wenzelm@252
|
1 |
(* Title: Pure/drule.ML
|
clasohm@0
|
2 |
ID: $Id$
|
wenzelm@252
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
clasohm@0
|
4 |
Copyright 1993 University of Cambridge
|
clasohm@0
|
5 |
|
clasohm@0
|
6 |
Derived rules and other operations on theorems and theories
|
clasohm@0
|
7 |
*)
|
clasohm@0
|
8 |
|
lcp@11
|
9 |
infix 0 RS RSN RL RLN MRS MRL COMP;
|
clasohm@0
|
10 |
|
clasohm@0
|
11 |
signature DRULE =
|
clasohm@0
|
12 |
sig
|
clasohm@0
|
13 |
structure Thm : THM
|
clasohm@0
|
14 |
local open Thm in
|
lcp@668
|
15 |
val add_defs : (string * string) list -> theory -> theory
|
lcp@668
|
16 |
val add_defs_i : (string * term) list -> theory -> theory
|
lcp@668
|
17 |
val asm_rl : thm
|
lcp@668
|
18 |
val assume_ax : theory -> string -> thm
|
lcp@668
|
19 |
val COMP : thm * thm -> thm
|
lcp@668
|
20 |
val compose : thm * int * thm -> thm list
|
lcp@708
|
21 |
val cprems_of : thm -> cterm list
|
lcp@708
|
22 |
val cskip_flexpairs : cterm -> cterm
|
lcp@708
|
23 |
val cstrip_imp_prems : cterm -> cterm list
|
lcp@668
|
24 |
val cterm_instantiate : (cterm*cterm)list -> thm -> thm
|
lcp@668
|
25 |
val cut_rl : thm
|
lcp@668
|
26 |
val equal_abs_elim : cterm -> thm -> thm
|
lcp@229
|
27 |
val equal_abs_elim_list: cterm list -> thm -> thm
|
lcp@668
|
28 |
val eq_thm : thm * thm -> bool
|
lcp@668
|
29 |
val eq_thm_sg : thm * thm -> bool
|
lcp@229
|
30 |
val flexpair_abs_elim_list: cterm list -> thm -> thm
|
lcp@668
|
31 |
val forall_intr_list : cterm list -> thm -> thm
|
lcp@668
|
32 |
val forall_intr_frees : thm -> thm
|
lcp@668
|
33 |
val forall_elim_list : cterm list -> thm -> thm
|
lcp@668
|
34 |
val forall_elim_var : int -> thm -> thm
|
lcp@668
|
35 |
val forall_elim_vars : int -> thm -> thm
|
lcp@668
|
36 |
val implies_elim_list : thm -> thm list -> thm
|
lcp@668
|
37 |
val implies_intr_list : cterm list -> thm -> thm
|
lcp@668
|
38 |
val MRL : thm list list * thm list -> thm list
|
lcp@668
|
39 |
val MRS : thm list * thm -> thm
|
lcp@668
|
40 |
val pprint_cterm : cterm -> pprint_args -> unit
|
lcp@668
|
41 |
val pprint_ctyp : ctyp -> pprint_args -> unit
|
lcp@668
|
42 |
val pprint_theory : theory -> pprint_args -> unit
|
lcp@668
|
43 |
val pprint_thm : thm -> pprint_args -> unit
|
lcp@668
|
44 |
val pretty_thm : thm -> Sign.Syntax.Pretty.T
|
lcp@668
|
45 |
val print_cterm : cterm -> unit
|
lcp@668
|
46 |
val print_ctyp : ctyp -> unit
|
lcp@668
|
47 |
val print_goals : int -> thm -> unit
|
lcp@668
|
48 |
val print_goals_ref : (int -> thm -> unit) ref
|
lcp@668
|
49 |
val print_syntax : theory -> unit
|
lcp@668
|
50 |
val print_sign : theory -> unit
|
lcp@668
|
51 |
val print_axioms : theory -> unit
|
lcp@668
|
52 |
val print_theory : theory -> unit
|
lcp@668
|
53 |
val print_thm : thm -> unit
|
lcp@668
|
54 |
val prth : thm -> thm
|
lcp@668
|
55 |
val prthq : thm Sequence.seq -> thm Sequence.seq
|
lcp@668
|
56 |
val prths : thm list -> thm list
|
lcp@668
|
57 |
val read_instantiate : (string*string)list -> thm -> thm
|
clasohm@0
|
58 |
val read_instantiate_sg: Sign.sg -> (string*string)list -> thm -> thm
|
lcp@668
|
59 |
val read_insts :
|
lcp@229
|
60 |
Sign.sg -> (indexname -> typ option) * (indexname -> sort option)
|
lcp@229
|
61 |
-> (indexname -> typ option) * (indexname -> sort option)
|
lcp@229
|
62 |
-> (string*string)list
|
lcp@229
|
63 |
-> (indexname*ctyp)list * (cterm*cterm)list
|
lcp@668
|
64 |
val reflexive_thm : thm
|
lcp@668
|
65 |
val revcut_rl : thm
|
lcp@668
|
66 |
val rewrite_goal_rule : bool*bool -> (meta_simpset -> thm -> thm option)
|
nipkow@214
|
67 |
-> meta_simpset -> int -> thm -> thm
|
clasohm@0
|
68 |
val rewrite_goals_rule: thm list -> thm -> thm
|
lcp@668
|
69 |
val rewrite_rule : thm list -> thm -> thm
|
lcp@668
|
70 |
val RS : thm * thm -> thm
|
lcp@668
|
71 |
val RSN : thm * (int * thm) -> thm
|
lcp@668
|
72 |
val RL : thm list * thm list -> thm list
|
lcp@668
|
73 |
val RLN : thm list * (int * thm list) -> thm list
|
lcp@668
|
74 |
val show_hyps : bool ref
|
lcp@668
|
75 |
val size_of_thm : thm -> int
|
lcp@668
|
76 |
val standard : thm -> thm
|
lcp@668
|
77 |
val string_of_cterm : cterm -> string
|
lcp@668
|
78 |
val string_of_ctyp : ctyp -> string
|
lcp@668
|
79 |
val string_of_thm : thm -> string
|
lcp@668
|
80 |
val symmetric_thm : thm
|
lcp@668
|
81 |
val thin_rl : thm
|
lcp@668
|
82 |
val transitive_thm : thm
|
clasohm@0
|
83 |
val triv_forall_equality: thm
|
clasohm@0
|
84 |
val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
|
lcp@668
|
85 |
val zero_var_indexes : thm -> thm
|
clasohm@0
|
86 |
end
|
clasohm@0
|
87 |
end;
|
clasohm@0
|
88 |
|
lcp@668
|
89 |
|
wenzelm@252
|
90 |
functor DruleFun (structure Logic: LOGIC and Thm: THM): DRULE =
|
clasohm@0
|
91 |
struct
|
clasohm@0
|
92 |
structure Thm = Thm;
|
clasohm@0
|
93 |
structure Sign = Thm.Sign;
|
clasohm@0
|
94 |
structure Type = Sign.Type;
|
wenzelm@575
|
95 |
structure Syntax = Sign.Syntax;
|
wenzelm@575
|
96 |
structure Pretty = Syntax.Pretty
|
wenzelm@400
|
97 |
structure Symtab = Sign.Symtab;
|
wenzelm@400
|
98 |
|
clasohm@0
|
99 |
local open Thm
|
clasohm@0
|
100 |
in
|
clasohm@0
|
101 |
|
wenzelm@561
|
102 |
(**** Extend Theories ****)
|
wenzelm@561
|
103 |
|
wenzelm@561
|
104 |
(** add constant definitions **)
|
wenzelm@561
|
105 |
|
wenzelm@561
|
106 |
(* all_axioms_of *)
|
wenzelm@561
|
107 |
|
wenzelm@561
|
108 |
(*results may contain duplicates!*)
|
wenzelm@561
|
109 |
|
wenzelm@561
|
110 |
fun ancestry_of thy =
|
wenzelm@561
|
111 |
thy :: flat (map ancestry_of (parents_of thy));
|
wenzelm@561
|
112 |
|
wenzelm@561
|
113 |
val all_axioms_of = flat o map axioms_of o ancestry_of;
|
wenzelm@561
|
114 |
|
wenzelm@561
|
115 |
|
wenzelm@561
|
116 |
(* clash_types, clash_consts *)
|
wenzelm@561
|
117 |
|
wenzelm@561
|
118 |
(*check if types have common instance (ignoring sorts)*)
|
wenzelm@561
|
119 |
|
wenzelm@561
|
120 |
fun clash_types ty1 ty2 =
|
wenzelm@561
|
121 |
let
|
wenzelm@561
|
122 |
val ty1' = Type.varifyT ty1;
|
wenzelm@561
|
123 |
val ty2' = incr_tvar (maxidx_of_typ ty1' + 1) (Type.varifyT ty2);
|
wenzelm@561
|
124 |
in
|
wenzelm@561
|
125 |
Type.raw_unify (ty1', ty2')
|
wenzelm@561
|
126 |
end;
|
wenzelm@561
|
127 |
|
wenzelm@561
|
128 |
fun clash_consts (c1, ty1) (c2, ty2) =
|
wenzelm@561
|
129 |
c1 = c2 andalso clash_types ty1 ty2;
|
wenzelm@561
|
130 |
|
wenzelm@561
|
131 |
|
wenzelm@561
|
132 |
(* clash_defns *)
|
wenzelm@561
|
133 |
|
wenzelm@561
|
134 |
fun clash_defn c_ty (name, tm) =
|
wenzelm@561
|
135 |
let val (c, ty') = dest_Const (head_of (fst (Logic.dest_equals tm))) in
|
wenzelm@561
|
136 |
if clash_consts c_ty (c, ty') then Some (name, ty') else None
|
wenzelm@561
|
137 |
end handle TERM _ => None;
|
wenzelm@561
|
138 |
|
wenzelm@561
|
139 |
fun clash_defns c_ty axms =
|
wenzelm@561
|
140 |
distinct (mapfilter (clash_defn c_ty) axms);
|
wenzelm@561
|
141 |
|
wenzelm@561
|
142 |
|
wenzelm@561
|
143 |
(* dest_defn *)
|
wenzelm@561
|
144 |
|
wenzelm@561
|
145 |
fun dest_defn tm =
|
wenzelm@561
|
146 |
let
|
wenzelm@561
|
147 |
fun err msg = raise_term msg [tm];
|
wenzelm@561
|
148 |
|
wenzelm@561
|
149 |
val (lhs, rhs) = Logic.dest_equals tm
|
wenzelm@561
|
150 |
handle TERM _ => err "Not a meta-equality (==)";
|
wenzelm@561
|
151 |
val (head, args) = strip_comb lhs;
|
wenzelm@561
|
152 |
val (c, ty) = dest_Const head
|
wenzelm@561
|
153 |
handle TERM _ => err "Head of lhs not a constant";
|
wenzelm@561
|
154 |
|
wenzelm@655
|
155 |
fun occs_const (Const c_ty') = (c_ty' = (c, ty))
|
wenzelm@561
|
156 |
| occs_const (Abs (_, _, t)) = occs_const t
|
wenzelm@561
|
157 |
| occs_const (t $ u) = occs_const t orelse occs_const u
|
wenzelm@561
|
158 |
| occs_const _ = false;
|
wenzelm@641
|
159 |
|
wenzelm@641
|
160 |
val show_frees = commas_quote o map (fst o dest_Free);
|
wenzelm@641
|
161 |
val show_tfrees = commas_quote o map fst;
|
wenzelm@641
|
162 |
|
wenzelm@641
|
163 |
val lhs_dups = duplicates args;
|
wenzelm@641
|
164 |
val rhs_extras = gen_rems (op =) (term_frees rhs, args);
|
wenzelm@641
|
165 |
val rhs_extrasT = gen_rems (op =) (term_tfrees rhs, typ_tfrees ty);
|
wenzelm@561
|
166 |
in
|
wenzelm@561
|
167 |
if not (forall is_Free args) then
|
wenzelm@561
|
168 |
err "Arguments of lhs have to be variables"
|
wenzelm@641
|
169 |
else if not (null lhs_dups) then
|
wenzelm@641
|
170 |
err ("Duplicate variables on lhs: " ^ show_frees lhs_dups)
|
wenzelm@641
|
171 |
else if not (null rhs_extras) then
|
wenzelm@641
|
172 |
err ("Extra variables on rhs: " ^ show_frees rhs_extras)
|
wenzelm@641
|
173 |
else if not (null rhs_extrasT) then
|
wenzelm@641
|
174 |
err ("Extra type variables on rhs: " ^ show_tfrees rhs_extrasT)
|
wenzelm@561
|
175 |
else if occs_const rhs then
|
wenzelm@655
|
176 |
err ("Constant to be defined occurs on rhs")
|
wenzelm@561
|
177 |
else (c, ty)
|
wenzelm@561
|
178 |
end;
|
wenzelm@561
|
179 |
|
wenzelm@561
|
180 |
|
wenzelm@561
|
181 |
(* check_defn *)
|
wenzelm@561
|
182 |
|
wenzelm@641
|
183 |
fun err_in_defn name msg =
|
wenzelm@641
|
184 |
(writeln msg; error ("The error(s) above occurred in definition " ^ quote name));
|
wenzelm@561
|
185 |
|
wenzelm@561
|
186 |
fun check_defn sign (axms, (name, tm)) =
|
wenzelm@561
|
187 |
let
|
wenzelm@561
|
188 |
fun show_const (c, ty) = quote (Pretty.string_of (Pretty.block
|
wenzelm@561
|
189 |
[Pretty.str (c ^ " ::"), Pretty.brk 1, Sign.pretty_typ sign ty]));
|
wenzelm@561
|
190 |
|
wenzelm@561
|
191 |
fun show_defn c (dfn, ty') = show_const (c, ty') ^ " in " ^ dfn;
|
wenzelm@561
|
192 |
fun show_defns c = commas o map (show_defn c);
|
wenzelm@561
|
193 |
|
wenzelm@561
|
194 |
val (c, ty) = dest_defn tm
|
wenzelm@641
|
195 |
handle TERM (msg, _) => err_in_defn name msg;
|
wenzelm@561
|
196 |
val defns = clash_defns (c, ty) axms;
|
wenzelm@561
|
197 |
in
|
wenzelm@561
|
198 |
if not (null defns) then
|
wenzelm@641
|
199 |
err_in_defn name ("Definition of " ^ show_const (c, ty) ^
|
wenzelm@561
|
200 |
" clashes with " ^ show_defns c defns)
|
wenzelm@561
|
201 |
else (name, tm) :: axms
|
wenzelm@561
|
202 |
end;
|
wenzelm@561
|
203 |
|
wenzelm@561
|
204 |
|
wenzelm@561
|
205 |
(* add_defs *)
|
wenzelm@561
|
206 |
|
wenzelm@561
|
207 |
fun ext_defns prep_axm raw_axms thy =
|
wenzelm@561
|
208 |
let
|
wenzelm@561
|
209 |
val axms = map (prep_axm (sign_of thy)) raw_axms;
|
wenzelm@561
|
210 |
val all_axms = all_axioms_of thy;
|
wenzelm@561
|
211 |
in
|
wenzelm@561
|
212 |
foldl (check_defn (sign_of thy)) (all_axms, axms);
|
wenzelm@561
|
213 |
add_axioms_i axms thy
|
wenzelm@561
|
214 |
end;
|
wenzelm@561
|
215 |
|
wenzelm@561
|
216 |
val add_defs_i = ext_defns cert_axm;
|
wenzelm@561
|
217 |
val add_defs = ext_defns read_axm;
|
wenzelm@561
|
218 |
|
wenzelm@561
|
219 |
|
wenzelm@561
|
220 |
|
clasohm@0
|
221 |
(**** More derived rules and operations on theorems ****)
|
clasohm@0
|
222 |
|
lcp@708
|
223 |
(** some cterm->cterm operations: much faster than calling cterm_of! **)
|
lcp@708
|
224 |
|
lcp@708
|
225 |
(*Discard flexflex pairs; return a cterm*)
|
lcp@708
|
226 |
fun cskip_flexpairs ct =
|
lcp@708
|
227 |
case term_of ct of
|
lcp@708
|
228 |
(Const("==>", _) $ (Const("=?=",_)$_$_) $ _) =>
|
lcp@708
|
229 |
cskip_flexpairs (#2 (dest_cimplies ct))
|
lcp@708
|
230 |
| _ => ct;
|
lcp@708
|
231 |
|
lcp@708
|
232 |
(* A1==>...An==>B goes to [A1,...,An], where B is not an implication *)
|
lcp@708
|
233 |
fun cstrip_imp_prems ct =
|
lcp@708
|
234 |
let val (cA,cB) = dest_cimplies ct
|
lcp@708
|
235 |
in cA :: cstrip_imp_prems cB end
|
lcp@708
|
236 |
handle TERM _ => [];
|
lcp@708
|
237 |
|
lcp@708
|
238 |
(*The premises of a theorem, as a cterm list*)
|
lcp@708
|
239 |
val cprems_of = cstrip_imp_prems o cskip_flexpairs o cprop_of;
|
lcp@708
|
240 |
|
lcp@708
|
241 |
|
lcp@229
|
242 |
(** reading of instantiations **)
|
lcp@229
|
243 |
|
lcp@229
|
244 |
fun indexname cs = case Syntax.scan_varname cs of (v,[]) => v
|
lcp@229
|
245 |
| _ => error("Lexical error in variable name " ^ quote (implode cs));
|
lcp@229
|
246 |
|
lcp@229
|
247 |
fun absent ixn =
|
lcp@229
|
248 |
error("No such variable in term: " ^ Syntax.string_of_vname ixn);
|
lcp@229
|
249 |
|
lcp@229
|
250 |
fun inst_failure ixn =
|
lcp@229
|
251 |
error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
|
lcp@229
|
252 |
|
lcp@229
|
253 |
fun read_insts sign (rtypes,rsorts) (types,sorts) insts =
|
lcp@229
|
254 |
let val {tsig,...} = Sign.rep_sg sign
|
lcp@229
|
255 |
fun split([],tvs,vs) = (tvs,vs)
|
lcp@229
|
256 |
| split((sv,st)::l,tvs,vs) = (case explode sv of
|
lcp@229
|
257 |
"'"::cs => split(l,(indexname cs,st)::tvs,vs)
|
lcp@229
|
258 |
| cs => split(l,tvs,(indexname cs,st)::vs));
|
lcp@229
|
259 |
val (tvs,vs) = split(insts,[],[]);
|
lcp@229
|
260 |
fun readT((a,i),st) =
|
lcp@229
|
261 |
let val ixn = ("'" ^ a,i);
|
lcp@229
|
262 |
val S = case rsorts ixn of Some S => S | None => absent ixn;
|
lcp@229
|
263 |
val T = Sign.read_typ (sign,sorts) st;
|
lcp@229
|
264 |
in if Type.typ_instance(tsig,T,TVar(ixn,S)) then (ixn,T)
|
lcp@229
|
265 |
else inst_failure ixn
|
lcp@229
|
266 |
end
|
lcp@229
|
267 |
val tye = map readT tvs;
|
lcp@229
|
268 |
fun add_cterm ((cts,tye), (ixn,st)) =
|
lcp@229
|
269 |
let val T = case rtypes ixn of
|
lcp@229
|
270 |
Some T => typ_subst_TVars tye T
|
lcp@229
|
271 |
| None => absent ixn;
|
lcp@229
|
272 |
val (ct,tye2) = read_def_cterm (sign,types,sorts) (st,T);
|
lcp@229
|
273 |
val cv = cterm_of sign (Var(ixn,typ_subst_TVars tye2 T))
|
lcp@229
|
274 |
in ((cv,ct)::cts,tye2 @ tye) end
|
lcp@229
|
275 |
val (cterms,tye') = foldl add_cterm (([],tye), vs);
|
lcp@229
|
276 |
in (map (fn (ixn,T) => (ixn,ctyp_of sign T)) tye', cterms) end;
|
lcp@229
|
277 |
|
lcp@229
|
278 |
|
wenzelm@252
|
279 |
|
wenzelm@252
|
280 |
(*** Printing of theories, theorems, etc. ***)
|
lcp@229
|
281 |
|
lcp@229
|
282 |
(*If false, hypotheses are printed as dots*)
|
lcp@229
|
283 |
val show_hyps = ref true;
|
lcp@229
|
284 |
|
lcp@229
|
285 |
fun pretty_thm th =
|
lcp@229
|
286 |
let val {sign, hyps, prop,...} = rep_thm th
|
lcp@229
|
287 |
val hsymbs = if null hyps then []
|
wenzelm@252
|
288 |
else if !show_hyps then
|
wenzelm@252
|
289 |
[Pretty.brk 2,
|
wenzelm@252
|
290 |
Pretty.lst("[","]") (map (Sign.pretty_term sign) hyps)]
|
wenzelm@252
|
291 |
else Pretty.str" [" :: map (fn _ => Pretty.str".") hyps @
|
wenzelm@252
|
292 |
[Pretty.str"]"];
|
lcp@229
|
293 |
in Pretty.blk(0, Sign.pretty_term sign prop :: hsymbs) end;
|
lcp@229
|
294 |
|
lcp@229
|
295 |
val string_of_thm = Pretty.string_of o pretty_thm;
|
lcp@229
|
296 |
|
lcp@229
|
297 |
val pprint_thm = Pretty.pprint o Pretty.quote o pretty_thm;
|
lcp@229
|
298 |
|
lcp@229
|
299 |
|
lcp@229
|
300 |
(** Top-level commands for printing theorems **)
|
lcp@229
|
301 |
val print_thm = writeln o string_of_thm;
|
lcp@229
|
302 |
|
lcp@229
|
303 |
fun prth th = (print_thm th; th);
|
lcp@229
|
304 |
|
lcp@229
|
305 |
(*Print and return a sequence of theorems, separated by blank lines. *)
|
lcp@229
|
306 |
fun prthq thseq =
|
wenzelm@252
|
307 |
(Sequence.prints (fn _ => print_thm) 100000 thseq; thseq);
|
lcp@229
|
308 |
|
lcp@229
|
309 |
(*Print and return a list of theorems, separated by blank lines. *)
|
lcp@229
|
310 |
fun prths ths = (print_list_ln print_thm ths; ths);
|
lcp@229
|
311 |
|
wenzelm@252
|
312 |
|
wenzelm@252
|
313 |
(* other printing commands *)
|
lcp@229
|
314 |
|
wenzelm@252
|
315 |
fun pprint_ctyp cT =
|
wenzelm@252
|
316 |
let val {sign, T} = rep_ctyp cT in Sign.pprint_typ sign T end;
|
wenzelm@252
|
317 |
|
wenzelm@252
|
318 |
fun string_of_ctyp cT =
|
wenzelm@252
|
319 |
let val {sign, T} = rep_ctyp cT in Sign.string_of_typ sign T end;
|
lcp@229
|
320 |
|
lcp@229
|
321 |
val print_ctyp = writeln o string_of_ctyp;
|
lcp@229
|
322 |
|
wenzelm@252
|
323 |
fun pprint_cterm ct =
|
wenzelm@252
|
324 |
let val {sign, t, ...} = rep_cterm ct in Sign.pprint_term sign t end;
|
lcp@229
|
325 |
|
wenzelm@252
|
326 |
fun string_of_cterm ct =
|
wenzelm@252
|
327 |
let val {sign, t, ...} = rep_cterm ct in Sign.string_of_term sign t end;
|
lcp@229
|
328 |
|
lcp@229
|
329 |
val print_cterm = writeln o string_of_cterm;
|
lcp@229
|
330 |
|
wenzelm@252
|
331 |
|
wenzelm@252
|
332 |
(* print theory *)
|
wenzelm@252
|
333 |
|
wenzelm@252
|
334 |
val pprint_theory = Sign.pprint_sg o sign_of;
|
lcp@229
|
335 |
|
wenzelm@575
|
336 |
val print_syntax = Syntax.print_syntax o syn_of;
|
wenzelm@575
|
337 |
|
wenzelm@385
|
338 |
val print_sign = Sign.print_sg o sign_of;
|
wenzelm@385
|
339 |
|
wenzelm@385
|
340 |
fun print_axioms thy =
|
wenzelm@252
|
341 |
let
|
wenzelm@400
|
342 |
val {sign, new_axioms, ...} = rep_theory thy;
|
wenzelm@400
|
343 |
val axioms = Symtab.dest new_axioms;
|
lcp@229
|
344 |
|
wenzelm@385
|
345 |
fun prt_axm (a, t) = Pretty.block [Pretty.str (a ^ ":"), Pretty.brk 1,
|
wenzelm@385
|
346 |
Pretty.quote (Sign.pretty_term sign t)];
|
wenzelm@252
|
347 |
in
|
wenzelm@385
|
348 |
Pretty.writeln (Pretty.big_list "additional axioms:" (map prt_axm axioms))
|
wenzelm@252
|
349 |
end;
|
lcp@229
|
350 |
|
wenzelm@385
|
351 |
fun print_theory thy = (print_sign thy; print_axioms thy);
|
wenzelm@385
|
352 |
|
lcp@229
|
353 |
|
lcp@229
|
354 |
|
lcp@229
|
355 |
(** Print thm A1,...,An/B in "goal style" -- premises as numbered subgoals **)
|
lcp@229
|
356 |
|
wenzelm@641
|
357 |
(* get type_env, sort_env of term *)
|
wenzelm@641
|
358 |
|
wenzelm@641
|
359 |
local
|
wenzelm@641
|
360 |
open Syntax;
|
wenzelm@641
|
361 |
|
wenzelm@641
|
362 |
fun ins_entry (x, y) [] = [(x, [y])]
|
wenzelm@641
|
363 |
| ins_entry (x, y) ((pair as (x', ys')) :: pairs) =
|
wenzelm@641
|
364 |
if x = x' then (x', y ins ys') :: pairs
|
wenzelm@641
|
365 |
else pair :: ins_entry (x, y) pairs;
|
wenzelm@641
|
366 |
|
wenzelm@641
|
367 |
fun add_type_env (Free (x, T), env) = ins_entry (T, x) env
|
wenzelm@641
|
368 |
| add_type_env (Var (xi, T), env) = ins_entry (T, string_of_vname xi) env
|
wenzelm@641
|
369 |
| add_type_env (Abs (_, _, t), env) = add_type_env (t, env)
|
wenzelm@641
|
370 |
| add_type_env (t $ u, env) = add_type_env (u, add_type_env (t, env))
|
wenzelm@641
|
371 |
| add_type_env (_, env) = env;
|
wenzelm@641
|
372 |
|
wenzelm@641
|
373 |
fun add_sort_env (Type (_, Ts), env) = foldr add_sort_env (Ts, env)
|
wenzelm@641
|
374 |
| add_sort_env (TFree (x, S), env) = ins_entry (S, x) env
|
wenzelm@641
|
375 |
| add_sort_env (TVar (xi, S), env) = ins_entry (S, string_of_vname xi) env;
|
wenzelm@641
|
376 |
|
wenzelm@641
|
377 |
val sort = map (apsnd sort_strings);
|
wenzelm@641
|
378 |
in
|
wenzelm@641
|
379 |
fun type_env t = sort (add_type_env (t, []));
|
wenzelm@641
|
380 |
fun sort_env t = rev (sort (it_term_types add_sort_env (t, [])));
|
wenzelm@641
|
381 |
end;
|
wenzelm@641
|
382 |
|
wenzelm@641
|
383 |
|
wenzelm@641
|
384 |
(* print_goals *)
|
wenzelm@641
|
385 |
|
wenzelm@641
|
386 |
fun print_goals maxgoals state =
|
wenzelm@641
|
387 |
let
|
wenzelm@641
|
388 |
open Syntax;
|
wenzelm@641
|
389 |
|
wenzelm@641
|
390 |
val {sign, prop, ...} = rep_thm state;
|
wenzelm@641
|
391 |
|
wenzelm@641
|
392 |
val pretty_term = Sign.pretty_term sign;
|
wenzelm@641
|
393 |
val pretty_typ = Sign.pretty_typ sign;
|
wenzelm@641
|
394 |
val pretty_sort = Sign.pretty_sort;
|
wenzelm@641
|
395 |
|
wenzelm@641
|
396 |
fun pretty_vars prtf (X, vs) = Pretty.block
|
wenzelm@641
|
397 |
[Pretty.block (Pretty.commas (map Pretty.str vs)),
|
wenzelm@641
|
398 |
Pretty.str " ::", Pretty.brk 1, prtf X];
|
lcp@229
|
399 |
|
wenzelm@641
|
400 |
fun print_list _ _ [] = ()
|
wenzelm@641
|
401 |
| print_list name prtf lst =
|
wenzelm@641
|
402 |
(writeln ""; Pretty.writeln (Pretty.big_list name (map prtf lst)));
|
wenzelm@641
|
403 |
|
wenzelm@641
|
404 |
|
wenzelm@641
|
405 |
fun print_goals (_, []) = ()
|
wenzelm@641
|
406 |
| print_goals (n, A :: As) = (Pretty.writeln (Pretty.blk (0,
|
wenzelm@641
|
407 |
[Pretty.str (" " ^ string_of_int n ^ ". "), pretty_term A]));
|
wenzelm@641
|
408 |
print_goals (n + 1, As));
|
wenzelm@641
|
409 |
|
wenzelm@641
|
410 |
val print_ffpairs =
|
wenzelm@641
|
411 |
print_list "Flex-flex pairs:" (pretty_term o Logic.mk_flexpair);
|
wenzelm@641
|
412 |
|
wenzelm@641
|
413 |
val print_types = print_list "Types:" (pretty_vars pretty_typ) o type_env;
|
wenzelm@641
|
414 |
val print_sorts = print_list "Sorts:" (pretty_vars pretty_sort) o sort_env;
|
wenzelm@641
|
415 |
|
wenzelm@641
|
416 |
|
wenzelm@641
|
417 |
val (tpairs, As, B) = Logic.strip_horn prop;
|
wenzelm@641
|
418 |
val ngoals = length As;
|
wenzelm@641
|
419 |
|
wenzelm@641
|
420 |
val orig_no_freeTs = ! show_no_free_types;
|
wenzelm@641
|
421 |
val orig_sorts = ! show_sorts;
|
wenzelm@641
|
422 |
|
wenzelm@641
|
423 |
fun restore () =
|
wenzelm@641
|
424 |
(show_no_free_types := orig_no_freeTs; show_sorts := orig_sorts);
|
wenzelm@641
|
425 |
in
|
wenzelm@641
|
426 |
(show_no_free_types := true; show_sorts := false;
|
wenzelm@641
|
427 |
|
wenzelm@641
|
428 |
Pretty.writeln (pretty_term B);
|
wenzelm@641
|
429 |
|
wenzelm@641
|
430 |
if ngoals = 0 then writeln "No subgoals!"
|
wenzelm@641
|
431 |
else if ngoals > maxgoals then
|
wenzelm@641
|
432 |
(print_goals (1, take (maxgoals, As));
|
wenzelm@641
|
433 |
writeln ("A total of " ^ string_of_int ngoals ^ " subgoals..."))
|
wenzelm@641
|
434 |
else print_goals (1, As);
|
wenzelm@641
|
435 |
|
wenzelm@641
|
436 |
print_ffpairs tpairs;
|
wenzelm@641
|
437 |
|
wenzelm@641
|
438 |
if orig_sorts then
|
wenzelm@641
|
439 |
(print_types prop; print_sorts prop)
|
wenzelm@641
|
440 |
else if ! show_types then
|
wenzelm@641
|
441 |
print_types prop
|
wenzelm@641
|
442 |
else ())
|
wenzelm@641
|
443 |
handle exn => (restore (); raise exn);
|
wenzelm@641
|
444 |
restore ()
|
wenzelm@641
|
445 |
end;
|
wenzelm@641
|
446 |
|
lcp@229
|
447 |
|
lcp@229
|
448 |
(*"hook" for user interfaces: allows print_goals to be replaced*)
|
lcp@229
|
449 |
val print_goals_ref = ref print_goals;
|
lcp@229
|
450 |
|
wenzelm@252
|
451 |
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
|
clasohm@0
|
452 |
Used for establishing default types (of variables) and sorts (of
|
clasohm@0
|
453 |
type variables) when reading another term.
|
clasohm@0
|
454 |
Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
|
clasohm@0
|
455 |
***)
|
clasohm@0
|
456 |
|
clasohm@0
|
457 |
fun types_sorts thm =
|
clasohm@0
|
458 |
let val {prop,hyps,...} = rep_thm thm;
|
wenzelm@252
|
459 |
val big = list_comb(prop,hyps); (* bogus term! *)
|
wenzelm@252
|
460 |
val vars = map dest_Var (term_vars big);
|
wenzelm@252
|
461 |
val frees = map dest_Free (term_frees big);
|
wenzelm@252
|
462 |
val tvars = term_tvars big;
|
wenzelm@252
|
463 |
val tfrees = term_tfrees big;
|
wenzelm@252
|
464 |
fun typ(a,i) = if i<0 then assoc(frees,a) else assoc(vars,(a,i));
|
wenzelm@252
|
465 |
fun sort(a,i) = if i<0 then assoc(tfrees,a) else assoc(tvars,(a,i));
|
clasohm@0
|
466 |
in (typ,sort) end;
|
clasohm@0
|
467 |
|
clasohm@0
|
468 |
(** Standardization of rules **)
|
clasohm@0
|
469 |
|
clasohm@0
|
470 |
(*Generalization over a list of variables, IGNORING bad ones*)
|
clasohm@0
|
471 |
fun forall_intr_list [] th = th
|
clasohm@0
|
472 |
| forall_intr_list (y::ys) th =
|
wenzelm@252
|
473 |
let val gth = forall_intr_list ys th
|
wenzelm@252
|
474 |
in forall_intr y gth handle THM _ => gth end;
|
clasohm@0
|
475 |
|
clasohm@0
|
476 |
(*Generalization over all suitable Free variables*)
|
clasohm@0
|
477 |
fun forall_intr_frees th =
|
clasohm@0
|
478 |
let val {prop,sign,...} = rep_thm th
|
clasohm@0
|
479 |
in forall_intr_list
|
wenzelm@252
|
480 |
(map (cterm_of sign) (sort atless (term_frees prop)))
|
clasohm@0
|
481 |
th
|
clasohm@0
|
482 |
end;
|
clasohm@0
|
483 |
|
clasohm@0
|
484 |
(*Replace outermost quantified variable by Var of given index.
|
clasohm@0
|
485 |
Could clash with Vars already present.*)
|
wenzelm@252
|
486 |
fun forall_elim_var i th =
|
clasohm@0
|
487 |
let val {prop,sign,...} = rep_thm th
|
clasohm@0
|
488 |
in case prop of
|
wenzelm@252
|
489 |
Const("all",_) $ Abs(a,T,_) =>
|
wenzelm@252
|
490 |
forall_elim (cterm_of sign (Var((a,i), T))) th
|
wenzelm@252
|
491 |
| _ => raise THM("forall_elim_var", i, [th])
|
clasohm@0
|
492 |
end;
|
clasohm@0
|
493 |
|
clasohm@0
|
494 |
(*Repeat forall_elim_var until all outer quantifiers are removed*)
|
wenzelm@252
|
495 |
fun forall_elim_vars i th =
|
clasohm@0
|
496 |
forall_elim_vars i (forall_elim_var i th)
|
wenzelm@252
|
497 |
handle THM _ => th;
|
clasohm@0
|
498 |
|
clasohm@0
|
499 |
(*Specialization over a list of cterms*)
|
clasohm@0
|
500 |
fun forall_elim_list cts th = foldr (uncurry forall_elim) (rev cts, th);
|
clasohm@0
|
501 |
|
clasohm@0
|
502 |
(* maps [A1,...,An], B to [| A1;...;An |] ==> B *)
|
clasohm@0
|
503 |
fun implies_intr_list cAs th = foldr (uncurry implies_intr) (cAs,th);
|
clasohm@0
|
504 |
|
clasohm@0
|
505 |
(* maps [| A1;...;An |] ==> B and [A1,...,An] to B *)
|
clasohm@0
|
506 |
fun implies_elim_list impth ths = foldl (uncurry implies_elim) (impth,ths);
|
clasohm@0
|
507 |
|
clasohm@0
|
508 |
(*Reset Var indexes to zero, renaming to preserve distinctness*)
|
wenzelm@252
|
509 |
fun zero_var_indexes th =
|
clasohm@0
|
510 |
let val {prop,sign,...} = rep_thm th;
|
clasohm@0
|
511 |
val vars = term_vars prop
|
clasohm@0
|
512 |
val bs = foldl add_new_id ([], map (fn Var((a,_),_)=>a) vars)
|
wenzelm@252
|
513 |
val inrs = add_term_tvars(prop,[]);
|
wenzelm@252
|
514 |
val nms' = rev(foldl add_new_id ([], map (#1 o #1) inrs));
|
wenzelm@252
|
515 |
val tye = map (fn ((v,rs),a) => (v, TVar((a,0),rs))) (inrs ~~ nms')
|
wenzelm@252
|
516 |
val ctye = map (fn (v,T) => (v,ctyp_of sign T)) tye;
|
wenzelm@252
|
517 |
fun varpairs([],[]) = []
|
wenzelm@252
|
518 |
| varpairs((var as Var(v,T)) :: vars, b::bs) =
|
wenzelm@252
|
519 |
let val T' = typ_subst_TVars tye T
|
wenzelm@252
|
520 |
in (cterm_of sign (Var(v,T')),
|
wenzelm@252
|
521 |
cterm_of sign (Var((b,0),T'))) :: varpairs(vars,bs)
|
wenzelm@252
|
522 |
end
|
wenzelm@252
|
523 |
| varpairs _ = raise TERM("varpairs", []);
|
clasohm@0
|
524 |
in instantiate (ctye, varpairs(vars,rev bs)) th end;
|
clasohm@0
|
525 |
|
clasohm@0
|
526 |
|
clasohm@0
|
527 |
(*Standard form of object-rule: no hypotheses, Frees, or outer quantifiers;
|
clasohm@0
|
528 |
all generality expressed by Vars having index 0.*)
|
clasohm@0
|
529 |
fun standard th =
|
clasohm@0
|
530 |
let val {maxidx,...} = rep_thm th
|
wenzelm@252
|
531 |
in varifyT (zero_var_indexes (forall_elim_vars(maxidx+1)
|
clasohm@0
|
532 |
(forall_intr_frees(implies_intr_hyps th))))
|
clasohm@0
|
533 |
end;
|
clasohm@0
|
534 |
|
wenzelm@252
|
535 |
(*Assume a new formula, read following the same conventions as axioms.
|
clasohm@0
|
536 |
Generalizes over Free variables,
|
clasohm@0
|
537 |
creates the assumption, and then strips quantifiers.
|
clasohm@0
|
538 |
Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
|
wenzelm@252
|
539 |
[ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ] *)
|
clasohm@0
|
540 |
fun assume_ax thy sP =
|
clasohm@0
|
541 |
let val sign = sign_of thy
|
wenzelm@252
|
542 |
val prop = Logic.close_form (term_of (read_cterm sign
|
wenzelm@252
|
543 |
(sP, propT)))
|
lcp@229
|
544 |
in forall_elim_vars 0 (assume (cterm_of sign prop)) end;
|
clasohm@0
|
545 |
|
wenzelm@252
|
546 |
(*Resolution: exactly one resolvent must be produced.*)
|
clasohm@0
|
547 |
fun tha RSN (i,thb) =
|
clasohm@0
|
548 |
case Sequence.chop (2, biresolution false [(false,tha)] i thb) of
|
clasohm@0
|
549 |
([th],_) => th
|
clasohm@0
|
550 |
| ([],_) => raise THM("RSN: no unifiers", i, [tha,thb])
|
clasohm@0
|
551 |
| _ => raise THM("RSN: multiple unifiers", i, [tha,thb]);
|
clasohm@0
|
552 |
|
clasohm@0
|
553 |
(*resolution: P==>Q, Q==>R gives P==>R. *)
|
clasohm@0
|
554 |
fun tha RS thb = tha RSN (1,thb);
|
clasohm@0
|
555 |
|
clasohm@0
|
556 |
(*For joining lists of rules*)
|
wenzelm@252
|
557 |
fun thas RLN (i,thbs) =
|
clasohm@0
|
558 |
let val resolve = biresolution false (map (pair false) thas) i
|
clasohm@0
|
559 |
fun resb thb = Sequence.list_of_s (resolve thb) handle THM _ => []
|
clasohm@0
|
560 |
in flat (map resb thbs) end;
|
clasohm@0
|
561 |
|
clasohm@0
|
562 |
fun thas RL thbs = thas RLN (1,thbs);
|
clasohm@0
|
563 |
|
lcp@11
|
564 |
(*Resolve a list of rules against bottom_rl from right to left;
|
lcp@11
|
565 |
makes proof trees*)
|
wenzelm@252
|
566 |
fun rls MRS bottom_rl =
|
lcp@11
|
567 |
let fun rs_aux i [] = bottom_rl
|
wenzelm@252
|
568 |
| rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
|
lcp@11
|
569 |
in rs_aux 1 rls end;
|
lcp@11
|
570 |
|
lcp@11
|
571 |
(*As above, but for rule lists*)
|
wenzelm@252
|
572 |
fun rlss MRL bottom_rls =
|
lcp@11
|
573 |
let fun rs_aux i [] = bottom_rls
|
wenzelm@252
|
574 |
| rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
|
lcp@11
|
575 |
in rs_aux 1 rlss end;
|
lcp@11
|
576 |
|
wenzelm@252
|
577 |
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
|
clasohm@0
|
578 |
with no lifting or renaming! Q may contain ==> or meta-quants
|
clasohm@0
|
579 |
ALWAYS deletes premise i *)
|
wenzelm@252
|
580 |
fun compose(tha,i,thb) =
|
clasohm@0
|
581 |
Sequence.list_of_s (bicompose false (false,tha,0) i thb);
|
clasohm@0
|
582 |
|
clasohm@0
|
583 |
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
|
clasohm@0
|
584 |
fun tha COMP thb =
|
clasohm@0
|
585 |
case compose(tha,1,thb) of
|
wenzelm@252
|
586 |
[th] => th
|
clasohm@0
|
587 |
| _ => raise THM("COMP", 1, [tha,thb]);
|
clasohm@0
|
588 |
|
clasohm@0
|
589 |
(*Instantiate theorem th, reading instantiations under signature sg*)
|
clasohm@0
|
590 |
fun read_instantiate_sg sg sinsts th =
|
clasohm@0
|
591 |
let val ts = types_sorts th;
|
lcp@229
|
592 |
in instantiate (read_insts sg ts ts sinsts) th end;
|
clasohm@0
|
593 |
|
clasohm@0
|
594 |
(*Instantiate theorem th, reading instantiations under theory of th*)
|
clasohm@0
|
595 |
fun read_instantiate sinsts th =
|
clasohm@0
|
596 |
read_instantiate_sg (#sign (rep_thm th)) sinsts th;
|
clasohm@0
|
597 |
|
clasohm@0
|
598 |
|
clasohm@0
|
599 |
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
|
clasohm@0
|
600 |
Instantiates distinct Vars by terms, inferring type instantiations. *)
|
clasohm@0
|
601 |
local
|
clasohm@0
|
602 |
fun add_types ((ct,cu), (sign,tye)) =
|
lcp@229
|
603 |
let val {sign=signt, t=t, T= T, ...} = rep_cterm ct
|
lcp@229
|
604 |
and {sign=signu, t=u, T= U, ...} = rep_cterm cu
|
clasohm@0
|
605 |
val sign' = Sign.merge(sign, Sign.merge(signt, signu))
|
wenzelm@252
|
606 |
val tye' = Type.unify (#tsig(Sign.rep_sg sign')) ((T,U), tye)
|
wenzelm@252
|
607 |
handle Type.TUNIFY => raise TYPE("add_types", [T,U], [t,u])
|
clasohm@0
|
608 |
in (sign', tye') end;
|
clasohm@0
|
609 |
in
|
wenzelm@252
|
610 |
fun cterm_instantiate ctpairs0 th =
|
clasohm@0
|
611 |
let val (sign,tye) = foldr add_types (ctpairs0, (#sign(rep_thm th),[]))
|
clasohm@0
|
612 |
val tsig = #tsig(Sign.rep_sg sign);
|
clasohm@0
|
613 |
fun instT(ct,cu) = let val inst = subst_TVars tye
|
wenzelm@252
|
614 |
in (cterm_fun inst ct, cterm_fun inst cu) end
|
lcp@229
|
615 |
fun ctyp2 (ix,T) = (ix, ctyp_of sign T)
|
clasohm@0
|
616 |
in instantiate (map ctyp2 tye, map instT ctpairs0) th end
|
wenzelm@252
|
617 |
handle TERM _ =>
|
clasohm@0
|
618 |
raise THM("cterm_instantiate: incompatible signatures",0,[th])
|
clasohm@0
|
619 |
| TYPE _ => raise THM("cterm_instantiate: types", 0, [th])
|
clasohm@0
|
620 |
end;
|
clasohm@0
|
621 |
|
clasohm@0
|
622 |
|
clasohm@0
|
623 |
(** theorem equality test is exported and used by BEST_FIRST **)
|
clasohm@0
|
624 |
|
wenzelm@252
|
625 |
(*equality of theorems uses equality of signatures and
|
clasohm@0
|
626 |
the a-convertible test for terms*)
|
wenzelm@252
|
627 |
fun eq_thm (th1,th2) =
|
clasohm@0
|
628 |
let val {sign=sg1, hyps=hyps1, prop=prop1, ...} = rep_thm th1
|
wenzelm@252
|
629 |
and {sign=sg2, hyps=hyps2, prop=prop2, ...} = rep_thm th2
|
wenzelm@252
|
630 |
in Sign.eq_sg (sg1,sg2) andalso
|
wenzelm@252
|
631 |
aconvs(hyps1,hyps2) andalso
|
wenzelm@252
|
632 |
prop1 aconv prop2
|
clasohm@0
|
633 |
end;
|
clasohm@0
|
634 |
|
clasohm@0
|
635 |
(*Do the two theorems have the same signature?*)
|
wenzelm@252
|
636 |
fun eq_thm_sg (th1,th2) = Sign.eq_sg(#sign(rep_thm th1), #sign(rep_thm th2));
|
clasohm@0
|
637 |
|
clasohm@0
|
638 |
(*Useful "distance" function for BEST_FIRST*)
|
clasohm@0
|
639 |
val size_of_thm = size_of_term o #prop o rep_thm;
|
clasohm@0
|
640 |
|
clasohm@0
|
641 |
|
clasohm@0
|
642 |
(*** Meta-Rewriting Rules ***)
|
clasohm@0
|
643 |
|
clasohm@0
|
644 |
|
clasohm@0
|
645 |
val reflexive_thm =
|
wenzelm@385
|
646 |
let val cx = cterm_of Sign.pure (Var(("x",0),TVar(("'a",0),logicS)))
|
clasohm@0
|
647 |
in Thm.reflexive cx end;
|
clasohm@0
|
648 |
|
clasohm@0
|
649 |
val symmetric_thm =
|
lcp@229
|
650 |
let val xy = read_cterm Sign.pure ("x::'a::logic == y",propT)
|
clasohm@0
|
651 |
in standard(Thm.implies_intr_hyps(Thm.symmetric(Thm.assume xy))) end;
|
clasohm@0
|
652 |
|
clasohm@0
|
653 |
val transitive_thm =
|
lcp@229
|
654 |
let val xy = read_cterm Sign.pure ("x::'a::logic == y",propT)
|
lcp@229
|
655 |
val yz = read_cterm Sign.pure ("y::'a::logic == z",propT)
|
clasohm@0
|
656 |
val xythm = Thm.assume xy and yzthm = Thm.assume yz
|
clasohm@0
|
657 |
in standard(Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
|
clasohm@0
|
658 |
|
lcp@229
|
659 |
(** Below, a "conversion" has type cterm -> thm **)
|
lcp@229
|
660 |
|
lcp@229
|
661 |
val refl_cimplies = reflexive (cterm_of Sign.pure implies);
|
clasohm@0
|
662 |
|
clasohm@0
|
663 |
(*In [A1,...,An]==>B, rewrite the selected A's only -- for rewrite_goals_tac*)
|
nipkow@214
|
664 |
(*Do not rewrite flex-flex pairs*)
|
wenzelm@252
|
665 |
fun goals_conv pred cv =
|
lcp@229
|
666 |
let fun gconv i ct =
|
lcp@229
|
667 |
let val (A,B) = Thm.dest_cimplies ct
|
lcp@229
|
668 |
val (thA,j) = case term_of A of
|
lcp@229
|
669 |
Const("=?=",_)$_$_ => (reflexive A, i)
|
lcp@229
|
670 |
| _ => (if pred i then cv A else reflexive A, i+1)
|
wenzelm@252
|
671 |
in combination (combination refl_cimplies thA) (gconv j B) end
|
lcp@229
|
672 |
handle TERM _ => reflexive ct
|
clasohm@0
|
673 |
in gconv 1 end;
|
clasohm@0
|
674 |
|
clasohm@0
|
675 |
(*Use a conversion to transform a theorem*)
|
lcp@229
|
676 |
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
|
clasohm@0
|
677 |
|
clasohm@0
|
678 |
(*rewriting conversion*)
|
lcp@229
|
679 |
fun rew_conv mode prover mss = rewrite_cterm mode mss prover;
|
clasohm@0
|
680 |
|
clasohm@0
|
681 |
(*Rewrite a theorem*)
|
nipkow@214
|
682 |
fun rewrite_rule thms =
|
nipkow@214
|
683 |
fconv_rule (rew_conv (true,false) (K(K None)) (Thm.mss_of thms));
|
clasohm@0
|
684 |
|
clasohm@0
|
685 |
(*Rewrite the subgoals of a proof state (represented by a theorem) *)
|
clasohm@0
|
686 |
fun rewrite_goals_rule thms =
|
nipkow@214
|
687 |
fconv_rule (goals_conv (K true) (rew_conv (true,false) (K(K None))
|
nipkow@214
|
688 |
(Thm.mss_of thms)));
|
clasohm@0
|
689 |
|
clasohm@0
|
690 |
(*Rewrite the subgoal of a proof state (represented by a theorem) *)
|
nipkow@214
|
691 |
fun rewrite_goal_rule mode prover mss i thm =
|
nipkow@214
|
692 |
if 0 < i andalso i <= nprems_of thm
|
nipkow@214
|
693 |
then fconv_rule (goals_conv (fn j => j=i) (rew_conv mode prover mss)) thm
|
nipkow@214
|
694 |
else raise THM("rewrite_goal_rule",i,[thm]);
|
clasohm@0
|
695 |
|
clasohm@0
|
696 |
|
clasohm@0
|
697 |
(** Derived rules mainly for METAHYPS **)
|
clasohm@0
|
698 |
|
clasohm@0
|
699 |
(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
|
clasohm@0
|
700 |
fun equal_abs_elim ca eqth =
|
lcp@229
|
701 |
let val {sign=signa, t=a, ...} = rep_cterm ca
|
clasohm@0
|
702 |
and combth = combination eqth (reflexive ca)
|
clasohm@0
|
703 |
val {sign,prop,...} = rep_thm eqth
|
clasohm@0
|
704 |
val (abst,absu) = Logic.dest_equals prop
|
lcp@229
|
705 |
val cterm = cterm_of (Sign.merge (sign,signa))
|
clasohm@0
|
706 |
in transitive (symmetric (beta_conversion (cterm (abst$a))))
|
clasohm@0
|
707 |
(transitive combth (beta_conversion (cterm (absu$a))))
|
clasohm@0
|
708 |
end
|
clasohm@0
|
709 |
handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
|
clasohm@0
|
710 |
|
clasohm@0
|
711 |
(*Calling equal_abs_elim with multiple terms*)
|
clasohm@0
|
712 |
fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) (rev cts, th);
|
clasohm@0
|
713 |
|
clasohm@0
|
714 |
local
|
clasohm@0
|
715 |
open Logic
|
clasohm@0
|
716 |
val alpha = TVar(("'a",0), []) (* type ?'a::{} *)
|
clasohm@0
|
717 |
fun err th = raise THM("flexpair_inst: ", 0, [th])
|
clasohm@0
|
718 |
fun flexpair_inst def th =
|
clasohm@0
|
719 |
let val {prop = Const _ $ t $ u, sign,...} = rep_thm th
|
wenzelm@252
|
720 |
val cterm = cterm_of sign
|
wenzelm@252
|
721 |
fun cvar a = cterm(Var((a,0),alpha))
|
wenzelm@252
|
722 |
val def' = cterm_instantiate [(cvar"t", cterm t), (cvar"u", cterm u)]
|
wenzelm@252
|
723 |
def
|
clasohm@0
|
724 |
in equal_elim def' th
|
clasohm@0
|
725 |
end
|
clasohm@0
|
726 |
handle THM _ => err th | bind => err th
|
clasohm@0
|
727 |
in
|
clasohm@0
|
728 |
val flexpair_intr = flexpair_inst (symmetric flexpair_def)
|
clasohm@0
|
729 |
and flexpair_elim = flexpair_inst flexpair_def
|
clasohm@0
|
730 |
end;
|
clasohm@0
|
731 |
|
clasohm@0
|
732 |
(*Version for flexflex pairs -- this supports lifting.*)
|
wenzelm@252
|
733 |
fun flexpair_abs_elim_list cts =
|
clasohm@0
|
734 |
flexpair_intr o equal_abs_elim_list cts o flexpair_elim;
|
clasohm@0
|
735 |
|
clasohm@0
|
736 |
|
clasohm@0
|
737 |
(*** Some useful meta-theorems ***)
|
clasohm@0
|
738 |
|
clasohm@0
|
739 |
(*The rule V/V, obtains assumption solving for eresolve_tac*)
|
lcp@229
|
740 |
val asm_rl = trivial(read_cterm Sign.pure ("PROP ?psi",propT));
|
clasohm@0
|
741 |
|
clasohm@0
|
742 |
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
|
wenzelm@252
|
743 |
val cut_rl = trivial(read_cterm Sign.pure
|
wenzelm@252
|
744 |
("PROP ?psi ==> PROP ?theta", propT));
|
clasohm@0
|
745 |
|
wenzelm@252
|
746 |
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
|
clasohm@0
|
747 |
[| PROP V; PROP V ==> PROP W |] ==> PROP W *)
|
clasohm@0
|
748 |
val revcut_rl =
|
lcp@229
|
749 |
let val V = read_cterm Sign.pure ("PROP V", propT)
|
lcp@229
|
750 |
and VW = read_cterm Sign.pure ("PROP V ==> PROP W", propT);
|
wenzelm@252
|
751 |
in standard (implies_intr V
|
wenzelm@252
|
752 |
(implies_intr VW
|
wenzelm@252
|
753 |
(implies_elim (assume VW) (assume V))))
|
clasohm@0
|
754 |
end;
|
clasohm@0
|
755 |
|
lcp@668
|
756 |
(*for deleting an unwanted assumption*)
|
lcp@668
|
757 |
val thin_rl =
|
lcp@668
|
758 |
let val V = read_cterm Sign.pure ("PROP V", propT)
|
lcp@668
|
759 |
and W = read_cterm Sign.pure ("PROP W", propT);
|
lcp@668
|
760 |
in standard (implies_intr V (implies_intr W (assume W)))
|
lcp@668
|
761 |
end;
|
lcp@668
|
762 |
|
clasohm@0
|
763 |
(* (!!x. PROP ?V) == PROP ?V Allows removal of redundant parameters*)
|
clasohm@0
|
764 |
val triv_forall_equality =
|
lcp@229
|
765 |
let val V = read_cterm Sign.pure ("PROP V", propT)
|
lcp@229
|
766 |
and QV = read_cterm Sign.pure ("!!x::'a. PROP V", propT)
|
wenzelm@385
|
767 |
and x = read_cterm Sign.pure ("x", TFree("'a",logicS));
|
clasohm@0
|
768 |
in standard (equal_intr (implies_intr QV (forall_elim x (assume QV)))
|
wenzelm@252
|
769 |
(implies_intr V (forall_intr x (assume V))))
|
clasohm@0
|
770 |
end;
|
clasohm@0
|
771 |
|
clasohm@0
|
772 |
end
|
clasohm@0
|
773 |
end;
|
wenzelm@252
|
774 |
|