option list
wenzelm@28803
    60
  val strip_combP: proof -> proof * proof list
wenzelm@28803
    61
  val strip_thm: proof_body -> proof_body
berghofe@37231
    62
  val map_proof_same: term Same.operation -> typ Same.operation
berghofe@37231
    63
    -> (typ * class -> proof) -> proof Same.operation
wenzelm@36620
    64
  val map_proof_terms_same: term Same.operation -> typ Same.operation -> proof Same.operation
wenzelm@36620
    65
  val map_proof_types_same: typ Same.operation -> proof Same.operation
wenzelm@28803
    66
  val map_proof_terms: (term -> term) -> (typ -> typ) -> proof -> proof
wenzelm@36620
    67
  val map_proof_types: (typ -> typ) -> proof -> proof
wenzelm@28803
    68
  val fold_proof_terms: (term -> 'a -> 'a) -> (typ -> 'a -> 'a) -> proof -> 'a -> 'a
wenzelm@28803
    69
  val maxidx_proof: proof -> int -> int
wenzelm@28803
    70
  val size_of_proof: proof -> int
wenzelm@28803
    71
  val change_type: typ list option -> proof -> proof
wenzelm@28803
    72
  val prf_abstract_over: term -> proof -> proof
wenzelm@28803
    73
  val prf_incr_bv: int -> int -> int -> int -> proof -> proof
wenzelm@28803
    74
  val incr_pboundvars: int -> int -> proof -> proof
wenzelm@28803
    75
  val prf_loose_bvar1: proof -> int -> bool
wenzelm@28803
    76
  val prf_loose_Pbvar1: proof -> int -> bool
wenzelm@28803
    77
  val prf_add_loose_bnos: int -> int -> proof -> int list * int list -> int list * int list
wenzelm@28803
    78
  val norm_proof: Envir.env -> proof -> proof
wenzelm@28803
    79
  val norm_proof': Envir.env -> proof -> proof
wenzelm@28803
    80
  val prf_subst_bounds: term list -> proof -> proof
wenzelm@28803
    81
  val prf_subst_pbounds: proof list -> proof -> proof
wenzelm@28803
    82
  val freeze_thaw_prf: proof -> proof * (proof -> proof)
berghofe@11519
    83
berghofe@11519
    84
  (** proof terms for specific inference rules **)
wenzelm@28803
    85
  val implies_intr_proof: term -> proof -> proof
berghofe@37231
    86
  val implies_intr_proof': term -> proof -> proof
wenzelm@28803
    87
  val forall_intr_proof: term -> string -> proof -> proof
berghofe@37231
    88
  val forall_intr_proof': term -> proof -> proof
wenzelm@28803
    89
  val varify_proof: term -> (string * sort) list -> proof -> proof
wenzelm@36619
    90
  val legacy_freezeT: term -> proof -> proof
wenzelm@28803
    91
  val rotate_proof: term list -> term -> int -> proof -> proof
wenzelm@36742
    92
  val permute_prems_proof: term list -> int -> int -> proof -> proof
wenzelm@19908
    93
  val generalize: string list * string list -> int -> proof -> proof
wenzelm@28803
    94
  val instantiate: ((indexname * sort) * typ) list * ((indexname * typ) * term) list
wenzelm@16880
    95
    -> proof -> proof
wenzelm@28803
    96
  val lift_proof: term -> int -> term -> proof -> proof
wenzelm@32027
    97
  val incr_indexes: int -> proof -> proof
wenzelm@28803
    98
  val assumption_proof: term list -> term -> int -> proof -> proof
wenzelm@28803
    99
  val bicompose_proof: bool -> term list -> term list -> term list -> term option ->
berghofe@23296
   100
    int -> int -> proof -> proof -> proof
wenzelm@28803
   101
  val equality_axms: (string * term) list
wenzelm@28803
   102
  val reflexive_axm: proof
wenzelm@28803
   103
  val symmetric_axm: proof
wenzelm@28803
   104
  val transitive_axm: proof
wenzelm@28803
   105
  val equal_intr_axm: proof
wenzelm@28803
   106
  val equal_elim_axm: proof
wenzelm@28803
   107
  val abstract_rule_axm: proof
wenzelm@28803
   108
  val combination_axm: proof
wenzelm@28803
   109
  val reflexive: proof
wenzelm@28803
   110
  val symmetric: proof -> proof
wenzelm@28803
   111
  val transitive: term -> typ -> proof -> proof -> proof
wenzelm@28803
   112
  val abstract_rule: term -> string -> proof -> proof
wenzelm@28803
   113
  val combination: term -> term -> term -> term -> typ -> proof -> proof -> proof
wenzelm@28803
   114
  val equal_intr: term -> term -> proof -> proof -> proof
wenzelm@28803
   115
  val equal_elim: term -> term -> proof -> proof -> proof
wenzelm@36621
   116
  val strip_shyps_proof: Sorts.algebra -> (typ * sort) list -> (typ * sort) list ->
wenzelm@36621
   117
    sort list -> proof -> proof
wenzelm@36740
   118
  val classrel_proof: theory -> class * class -> proof
wenzelm@36740
   119
  val arity_proof: theory -> string * sort list * class -> proof
wenzelm@36741
   120
  val of_sort_proof: theory -> (typ * class -> proof) -> typ * sort -> proof list
wenzelm@36740
   121
  val install_axclass_proofs:
wenzelm@36740
   122
   {classrel_proof: theory -> class * class -> proof,
wenzelm@36740
   123
    arity_proof: theory -> string * sort list * class -> proof} -> unit
wenzelm@28803
   124
  val axm_proof: string -> term -> proof
wenzelm@30716
   125
  val oracle_proof: string -> term -> oracle * proof
berghofe@11519
   126
berghofe@11519
   127
  (** rewriting on proof terms **)
wenzelm@28803
   128
  val add_prf_rrule: proof * proof -> theory -> theory
berghofe@37231
   129
  val add_prf_rproc: (typ list -> term option list -> proof -> (proof * proof) option) -> theory -> theory
wenzelm@33722
   130
  val no_skel: proof
wenzelm@33722
   131
  val normal_skel: proof
wenzelm@28803
   132
  val rewrite_proof: theory -> (proof * proof) list *
berghofe@37231
   133
    (typ list -> term option list -> proof -> (proof * proof) option) list -> proof -> proof
wenzelm@28803
   134
  val rewrite_proof_notypes: (proof * proof) list *
berghofe@37231
   135
    (typ list -> term option list -> proof -> (proof * proof) option) list -> proof -> proof
wenzelm@28803
   136
  val rew_proof: theory -> proof -> proof
wenzelm@36877
   137
wenzelm@36877
   138
  val promise_proof: theory -> serial -> term -> proof
wenzelm@36877
   139
  val fulfill_norm_proof: theory -> (serial * proof_body) list -> proof_body -> proof_body
wenzelm@36882
   140
  val thm_proof: theory -> string -> sort list -> term list -> term ->
wenzelm@36877
   141
    (serial * proof_body future) list -> proof_body -> pthm * proof
wenzelm@36883
   142
  val unconstrain_thm_proof: theory -> sort list -> term ->
wenzelm@36883
   143
    (serial * proof_body future) list -> proof_body -> pthm * proof
wenzelm@37297
   144
  val get_name: sort list -> term list -> term -> proof -> string
wenzelm@36877
   145
  val guess_name: proof -> string
berghofe@11519
   146
end
berghofe@11519
   147
berghofe@11519
   148
structure Proofterm : PROOFTERM =
berghofe@11519
   149
struct
berghofe@11519
   150
wenzelm@28803
   151
(***** datatype proof *****)
wenzelm@28803
   152
berghofe@11519
   153
datatype proof =
wenzelm@28803
   154
   MinProof
wenzelm@28803
   155
 | PBound of int
berghofe@11519
   156
 | Abst of string * typ option * proof
berghofe@11519
   157
 | AbsP of string * term option * proof
wenzelm@12497
   158
 | op % of proof * term option
wenzelm@12497
   159
 | op %% of proof * proof
berghofe@11519
   160
 | Hyp of term
berghofe@11519
   161
 | PAxm of string * term * typ list option
wenzelm@31943
   162
 | OfClass of typ * class
berghofe@11519
   163
 | Oracle of string * term * typ list option
wenzelm@28828
   164
 | Promise of serial * term * typ list
wenzelm@29635
   165
 | PThm of serial * ((string * term * typ list option) * proof_body future)
wenzelm@28803
   166
and proof_body = PBody of
wenzelm@39687
   167
  {oracles: (string * term) Ord_List.T,
wenzelm@39687
   168
   thms: (serial * (string * term * proof_body future)) Ord_List.T,
wenzelm@28803
   169
   proof: proof};
berghofe@11519
   170
wenzelm@28815
   171
type oracle = string * term;
wenzelm@29635
   172
type pthm = serial * (string * term * proof_body future);
wenzelm@28815
   173
wenzelm@28803
   174
fun proof_of (PBody {proof, ...}) = proof;
wenzelm@32094
   175
val join_proof = Future.join #> proof_of;
berghofe@17017
   176
berghofe@17017
   177
wenzelm@28803
   178
(***** proof atoms *****)
wenzelm@28803
   179
wenzelm@28803
   180
fun fold_proof_atoms all f =
wenzelm@28803
   181
  let
wenzelm@28803
   182
    fun app (Abst (_, _, prf)) = app prf
wenzelm@28803
   183
      | app (AbsP (_, _, prf)) = app prf
wenzelm@28803
   184
      | app (prf % _) = app prf
wenzelm@28803
   185
      | app (prf1 %% prf2) = app prf1 #> app prf2
wenzelm@28803
   186
      | app (prf as PThm (i, (_, body))) = (fn (x, seen) =>
wenzelm@28803
   187
          if Inttab.defined seen i then (x, seen)
wenzelm@28803
   188
          else
wenzelm@28815
   189
            let val (x', seen') =
wenzelm@29635
   190
              (if all then app (join_proof body) else I) (x, Inttab.update (i, ()) seen)
wenzelm@28815
   191
            in (f prf x', seen') end)
wenzelm@28803
   192
      | app prf = (fn (x, seen) => (f prf x, seen));
wenzelm@28803
   193
  in fn prfs => fn x => #1 (fold app prfs (x, Inttab.empty)) end;
berghofe@19357
   194
wenzelm@30711
   195
fun fold_body_thms f =
wenzelm@30711
   196
  let
wenzelm@32726
   197
    fun app (PBody {thms, ...}) =
wenzelm@32094
   198
     (Future.join_results (map (#3 o #2) thms);
wenzelm@32094
   199
      thms |> fold (fn (i, (name, prop, body)) => fn (x, seen) =>
wenzelm@32726
   200
        if Inttab.defined seen i then (x, seen)
wenzelm@32094
   201
        else
wenzelm@32094
   202
          let
wenzelm@32094
   203
            val body' = Future.join body;
wenzelm@32726
   204
            val (x', seen') = app body' (x, Inttab.update (i, ()) seen);
wenzelm@32810
   205
          in (f (name, prop, body') x', seen') end));
wenzelm@32726
   206
  in fn bodies => fn x => #1 (fold app bodies (x, Inttab.empty)) end;
wenzelm@30711
   207
wenzelm@32054
   208
fun join_bodies bodies = fold_body_thms (fn _ => fn () => ()) bodies ();
wenzelm@32054
   209
wenzelm@30712
   210
fun status_of bodies =
wenzelm@30711
   211
  let
wenzelm@30711
   212
    fun status (PBody {oracles, thms, ...}) x =
wenzelm@30711
   213
      let
wenzelm@30711
   214
        val ((oracle, unfinished, failed), seen) =
wenzelm@30711
   215
          (thms, x) |-> fold (fn (i, (_, _, body)) => fn (st, seen) =>
wenzelm@30711
   216
            if Inttab.defined seen i then (st, seen)
wenzelm@30711
   217
            else
wenzelm@30711
   218
              let val seen' = Inttab.update (i, ()) seen in
wenzelm@30711
   219
                (case Future.peek body of
wenzelm@43761
   220
                  SOME (Exn.Res body') => status body' (st, seen')
wenzelm@30711
   221
                | SOME (Exn.Exn _) =>
wenzelm@30711
   222
                    let val (oracle, unfinished, _) = st
wenzelm@30711
   223
                    in ((oracle, unfinished, true), seen') end
wenzelm@30711
   224
                | NONE =>
wenzelm@30711
   225
                    let val (oracle, _, failed) = st
wenzelm@30711
   226
                    in ((oracle, true, failed), seen') end)
wenzelm@30711
   227
              end);
wenzelm@30711
   228
      in ((oracle orelse not (null oracles), unfinished, failed), seen) end;
wenzelm@32057
   229
    val (oracle, unfinished, failed) =
wenzelm@32057
   230
      #1 (fold status bodies ((false, false, false), Inttab.empty));
wenzelm@30711
   231
  in {oracle = oracle, unfinished = unfinished, failed = failed} end;
wenzelm@30711
   232
wenzelm@28803
   233
wenzelm@28815
   234
(* proof body *)
wenzelm@28803
   235
wenzelm@35408
   236
val oracle_ord = prod_ord fast_string_ord Term_Ord.fast_term_ord;
wenzelm@28803
   237
fun thm_ord ((i, _): pthm, (j, _)) = int_ord (j, i);
wenzelm@28803
   238
wenzelm@39687
   239
val merge_oracles = Ord_List.union oracle_ord;
wenzelm@39687
   240
val merge_thms = Ord_List.union thm_ord;
wenzelm@30716
   241
wenzelm@30716
   242
val all_oracles_of =
wenzelm@30716
   243
  let
wenzelm@32057
   244
    fun collect (PBody {oracles, thms, ...}) =
wenzelm@32094
   245
     (Future.join_results (map (#3 o #2) thms);
wenzelm@32057
   246
      thms |> fold (fn (i, (_, _, body)) => fn (x, seen) =>
wenzelm@32057
   247
        if Inttab.defined seen i then (x, seen)
wenzelm@32057
   248
        else
wenzelm@32057
   249
          let
wenzelm@32057
   250
            val body' = Future.join body;
wenzelm@32057
   251
            val (x', seen') = collect body' (x, Inttab.update (i, ()) seen);
wenzelm@32094
   252
          in (merge_oracles oracles x', seen') end));
wenzelm@30716
   253
  in fn body => #1 (collect body ([], Inttab.empty)) end;
wenzelm@30716
   254
wenzelm@30716
   255
fun approximate_proof_body prf =
wenzelm@28803
   256
  let
wenzelm@28803
   257
    val (oracles, thms) = fold_proof_atoms false
wenzelm@28803
   258
      (fn Oracle (s, prop, _) => apfst (cons (s, prop))
wenzelm@28815
   259
        | PThm (i, ((name, prop, _), body)) => apsnd (cons (i, (name, prop, body)))
wenzelm@28803
   260
        | _ => I) [prf] ([], []);
wenzelm@30716
   261
  in
wenzelm@30716
   262
    PBody
wenzelm@39687
   263
     {oracles = Ord_List.make oracle_ord oracles,
wenzelm@39687
   264
      thms = Ord_List.make thm_ord thms,
wenzelm@30716
   265
      proof = prf}
wenzelm@30716
   266
  end;
berghofe@11519
   267
wenzelm@28803
   268
wenzelm@28803
   269
(***** proof objects with different levels of detail *****)
berghofe@11519
   270
skalberg@15531
   271
fun (prf %> t) = prf % SOME t;
berghofe@11519
   272
skalberg@15570
   273
val proof_combt = Library.foldl (op %>);
skalberg@15570
   274
val proof_combt' = Library.foldl (op %);
skalberg@15570
   275
val proof_combP = Library.foldl (op %%);
berghofe@11519
   276
wenzelm@21646
   277
fun strip_combt prf =
berghofe@11615
   278
    let fun stripc (prf % t, ts) = stripc (prf, t::ts)
wenzelm@21646
   279
          | stripc  x =  x
berghofe@11519
   280
    in  stripc (prf, [])  end;
berghofe@11519
   281
wenzelm@21646
   282
fun strip_combP prf =
berghofe@11615
   283
    let fun stripc (prf %% prf', prfs) = stripc (prf, prf'::prfs)
berghofe@11519
   284
          | stripc  x =  x
berghofe@11519
   285
    in  stripc (prf, [])  end;
berghofe@11519
   286
wenzelm@28803
   287
fun strip_thm (body as PBody {proof, ...}) =
wenzelm@28803
   288
  (case strip_combt (fst (strip_combP proof)) of
wenzelm@29635
   289
    (PThm (_, (_, body')), _) => Future.join body'
wenzelm@28803
   290
  | _ => body);
berghofe@11519
   291
wenzelm@23178
   292
val mk_Abst = fold_rev (fn (s, T:typ) => fn prf => Abst (s, NONE, prf));
skalberg@15531
   293
fun mk_AbsP (i, prf) = funpow i (fn prf => AbsP ("H", NONE, prf)) prf;
berghofe@11519
   294
wenzelm@36620
   295
fun map_proof_same term typ ofclass =
wenzelm@20000
   296
  let
wenzelm@32024
   297
    val typs = Same.map typ;
wenzelm@20000
   298
wenzelm@32024
   299
    fun proof (Abst (s, T, prf)) =
wenzelm@32024
   300
          (Abst (s, Same.map_option typ T, Same.commit proof prf)
wenzelm@32024
   301
            handle Same.SAME => Abst (s, T, proof prf))
wenzelm@32024
   302
      | proof (AbsP (s, t, prf)) =
wenzelm@32024
   303
          (AbsP (s, Same.map_option term t, Same.commit proof prf)
wenzelm@32024
   304
            handle Same.SAME => AbsP (s, t, proof prf))
wenzelm@32024
   305
      | proof (prf % t) =
wenzelm@32024
   306
          (proof prf % Same.commit (Same.map_option term) t
wenzelm@32024
   307
            handle Same.SAME => prf % Same.map_option term t)
wenzelm@32024
   308
      | proof (prf1 %% prf2) =
wenzelm@32024
   309
          (proof prf1 %% Same.commit proof prf2
wenzelm@32024
   310
            handle Same.SAME => prf1 %% proof prf2)
wenzelm@32024
   311
      | proof (PAxm (a, prop, SOME Ts)) = PAxm (a, prop, SOME (typs Ts))
wenzelm@36620
   312
      | proof (OfClass T_c) = ofclass T_c
wenzelm@32024
   313
      | proof (Oracle (a, prop, SOME Ts)) = Oracle (a, prop, SOME (typs Ts))
wenzelm@32024
   314
      | proof (Promise (i, prop, Ts)) = Promise (i, prop, typs Ts)
wenzelm@32057
   315
      | proof (PThm (i, ((a, prop, SOME Ts), body))) =
wenzelm@32057
   316
          PThm (i, ((a, prop, SOME (typs Ts)), body))
wenzelm@32024
   317
      | proof _ = raise Same.SAME;
wenzelm@36620
   318
  in proof end;
wenzelm@36620
   319
wenzelm@36620
   320
fun map_proof_terms_same term typ = map_proof_same term typ (fn (T, c) => OfClass (typ T, c));
wenzelm@36620
   321
fun map_proof_types_same typ = map_proof_terms_same (Term_Subst.map_types_same typ) typ;
wenzelm@20000
   322
haftmann@22662
   323
fun same eq f x =
berghofe@11715
   324
  let val x' = f x
wenzelm@32019
   325
  in if eq (x, x') then raise Same.SAME else x' end;
berghofe@11715
   326
wenzelm@36620
   327
fun map_proof_terms f g = Same.commit (map_proof_terms_same (same (op =) f) (same (op =) g));
wenzelm@36620
   328
fun map_proof_types f = Same.commit (map_proof_types_same (same (op =) f));
berghofe@11519
   329
wenzelm@20147
   330
fun fold_proof_terms f g (Abst (_, SOME T, prf)) = g T #> fold_proof_terms f g prf
wenzelm@20147
   331
  | fold_proof_terms f g (Abst (_, NONE, prf)) = fold_proof_terms f g prf
wenzelm@20147
   332
  | fold_proof_terms f g (AbsP (_, SOME t, prf)) = f t #> fold_proof_terms f g prf
wenzelm@20147
   333
  | fold_proof_terms f g (AbsP (_, NONE, prf)) = fold_proof_terms f g prf
wenzelm@20147
   334
  | fold_proof_terms f g (prf % SOME t) = fold_proof_terms f g prf #> f t
wenzelm@20147
   335
  | fold_proof_terms f g (prf % NONE) = fold_proof_terms f g prf
wenzelm@20147
   336
  | fold_proof_terms f g (prf1 %% prf2) =
wenzelm@20147
   337
      fold_proof_terms f g prf1 #> fold_proof_terms f g prf2
wenzelm@20159
   338
  | fold_proof_terms _ g (PAxm (_, _, SOME Ts)) = fold g Ts
wenzelm@31943
   339
  | fold_proof_terms _ g (OfClass (T, _)) = g T
wenzelm@28828
   340
  | fold_proof_terms _ g (Oracle (_, _, SOME Ts)) = fold g Ts
wenzelm@28828
   341
  | fold_proof_terms _ g (Promise (_, _, Ts)) = fold g Ts
wenzelm@28803
   342
  | fold_proof_terms _ g (PThm (_, ((_, _, SOME Ts), _))) = fold g Ts
wenzelm@20147
   343
  | fold_proof_terms _ _ _ = I;
berghofe@11519
   344
wenzelm@20300
   345
fun maxidx_proof prf = fold_proof_terms Term.maxidx_term Term.maxidx_typ prf;
berghofe@12868
   346
berghofe@13744
   347
fun size_of_proof (Abst (_, _, prf)) = 1 + size_of_proof prf
berghofe@13749
   348
  | size_of_proof (AbsP (_, t, prf)) = 1 + size_of_proof prf
wenzelm@28803
   349
  | size_of_proof (prf % _) = 1 + size_of_proof prf
berghofe@13744
   350
  | size_of_proof (prf1 %% prf2) = size_of_proof prf1 + size_of_proof prf2
berghofe@13744
   351
  | size_of_proof _ = 1;
berghofe@13744
   352
wenzelm@28803
   353
fun change_type opTs (PAxm (name, prop, _)) = PAxm (name, prop, opTs)
wenzelm@31943
   354
  | change_type (SOME [T]) (OfClass (_, c)) = OfClass (T, c)
berghofe@12907
   355
  | change_type opTs (Oracle (name, prop, _)) = Oracle (name, prop, opTs)
wenzelm@36879
   356
  | change_type opTs (Promise _) = raise Fail "change_type: unexpected promise"
wenzelm@32057
   357
  | change_type opTs (PThm (i, ((name, prop, _), body))) =
wenzelm@32057
   358
      PThm (i, ((name, prop, opTs), body))
berghofe@12907
   359
  | change_type _ prf = prf;
berghofe@12907
   360
berghofe@11519
   361
berghofe@11519
   362
(***** utilities *****)
berghofe@11519
   363
berghofe@11519
   364
fun strip_abs (_::Ts) (Abs (_, _, t)) = strip_abs Ts t
berghofe@11519
   365
  | strip_abs _ t = t;
berghofe@11519
   366
skalberg@15570
   367
fun mk_abs Ts t = Library.foldl (fn (t', T) => Abs ("", T, t')) (t, Ts);
berghofe@11519
   368
berghofe@11519
   369
wenzelm@21646
   370
(*Abstraction of a proof term over its occurrences of v,
berghofe@11519
   371
    which must contain no loose bound variables.
berghofe@11519
   372
  The resulting proof term is ready to become the body of an Abst.*)
berghofe@11519
   373
berghofe@11519
   374
fun prf_abstract_over v =
berghofe@11519
   375
  let
berghofe@11715
   376
    fun abst' lev u = if v aconv u then Bound lev else
berghofe@11715
   377
      (case u of
berghofe@11715
   378
         Abs (a, T, t) => Abs (a, T, abst' (lev + 1) t)
wenzelm@32019
   379
       | f $ t => (abst' lev f $ absth' lev t handle Same.SAME => f $ abst' lev t)
wenzelm@32019
   380
       | _ => raise Same.SAME)
wenzelm@32019
   381
    and absth' lev t = (abst' lev t handle Same.SAME => t);
berghofe@11519
   382
berghofe@11715
   383
    fun abst lev (AbsP (a, t, prf)) =
wenzelm@32024
   384
          (AbsP (a, Same.map_option (abst' lev) t, absth lev prf)
wenzelm@32019
   385
           handle Same.SAME => AbsP (a, t, abst lev prf))
berghofe@11715
   386
      | abst lev (Abst (a, T, prf)) = Abst (a, T, abst (lev + 1) prf)
berghofe@11715
   387
      | abst lev (prf1 %% prf2) = (abst lev prf1 %% absth lev prf2
wenzelm@32019
   388
          handle Same.SAME => prf1 %% abst lev prf2)
skalberg@15570
   389
      | abst lev (prf % t) = (abst lev prf % Option.map (absth' lev) t
wenzelm@32024
   390
          handle Same.SAME => prf % Same.map_option (abst' lev) t)
wenzelm@32019
   391
      | abst _ _ = raise Same.SAME
wenzelm@32024
   392
    and absth lev prf = (abst lev prf handle Same.SAME => prf);
berghofe@11519
   393
berghofe@11715
   394
  in absth 0 end;
berghofe@11519
   395
berghofe@11519
   396
berghofe@11519
   397
(*increments a proof term's non-local bound variables
berghofe@11519
   398
  required when moving a proof term within abstractions
berghofe@11519
   399
     inc is  increment for bound variables
berghofe@11519
   400
     lev is  level at which a bound variable is considered 'loose'*)
berghofe@11519
   401
berghofe@11519
   402
fun incr_bv' inct tlev t = incr_bv (inct, tlev, t);
berghofe@11519
   403
berghofe@11715
   404
fun prf_incr_bv' incP inct Plev tlev (PBound i) =
wenzelm@32019
   405
      if i >= Plev then PBound (i+incP) else raise Same.SAME
berghofe@11715
   406
  | prf_incr_bv' incP inct Plev tlev (AbsP (a, t, body)) =
wenzelm@32024
   407
      (AbsP (a, Same.map_option (same (op =) (incr_bv' inct tlev)) t,
wenzelm@32019
   408
         prf_incr_bv incP inct (Plev+1) tlev body) handle Same.SAME =>
berghofe@11715
   409
           AbsP (a, t, prf_incr_bv' incP inct (Plev+1) tlev body))
berghofe@11715
   410
  | prf_incr_bv' incP inct Plev tlev (Abst (a, T, body)) =
berghofe@11715
   411
      Abst (a, T, prf_incr_bv' incP inct Plev (tlev+1) body)
wenzelm@21646
   412
  | prf_incr_bv' incP inct Plev tlev (prf %% prf') =
berghofe@11715
   413
      (prf_incr_bv' incP inct Plev tlev prf %% prf_incr_bv incP inct Plev tlev prf'
wenzelm@32019
   414
       handle Same.SAME => prf %% prf_incr_bv' incP inct Plev tlev prf')
wenzelm@21646
   415
  | prf_incr_bv' incP inct Plev tlev (prf % t) =
skalberg@15570
   416
      (prf_incr_bv' incP inct Plev tlev prf % Option.map (incr_bv' inct tlev) t
wenzelm@32024
   417
       handle Same.SAME => prf % Same.map_option (same (op =) (incr_bv' inct tlev)) t)
wenzelm@32019
   418
  | prf_incr_bv' _ _ _ _ _ = raise Same.SAME
berghofe@11715
   419
and prf_incr_bv incP inct Plev tlev prf =
wenzelm@32019
   420
      (prf_incr_bv' incP inct Plev tlev prf handle Same.SAME => prf);
berghofe@11519
   421
berghofe@11519
   422
fun incr_pboundvars  0 0 prf = prf
berghofe@11519
   423
  | incr_pboundvars incP inct prf = prf_incr_bv incP inct 0 0 prf;
berghofe@11519
   424
berghofe@11519
   425
berghofe@11615
   426
fun prf_loose_bvar1 (prf1 %% prf2) k = prf_loose_bvar1 prf1 k orelse prf_loose_bvar1 prf2 k
skalberg@15531
   427
  | prf_loose_bvar1 (prf % SOME t) k = prf_loose_bvar1 prf k orelse loose_bvar1 (t, k)
skalberg@15531
   428
  | prf_loose_bvar1 (_ % NONE) _ = true
skalberg@15531
   429
  | prf_loose_bvar1 (AbsP (_, SOME t, prf)) k = loose_bvar1 (t, k) orelse prf_loose_bvar1 prf k
skalberg@15531
   430
  | prf_loose_bvar1 (AbsP (_, NONE, _)) k = true
berghofe@11519
   431
  | prf_loose_bvar1 (Abst (_, _, prf)) k = prf_loose_bvar1 prf (k+1)
berghofe@11519
   432
  | prf_loose_bvar1 _ _ = false;
berghofe@11519
   433
berghofe@11519
   434
fun prf_loose_Pbvar1 (PBound i) k = i = k
berghofe@11615
   435
  | prf_loose_Pbvar1 (prf1 %% prf2) k = prf_loose_Pbvar1 prf1 k orelse prf_loose_Pbvar1 prf2 k
berghofe@11615
   436
  | prf_loose_Pbvar1 (prf % _) k = prf_loose_Pbvar1 prf k
berghofe@11519
   437
  | prf_loose_Pbvar1 (AbsP (_, _, prf)) k = prf_loose_Pbvar1 prf (k+1)
berghofe@11519
   438
  | prf_loose_Pbvar1 (Abst (_, _, prf)) k = prf_loose_Pbvar1 prf k
berghofe@11519
   439
  | prf_loose_Pbvar1 _ _ = false;
berghofe@11519
   440
berghofe@12279
   441
fun prf_add_loose_bnos plev tlev (PBound i) (is, js) =
wenzelm@17492
   442
      if i < plev then (is, js) else (insert (op =) (i-plev) is, js)
berghofe@12279
   443
  | prf_add_loose_bnos plev tlev (prf1 %% prf2) p =
berghofe@12279
   444
      prf_add_loose_bnos plev tlev prf2
berghofe@12279
   445
        (prf_add_loose_bnos plev tlev prf1 p)
berghofe@12279
   446
  | prf_add_loose_bnos plev tlev (prf % opt) (is, js) =
berghofe@12279
   447
      prf_add_loose_bnos plev tlev prf (case opt of
wenzelm@17492
   448
          NONE => (is, insert (op =) ~1 js)
skalberg@15531
   449
        | SOME t => (is, add_loose_bnos (t, tlev, js)))
berghofe@12279
   450
  | prf_add_loose_bnos plev tlev (AbsP (_, opt, prf)) (is, js) =
berghofe@12279
   451
      prf_add_loose_bnos (plev+1) tlev prf (case opt of
wenzelm@17492
   452
          NONE => (is, insert (op =) ~1 js)
skalberg@15531
   453
        | SOME t => (is, add_loose_bnos (t, tlev, js)))
berghofe@12279
   454
  | prf_add_loose_bnos plev tlev (Abst (_, _, prf)) p =
berghofe@12279
   455
      prf_add_loose_bnos plev (tlev+1) prf p
berghofe@12279
   456
  | prf_add_loose_bnos _ _ _ _ = ([], []);
berghofe@12279
   457
berghofe@11519
   458
berghofe@11519
   459
(**** substitutions ****)
berghofe@11519
   460
wenzelm@31977
   461
fun del_conflicting_tvars envT T = Term_Subst.instantiateT
wenzelm@19482
   462
  (map_filter (fn ixnS as (_, S) =>
haftmann@26328
   463
     (Type.lookup envT ixnS; NONE) handle TYPE _ =>
wenzelm@44118
   464
        SOME (ixnS, TFree ("'dummy", S))) (Term.add_tvarsT T [])) T;
berghofe@18316
   465
wenzelm@31977
   466
fun del_conflicting_vars env t = Term_Subst.instantiate
wenzelm@19482
   467
  (map_filter (fn ixnS as (_, S) =>
wenzelm@32019
   468
     (Type.lookup (Envir.type_env env) ixnS; NONE) handle TYPE _ =>
wenzelm@44118
   469
        SOME (ixnS, TFree ("'dummy", S))) (Term.add_tvars t []),
wenzelm@44118
   470
   map_filter (fn (ixnT as (_, T)) =>
berghofe@18316
   471
     (Envir.lookup (env, ixnT); NONE) handle TYPE _ =>
wenzelm@44118
   472
        SOME (ixnT, Free ("dummy", T))) (Term.add_vars t [])) t;
berghofe@18316
   473
berghofe@11519
   474
fun norm_proof env =
berghofe@11519
   475
  let
wenzelm@32019
   476
    val envT = Envir.type_env env;
berghofe@18316
   477
    fun msg s = warning ("type conflict in norm_proof:\n" ^ s);
berghofe@18316
   478
    fun htype f t = f env t handle TYPE (s, _, _) =>
berghofe@18316
   479
      (msg s; f env (del_conflicting_vars env t));
berghofe@18316
   480
    fun htypeT f T = f envT T handle TYPE (s, _, _) =>
berghofe@18316
   481
      (msg s; f envT (del_conflicting_tvars envT T));
berghofe@18316
   482
    fun htypeTs f Ts = f envT Ts handle TYPE (s, _, _) =>
berghofe@18316
   483
      (msg s; f envT (map (del_conflicting_tvars envT) Ts));
wenzelm@32024
   484
wenzelm@32019
   485
    fun norm (Abst (s, T, prf)) =
wenzelm@32024
   486
          (Abst (s, Same.map_option (htypeT Envir.norm_type_same) T, Same.commit norm prf)
wenzelm@32019
   487
            handle Same.SAME => Abst (s, T, norm prf))
wenzelm@32019
   488
      | norm (AbsP (s, t, prf)) =
wenzelm@32024
   489
          (AbsP (s, Same.map_option (htype Envir.norm_term_same) t, Same.commit norm prf)
wenzelm@32019
   490
            handle Same.SAME => AbsP (s, t, norm prf))
wenzelm@32019
   491
      | norm (prf % t) =
wenzelm@32019
   492
          (norm prf % Option.map (htype Envir.norm_term) t
wenzelm@32024
   493
            handle Same.SAME => prf % Same.map_option (htype Envir.norm_term_same) t)
wenzelm@32019
   494
      | norm (prf1 %% prf2) =
wenzelm@32019
   495
          (norm prf1 %% Same.commit norm prf2
wenzelm@32019
   496
            handle Same.SAME => prf1 %% norm prf2)
wenzelm@32019
   497
      | norm (PAxm (s, prop, Ts)) =
wenzelm@32024
   498
          PAxm (s, prop, Same.map_option (htypeTs Envir.norm_types_same) Ts)
wenzelm@32019
   499
      | norm (OfClass (T, c)) =
wenzelm@32019
   500
          OfClass (htypeT Envir.norm_type_same T, c)
wenzelm@32019
   501
      | norm (Oracle (s, prop, Ts)) =
wenzelm@32024
   502
          Oracle (s, prop, Same.map_option (htypeTs Envir.norm_types_same) Ts)
wenzelm@32019
   503
      | norm (Promise (i, prop, Ts)) =
wenzelm@32019
   504
          Promise (i, prop, htypeTs Envir.norm_types_same Ts)
wenzelm@28803
   505
      | norm (PThm (i, ((s, t, Ts), body))) =
wenzelm@32024
   506
          PThm (i, ((s, t, Same.map_option (htypeTs Envir.norm_types_same) Ts), body))
wenzelm@32019
   507
      | norm _ = raise Same.SAME;
wenzelm@32019
   508
  in Same.commit norm end;
berghofe@11519
   509
wenzelm@28803
   510
berghofe@11519
   511
(***** Remove some types in proof term (to save space) *****)
berghofe@11519
   512
berghofe@11519
   513
fun remove_types (Abs (s, _, t)) = Abs (s, dummyT, remove_types t)
berghofe@11519
   514
  | remove_types (t $ u) = remove_types t $ remove_types u
berghofe@11519
   515
  | remove_types (Const (s, _)) = Const (s, dummyT)
berghofe@11519
   516
  | remove_types t = t;
berghofe@11519
   517
wenzelm@32032
   518
fun remove_types_env (Envir.Envir {maxidx, tenv, tyenv}) =
haftmann@39020
   519
  Envir.Envir {maxidx = maxidx, tenv = Vartab.map (K (apsnd remove_types)) tenv, tyenv = tyenv};
berghofe@11519
   520
berghofe@11519
   521
fun norm_proof' env prf = norm_proof (remove_types_env env) prf;
berghofe@11519
   522
wenzelm@28803
   523
berghofe@11519
   524
(**** substitution of bound variables ****)
berghofe@11519
   525
berghofe@11519
   526
fun prf_subst_bounds args prf =
berghofe@11519
   527
  let
berghofe@11519
   528
    val n = length args;
berghofe@11519
   529
    fun subst' lev (Bound i) =
wenzelm@32019
   530
         (if i<lev then raise Same.SAME    (*var is locally bound*)
wenzelm@30146
   531
          else  incr_boundvars lev (nth args (i-lev))
wenzelm@43278
   532
                  handle General.Subscript => Bound (i-n))  (*loose: change it*)
berghofe@11519
   533
      | subst' lev (Abs (a, T, body)) = Abs (a, T,  subst' (lev+1) body)
berghofe@11519
   534
      | subst' lev (f $ t) = (subst' lev f $ substh' lev t
wenzelm@32019
   535
          handle Same.SAME => f $ subst' lev t)
wenzelm@32019
   536
      | subst' _ _ = raise Same.SAME
wenzelm@32019
   537
    and substh' lev t = (subst' lev t handle Same.SAME => t);
berghofe@11519
   538
wenzelm@32057
   539
    fun subst lev (AbsP (a, t, body)) =
wenzelm@32057
   540
        (AbsP (a, Same.map_option (subst' lev) t, substh lev body)
wenzelm@32019
   541
          handle Same.SAME => AbsP (a, t, subst lev body))
berghofe@11519
   542
      | subst lev (Abst (a, T, body)) = Abst (a, T, subst (lev+1) body)
berghofe@11615
   543
      | subst lev (prf %% prf') = (subst lev prf %% substh lev prf'
wenzelm@32019
   544
          handle Same.SAME => prf %% subst lev prf')
skalberg@15570
   545
      | subst lev (prf % t) = (subst lev prf % Option.map (substh' lev) t
wenzelm@32024
   546
          handle Same.SAME => prf % Same.map_option (subst' lev) t)
wenzelm@32019
   547
      | subst _ _ = raise Same.SAME
wenzelm@32024
   548
    and substh lev prf = (subst lev prf handle Same.SAME => prf);
berghofe@11519
   549
  in case args of [] => prf | _ => substh 0 prf end;
berghofe@11519
   550
berghofe@11519
   551
fun prf_subst_pbounds args prf =
berghofe@11519
   552
  let
berghofe@11519
   553
    val n = length args;
berghofe@11519
   554
    fun subst (PBound i) Plev tlev =
wenzelm@32019
   555
         (if i < Plev then raise Same.SAME    (*var is locally bound*)
wenzelm@30146
   556
          else incr_pboundvars Plev tlev (nth args (i-Plev))
wenzelm@43278
   557
                 handle General.Subscript => PBound (i-n)  (*loose: change it*))
berghofe@11519
   558
      | subst (AbsP (a, t, body)) Plev tlev = AbsP (a, t, subst body (Plev+1) tlev)
berghofe@11519
   559
      | subst (Abst (a, T, body)) Plev tlev = Abst (a, T, subst body Plev (tlev+1))
berghofe@11615
   560
      | subst (prf %% prf') Plev tlev = (subst prf Plev tlev %% substh prf' Plev tlev
wenzelm@32019
   561
          handle Same.SAME => prf %% subst prf' Plev tlev)
berghofe@11615
   562
      | subst (prf % t) Plev tlev = subst prf Plev tlev % t
wenzelm@32019
   563
      | subst  prf _ _ = raise Same.SAME
wenzelm@32019
   564
    and substh prf Plev tlev = (subst prf Plev tlev handle Same.SAME => prf)
berghofe@11519
   565
  in case args of [] => prf | _ => substh prf 0 0 end;
berghofe@11519
   566
berghofe@11519
   567
berghofe@11519
   568
(**** Freezing and thawing of variables in proof terms ****)
berghofe@11519
   569
wenzelm@44101
   570
local
wenzelm@44101
   571
berghofe@11519
   572
fun frzT names =
wenzelm@44101
   573
  map_type_tvar (fn (ixn, S) => TFree (the (AList.lookup (op =) names ixn), S));
berghofe@11519
   574
berghofe@11519
   575
fun thawT names =
wenzelm@44101
   576
  map_type_tfree (fn (a, S) =>
wenzelm@44101
   577
    (case AList.lookup (op =) names a of
wenzelm@44101
   578
      NONE => TFree (a, S)
wenzelm@44101
   579
    | SOME ixn => TVar (ixn, S)));
berghofe@11519
   580
berghofe@11519
   581
fun freeze names names' (t $ u) =
berghofe@11519
   582
      freeze names names' t $ freeze names names' u
berghofe@11519
   583
  | freeze names names' (Abs (s, T, t)) =
berghofe@11519
   584
      Abs (s, frzT names' T, freeze names names' t)
berghofe@11519
   585
  | freeze names names' (Const (s, T)) = Const (s, frzT names' T)
berghofe@11519
   586
  | freeze names names' (Free (s, T)) = Free (s, frzT names' T)
berghofe@11519
   587
  | freeze names names' (Var (ixn, T)) =
wenzelm@44101
   588
      Free (the (AList.lookup (op =) names ixn), frzT names' T)
berghofe@11519
   589
  | freeze names names' t = t;
berghofe@11519
   590
berghofe@11519
   591
fun thaw names names' (t $ u) =
berghofe@11519
   592
      thaw names names' t $ thaw names names' u
berghofe@11519
   593
  | thaw names names' (Abs (s, T, t)) =
berghofe@11519
   594
      Abs (s, thawT names' T, thaw names names' t)
berghofe@11519
   595
  | thaw names names' (Const (s, T)) = Const (s, thawT names' T)
wenzelm@21646
   596
  | thaw names names' (Free (s, T)) =
wenzelm@44101
   597
      let val T' = thawT names' T in
wenzelm@44101
   598
        (case AList.lookup (op =) names s of
skalberg@15531
   599
          NONE => Free (s, T')
wenzelm@44101
   600
        | SOME ixn => Var (ixn, T'))
berghofe@11519
   601
      end
berghofe@11519
   602
  | thaw names names' (Var (ixn, T)) = Var (ixn, thawT names' T)
berghofe@11519
   603
  | thaw names names' t = t;
berghofe@11519
   604
wenzelm@44101
   605
in
wenzelm@44101
   606
berghofe@11519
   607
fun freeze_thaw_prf prf =
berghofe@11519
   608
  let
berghofe@11519
   609
    val (fs, Tfs, vs, Tvs) = fold_proof_terms
wenzelm@20147
   610
      (fn t => fn (fs, Tfs, vs, Tvs) =>
wenzelm@29261
   611
         (Term.add_free_names t fs, Term.add_tfree_names t Tfs,
wenzelm@29261
   612
          Term.add_var_names t vs, Term.add_tvar_names t Tvs))
wenzelm@20147
   613
      (fn T => fn (fs, Tfs, vs, Tvs) =>
wenzelm@29261
   614
         (fs, Term.add_tfree_namesT T Tfs,
wenzelm@29261
   615
          vs, Term.add_tvar_namesT T Tvs))
wenzelm@20147
   616
      prf ([], [], [], []);
wenzelm@29261
   617
    val names = vs ~~ Name.variant_list fs (map fst vs);
wenzelm@20071
   618
    val names' = Tvs ~~ Name.variant_list Tfs (map fst Tvs);
berghofe@11519
   619
    val rnames = map swap names;
berghofe@11519
   620
    val rnames' = map swap names';
berghofe@11519
   621
  in
berghofe@11519
   622
    (map_proof_terms (freeze names names') (frzT names') prf,
berghofe@11519
   623
     map_proof_terms (thaw rnames rnames') (thawT rnames'))
berghofe@11519
   624
  end;
berghofe@11519
   625
wenzelm@44101
   626
end;
wenzelm@44101
   627
berghofe@11519
   628
berghofe@11519
   629
(***** implication introduction *****)
berghofe@11519
   630
berghofe@37231
   631
fun gen_implies_intr_proof f h prf =
berghofe@11519
   632
  let
wenzelm@32019
   633
    fun abshyp i (Hyp t) = if h aconv t then PBound i else raise Same.SAME
berghofe@11519
   634
      | abshyp i (Abst (s, T, prf)) = Abst (s, T, abshyp i prf)
wenzelm@32024
   635
      | abshyp i (AbsP (s, t, prf)) = AbsP (s, t, abshyp (i + 1) prf)
berghofe@11615
   636
      | abshyp i (prf % t) = abshyp i prf % t
wenzelm@32024
   637
      | abshyp i (prf1 %% prf2) =
wenzelm@32024
   638
          (abshyp i prf1 %% abshyph i prf2
wenzelm@32024
   639
            handle Same.SAME => prf1 %% abshyp i prf2)
wenzelm@32019
   640
      | abshyp _ _ = raise Same.SAME
wenzelm@32024
   641
    and abshyph i prf = (abshyp i prf handle Same.SAME => prf);
berghofe@11519
   642
  in
berghofe@37231
   643
    AbsP ("H", f h, abshyph 0 prf)
berghofe@11519
   644
  end;
berghofe@11519
   645
berghofe@37231
   646
val implies_intr_proof = gen_implies_intr_proof (K NONE);
berghofe@37231
   647
val implies_intr_proof' = gen_implies_intr_proof SOME;
berghofe@37231
   648
berghofe@11519
   649
berghofe@11519
   650
(***** forall introduction *****)
berghofe@11519
   651
skalberg@15531
   652
fun forall_intr_proof x a prf = Abst (a, NONE, prf_abstract_over x prf);
berghofe@11519
   653
berghofe@37231
   654
fun forall_intr_proof' t prf =
berghofe@37231
   655
  let val (a, T) = (case t of Var ((a, _), T) => (a, T) | Free p => p)
berghofe@37231
   656
  in Abst (a, SOME T, prf_abstract_over t prf) end;
berghofe@37231
   657
berghofe@11519
   658
berghofe@11519
   659
(***** varify *****)
berghofe@11519
   660
berghofe@11519
   661
fun varify_proof t fixed prf =
berghofe@11519
   662
  let
wenzelm@19304
   663
    val fs = Term.fold_types (Term.fold_atyps
wenzelm@19304
   664
      (fn TFree v => if member (op =) fixed v then I else insert (op =) v | _ => I)) t [];
wenzelm@29261
   665
    val used = Name.context
wenzelm@29261
   666
      |> fold_types (fold_atyps (fn TVar ((a, _), _) => Name.declare a | _ => I)) t;
wenzelm@43326
   667
    val fmap = fs ~~ #1 (fold_map Name.variant (map fst fs) used);
berghofe@11519
   668
    fun thaw (f as (a, S)) =
haftmann@17314
   669
      (case AList.lookup (op =) fmap f of
skalberg@15531
   670
        NONE => TFree f
skalberg@15531
   671
      | SOME b => TVar ((b, 0), S));
wenzelm@28803
   672
  in map_proof_terms (map_types (map_type_tfree thaw)) (map_type_tfree thaw) prf end;
berghofe@11519
   673
berghofe@11519
   674
berghofe@11519
   675
local
berghofe@11519
   676
wenzelm@44116
   677
fun new_name ix (pairs, used) =
wenzelm@43324
   678
  let val v = singleton (Name.variant_list used) (string_of_indexname ix)
wenzelm@44116
   679
  in ((ix, v) :: pairs, v :: used) end;
berghofe@11519
   680
wenzelm@44116
   681
fun freeze_one alist (ix, sort) =
wenzelm@44116
   682
  (case AList.lookup (op =) alist ix of
skalberg@15531
   683
    NONE => TVar (ix, sort)
skalberg@15531
   684
  | SOME name => TFree (name, sort));
berghofe@11519
   685
berghofe@11519
   686
in
berghofe@11519
   687
wenzelm@36619
   688
fun legacy_freezeT t prf =
berghofe@11519
   689
  let
wenzelm@44116
   690
    val used = Term.add_tfree_names t [];
wenzelm@44116
   691
    val (alist, _) = fold_rev new_name (map #1 (Term.add_tvars t [])) ([], used);
berghofe@11519
   692
  in
berghofe@11519
   693
    (case alist of
berghofe@11519
   694
      [] => prf (*nothing to do!*)
berghofe@11519
   695
    | _ =>
wenzelm@44116
   696
        let val frzT = map_type_tvar (freeze_one alist)
wenzelm@44116
   697
        in map_proof_terms (map_types frzT) frzT prf end)
berghofe@11519
   698
  end;
berghofe@11519
   699
berghofe@11519
   700
end;
berghofe@11519
   701
berghofe@11519
   702
berghofe@11519
   703
(***** rotate assumptions *****)
berghofe@11519
   704
berghofe@11519
   705
fun rotate_proof Bs Bi m prf =
berghofe@11519
   706
  let
berghofe@11519
   707
    val params = Term.strip_all_vars Bi;
berghofe@11519
   708
    val asms = Logic.strip_imp_prems (Term.strip_all_body Bi);
berghofe@11519
   709
    val i = length asms;
berghofe@11519
   710
    val j = length Bs;
berghofe@11519
   711
  in
berghofe@11519
   712
    mk_AbsP (j+1, proof_combP (prf, map PBound
wenzelm@23178
   713
      (j downto 1) @ [mk_Abst params (mk_AbsP (i,
berghofe@11519
   714
        proof_combP (proof_combt (PBound i, map Bound ((length params - 1) downto 0)),
wenzelm@23178
   715
          map PBound (((i-m-1) downto 0) @ ((i-1) downto (i-m))))))]))
berghofe@11519
   716
  end;
berghofe@11519
   717
berghofe@11519
   718
berghofe@11519
   719
(***** permute premises *****)
berghofe@11519
   720
wenzelm@36742
   721
fun permute_prems_proof prems j k prf =
berghofe@11519
   722
  let val n = length prems
berghofe@11519
   723
  in mk_AbsP (n, proof_combP (prf,
berghofe@11519
   724
    map PBound ((n-1 downto n-j) @ (k-1 downto 0) @ (n-j-1 downto k))))
berghofe@11519
   725
  end;
berghofe@11519
   726
berghofe@11519
   727
wenzelm@19908
   728
(***** generalization *****)
wenzelm@19908
   729
wenzelm@20000
   730
fun generalize (tfrees, frees) idx =
wenzelm@36620
   731
  Same.commit (map_proof_terms_same
wenzelm@36620
   732
    (Term_Subst.generalize_same (tfrees, frees) idx)
wenzelm@36620
   733
    (Term_Subst.generalizeT_same tfrees idx));
wenzelm@19908
   734
wenzelm@19908
   735
berghofe@11519
   736
(***** instantiation *****)
berghofe@11519
   737
wenzelm@20000
   738
fun instantiate (instT, inst) =
wenzelm@36620
   739
  Same.commit (map_proof_terms_same
wenzelm@36620
   740
    (Term_Subst.instantiate_same (instT, map (apsnd remove_types) inst))
wenzelm@36620
   741
    (Term_Subst.instantiateT_same instT));
berghofe@11519
   742
berghofe@11519
   743
berghofe@11519
   744
(***** lifting *****)
berghofe@11519
   745
berghofe@11519
   746
fun lift_proof Bi inc prop prf =
berghofe@11519
   747
  let
wenzelm@32024
   748
    fun lift'' Us Ts t =
wenzelm@32024
   749
      strip_abs Ts (Logic.incr_indexes (Us, inc) (mk_abs Ts t));
berghofe@11519
   750
berghofe@11715
   751
    fun lift' Us Ts (Abst (s, T, prf)) =
wenzelm@32024
   752
          (Abst (s, Same.map_option (Logic.incr_tvar_same inc) T, lifth' Us (dummyT::Ts) prf)
wenzelm@32019
   753
           handle Same.SAME => Abst (s, T, lift' Us (dummyT::Ts) prf))
berghofe@11715
   754
      | lift' Us Ts (AbsP (s, t, prf)) =
wenzelm@32024
   755
          (AbsP (s, Same.map_option (same (op =) (lift'' Us Ts)) t, lifth' Us Ts prf)
wenzelm@32019
   756
           handle Same.SAME => AbsP (s, t, lift' Us Ts prf))
skalberg@15570
   757
      | lift' Us Ts (prf % t) = (lift' Us Ts prf % Option.map (lift'' Us Ts) t
wenzelm@32024
   758
          handle Same.SAME => prf % Same.map_option (same (op =) (lift'' Us Ts)) t)
berghofe@11715
   759
      | lift' Us Ts (prf1 %% prf2) = (lift' Us Ts prf1 %% lifth' Us Ts prf2
wenzelm@32019
   760
          handle Same.SAME => prf1 %% lift' Us Ts prf2)
berghofe@11715
   761
      | lift' _ _ (PAxm (s, prop, Ts)) =
wenzelm@32024
   762
          PAxm (s, prop, (Same.map_option o Same.map) (Logic.incr_tvar_same inc) Ts)
wenzelm@31943
   763
      | lift' _ _ (OfClass (T, c)) =
wenzelm@32024
   764
          OfClass (Logic.incr_tvar_same inc T, c)
wenzelm@28828
   765
      | lift' _ _ (Oracle (s, prop, Ts)) =
wenzelm@32024
   766
          Oracle (s, prop, (Same.map_option o Same.map) (Logic.incr_tvar_same inc) Ts)
wenzelm@28828
   767
      | lift' _ _ (Promise (i, prop, Ts)) =
wenzelm@32024
   768
          Promise (i, prop, Same.map (Logic.incr_tvar_same inc) Ts)
wenzelm@28803
   769
      | lift' _ _ (PThm (i, ((s, prop, Ts), body))) =
wenzelm@32024
   770
          PThm (i, ((s, prop, (Same.map_option o Same.map) (Logic.incr_tvar inc) Ts), body))
wenzelm@32019
   771
      | lift' _ _ _ = raise Same.SAME
wenzelm@32019
   772
    and lifth' Us Ts prf = (lift' Us Ts prf handle Same.SAME => prf);
berghofe@11519
   773
wenzelm@18030
   774
    val ps = map (Logic.lift_all inc Bi) (Logic.strip_imp_prems prop);
berghofe@11519
   775
    val k = length ps;
berghofe@11519
   776
wenzelm@23178
   777
    fun mk_app b (i, j, prf) =
berghofe@11615
   778
          if b then (i-1, j, prf %% PBound i) else (i, j-1, prf %> Bound j);
berghofe@11519
   779
berghofe@11519
   780
    fun lift Us bs i j (Const ("==>", _) $ A $ B) =
wenzelm@20147
   781
            AbsP ("H", NONE (*A*), lift Us (true::bs) (i+1) j B)
wenzelm@21646
   782
      | lift Us bs i j (Const ("all", _) $ Abs (a, T, t)) =
wenzelm@20147
   783
            Abst (a, NONE (*T*), lift (T::Us) (false::bs) i (j+1) t)
berghofe@11715
   784
      | lift Us bs i j _ = proof_combP (lifth' (rev Us) [] prf,
wenzelm@23178
   785
            map (fn k => (#3 (fold_rev mk_app bs (i-1, j-1, PBound k))))
berghofe@11519
   786
              (i + k - 1 downto i));
berghofe@11519
   787
  in
berghofe@11519
   788
    mk_AbsP (k, lift [] [] 0 0 Bi)
berghofe@11519
   789
  end;
berghofe@11519
   790
wenzelm@32027
   791
fun incr_indexes i =
wenzelm@36620
   792
  Same.commit (map_proof_terms_same
wenzelm@36620
   793
    (Logic.incr_indexes_same ([], i)) (Logic.incr_tvar_same i));
wenzelm@32027
   794
berghofe@11519
   795
berghofe@11519
   796
(***** proof by assumption *****)
berghofe@11519
   797
berghofe@23296
   798
fun mk_asm_prf t i m =
berghofe@23296
   799
  let
berghofe@23296
   800
    fun imp_prf _ i 0 = PBound i
berghofe@23296
   801
      | imp_prf (Const ("==>", _) $ A $ B) i m = AbsP ("H", NONE (*A*), imp_prf B (i+1) (m-1))
berghofe@23296
   802
      | imp_prf _ i _ = PBound i;
berghofe@23296
   803
    fun all_prf (Const ("all", _) $ Abs (a, T, t)) = Abst (a, NONE (*T*), all_prf t)
berghofe@23296
   804
      | all_prf t = imp_prf t (~i) m
berghofe@23296
   805
  in all_prf t end;
berghofe@11519
   806
berghofe@11519
   807
fun assumption_proof Bs Bi n prf =
berghofe@11519
   808
  mk_AbsP (length Bs, proof_combP (prf,
berghofe@23296
   809
    map PBound (length Bs - 1 downto 0) @ [mk_asm_prf Bi n ~1]));
berghofe@11519
   810
berghofe@11519
   811
berghofe@11519
   812
(***** Composition of object rule with proof state *****)
berghofe@11519
   813
berghofe@11519
   814
fun flatten_params_proof i j n (Const ("==>", _) $ A $ B, k) =
skalberg@15531
   815
      AbsP ("H", NONE (*A*), flatten_params_proof (i+1) j n (B, k))
berghofe@11519
   816
  | flatten_params_proof i j n (Const ("all", _) $ Abs (a, T, t), k) =
skalberg@15531
   817
      Abst (a, NONE (*T*), flatten_params_proof i (j+1) n (t, k))
berghofe@11519
   818
  | flatten_params_proof i j n (_, k) = proof_combP (proof_combt (PBound (k+i),
wenzelm@19304
   819
      map Bound (j-1 downto 0)), map PBound (remove (op =) (i-n) (i-1 downto 0)));
berghofe@11519
   820
berghofe@23296
   821
fun bicompose_proof flatten Bs oldAs newAs A n m rprf sprf =
berghofe@11519
   822
  let
berghofe@11519
   823
    val la = length newAs;
berghofe@11519
   824
    val lb = length Bs;
berghofe@11519
   825
  in
berghofe@11519
   826
    mk_AbsP (lb+la, proof_combP (sprf,
berghofe@11615
   827
      map PBound (lb + la - 1 downto la)) %%
berghofe@23296
   828
        proof_combP (rprf, (if n>0 then [mk_asm_prf (the A) n m] else []) @
wenzelm@18485
   829
          map (if flatten then flatten_params_proof 0 0 n else PBound o snd)
wenzelm@18485
   830
            (oldAs ~~ (la - 1 downto 0))))
berghofe@11519
   831
  end;
berghofe@11519
   832
berghofe@11519
   833
berghofe@11519
   834
(***** axioms for equality *****)
berghofe@11519
   835
wenzelm@14854
   836
val aT = TFree ("'a", []);
wenzelm@14854
   837
val bT = TFree ("'b", []);
berghofe@11519
   838
val x = Free ("x", aT);
berghofe@11519
   839
val y = Free ("y", aT);
berghofe@11519
   840
val z = Free ("z", aT);
berghofe@11519
   841
val A = Free ("A", propT);
berghofe@11519
   842
val B = Free ("B", propT);
berghofe@11519
   843
val f = Free ("f", aT --> bT);
berghofe@11519
   844
val g = Free ("g", aT --> bT);
berghofe@11519
   845
berghofe@11519
   846
val equality_axms =
wenzelm@35851
   847
 [("reflexive", Logic.mk_equals (x, x)),
wenzelm@35851
   848
  ("symmetric", Logic.mk_implies (Logic.mk_equals (x, y), Logic.mk_equals (y, x))),
wenzelm@35851
   849
  ("transitive",
wenzelm@35851
   850
    Logic.list_implies ([Logic.mk_equals (x, y), Logic.mk_equals (y, z)], Logic.mk_equals (x, z))),
wenzelm@35851
   851
  ("equal_intr",
wenzelm@35851
   852
    Logic.list_implies ([Logic.mk_implies (A, B), Logic.mk_implies (B, A)], Logic.mk_equals (A, B))),
wenzelm@35851
   853
  ("equal_elim", Logic.list_implies ([Logic.mk_equals (A, B), A], B)),
wenzelm@35851
   854
  ("abstract_rule",
wenzelm@35851
   855
    Logic.mk_implies
wenzelm@35851
   856
      (Logic.all x
wenzelm@35851
   857
        (Logic.mk_equals (f $ x, g $ x)), Logic.mk_equals (lambda x (f $ x), lambda x (g $ x)))),
wenzelm@35851
   858
  ("combination", Logic.list_implies
wenzelm@35851
   859
    ([Logic.mk_equals (f, g), Logic.mk_equals (x, y)], Logic.mk_equals (f $ x, g $ y)))];
berghofe@11519
   860
berghofe@11519
   861
val [reflexive_axm, symmetric_axm, transitive_axm, equal_intr_axm,
berghofe@11519
   862
  equal_elim_axm, abstract_rule_axm, combination_axm] =
wenzelm@35851
   863
    map (fn (s, t) => PAxm ("Pure." ^ s, Logic.varify_global t, NONE)) equality_axms;
berghofe@11519
   864
skalberg@15531
   865
val reflexive = reflexive_axm % NONE;
berghofe@11519
   866
wenzelm@26424
   867
fun symmetric (prf as PAxm ("Pure.reflexive", _, _) % _) = prf
skalberg@15531
   868
  | symmetric prf = symmetric_axm % NONE % NONE %% prf;
berghofe@11519
   869
wenzelm@26424
   870
fun transitive _ _ (PAxm ("Pure.reflexive", _, _) % _) prf2 = prf2
wenzelm@26424
   871
  | transitive _ _ prf1 (PAxm ("Pure.reflexive", _, _) % _) = prf1
berghofe@11519
   872
  | transitive u (Type ("prop", [])) prf1 prf2 =
skalberg@15531
   873
      transitive_axm % NONE % SOME (remove_types u) % NONE %% prf1 %% prf2
berghofe@11519
   874
  | transitive u T prf1 prf2 =
skalberg@15531
   875
      transitive_axm % NONE % NONE % NONE %% prf1 %% prf2;
berghofe@11519
   876
berghofe@11519
   877
fun abstract_rule x a prf =
skalberg@15531
   878
  abstract_rule_axm % NONE % NONE %% forall_intr_proof x a prf;
berghofe@11519
   879
wenzelm@26424
   880
fun check_comb (PAxm ("Pure.combination", _, _) % f % g % _ % _ %% prf %% _) =
wenzelm@19502
   881
      is_some f orelse check_comb prf
wenzelm@26424
   882
  | check_comb (PAxm ("Pure.transitive", _, _) % _ % _ % _ %% prf1 %% prf2) =
berghofe@11519
   883
      check_comb prf1 andalso check_comb prf2
wenzelm@26424
   884
  | check_comb (PAxm ("Pure.symmetric", _, _) % _ % _ %% prf) = check_comb prf
berghofe@11519
   885
  | check_comb _ = false;
berghofe@11519
   886
berghofe@11519
   887
fun combination f g t u (Type (_, [T, U])) prf1 prf2 =
berghofe@11519
   888
  let
berghofe@11519
   889
    val f = Envir.beta_norm f;
berghofe@11519
   890
    val g = Envir.beta_norm g;
wenzelm@44100
   891
    val prf =
wenzelm@44100
   892
      if check_comb prf1 then
skalberg@15531
   893
        combination_axm % NONE % NONE
wenzelm@44100
   894
      else
wenzelm@44100
   895
        (case prf1 of
wenzelm@26424
   896
          PAxm ("Pure.reflexive", _, _) % _ =>
skalberg@15531
   897
            combination_axm %> remove_types f % NONE
berghofe@11615
   898
        | _ => combination_axm %> remove_types f %> remove_types g)
berghofe@11519
   899
  in
berghofe@11519
   900
    (case T of
wenzelm@44100
   901
      Type ("fun", _) => prf %
wenzelm@44100
   902
        (case head_of f of
wenzelm@44100
   903
          Abs _ => SOME (remove_types t)
wenzelm@44100
   904
        | Var _ => SOME (remove_types t)
wenzelm@44100
   905
        | _ => NONE) %
wenzelm@44100
   906
        (case head_of g of
wenzelm@44100
   907
           Abs _ => SOME (remove_types u)
wenzelm@44100
   908
        | Var _ => SOME (remove_types u)
wenzelm@44100
   909
        | _ => NONE) %% prf1 %% prf2
skalberg@15531
   910
     | _ => prf % NONE % NONE %% prf1 %% prf2)
berghofe@11519
   911
  end;
berghofe@11519
   912
berghofe@11519
   913
fun equal_intr A B prf1 prf2 =
berghofe@11615
   914
  equal_intr_axm %> remove_types A %> remove_types B %% prf1 %% prf2;
berghofe@11519
   915
berghofe@11519
   916
fun equal_elim A B prf1 prf2 =
berghofe@11615
   917
  equal_elim_axm %> remove_types A %> remove_types B %% prf1 %% prf2;
berghofe@11519
   918
berghofe@11519
   919
wenzelm@36740
   920
(**** type classes ****)
wenzelm@36621
   921
wenzelm@36621
   922
fun strip_shyps_proof algebra present witnessed extra_sorts prf =
wenzelm@36621
   923
  let
wenzelm@36621
   924
    fun get S2 (T, S1) = if Sorts.sort_le algebra (S1, S2) then SOME T else NONE;
wenzelm@36732
   925
    val extra = map (fn S => (TFree ("'dummy", S), S)) extra_sorts;
wenzelm@36621
   926
    val replacements = present @ extra @ witnessed;
wenzelm@36621
   927
    fun replace T =
wenzelm@36621
   928
      if exists (fn (T', _) => T' = T) present then raise Same.SAME
wenzelm@36621
   929
      else
wenzelm@36621
   930
        (case get_first (get (Type.sort_of_atyp T)) replacements of
wenzelm@36621
   931
          SOME T' => T'
wenzelm@36621
   932
        | NONE => raise Fail "strip_shyps_proof: bad type variable in proof term");
wenzelm@36621
   933
  in Same.commit (map_proof_types_same (Term_Subst.map_atypsT_same replace)) prf end;
wenzelm@36621
   934
wenzelm@36621
   935
wenzelm@36740
   936
local
wenzelm@36740
   937
wenzelm@36740
   938
type axclass_proofs =
wenzelm@36740
   939
 {classrel_proof: theory -> class * class -> proof,
wenzelm@36740
   940
  arity_proof: theory -> string * sort list * class -> proof};
wenzelm@36740
   941
wenzelm@36740
   942
val axclass_proofs: axclass_proofs Single_Assignment.var =
wenzelm@36740
   943
  Single_Assignment.var "Proofterm.axclass_proofs";
wenzelm@36740
   944
wenzelm@36740
   945
fun axclass_proof which thy x =
wenzelm@36740
   946
  (case Single_Assignment.peek axclass_proofs of
wenzelm@36740
   947
    NONE => raise Fail "Axclass proof operations not installed"
wenzelm@36740
   948
  | SOME prfs => which prfs thy x);
wenzelm@36740
   949
wenzelm@36740
   950
in
wenzelm@36740
   951
wenzelm@36740
   952
val classrel_proof = axclass_proof #classrel_proof;
wenzelm@36740
   953
val arity_proof = axclass_proof #arity_proof;
wenzelm@36740
   954
wenzelm@36740
   955
fun install_axclass_proofs prfs = Single_Assignment.assign axclass_proofs prfs;
wenzelm@36740
   956
wenzelm@36740
   957
end;
wenzelm@36740
   958
wenzelm@36740
   959
wenzelm@36741
   960
local
wenzelm@36741
   961
wenzelm@36741
   962
fun canonical_instance typs =
wenzelm@36741
   963
  let
wenzelm@43329
   964
    val names = Name.invent Name.context Name.aT (length typs);
wenzelm@36741
   965
    val instT = map2 (fn a => fn T => (((a, 0), []), Type.strip_sorts T)) names typs;
wenzelm@36741
   966
  in instantiate (instT, []) end;
wenzelm@36741
   967
wenzelm@36741
   968
in
wenzelm@36741
   969
wenzelm@36741
   970
fun of_sort_proof thy hyps =
wenzelm@36741
   971
  Sorts.of_sort_derivation (Sign.classes_of thy)
wenzelm@36741
   972
   {class_relation = fn typ => fn (prf, c1) => fn c2 =>
wenzelm@36741
   973
      if c1 = c2 then prf
wenzelm@36741
   974
      else canonical_instance [typ] (classrel_proof thy (c1, c2)) %% prf,
wenzelm@36741
   975
    type_constructor = fn (a, typs) => fn dom => fn c =>
wenzelm@36741
   976
      let val Ss = map (map snd) dom and prfs = maps (map fst) dom
wenzelm@36741
   977
      in proof_combP (canonical_instance typs (arity_proof thy (a, Ss, c)), prfs) end,
wenzelm@36741
   978
    type_variable = fn typ => map (fn c => (hyps (typ, c), c)) (Type.sort_of_atyp typ)};
wenzelm@36741
   979
wenzelm@36741
   980
end;
wenzelm@36741
   981
wenzelm@36741
   982
berghofe@11519
   983
(***** axioms and theorems *****)
berghofe@11519
   984
wenzelm@32738
   985
val proofs = Unsynchronized.ref 2;
wenzelm@41698
   986
fun proofs_enabled () = ! proofs >= 2;
wenzelm@28803
   987
berghofe@28812
   988
fun vars_of t = map Var (rev (Term.add_vars t []));
berghofe@28812
   989
fun frees_of t = map Free (rev (Term.add_frees t []));
berghofe@11519
   990
berghofe@11519
   991
fun test_args _ [] = true
berghofe@11519
   992
  | test_args is (Bound i :: ts) =
wenzelm@17492
   993
      not (member (op =) is i) andalso test_args (i :: is) ts
berghofe@11519
   994
  | test_args _ _ = false;
berghofe@11519
   995
berghofe@11519
   996
fun is_fun (Type ("fun", _)) = true
berghofe@11519
   997
  | is_fun (TVar _) = true
berghofe@11519
   998
  | is_fun _ = false;
berghofe@11519
   999
berghofe@11519
  1000
fun add_funvars Ts (vs, t) =
berghofe@11519
  1001
  if is_fun (fastype_of1 (Ts, t)) then
haftmann@33042
  1002
    union (op =) vs (map_filter (fn Var (ixn, T) =>
haftmann@33037
  1003
      if is_fun T then SOME ixn else NONE | _ => NONE) (vars_of t))
berghofe@11519
  1004
  else vs;
berghofe@11519
  1005
berghofe@11519
  1006
fun add_npvars q p Ts (vs, Const ("==>", _) $ t $ u) =
berghofe@11519
  1007
      add_npvars q p Ts (add_npvars q (not p) Ts (vs, t), u)
berghofe@11519
  1008
  | add_npvars q p Ts (vs, Const ("all", Type (_, [Type (_, [T, _]), _])) $ t) =
berghofe@11519
  1009
      add_npvars q p Ts (vs, if p andalso q then betapply (t, Var (("",0), T)) else t)
berghofe@12041
  1010
  | add_npvars q p Ts (vs, Abs (_, T, t)) = add_npvars q p (T::Ts) (vs, t)
berghofe@12041
  1011
  | add_npvars _ _ Ts (vs, t) = add_npvars' Ts (vs, t)
berghofe@12041
  1012
and add_npvars' Ts (vs, t) = (case strip_comb t of
berghofe@11519
  1013
    (Var (ixn, _), ts) => if test_args [] ts then vs
haftmann@17314
  1014
      else Library.foldl (add_npvars' Ts)
haftmann@17314
  1015
        (AList.update (op =) (ixn,
haftmann@17314
  1016
          Library.foldl (add_funvars Ts) ((these ooo AList.lookup) (op =) vs ixn, ts)) vs, ts)
skalberg@15570
  1017
  | (Abs (_, T, u), ts) => Library.foldl (add_npvars' (T::Ts)) (vs, u :: ts)
skalberg@15570
  1018
  | (_, ts) => Library.foldl (add_npvars' Ts) (vs, ts));
berghofe@11519
  1019
haftmann@33042
  1020
fun prop_vars (Const ("==>", _) $ P $ Q) = union (op =) (prop_vars P) (prop_vars Q)
berghofe@11519
  1021
  | prop_vars (Const ("all", _) $ Abs (_, _, t)) = prop_vars t
berghofe@11519
  1022
  | prop_vars t = (case strip_comb t of
berghofe@11519
  1023
      (Var (ixn, _), _) => [ixn] | _ => []);
berghofe@11519
  1024
berghofe@11519
  1025
fun is_proj t =
berghofe@11519
  1026
  let
berghofe@11519
  1027
    fun is_p i t = (case strip_comb t of
berghofe@11519
  1028
        (Bound j, []) => false
berghofe@11519
  1029
      | (Bound j, ts) => j >= i orelse exists (is_p i) ts
berghofe@11519
  1030
      | (Abs (_, _, u), _) => is_p (i+1) u
berghofe@11519
  1031
      | (_, ts) => exists (is_p i) ts)
berghofe@11519
  1032
  in (case strip_abs_body t of
berghofe@11519
  1033
        Bound _ => true
berghofe@11519
  1034
      | t' => is_p 0 t')
berghofe@11519
  1035
  end;
berghofe@11519
  1036
wenzelm@21646
  1037
fun needed_vars prop =
haftmann@33042
  1038
  union (op =) (Library.foldl (uncurry (union (op =)))
haftmann@33042
  1039
    ([], map (uncurry (insert (op =))) (add_npvars true true [] ([], prop))))
haftmann@33042
  1040
  (prop_vars prop);
berghofe@11519
  1041
berghofe@11519
  1042
fun gen_axm_proof c name prop =
berghofe@11519
  1043
  let
berghofe@11519
  1044
    val nvs = needed_vars prop;
berghofe@11519
  1045
    val args = map (fn (v as Var (ixn, _)) =>
wenzelm@17492
  1046
        if member (op =) nvs ixn then SOME v else NONE) (vars_of prop) @
berghofe@28812
  1047
      map SOME (frees_of prop);
berghofe@11519
  1048
  in
skalberg@15531
  1049
    proof_combt' (c (name, prop, NONE), args)
berghofe@11519
  1050
  end;
berghofe@11519
  1051
berghofe@11519
  1052
val axm_proof = gen_axm_proof PAxm;
berghofe@17017
  1053
berghofe@17017
  1054
val dummy = Const (Term.dummy_patternN, dummyT);
berghofe@17017
  1055
berghofe@17017
  1056
fun oracle_proof name prop =
wenzelm@30716
  1057
  if ! proofs = 0 then ((name, dummy), Oracle (name, dummy, NONE))
wenzelm@30716
  1058
  else ((name, prop), gen_axm_proof Oracle name prop);
berghofe@11519
  1059
wenzelm@43795
  1060
fun shrink_proof thy =
wenzelm@17492
  1061
  let
wenzelm@43795
  1062
    val (typ, term) = Term_Sharing.init thy;
wenzelm@43795
  1063
wenzelm@17492
  1064
    fun shrink ls lev (prf as Abst (a, T, body)) =
wenzelm@17492
  1065
          let val (b, is, ch, body') = shrink ls (lev+1) body
wenzelm@43795
  1066
          in (b, is, ch, if ch then Abst (a, Option.map typ T, body') else prf) end
wenzelm@17492
  1067
      | shrink ls lev (prf as AbsP (a, t, body)) =
wenzelm@17492
  1068
          let val (b, is, ch, body') = shrink (lev::ls) lev body
wenzelm@19482
  1069
          in (b orelse member (op =) is 0, map_filter (fn 0 => NONE | i => SOME (i-1)) is,
wenzelm@43795
  1070
            ch, if ch then AbsP (a, Option.map term t, body') else prf)
wenzelm@17492
  1071
          end
wenzelm@17492
  1072
      | shrink ls lev prf =
wenzelm@17492
  1073
          let val (is, ch, _, prf') = shrink' ls lev [] [] prf
wenzelm@17492
  1074
          in (false, is, ch, prf') end
wenzelm@17492
  1075
    and shrink' ls lev ts prfs (prf as prf1 %% prf2) =
wenzelm@17492
  1076
          let
wenzelm@17492
  1077
            val p as (_, is', ch', prf') = shrink ls lev prf2;
wenzelm@17492
  1078
            val (is, ch, ts', prf'') = shrink' ls lev ts (p::prfs) prf1
haftmann@33042
  1079
          in (union (op =) is is', ch orelse ch', ts',
wenzelm@17492
  1080
              if ch orelse ch' then prf'' %% prf' else prf)
wenzelm@17492
  1081
          end
wenzelm@17492
  1082
      | shrink' ls lev ts prfs (prf as prf1 % t) =
wenzelm@17492
  1083
          let val (is, ch, (ch', t')::ts', prf') = shrink' ls lev (t::ts) prfs prf1
wenzelm@17492
  1084
          in (is, ch orelse ch', ts',
wenzelm@43795
  1085
              if ch orelse ch' then prf' % Option.map term t' else prf) end
wenzelm@17492
  1086
      | shrink' ls lev ts prfs (prf as PBound i) =
wenzelm@30146
  1087
          (if exists (fn SOME (Bound j) => lev-j <= nth ls i | _ => true) ts
haftmann@18928
  1088
             orelse has_duplicates (op =)
haftmann@18928
  1089
               (Library.foldl (fn (js, SOME (Bound j)) => j :: js | (js, _) => js) ([], ts))
wenzelm@17492
  1090
             orelse exists #1 prfs then [i] else [], false, map (pair false) ts, prf)
wenzelm@43795
  1091
      | shrink' ls lev ts prfs (Hyp t) = ([], false, map (pair false) ts, Hyp (term t))
wenzelm@31903
  1092
      | shrink' ls lev ts prfs (prf as MinProof) = ([], false, map (pair false) ts, prf)
wenzelm@31943
  1093
      | shrink' ls lev ts prfs (prf as OfClass _) = ([], false, map (pair false) ts, prf)
wenzelm@17492
  1094
      | shrink' ls lev ts prfs prf =
wenzelm@17492
  1095
          let
wenzelm@28803
  1096
            val prop =
wenzelm@28803
  1097
              (case prf of
wenzelm@28803
  1098
                PAxm (_, prop, _) => prop
wenzelm@28803
  1099
              | Oracle (_, prop, _) => prop
wenzelm@28803
  1100
              | Promise (_, prop, _) => prop
wenzelm@28803
  1101
              | PThm (_, ((_, prop, _), _)) => prop
wenzelm@36879
  1102
              | _ => raise Fail "shrink: proof not in normal form");
wenzelm@17492
  1103
            val vs = vars_of prop;
wenzelm@19012
  1104
            val (ts', ts'') = chop (length vs) ts;
haftmann@33957
  1105
            val insts = take (length ts') (map (fst o dest_Var) vs) ~~ ts';
wenzelm@17492
  1106
            val nvs = Library.foldl (fn (ixns', (ixn, ixns)) =>
wenzelm@17492
  1107
              insert (op =) ixn (case AList.lookup (op =) insts ixn of
haftmann@33042
  1108
                  SOME (SOME t) => if is_proj t then union (op =) ixns ixns' else ixns'
haftmann@33042
  1109
                | _ => union (op =) ixns ixns'))
wenzelm@17492
  1110
                  (needed prop ts'' prfs, add_npvars false true [] ([], prop));
wenzelm@17492
  1111
            val insts' = map
wenzelm@17492
  1112
              (fn (ixn, x as SOME _) => if member (op =) nvs ixn then (false, x) else (true, NONE)
wenzelm@17492
  1113
                | (_, x) => (false, x)) insts
wenzelm@17492
  1114
          in ([], false, insts' @ map (pair false) ts'', prf) end
wenzelm@17492
  1115
    and needed (Const ("==>", _) $ t $ u) ts ((b, _, _, _)::prfs) =
haftmann@33042
  1116
          union (op =) (if b then map (fst o dest_Var) (vars_of t) else []) (needed u ts prfs)
wenzelm@17492
  1117
      | needed (Var (ixn, _)) (_::_) _ = [ixn]
wenzelm@17492
  1118
      | needed _ _ _ = [];
wenzelm@17492
  1119
  in shrink end;
berghofe@11519
  1120
berghofe@11519
  1121
berghofe@11519
  1122
(**** Simple first order matching functions for terms and proofs ****)
berghofe@11519
  1123
berghofe@11519
  1124
exception PMatch;
berghofe@11519
  1125
berghofe@11519
  1126
(** see pattern.ML **)
berghofe@11519
  1127
wenzelm@33317
  1128
fun flt (i: int) = filter (fn n => n < i);
berghofe@12279
  1129
berghofe@37231
  1130
fun fomatch Ts tymatch j instsp p =
berghofe@11519
  1131
  let
berghofe@11519
  1132
    fun mtch (instsp as (tyinsts, insts)) = fn
berghofe@11519
  1133
        (Var (ixn, T), t)  =>
berghofe@12279
  1134
          if j>0 andalso not (null (flt j (loose_bnos t)))
berghofe@12279
  1135
          then raise PMatch
berghofe@12279
  1136
          else (tymatch (tyinsts, fn () => (T, fastype_of1 (Ts, t))),
berghofe@12279
  1137
            (ixn, t) :: insts)
berghofe@11519
  1138
      | (Free (a, T), Free (b, U)) =>
wenzelm@20147
  1139
          if a=b then (tymatch (tyinsts, K (T, U)), insts) else raise PMatch
berghofe@11519
  1140
      | (Const (a, T), Const (b, U))  =>
wenzelm@20147
  1141
          if a=b then (tymatch (tyinsts, K (T, U)), insts) else raise PMatch
berghofe@11519
  1142
      | (f $ t, g $ u) => mtch (mtch instsp (f, g)) (t, u)
berghofe@12279
  1143
      | (Bound i, Bound j) => if i=j then instsp else raise PMatch
berghofe@11519
  1144
      | _ => raise PMatch
berghofe@37231
  1145
  in mtch instsp (pairself Envir.beta_eta_contract p) end;
berghofe@11519
  1146
berghofe@12279
  1147
fun match_proof Ts tymatch =
berghofe@11519
  1148
  let
skalberg@15531
  1149
    fun optmatch _ inst (NONE, _) = inst
skalberg@15531
  1150
      | optmatch _ _ (SOME _, NONE) = raise PMatch
skalberg@15531
  1151
      | optmatch mtch inst (SOME x, SOME y) = mtch inst (x, y)
berghofe@12279
  1152
berghofe@12279
  1153
    fun matcht Ts j (pinst, tinst) (t, u) =
berghofe@12279
  1154
      (pinst, fomatch Ts tymatch j tinst (t, Envir.beta_norm u));
berghofe@12279
  1155
    fun matchT (pinst, (tyinsts, insts)) p =
berghofe@12279
  1156
      (pinst, (tymatch (tyinsts, K p), insts));
skalberg@15570
  1157
    fun matchTs inst (Ts, Us) = Library.foldl (uncurry matchT) (inst, Ts ~~ Us);
berghofe@12279
  1158
berghofe@12279
  1159
    fun mtch Ts i j (pinst, tinst) (Hyp (Var (ixn, _)), prf) =
berghofe@12279
  1160
          if i = 0 andalso j = 0 then ((ixn, prf) :: pinst, tinst)
berghofe@12279
  1161
          else (case apfst (flt i) (apsnd (flt j)
berghofe@12279
  1162
                  (prf_add_loose_bnos 0 0 prf ([], []))) of
berghofe@12279
  1163
              ([], []) => ((ixn, incr_pboundvars (~i) (~j) prf) :: pinst, tinst)
berghofe@12279
  1164
            | ([], _) => if j = 0 then
berghofe@12279
  1165
                   ((ixn, incr_pboundvars (~i) (~j) prf) :: pinst, tinst)
berghofe@12279
  1166
                 else raise PMatch
berghofe@12279
  1167
            | _ => raise PMatch)
berghofe@12279
  1168
      | mtch Ts i j inst (prf1 % opt1, prf2 % opt2) =
berghofe@12279
  1169
          optmatch (matcht Ts j) (mtch Ts i j inst (prf1, prf2)) (opt1, opt2)
berghofe@12279
  1170
      | mtch Ts i j inst (prf1 %% prf2, prf1' %% prf2') =
berghofe@12279
  1171
          mtch Ts i j (mtch Ts i j inst (prf1, prf1')) (prf2, prf2')
berghofe@12279
  1172
      | mtch Ts i j inst (Abst (_, opT, prf1), Abst (_, opU, prf2)) =
wenzelm@18485
  1173
          mtch (the_default dummyT opU :: Ts) i (j+1)
berghofe@12279
  1174
            (optmatch matchT inst (opT, opU)) (prf1, prf2)
berghofe@12279
  1175
      | mtch Ts i j inst (prf1, Abst (_, opU, prf2)) =
wenzelm@18485
  1176
          mtch (the_default dummyT opU :: Ts) i (j+1) inst
berghofe@12279
  1177
            (incr_pboundvars 0 1 prf1 %> Bound 0, prf2)
berghofe@12279
  1178
      | mtch Ts i j inst (AbsP (_, opt, prf1), AbsP (_, opu, prf2)) =
berghofe@12279
  1179
          mtch Ts (i+1) j (optmatch (matcht Ts j) inst (opt, opu)) (prf1, prf2)
berghofe@12279
  1180
      | mtch Ts i j inst (prf1, AbsP (_, _, prf2)) =
berghofe@12279
  1181
          mtch Ts (i+1) j inst (incr_pboundvars 1 0 prf1 %% PBound 0, prf2)
wenzelm@28803
  1182
      | mtch Ts i j inst (PAxm (s1, _, opTs), PAxm (s2, _, opUs)) =
wenzelm@28803
  1183
          if s1 = s2 then optmatch matchTs inst (opTs, opUs)
wenzelm@28803
  1184
          else raise PMatch
wenzelm@31943
  1185
      | mtch Ts i j inst (OfClass (T1, c1), OfClass (T2, c2)) =
wenzelm@31903
  1186
          if c1 = c2 then matchT inst (T1, T2)
wenzelm@31903
  1187
          else raise PMatch
wenzelm@28803
  1188
      | mtch Ts i j inst (PThm (_, ((name1, prop1, opTs), _)), PThm (_, ((name2, prop2, opUs), _))) =
wenzelm@28803
  1189
          if name1 = name2 andalso prop1 = prop2 then
berghofe@12279
  1190
            optmatch matchTs inst (opTs, opUs)
berghofe@11519
  1191
          else raise PMatch
berghofe@12279
  1192
      | mtch _ _ _ inst (PBound i, PBound j) = if i = j then inst else raise PMatch
berghofe@12279
  1193
      | mtch _ _ _ _ _ = raise PMatch
berghofe@12279
  1194
  in mtch Ts 0 0 end;
berghofe@11519
  1195
berghofe@11519
  1196
fun prf_subst (pinst, (tyinsts, insts)) =
berghofe@11519
  1197
  let
wenzelm@32049
  1198
    val substT = Envir.subst_type_same tyinsts;
wenzelm@32049
  1199
    val substTs = Same.map substT;
berghofe@11519
  1200
wenzelm@32049
  1201
    fun subst' lev (Var (xi, _)) =
wenzelm@32049
  1202
        (case AList.lookup (op =) insts xi of
wenzelm@32049
  1203
          NONE => raise Same.SAME
skalberg@15531
  1204
        | SOME u => incr_boundvars lev u)
wenzelm@32049
  1205
      | subst' _ (Const (s, T)) = Const (s, substT T)
wenzelm@32049
  1206
      | subst' _ (Free (s, T)) = Free (s, substT T)
wenzelm@32049
  1207
      | subst' lev (Abs (a, T, body)) =
wenzelm@32049
  1208
          (Abs (a, substT T, Same.commit (subst' (lev + 1)) body)
wenzelm@32049
  1209
            handle Same.SAME => Abs (a, T, subst' (lev + 1) body))
wenzelm@32049
  1210
      | subst' lev (f $ t) =
wenzelm@32049
  1211
          (subst' lev f $ Same.commit (subst' lev) t
wenzelm@32049
  1212
            handle Same.SAME => f $ subst' lev t)
wenzelm@32049
  1213
      | subst' _ _ = raise Same.SAME;
berghofe@11519
  1214
berghofe@11519
  1215
    fun subst plev tlev (AbsP (a, t, body)) =
wenzelm@32049
  1216
          (AbsP (a, Same.map_option (subst' tlev) t, Same.commit (subst (plev + 1) tlev) body)
wenzelm@32049
  1217
            handle Same.SAME => AbsP (a, t, subst (plev + 1) tlev body))
berghofe@11519
  1218
      | subst plev tlev (Abst (a, T, body)) =
wenzelm@32049
  1219
          (Abst (a, Same.map_option substT T, Same.commit (subst plev (tlev + 1)) body)
wenzelm@32049
  1220
            handle Same.SAME => Abst (a, T, subst plev (tlev + 1) body))
wenzelm@32049
  1221
      | subst plev tlev (prf %% prf') =
wenzelm@32049
  1222
          (subst plev tlev prf %% Same.commit (subst plev tlev) prf'
wenzelm@32049
  1223
            handle Same.SAME => prf %% subst plev tlev prf')
wenzelm@32049
  1224
      | subst plev tlev (prf % t) =
wenzelm@32049
  1225
          (subst plev tlev prf % Same.commit (Same.map_option (subst' tlev)) t
wenzelm@32049
  1226
            handle Same.SAME => prf % Same.map_option (subst' tlev) t)
wenzelm@32049
  1227
      | subst plev tlev (Hyp (Var (xi, _))) =
wenzelm@32049
  1228
          (case AList.lookup (op =) pinst xi of
wenzelm@32049
  1229
            NONE => raise Same.SAME
wenzelm@32049
  1230
          | SOME prf' => incr_pboundvars plev tlev prf')
wenzelm@32049
  1231
      | subst _ _ (PAxm (id, prop, Ts)) = PAxm (id, prop, Same.map_option substTs Ts)
wenzelm@31943
  1232
      | subst _ _ (OfClass (T, c)) = OfClass (substT T, c)
wenzelm@32049
  1233
      | subst _ _ (Oracle (id, prop, Ts)) = Oracle (id, prop, Same.map_option substTs Ts)
wenzelm@32049
  1234
      | subst _ _ (Promise (i, prop, Ts)) = Promise (i, prop, substTs Ts)
wenzelm@28803
  1235
      | subst _ _ (PThm (i, ((id, prop, Ts), body))) =
wenzelm@32049
  1236
          PThm (i, ((id, prop, Same.map_option substTs Ts), body))
wenzelm@32049
  1237
      | subst _ _ _ = raise Same.SAME;
wenzelm@32049
  1238
  in fn t => subst 0 0 t handle Same.SAME => t end;
berghofe@11519
  1239
wenzelm@21646
  1240
(*A fast unification filter: true unless the two terms cannot be unified.
berghofe@12871
  1241
  Terms must be NORMAL.  Treats all Vars as distinct. *)
berghofe@12871
  1242
fun could_unify prf1 prf2 =
berghofe@12871
  1243
  let
berghofe@12871
  1244
    fun matchrands (prf1 %% prf2) (prf1' %% prf2') =
berghofe@12871
  1245
          could_unify prf2 prf2' andalso matchrands prf1 prf1'
skalberg@15531
  1246
      | matchrands (prf % SOME t) (prf' % SOME t') =
berghofe@12871
  1247
          Term.could_unify (t, t') andalso matchrands prf prf'
berghofe@12871
  1248
      | matchrands (prf % _) (prf' % _) = matchrands prf prf'
berghofe@12871
  1249
      | matchrands _ _ = true
berghofe@12871
  1250
berghofe@12871
  1251
    fun head_of (prf %% _) = head_of prf
berghofe@12871
  1252
      | head_of (prf % _) = head_of prf
berghofe@12871
  1253
      | head_of prf = prf
berghofe@12871
  1254
berghofe@12871
  1255
  in case (head_of prf1, head_of prf2) of
berghofe@12871
  1256
        (_, Hyp (Var _)) => true
berghofe@12871
  1257
      | (Hyp (Var _), _) => true
wenzelm@28803
  1258
      | (PAxm (a, _, _), PAxm (b, _, _)) => a = b andalso matchrands prf1 prf2
wenzelm@31943
  1259
      | (OfClass (_, c), OfClass (_, d)) => c = d andalso matchrands prf1 prf2
wenzelm@28803
  1260
      | (PThm (_, ((a, propa, _), _)), PThm (_, ((b, propb, _), _))) =>
berghofe@12871
  1261
          a = b andalso propa = propb andalso matchrands prf1 prf2
wenzelm@28803
  1262
      | (PBound i, PBound j) => i = j andalso matchrands prf1 prf2
berghofe@12871
  1263
      | (AbsP _, _) =>  true   (*because of possible eta equality*)
berghofe@12871
  1264
      | (Abst _, _) =>  true
berghofe@12871
  1265
      | (_, AbsP _) =>  true
berghofe@12871
  1266
      | (_, Abst _) =>  true
berghofe@12871
  1267
      | _ => false
berghofe@12871
  1268
  end;
berghofe@12871
  1269
wenzelm@28329
  1270
berghofe@11519
  1271
(**** rewriting on proof terms ****)
berghofe@11519
  1272
wenzelm@33722
  1273
val no_skel = PBound 0;
wenzelm@33722
  1274
val normal_skel = Hyp (Var ((Name.uu, 0), propT));
berghofe@13102
  1275
berghofe@12279
  1276
fun rewrite_prf tymatch (rules, procs) prf =
berghofe@11519
  1277
  let
berghofe@37231
  1278
    fun rew _ _ (Abst (_, _, body) % SOME t) = SOME (prf_subst_bounds [t] body, no_skel)
berghofe@37231
  1279
      | rew _ _ (AbsP (_, _, body) %% prf) = SOME (prf_subst_pbounds [prf] body, no_skel)
berghofe@37231
  1280
      | rew Ts hs prf =
berghofe@37231
  1281
          (case get_first (fn r => r Ts hs prf) procs of
wenzelm@33722
  1282
            NONE => get_first (fn (prf1, prf2) => SOME (prf_subst
wenzelm@33722
  1283
              (match_proof Ts tymatch ([], (Vartab.empty, [])) (prf1, prf)) prf2, prf2)
wenzelm@33722
  1284
                 handle PMatch => NONE) (filter (could_unify prf o fst) rules)
wenzelm@33722
  1285
          | some => some);
berghofe@11519
  1286
berghofe@37231
  1287
    fun rew0 Ts hs (prf as AbsP (_, _, prf' %% PBound 0)) =
berghofe@37231
  1288
          if prf_loose_Pbvar1 prf' 0 then rew Ts hs prf
berghofe@11519
  1289
          else
berghofe@11519
  1290
            let val prf'' = incr_pboundvars (~1) 0 prf'
berghofe@37231
  1291
            in SOME (the_default (prf'', no_skel) (rew Ts hs prf'')) end
berghofe@37231
  1292
      | rew0 Ts hs (prf as Abst (_, _, prf' % SOME (Bound 0))) =
berghofe@37231
  1293
          if prf_loose_bvar1 prf' 0 then rew Ts hs prf
berghofe@11519
  1294
          else
berghofe@11519
  1295
            let val prf'' = incr_pboundvars 0 (~1) prf'
berghofe@37231
  1296
            in SOME (the_default (prf'', no_skel) (rew Ts hs prf'')) end
berghofe@37231
  1297
      | rew0 Ts hs prf = rew Ts hs prf;
berghofe@11519
  1298
berghofe@37231
  1299
    fun rew1 _ _ (Hyp (Var _)) _ = NONE
berghofe@37231
  1300
      | rew1 Ts hs skel prf = (case rew2 Ts hs skel prf of
berghofe@37231
  1301
          SOME prf1 => (case rew0 Ts hs prf1 of
berghofe@37231
  1302
              SOME (prf2, skel') => SOME (the_default prf2 (rew1 Ts hs skel' prf2))
skalberg@15531
  1303
            | NONE => SOME prf1)
berghofe@37231
  1304
        | NONE => (case rew0 Ts hs prf of
berghofe@37231
  1305
              SOME (prf1, skel') => SOME (the_default prf1 (rew1 Ts hs skel' prf1))
skalberg@15531
  1306
            | NONE => NONE))
berghofe@11519
  1307
berghofe@37231
  1308
    and rew2 Ts hs skel (prf % SOME t) = (case prf of
berghofe@11519
  1309
            Abst (_, _, body) =>
berghofe@11519
  1310
              let val prf' = prf_subst_bounds [t] body
berghofe@37231
  1311
              in SOME (the_default prf' (rew2 Ts hs no_skel prf')) end
berghofe@37231
  1312
          | _ => (case rew1 Ts hs (case skel of skel' % _ => skel' | _ => no_skel) prf of
skalberg@15531
  1313
              SOME prf' => SOME (prf' % SOME t)
skalberg@15531
  1314
            | NONE => NONE))
berghofe@37231
  1315
      | rew2 Ts hs skel (prf % NONE) = Option.map (fn prf' => prf' % NONE)
berghofe@37231
  1316
          (rew1 Ts hs (case skel of skel' % _ => skel' | _ => no_skel) prf)
berghofe@37231
  1317
      | rew2 Ts hs skel (prf1 %% prf2) = (case prf1 of
berghofe@11519
  1318
            AbsP (_, _, body) =>
berghofe@11519
  1319
              let val prf' = prf_subst_pbounds [prf2] body
berghofe@37231
  1320
              in SOME (the_default prf' (rew2 Ts hs no_skel prf')) end
berghofe@13102
  1321
          | _ =>
berghofe@13102
  1322
            let val (skel1, skel2) = (case skel of
berghofe@13102
  1323
                skel1 %% skel2 => (skel1, skel2)
wenzelm@33722
  1324
              | _ => (no_skel, no_skel))
berghofe@37231
  1325
            in case rew1 Ts hs skel1 prf1 of
berghofe@37231
  1326
                SOME prf1' => (case rew1 Ts hs skel2 prf2 of
skalberg@15531
  1327
                    SOME prf2' => SOME (prf1' %% prf2')
skalberg@15531
  1328
                  | NONE => SOME (prf1' %% prf2))
berghofe@37231
  1329
              | NONE => (case rew1 Ts hs skel2 prf2 of
skalberg@15531
  1330
                    SOME prf2' => SOME (prf1 %% prf2')
skalberg@15531
  1331
                  | NONE => NONE)
berghofe@13102
  1332
            end)
berghofe@37231
  1333
      | rew2 Ts hs skel (Abst (s, T, prf)) = (case rew1 (the_default dummyT T :: Ts) hs
wenzelm@33722
  1334
              (case skel of Abst (_, _, skel') => skel' | _ => no_skel) prf of
skalberg@15531
  1335
            SOME prf' => SOME (Abst (s, T, prf'))
skalberg@15531
  1336
          | NONE => NONE)
berghofe@37231
  1337
      | rew2 Ts hs skel (AbsP (s, t, prf)) = (case rew1 Ts (t :: hs)
wenzelm@33722
  1338
              (case skel of AbsP (_, _, skel') => skel' | _ => no_skel) prf of
skalberg@15531
  1339
            SOME prf' => SOME (AbsP (s, t, prf'))
skalberg@15531
  1340
          | NONE => NONE)
berghofe@37231
  1341
      | rew2 _ _ _ _ = NONE;
berghofe@11519
  1342
berghofe@37231
  1343
  in the_default prf (rew1 [] [] no_skel prf) end;
berghofe@11519
  1344
wenzelm@17203
  1345
fun rewrite_proof thy = rewrite_prf (fn (tyenv, f) =>
wenzelm@17203
  1346
  Sign.typ_match thy (f ()) tyenv handle Type.TYPE_MATCH => raise PMatch);
berghofe@11519
  1347
berghofe@11715
  1348
fun rewrite_proof_notypes rews = rewrite_prf fst rews;
berghofe@11615
  1349
wenzelm@16940
  1350
berghofe@11519
  1351
(**** theory data ****)
berghofe@11519
  1352
wenzelm@37216
  1353
structure Data = Theory_Data
wenzelm@22846
  1354
(
wenzelm@33722
  1355
  type T =
wenzelm@33722
  1356
    (stamp * (proof * proof)) list *
berghofe@37231
  1357
    (stamp * (typ list -> term option list -> proof -> (proof * proof) option)) list;
berghofe@11519
  1358
berghofe@12233
  1359
  val empty = ([], []);
wenzelm@16458
  1360
  val extend = I;
wenzelm@33522
  1361
  fun merge ((rules1, procs1), (rules2, procs2)) : T =
wenzelm@28803
  1362
    (AList.merge (op =) (K true) (rules1, rules2),
haftmann@22662
  1363
      AList.merge (op =) (K true) (procs1, procs2));
wenzelm@22846
  1364
);
berghofe@11519
  1365
wenzelm@37216
  1366
fun get_data thy = let val (rules, procs) = Data.get thy in (map #2 rules, map #2 procs) end;
wenzelm@28803
  1367
fun rew_proof thy = rewrite_prf fst (get_data thy);
berghofe@23780
  1368
wenzelm@37216
  1369
fun add_prf_rrule r = (Data.map o apfst) (cons (stamp (), r));
wenzelm@37216
  1370
fun add_prf_rproc p = (Data.map o apsnd) (cons (stamp (), p));
wenzelm@28803
  1371
wenzelm@28803
  1372
wenzelm@28828
  1373
(***** promises *****)
berghofe@11519
  1374
wenzelm@28828
  1375
fun promise_proof thy i prop =
wenzelm@28828
  1376
  let
wenzelm@28828
  1377
    val _ = prop |> Term.exists_subterm (fn t =>
wenzelm@28828
  1378
      (Term.is_Free t orelse Term.is_Var t) andalso
wenzelm@36879
  1379
        raise Fail ("promise_proof: illegal variable " ^ Syntax.string_of_term_global thy t));
wenzelm@28828
  1380
    val _ = prop |> Term.exists_type (Term.exists_subtype
wenzelm@36879
  1381
      (fn TFree (a, _) => raise Fail ("promise_proof: illegal type variable " ^ quote a)
wenzelm@28828
  1382
        | _ => false));
wenzelm@28828
  1383
  in Promise (i, prop, map TVar (Term.add_tvars prop [])) end;
wenzelm@28828
  1384
wenzelm@33722
  1385
fun fulfill_norm_proof thy ps body0 =
wenzelm@33722
  1386
  let
wenzelm@33722
  1387
    val PBody {oracles = oracles0, thms = thms0, proof = proof0} = body0;
wenzelm@33722
  1388
    val oracles = fold (fn (_, PBody {oracles, ...}) => merge_oracles oracles) ps oracles0;
wenzelm@33722
  1389
    val thms = fold (fn (_, PBody {thms, ...}) => merge_thms thms) ps thms0;
wenzelm@33722
  1390
    val proofs = fold (fn (i, PBody {proof, ...}) => Inttab.update (i, proof)) ps Inttab.empty;
wenzelm@28875
  1391
wenzelm@33722
  1392
    fun fill (Promise (i, prop, Ts)) =
wenzelm@33722
  1393
          (case Inttab.lookup proofs i of
wenzelm@33722
  1394
            NONE => NONE
wenzelm@33722
  1395
          | SOME prf => SOME (instantiate (Term.add_tvars prop [] ~~ Ts, []) prf, normal_skel))
wenzelm@33722
  1396
      | fill _ = NONE;
wenzelm@33722
  1397
    val (rules, procs) = get_data thy;
berghofe@37231
  1398
    val proof = rewrite_prf fst (rules, K (K fill) :: procs) proof0;
wenzelm@33722
  1399
  in PBody {oracles = oracles, thms = thms, proof = proof} end;
wenzelm@28828
  1400
wenzelm@37251
  1401
fun fulfill_proof_future _ [] postproc body =
wenzelm@37251
  1402
      if not (Multithreading.enabled ()) then Future.value (postproc (Future.join body))
wenzelm@37251
  1403
      else Future.map postproc body
wenzelm@36882
  1404
  | fulfill_proof_future thy promises postproc body =
wenzelm@41672
  1405
      singleton
wenzelm@41674
  1406
        (Future.forks {name = "Proofterm.fulfill_proof_future", group = NONE,
wenzelm@44113
  1407
            deps = Future.task_of body :: map (Future.task_of o snd) promises, pri = 0,
wenzelm@44113
  1408
            interrupts = true})
wenzelm@41672
  1409
        (fn () =>
wenzelm@41672
  1410
          postproc (fulfill_norm_proof thy (map (apsnd Future.join) promises) (Future.join body)));
wenzelm@29642
  1411
wenzelm@28828
  1412
wenzelm@36878
  1413
(***** abstraction over sort constraints *****)
wenzelm@36878
  1414
wenzelm@36882
  1415
fun unconstrainT_prf thy (atyp_map, constraints) =
wenzelm@36878
  1416
  let
wenzelm@36878
  1417
    fun hyp_map hyp =
wenzelm@36878
  1418
      (case AList.lookup (op =) constraints hyp of
wenzelm@36878
  1419
        SOME t => Hyp t
wenzelm@36882
  1420
      | NONE => raise Fail "unconstrainT_prf: missing constraint");
wenzelm@36878
  1421
wenzelm@36882
  1422
    val typ = Term_Subst.map_atypsT_same (Type.strip_sorts o atyp_map);
wenzelm@36878
  1423
    fun ofclass (ty, c) =
wenzelm@36878
  1424
      let val ty' = Term.map_atyps atyp_map ty;
wenzelm@36878
  1425
      in the_single (of_sort_proof thy hyp_map (ty', [c])) end;
wenzelm@36878
  1426
  in
wenzelm@36878
  1427
    Same.commit (map_proof_same (Term_Subst.map_types_same typ) typ ofclass)
wenzelm@36878
  1428
    #> fold_rev (implies_intr_proof o snd) constraints
wenzelm@36878
  1429
  end;
wenzelm@36878
  1430
wenzelm@36882
  1431
fun unconstrainT_body thy constrs (PBody {oracles, thms, proof}) =
wenzelm@36878
  1432
  PBody
wenzelm@36883
  1433
   {oracles = oracles,  (* FIXME merge (!), unconstrain (!?!) *)
wenzelm@36883
  1434
    thms = thms,  (* FIXME merge (!) *)
wenzelm@36882
  1435
    proof = unconstrainT_prf thy constrs proof};
wenzelm@36878
  1436
wenzelm@36878
  1437
wenzelm@28828
  1438
(***** theorems *****)
berghofe@11519
  1439
wenzelm@37297
  1440
fun prepare_thm_proof thy name shyps hyps concl promises body =
berghofe@11519
  1441
  let
wenzelm@28803
  1442
    val PBody {oracles = oracles0, thms = thms0, proof = prf} = body;
wenzelm@32810
  1443
    val prop = Logic.list_implies (hyps, concl);
berghofe@11519
  1444
    val nvs = needed_vars prop;
berghofe@11519
  1445
    val args = map (fn (v as Var (ixn, _)) =>
wenzelm@17492
  1446
        if member (op =) nvs ixn then SOME v else NONE) (vars_of prop) @
berghofe@28812
  1447
      map SOME (frees_of prop);
wenzelm@28803
  1448
wenzelm@37297
  1449
    val ((atyp_map, constraints, outer_constraints), prop1) = Logic.unconstrainT shyps prop;
wenzelm@37297
  1450
    val postproc = unconstrainT_body thy (atyp_map, constraints);
wenzelm@37297
  1451
    val args1 =
wenzelm@37297
  1452
      (map o Option.map o Term.map_types o Term.map_atyps)
wenzelm@37297
  1453
        (Type.strip_sorts o atyp_map) args;
wenzelm@37297
  1454
    val argsP = map OfClass outer_constraints @ map Hyp hyps;
wenzelm@36882
  1455
wenzelm@37251
  1456
    fun full_proof0 () =
wenzelm@43795
  1457
      #4 (shrink_proof thy [] 0 (rew_proof thy (fold_rev implies_intr_proof hyps prf)));
wenzelm@37251
  1458
wenzelm@37251
  1459
    fun make_body0 proof0 = PBody {oracles = oracles0, thms = thms0, proof = proof0};
wenzelm@37251
  1460
    val body0 =
wenzelm@41698
  1461
      if not (proofs_enabled ()) then Future.value (make_body0 MinProof)
wenzelm@37251
  1462
      else if not (Multithreading.enabled ()) then Future.value (make_body0 (full_proof0 ()))
wenzelm@41673
  1463
      else
wenzelm@41673
  1464
        singleton
wenzelm@44113
  1465
          (Future.forks
wenzelm@44113
  1466
            {name = "Proofterm.prepare_thm_proof", group = NONE, deps = [], pri = ~1,
wenzelm@44113
  1467
              interrupts = true})
wenzelm@41673
  1468
          (make_body0 o full_proof0);
wenzelm@28803
  1469
wenzelm@36882
  1470
    fun new_prf () = (serial (), fulfill_proof_future thy promises postproc body0);
wenzelm@36880
  1471
    val (i, body') =
wenzelm@41699
  1472
      (*non-deterministic, depends on unknown promises*)
wenzelm@28803
  1473
      (case strip_combt (fst (strip_combP prf)) of
wenzelm@28803
  1474
        (PThm (i, ((old_name, prop', NONE), body')), args') =>
wenzelm@36882
  1475
          if (old_name = "" orelse old_name = name) andalso prop1 = prop' andalso args = args'
wenzelm@36880
  1476
          then (i, body')
wenzelm@28803
  1477
          else new_prf ()
wenzelm@28815
  1478
      | _ => new_prf ());
wenzelm@36882
  1479
    val head = PThm (i, ((name, prop1, NONE), body'));
wenzelm@36883
  1480
  in ((i, (name, prop1, body')), head, args, argsP, args1) end;
wenzelm@36883
  1481
wenzelm@36883
  1482
fun thm_proof thy name shyps hyps concl promises body =
wenzelm@37297
  1483
  let val (pthm, head, args, argsP, _) = prepare_thm_proof thy name shyps hyps concl promises body
wenzelm@36883
  1484
  in (pthm, proof_combP (proof_combt' (head, args), argsP)) end;
wenzelm@36883
  1485
wenzelm@36883
  1486
fun unconstrain_thm_proof thy shyps concl promises body =
wenzelm@36883
  1487
  let
wenzelm@37297
  1488
    val (pthm, head, _, _, args) = prepare_thm_proof thy "" shyps [] concl promises body
wenzelm@36883
  1489
  in (pthm, proof_combt' (head, args)) end;
wenzelm@36883
  1490
berghofe@11519
  1491
wenzelm@37297
  1492
fun get_name shyps hyps prop prf =
wenzelm@36877
  1493
  let val (_, prop) = Logic.unconstrainT shyps (Logic.list_implies (hyps, prop)) in
wenzelm@36877
  1494
    (case strip_combt (fst (strip_combP prf)) of
wenzelm@36877
  1495
      (PThm (_, ((name, prop', _), _)), _) => if prop = prop' then name else ""
wenzelm@36877
  1496
    | _ => "")
wenzelm@36877
  1497
  end;
wenzelm@36877
  1498
wenzelm@36877
  1499
fun guess_name (PThm (_, ((name, _, _), _))) = name
wenzelm@36877
  1500
  | guess_name (prf %% Hyp _) = guess_name prf
wenzelm@36877
  1501
  | guess_name (prf %% OfClass _) = guess_name prf
wenzelm@36877
  1502
  | guess_name (prf % NONE) = guess_name prf
wenzelm@36877
  1503
  | guess_name (prf % SOME (Var _)) = guess_name prf
wenzelm@36877
  1504
  | guess_name _ = "";
wenzelm@36877
  1505
berghofe@11519
  1506
end;
berghofe@11519
  1507
wenzelm@32094
  1508
structure Basic_Proofterm : BASIC_PROOFTERM = Proofterm;
wenzelm@32094
  1509
open Basic_Proofterm;