wenzelm@252
|
1 |
(* Title: Pure/drule.ML
|
clasohm@0
|
2 |
ID: $Id$
|
wenzelm@252
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
clasohm@0
|
4 |
Copyright 1993 University of Cambridge
|
clasohm@0
|
5 |
|
wenzelm@3766
|
6 |
Derived rules and other operations on theorems.
|
clasohm@0
|
7 |
*)
|
clasohm@0
|
8 |
|
wenzelm@9288
|
9 |
infix 0 RS RSN RL RLN MRS MRL OF COMP;
|
clasohm@0
|
10 |
|
wenzelm@5903
|
11 |
signature BASIC_DRULE =
|
wenzelm@3766
|
12 |
sig
|
paulson@9547
|
13 |
val mk_implies : cterm * cterm -> cterm
|
paulson@9547
|
14 |
val list_implies : cterm list * cterm -> cterm
|
wenzelm@4285
|
15 |
val dest_implies : cterm -> cterm * cterm
|
berghofe@10414
|
16 |
val dest_equals : cterm -> cterm * cterm
|
wenzelm@8328
|
17 |
val skip_flexpairs : cterm -> cterm
|
wenzelm@8328
|
18 |
val strip_imp_prems : cterm -> cterm list
|
berghofe@10414
|
19 |
val strip_imp_concl : cterm -> cterm
|
wenzelm@8328
|
20 |
val cprems_of : thm -> cterm list
|
wenzelm@8328
|
21 |
val read_insts :
|
wenzelm@4285
|
22 |
Sign.sg -> (indexname -> typ option) * (indexname -> sort option)
|
wenzelm@4285
|
23 |
-> (indexname -> typ option) * (indexname -> sort option)
|
wenzelm@4285
|
24 |
-> string list -> (string*string)list
|
wenzelm@4285
|
25 |
-> (indexname*ctyp)list * (cterm*cterm)list
|
wenzelm@4285
|
26 |
val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
|
wenzelm@7636
|
27 |
val strip_shyps_warning : thm -> thm
|
wenzelm@8328
|
28 |
val forall_intr_list : cterm list -> thm -> thm
|
wenzelm@8328
|
29 |
val forall_intr_frees : thm -> thm
|
wenzelm@8328
|
30 |
val forall_intr_vars : thm -> thm
|
wenzelm@8328
|
31 |
val forall_elim_list : cterm list -> thm -> thm
|
wenzelm@8328
|
32 |
val forall_elim_var : int -> thm -> thm
|
wenzelm@8328
|
33 |
val forall_elim_vars : int -> thm -> thm
|
wenzelm@9554
|
34 |
val forall_elim_vars_safe : thm -> thm
|
wenzelm@8328
|
35 |
val freeze_thaw : thm -> thm * (thm -> thm)
|
wenzelm@8328
|
36 |
val implies_elim_list : thm -> thm list -> thm
|
wenzelm@8328
|
37 |
val implies_intr_list : cterm list -> thm -> thm
|
paulson@8129
|
38 |
val instantiate :
|
paulson@8129
|
39 |
(indexname * ctyp) list * (cterm * cterm) list -> thm -> thm
|
wenzelm@8328
|
40 |
val zero_var_indexes : thm -> thm
|
wenzelm@8328
|
41 |
val standard : thm -> thm
|
paulson@4610
|
42 |
val rotate_prems : int -> thm -> thm
|
wenzelm@8328
|
43 |
val assume_ax : theory -> string -> thm
|
wenzelm@8328
|
44 |
val RSN : thm * (int * thm) -> thm
|
wenzelm@8328
|
45 |
val RS : thm * thm -> thm
|
wenzelm@8328
|
46 |
val RLN : thm list * (int * thm list) -> thm list
|
wenzelm@8328
|
47 |
val RL : thm list * thm list -> thm list
|
wenzelm@8328
|
48 |
val MRS : thm list * thm -> thm
|
wenzelm@8328
|
49 |
val MRL : thm list list * thm list -> thm list
|
wenzelm@9288
|
50 |
val OF : thm * thm list -> thm
|
wenzelm@8328
|
51 |
val compose : thm * int * thm -> thm list
|
wenzelm@8328
|
52 |
val COMP : thm * thm -> thm
|
clasohm@0
|
53 |
val read_instantiate_sg: Sign.sg -> (string*string)list -> thm -> thm
|
wenzelm@8328
|
54 |
val read_instantiate : (string*string)list -> thm -> thm
|
wenzelm@8328
|
55 |
val cterm_instantiate : (cterm*cterm)list -> thm -> thm
|
wenzelm@8328
|
56 |
val weak_eq_thm : thm * thm -> bool
|
wenzelm@8328
|
57 |
val eq_thm_sg : thm * thm -> bool
|
wenzelm@8328
|
58 |
val size_of_thm : thm -> int
|
wenzelm@8328
|
59 |
val reflexive_thm : thm
|
wenzelm@8328
|
60 |
val symmetric_thm : thm
|
wenzelm@8328
|
61 |
val transitive_thm : thm
|
paulson@2004
|
62 |
val refl_implies : thm
|
nipkow@4679
|
63 |
val symmetric_fun : thm -> thm
|
berghofe@10414
|
64 |
val imp_cong : thm
|
berghofe@10414
|
65 |
val swap_prems_eq : thm
|
wenzelm@8328
|
66 |
val equal_abs_elim : cterm -> thm -> thm
|
wenzelm@4285
|
67 |
val equal_abs_elim_list: cterm list -> thm -> thm
|
wenzelm@4285
|
68 |
val flexpair_abs_elim_list: cterm list -> thm -> thm
|
wenzelm@8328
|
69 |
val asm_rl : thm
|
wenzelm@8328
|
70 |
val cut_rl : thm
|
wenzelm@8328
|
71 |
val revcut_rl : thm
|
wenzelm@8328
|
72 |
val thin_rl : thm
|
wenzelm@4285
|
73 |
val triv_forall_equality: thm
|
nipkow@1756
|
74 |
val swap_prems_rl : thm
|
wenzelm@4285
|
75 |
val equal_intr_rule : thm
|
paulson@8550
|
76 |
val inst : string -> string -> thm -> thm
|
wenzelm@8328
|
77 |
val instantiate' : ctyp option list -> cterm option list -> thm -> thm
|
wenzelm@8328
|
78 |
val incr_indexes_wrt : int list -> ctyp list -> cterm list -> thm list -> thm -> thm
|
wenzelm@5903
|
79 |
end;
|
wenzelm@5903
|
80 |
|
wenzelm@5903
|
81 |
signature DRULE =
|
wenzelm@5903
|
82 |
sig
|
wenzelm@5903
|
83 |
include BASIC_DRULE
|
wenzelm@9455
|
84 |
val rule_attribute : ('a -> thm -> thm) -> 'a attribute
|
wenzelm@9455
|
85 |
val tag_rule : tag -> thm -> thm
|
wenzelm@9455
|
86 |
val untag_rule : string -> thm -> thm
|
wenzelm@9455
|
87 |
val tag : tag -> 'a attribute
|
wenzelm@9455
|
88 |
val untag : string -> 'a attribute
|
wenzelm@9455
|
89 |
val tag_lemma : 'a attribute
|
wenzelm@9455
|
90 |
val tag_assumption : 'a attribute
|
wenzelm@9455
|
91 |
val tag_internal : 'a attribute
|
wenzelm@9455
|
92 |
val has_internal : tag list -> bool
|
wenzelm@10515
|
93 |
val close_derivation : thm -> thm
|
wenzelm@8328
|
94 |
val compose_single : thm * int * thm -> thm
|
wenzelm@9829
|
95 |
val add_rules : thm list -> thm list -> thm list
|
wenzelm@9829
|
96 |
val del_rules : thm list -> thm list -> thm list
|
wenzelm@9418
|
97 |
val merge_rules : thm list * thm list -> thm list
|
wenzelm@9554
|
98 |
val norm_hhf_eq : thm
|
wenzelm@8328
|
99 |
val triv_goal : thm
|
wenzelm@8328
|
100 |
val rev_triv_goal : thm
|
wenzelm@8328
|
101 |
val freeze_all : thm -> thm
|
paulson@5311
|
102 |
val mk_triv_goal : cterm -> thm
|
wenzelm@8328
|
103 |
val mk_cgoal : cterm -> cterm
|
wenzelm@8328
|
104 |
val assume_goal : cterm -> thm
|
wenzelm@8328
|
105 |
val tvars_of_terms : term list -> (indexname * sort) list
|
wenzelm@8328
|
106 |
val vars_of_terms : term list -> (indexname * typ) list
|
wenzelm@8328
|
107 |
val tvars_of : thm -> (indexname * sort) list
|
wenzelm@8328
|
108 |
val vars_of : thm -> (indexname * typ) list
|
wenzelm@8328
|
109 |
val unvarifyT : thm -> thm
|
wenzelm@8328
|
110 |
val unvarify : thm -> thm
|
wenzelm@8605
|
111 |
val tvars_intr_list : string list -> thm -> thm
|
wenzelm@3766
|
112 |
end;
|
clasohm@0
|
113 |
|
wenzelm@5903
|
114 |
structure Drule: DRULE =
|
clasohm@0
|
115 |
struct
|
clasohm@0
|
116 |
|
wenzelm@3991
|
117 |
|
lcp@708
|
118 |
(** some cterm->cterm operations: much faster than calling cterm_of! **)
|
lcp@708
|
119 |
|
paulson@2004
|
120 |
(** SAME NAMES as in structure Logic: use compound identifiers! **)
|
paulson@2004
|
121 |
|
clasohm@1703
|
122 |
(*dest_implies for cterms. Note T=prop below*)
|
paulson@2004
|
123 |
fun dest_implies ct =
|
wenzelm@8328
|
124 |
case term_of ct of
|
wenzelm@8328
|
125 |
(Const("==>", _) $ _ $ _) =>
|
wenzelm@8328
|
126 |
let val (ct1,ct2) = dest_comb ct
|
wenzelm@8328
|
127 |
in (#2 (dest_comb ct1), ct2) end
|
paulson@2004
|
128 |
| _ => raise TERM ("dest_implies", [term_of ct]) ;
|
clasohm@1703
|
129 |
|
berghofe@10414
|
130 |
fun dest_equals ct =
|
berghofe@10414
|
131 |
case term_of ct of
|
berghofe@10414
|
132 |
(Const("==", _) $ _ $ _) =>
|
berghofe@10414
|
133 |
let val (ct1,ct2) = dest_comb ct
|
berghofe@10414
|
134 |
in (#2 (dest_comb ct1), ct2) end
|
berghofe@10414
|
135 |
| _ => raise TERM ("dest_equals", [term_of ct]) ;
|
berghofe@10414
|
136 |
|
clasohm@1703
|
137 |
|
lcp@708
|
138 |
(*Discard flexflex pairs; return a cterm*)
|
paulson@2004
|
139 |
fun skip_flexpairs ct =
|
lcp@708
|
140 |
case term_of ct of
|
wenzelm@8328
|
141 |
(Const("==>", _) $ (Const("=?=",_)$_$_) $ _) =>
|
wenzelm@8328
|
142 |
skip_flexpairs (#2 (dest_implies ct))
|
lcp@708
|
143 |
| _ => ct;
|
lcp@708
|
144 |
|
lcp@708
|
145 |
(* A1==>...An==>B goes to [A1,...,An], where B is not an implication *)
|
paulson@2004
|
146 |
fun strip_imp_prems ct =
|
paulson@2004
|
147 |
let val (cA,cB) = dest_implies ct
|
paulson@2004
|
148 |
in cA :: strip_imp_prems cB end
|
lcp@708
|
149 |
handle TERM _ => [];
|
lcp@708
|
150 |
|
paulson@2004
|
151 |
(* A1==>...An==>B goes to B, where B is not an implication *)
|
paulson@2004
|
152 |
fun strip_imp_concl ct =
|
wenzelm@8328
|
153 |
case term_of ct of (Const("==>", _) $ _ $ _) =>
|
wenzelm@8328
|
154 |
strip_imp_concl (#2 (dest_comb ct))
|
paulson@2004
|
155 |
| _ => ct;
|
paulson@2004
|
156 |
|
lcp@708
|
157 |
(*The premises of a theorem, as a cterm list*)
|
paulson@2004
|
158 |
val cprems_of = strip_imp_prems o skip_flexpairs o cprop_of;
|
lcp@708
|
159 |
|
paulson@9547
|
160 |
val proto_sign = Theory.sign_of ProtoPure.thy;
|
paulson@9547
|
161 |
|
paulson@9547
|
162 |
val implies = cterm_of proto_sign Term.implies;
|
paulson@9547
|
163 |
|
paulson@9547
|
164 |
(*cterm version of mk_implies*)
|
paulson@9547
|
165 |
fun mk_implies(A,B) = capply (capply implies A) B;
|
paulson@9547
|
166 |
|
paulson@9547
|
167 |
(*cterm version of list_implies: [A1,...,An], B goes to [|A1;==>;An|]==>B *)
|
paulson@9547
|
168 |
fun list_implies([], B) = B
|
paulson@9547
|
169 |
| list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
|
paulson@9547
|
170 |
|
lcp@708
|
171 |
|
lcp@229
|
172 |
(** reading of instantiations **)
|
lcp@229
|
173 |
|
lcp@229
|
174 |
fun absent ixn =
|
lcp@229
|
175 |
error("No such variable in term: " ^ Syntax.string_of_vname ixn);
|
lcp@229
|
176 |
|
lcp@229
|
177 |
fun inst_failure ixn =
|
lcp@229
|
178 |
error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
|
lcp@229
|
179 |
|
nipkow@4281
|
180 |
fun read_insts sign (rtypes,rsorts) (types,sorts) used insts =
|
wenzelm@10403
|
181 |
let
|
nipkow@4281
|
182 |
fun split([],tvs,vs) = (tvs,vs)
|
wenzelm@4691
|
183 |
| split((sv,st)::l,tvs,vs) = (case Symbol.explode sv of
|
wenzelm@4691
|
184 |
"'"::cs => split(l,(Syntax.indexname cs,st)::tvs,vs)
|
wenzelm@4691
|
185 |
| cs => split(l,tvs,(Syntax.indexname cs,st)::vs));
|
nipkow@4281
|
186 |
val (tvs,vs) = split(insts,[],[]);
|
nipkow@4281
|
187 |
fun readT((a,i),st) =
|
nipkow@4281
|
188 |
let val ixn = ("'" ^ a,i);
|
nipkow@4281
|
189 |
val S = case rsorts ixn of Some S => S | None => absent ixn;
|
nipkow@4281
|
190 |
val T = Sign.read_typ (sign,sorts) st;
|
wenzelm@10403
|
191 |
in if Sign.typ_instance sign (T, TVar(ixn,S)) then (ixn,T)
|
nipkow@4281
|
192 |
else inst_failure ixn
|
nipkow@4281
|
193 |
end
|
nipkow@4281
|
194 |
val tye = map readT tvs;
|
nipkow@4281
|
195 |
fun mkty(ixn,st) = (case rtypes ixn of
|
nipkow@4281
|
196 |
Some T => (ixn,(st,typ_subst_TVars tye T))
|
nipkow@4281
|
197 |
| None => absent ixn);
|
nipkow@4281
|
198 |
val ixnsTs = map mkty vs;
|
nipkow@4281
|
199 |
val ixns = map fst ixnsTs
|
nipkow@4281
|
200 |
and sTs = map snd ixnsTs
|
nipkow@4281
|
201 |
val (cts,tye2) = read_def_cterms(sign,types,sorts) used false sTs;
|
nipkow@4281
|
202 |
fun mkcVar(ixn,T) =
|
nipkow@4281
|
203 |
let val U = typ_subst_TVars tye2 T
|
nipkow@4281
|
204 |
in cterm_of sign (Var(ixn,U)) end
|
nipkow@4281
|
205 |
val ixnTs = ListPair.zip(ixns, map snd sTs)
|
nipkow@4281
|
206 |
in (map (fn (ixn,T) => (ixn,ctyp_of sign T)) (tye2 @ tye),
|
nipkow@4281
|
207 |
ListPair.zip(map mkcVar ixnTs,cts))
|
nipkow@4281
|
208 |
end;
|
lcp@229
|
209 |
|
lcp@229
|
210 |
|
wenzelm@252
|
211 |
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
|
clasohm@0
|
212 |
Used for establishing default types (of variables) and sorts (of
|
clasohm@0
|
213 |
type variables) when reading another term.
|
clasohm@0
|
214 |
Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
|
clasohm@0
|
215 |
***)
|
clasohm@0
|
216 |
|
clasohm@0
|
217 |
fun types_sorts thm =
|
clasohm@0
|
218 |
let val {prop,hyps,...} = rep_thm thm;
|
wenzelm@252
|
219 |
val big = list_comb(prop,hyps); (* bogus term! *)
|
wenzelm@252
|
220 |
val vars = map dest_Var (term_vars big);
|
wenzelm@252
|
221 |
val frees = map dest_Free (term_frees big);
|
wenzelm@252
|
222 |
val tvars = term_tvars big;
|
wenzelm@252
|
223 |
val tfrees = term_tfrees big;
|
wenzelm@252
|
224 |
fun typ(a,i) = if i<0 then assoc(frees,a) else assoc(vars,(a,i));
|
wenzelm@252
|
225 |
fun sort(a,i) = if i<0 then assoc(tfrees,a) else assoc(tvars,(a,i));
|
clasohm@0
|
226 |
in (typ,sort) end;
|
clasohm@0
|
227 |
|
wenzelm@7636
|
228 |
|
wenzelm@9455
|
229 |
|
wenzelm@9455
|
230 |
(** basic attributes **)
|
wenzelm@9455
|
231 |
|
wenzelm@9455
|
232 |
(* dependent rules *)
|
wenzelm@9455
|
233 |
|
wenzelm@9455
|
234 |
fun rule_attribute f (x, thm) = (x, (f x thm));
|
wenzelm@9455
|
235 |
|
wenzelm@9455
|
236 |
|
wenzelm@9455
|
237 |
(* add / delete tags *)
|
wenzelm@9455
|
238 |
|
wenzelm@9455
|
239 |
fun map_tags f thm =
|
wenzelm@9455
|
240 |
Thm.put_name_tags (Thm.name_of_thm thm, f (#2 (Thm.get_name_tags thm))) thm;
|
wenzelm@9455
|
241 |
|
wenzelm@9455
|
242 |
fun tag_rule tg = map_tags (fn tgs => if tg mem tgs then tgs else tgs @ [tg]);
|
wenzelm@9455
|
243 |
fun untag_rule s = map_tags (filter_out (equal s o #1));
|
wenzelm@9455
|
244 |
|
wenzelm@9455
|
245 |
fun tag tg x = rule_attribute (K (tag_rule tg)) x;
|
wenzelm@9455
|
246 |
fun untag s x = rule_attribute (K (untag_rule s)) x;
|
wenzelm@9455
|
247 |
|
wenzelm@9455
|
248 |
fun simple_tag name x = tag (name, []) x;
|
wenzelm@9455
|
249 |
|
wenzelm@9455
|
250 |
fun tag_lemma x = simple_tag "lemma" x;
|
wenzelm@9455
|
251 |
fun tag_assumption x = simple_tag "assumption" x;
|
wenzelm@9455
|
252 |
|
wenzelm@9455
|
253 |
val internal_tag = ("internal", []);
|
wenzelm@9455
|
254 |
fun tag_internal x = tag internal_tag x;
|
wenzelm@9455
|
255 |
fun has_internal tags = exists (equal internal_tag) tags;
|
wenzelm@9455
|
256 |
|
wenzelm@9455
|
257 |
|
wenzelm@9455
|
258 |
|
clasohm@0
|
259 |
(** Standardization of rules **)
|
clasohm@0
|
260 |
|
wenzelm@7636
|
261 |
(*Strip extraneous shyps as far as possible*)
|
wenzelm@7636
|
262 |
fun strip_shyps_warning thm =
|
wenzelm@7636
|
263 |
let
|
wenzelm@7636
|
264 |
val str_of_sort = Sign.str_of_sort (Thm.sign_of_thm thm);
|
wenzelm@7636
|
265 |
val thm' = Thm.strip_shyps thm;
|
wenzelm@7636
|
266 |
val xshyps = Thm.extra_shyps thm';
|
wenzelm@7636
|
267 |
in
|
wenzelm@7636
|
268 |
if null xshyps then ()
|
wenzelm@7636
|
269 |
else warning ("Pending sort hypotheses: " ^ commas (map str_of_sort xshyps));
|
wenzelm@7636
|
270 |
thm'
|
wenzelm@7636
|
271 |
end;
|
wenzelm@7636
|
272 |
|
clasohm@0
|
273 |
(*Generalization over a list of variables, IGNORING bad ones*)
|
clasohm@0
|
274 |
fun forall_intr_list [] th = th
|
clasohm@0
|
275 |
| forall_intr_list (y::ys) th =
|
wenzelm@252
|
276 |
let val gth = forall_intr_list ys th
|
wenzelm@252
|
277 |
in forall_intr y gth handle THM _ => gth end;
|
clasohm@0
|
278 |
|
clasohm@0
|
279 |
(*Generalization over all suitable Free variables*)
|
clasohm@0
|
280 |
fun forall_intr_frees th =
|
clasohm@0
|
281 |
let val {prop,sign,...} = rep_thm th
|
clasohm@0
|
282 |
in forall_intr_list
|
wenzelm@4440
|
283 |
(map (cterm_of sign) (sort (make_ord atless) (term_frees prop)))
|
clasohm@0
|
284 |
th
|
clasohm@0
|
285 |
end;
|
clasohm@0
|
286 |
|
wenzelm@7898
|
287 |
val forall_elim_var = PureThy.forall_elim_var;
|
wenzelm@7898
|
288 |
val forall_elim_vars = PureThy.forall_elim_vars;
|
clasohm@0
|
289 |
|
wenzelm@9554
|
290 |
fun forall_elim_vars_safe th =
|
wenzelm@9554
|
291 |
forall_elim_vars_safe (forall_elim_var (#maxidx (Thm.rep_thm th) + 1) th)
|
wenzelm@9554
|
292 |
handle THM _ => th;
|
wenzelm@9554
|
293 |
|
wenzelm@9554
|
294 |
|
clasohm@0
|
295 |
(*Specialization over a list of cterms*)
|
clasohm@0
|
296 |
fun forall_elim_list cts th = foldr (uncurry forall_elim) (rev cts, th);
|
clasohm@0
|
297 |
|
clasohm@0
|
298 |
(* maps [A1,...,An], B to [| A1;...;An |] ==> B *)
|
clasohm@0
|
299 |
fun implies_intr_list cAs th = foldr (uncurry implies_intr) (cAs,th);
|
clasohm@0
|
300 |
|
clasohm@0
|
301 |
(* maps [| A1;...;An |] ==> B and [A1,...,An] to B *)
|
clasohm@0
|
302 |
fun implies_elim_list impth ths = foldl (uncurry implies_elim) (impth,ths);
|
clasohm@0
|
303 |
|
clasohm@0
|
304 |
(*Reset Var indexes to zero, renaming to preserve distinctness*)
|
wenzelm@252
|
305 |
fun zero_var_indexes th =
|
clasohm@0
|
306 |
let val {prop,sign,...} = rep_thm th;
|
clasohm@0
|
307 |
val vars = term_vars prop
|
clasohm@0
|
308 |
val bs = foldl add_new_id ([], map (fn Var((a,_),_)=>a) vars)
|
wenzelm@252
|
309 |
val inrs = add_term_tvars(prop,[]);
|
wenzelm@252
|
310 |
val nms' = rev(foldl add_new_id ([], map (#1 o #1) inrs));
|
paulson@2266
|
311 |
val tye = ListPair.map (fn ((v,rs),a) => (v, TVar((a,0),rs)))
|
wenzelm@8328
|
312 |
(inrs, nms')
|
wenzelm@252
|
313 |
val ctye = map (fn (v,T) => (v,ctyp_of sign T)) tye;
|
wenzelm@252
|
314 |
fun varpairs([],[]) = []
|
wenzelm@252
|
315 |
| varpairs((var as Var(v,T)) :: vars, b::bs) =
|
wenzelm@252
|
316 |
let val T' = typ_subst_TVars tye T
|
wenzelm@252
|
317 |
in (cterm_of sign (Var(v,T')),
|
wenzelm@252
|
318 |
cterm_of sign (Var((b,0),T'))) :: varpairs(vars,bs)
|
wenzelm@252
|
319 |
end
|
wenzelm@252
|
320 |
| varpairs _ = raise TERM("varpairs", []);
|
paulson@8129
|
321 |
in Thm.instantiate (ctye, varpairs(vars,rev bs)) th end;
|
clasohm@0
|
322 |
|
clasohm@0
|
323 |
|
clasohm@0
|
324 |
(*Standard form of object-rule: no hypotheses, Frees, or outer quantifiers;
|
clasohm@0
|
325 |
all generality expressed by Vars having index 0.*)
|
wenzelm@10515
|
326 |
|
wenzelm@10515
|
327 |
fun close_derivation thm =
|
wenzelm@10515
|
328 |
if Thm.get_name_tags thm = ("", []) then Thm.name_thm ("", thm)
|
wenzelm@10515
|
329 |
else thm;
|
wenzelm@10515
|
330 |
|
clasohm@0
|
331 |
fun standard th =
|
wenzelm@10515
|
332 |
let val {maxidx,...} = rep_thm th in
|
wenzelm@10515
|
333 |
th
|
wenzelm@10515
|
334 |
|> implies_intr_hyps
|
wenzelm@10515
|
335 |
|> forall_intr_frees |> forall_elim_vars (maxidx + 1)
|
wenzelm@10515
|
336 |
|> strip_shyps_warning
|
wenzelm@10515
|
337 |
|> zero_var_indexes |> Thm.varifyT |> Thm.compress |> close_derivation
|
wenzelm@1218
|
338 |
end;
|
wenzelm@1218
|
339 |
|
clasohm@0
|
340 |
|
wenzelm@8328
|
341 |
(*Convert all Vars in a theorem to Frees. Also return a function for
|
paulson@4610
|
342 |
reversing that operation. DOES NOT WORK FOR TYPE VARIABLES.
|
paulson@4610
|
343 |
Similar code in type/freeze_thaw*)
|
paulson@4610
|
344 |
fun freeze_thaw th =
|
paulson@7248
|
345 |
let val fth = freezeT th
|
paulson@7248
|
346 |
val {prop,sign,...} = rep_thm fth
|
paulson@7248
|
347 |
in
|
paulson@7248
|
348 |
case term_vars prop of
|
paulson@7248
|
349 |
[] => (fth, fn x => x)
|
paulson@7248
|
350 |
| vars =>
|
wenzelm@8328
|
351 |
let fun newName (Var(ix,_), (pairs,used)) =
|
wenzelm@8328
|
352 |
let val v = variant used (string_of_indexname ix)
|
wenzelm@8328
|
353 |
in ((ix,v)::pairs, v::used) end;
|
wenzelm@8328
|
354 |
val (alist, _) = foldr newName
|
wenzelm@8328
|
355 |
(vars, ([], add_term_names (prop, [])))
|
wenzelm@8328
|
356 |
fun mk_inst (Var(v,T)) =
|
wenzelm@8328
|
357 |
(cterm_of sign (Var(v,T)),
|
wenzelm@8328
|
358 |
cterm_of sign (Free(the (assoc(alist,v)), T)))
|
wenzelm@8328
|
359 |
val insts = map mk_inst vars
|
wenzelm@8328
|
360 |
fun thaw th' =
|
wenzelm@8328
|
361 |
th' |> forall_intr_list (map #2 insts)
|
wenzelm@8328
|
362 |
|> forall_elim_list (map #1 insts)
|
wenzelm@8328
|
363 |
in (Thm.instantiate ([],insts) fth, thaw) end
|
paulson@7248
|
364 |
end;
|
paulson@4610
|
365 |
|
paulson@4610
|
366 |
|
paulson@7248
|
367 |
(*Rotates a rule's premises to the left by k*)
|
paulson@7248
|
368 |
val rotate_prems = permute_prems 0;
|
paulson@4610
|
369 |
|
paulson@4610
|
370 |
|
wenzelm@252
|
371 |
(*Assume a new formula, read following the same conventions as axioms.
|
clasohm@0
|
372 |
Generalizes over Free variables,
|
clasohm@0
|
373 |
creates the assumption, and then strips quantifiers.
|
clasohm@0
|
374 |
Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
|
wenzelm@252
|
375 |
[ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ] *)
|
clasohm@0
|
376 |
fun assume_ax thy sP =
|
wenzelm@6390
|
377 |
let val sign = Theory.sign_of thy
|
paulson@4610
|
378 |
val prop = Logic.close_form (term_of (read_cterm sign (sP, propT)))
|
lcp@229
|
379 |
in forall_elim_vars 0 (assume (cterm_of sign prop)) end;
|
clasohm@0
|
380 |
|
wenzelm@252
|
381 |
(*Resolution: exactly one resolvent must be produced.*)
|
clasohm@0
|
382 |
fun tha RSN (i,thb) =
|
wenzelm@4270
|
383 |
case Seq.chop (2, biresolution false [(false,tha)] i thb) of
|
clasohm@0
|
384 |
([th],_) => th
|
clasohm@0
|
385 |
| ([],_) => raise THM("RSN: no unifiers", i, [tha,thb])
|
clasohm@0
|
386 |
| _ => raise THM("RSN: multiple unifiers", i, [tha,thb]);
|
clasohm@0
|
387 |
|
clasohm@0
|
388 |
(*resolution: P==>Q, Q==>R gives P==>R. *)
|
clasohm@0
|
389 |
fun tha RS thb = tha RSN (1,thb);
|
clasohm@0
|
390 |
|
clasohm@0
|
391 |
(*For joining lists of rules*)
|
wenzelm@252
|
392 |
fun thas RLN (i,thbs) =
|
clasohm@0
|
393 |
let val resolve = biresolution false (map (pair false) thas) i
|
wenzelm@4270
|
394 |
fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
|
paulson@2672
|
395 |
in List.concat (map resb thbs) end;
|
clasohm@0
|
396 |
|
clasohm@0
|
397 |
fun thas RL thbs = thas RLN (1,thbs);
|
clasohm@0
|
398 |
|
lcp@11
|
399 |
(*Resolve a list of rules against bottom_rl from right to left;
|
lcp@11
|
400 |
makes proof trees*)
|
wenzelm@252
|
401 |
fun rls MRS bottom_rl =
|
lcp@11
|
402 |
let fun rs_aux i [] = bottom_rl
|
wenzelm@252
|
403 |
| rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
|
lcp@11
|
404 |
in rs_aux 1 rls end;
|
lcp@11
|
405 |
|
lcp@11
|
406 |
(*As above, but for rule lists*)
|
wenzelm@252
|
407 |
fun rlss MRL bottom_rls =
|
lcp@11
|
408 |
let fun rs_aux i [] = bottom_rls
|
wenzelm@252
|
409 |
| rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
|
lcp@11
|
410 |
in rs_aux 1 rlss end;
|
lcp@11
|
411 |
|
wenzelm@9288
|
412 |
(*A version of MRS with more appropriate argument order*)
|
wenzelm@9288
|
413 |
fun bottom_rl OF rls = rls MRS bottom_rl;
|
wenzelm@9288
|
414 |
|
wenzelm@252
|
415 |
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
|
clasohm@0
|
416 |
with no lifting or renaming! Q may contain ==> or meta-quants
|
clasohm@0
|
417 |
ALWAYS deletes premise i *)
|
wenzelm@252
|
418 |
fun compose(tha,i,thb) =
|
wenzelm@4270
|
419 |
Seq.list_of (bicompose false (false,tha,0) i thb);
|
clasohm@0
|
420 |
|
wenzelm@6946
|
421 |
fun compose_single (tha,i,thb) =
|
wenzelm@6946
|
422 |
(case compose (tha,i,thb) of
|
wenzelm@6946
|
423 |
[th] => th
|
wenzelm@6946
|
424 |
| _ => raise THM ("compose: unique result expected", i, [tha,thb]));
|
wenzelm@6946
|
425 |
|
clasohm@0
|
426 |
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
|
clasohm@0
|
427 |
fun tha COMP thb =
|
clasohm@0
|
428 |
case compose(tha,1,thb) of
|
wenzelm@252
|
429 |
[th] => th
|
clasohm@0
|
430 |
| _ => raise THM("COMP", 1, [tha,thb]);
|
clasohm@0
|
431 |
|
wenzelm@4016
|
432 |
(** theorem equality **)
|
clasohm@0
|
433 |
|
clasohm@0
|
434 |
(*Do the two theorems have the same signature?*)
|
wenzelm@252
|
435 |
fun eq_thm_sg (th1,th2) = Sign.eq_sg(#sign(rep_thm th1), #sign(rep_thm th2));
|
clasohm@0
|
436 |
|
clasohm@0
|
437 |
(*Useful "distance" function for BEST_FIRST*)
|
clasohm@0
|
438 |
val size_of_thm = size_of_term o #prop o rep_thm;
|
clasohm@0
|
439 |
|
wenzelm@9829
|
440 |
(*maintain lists of theorems --- preserving canonical order*)
|
wenzelm@9829
|
441 |
fun del_rules rs rules = Library.gen_rems Thm.eq_thm (rules, rs);
|
wenzelm@9862
|
442 |
fun add_rules rs rules = rs @ del_rules rs rules;
|
wenzelm@9829
|
443 |
fun merge_rules (rules1, rules2) = Library.generic_merge Thm.eq_thm I I rules1 rules2;
|
wenzelm@9829
|
444 |
|
clasohm@0
|
445 |
|
lcp@1194
|
446 |
(** Mark Staples's weaker version of eq_thm: ignores variable renaming and
|
lcp@1194
|
447 |
(some) type variable renaming **)
|
lcp@1194
|
448 |
|
lcp@1194
|
449 |
(* Can't use term_vars, because it sorts the resulting list of variable names.
|
lcp@1194
|
450 |
We instead need the unique list noramlised by the order of appearance
|
lcp@1194
|
451 |
in the term. *)
|
lcp@1194
|
452 |
fun term_vars' (t as Var(v,T)) = [t]
|
lcp@1194
|
453 |
| term_vars' (Abs(_,_,b)) = term_vars' b
|
lcp@1194
|
454 |
| term_vars' (f$a) = (term_vars' f) @ (term_vars' a)
|
lcp@1194
|
455 |
| term_vars' _ = [];
|
lcp@1194
|
456 |
|
lcp@1194
|
457 |
fun forall_intr_vars th =
|
lcp@1194
|
458 |
let val {prop,sign,...} = rep_thm th;
|
lcp@1194
|
459 |
val vars = distinct (term_vars' prop);
|
lcp@1194
|
460 |
in forall_intr_list (map (cterm_of sign) vars) th end;
|
lcp@1194
|
461 |
|
wenzelm@1237
|
462 |
fun weak_eq_thm (tha,thb) =
|
lcp@1194
|
463 |
eq_thm(forall_intr_vars (freezeT tha), forall_intr_vars (freezeT thb));
|
lcp@1194
|
464 |
|
lcp@1194
|
465 |
|
lcp@1194
|
466 |
|
clasohm@0
|
467 |
(*** Meta-Rewriting Rules ***)
|
clasohm@0
|
468 |
|
paulson@4610
|
469 |
fun read_prop s = read_cterm proto_sign (s, propT);
|
paulson@4610
|
470 |
|
wenzelm@9455
|
471 |
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
|
wenzelm@9455
|
472 |
fun store_standard_thm name thm = store_thm name (standard thm);
|
wenzelm@4016
|
473 |
|
clasohm@0
|
474 |
val reflexive_thm =
|
paulson@4610
|
475 |
let val cx = cterm_of proto_sign (Var(("x",0),TVar(("'a",0),logicS)))
|
wenzelm@9455
|
476 |
in store_standard_thm "reflexive" (Thm.reflexive cx) end;
|
clasohm@0
|
477 |
|
clasohm@0
|
478 |
val symmetric_thm =
|
paulson@4610
|
479 |
let val xy = read_prop "x::'a::logic == y"
|
wenzelm@9455
|
480 |
in store_standard_thm "symmetric" (Thm.implies_intr_hyps (Thm.symmetric (Thm.assume xy))) end;
|
clasohm@0
|
481 |
|
clasohm@0
|
482 |
val transitive_thm =
|
paulson@4610
|
483 |
let val xy = read_prop "x::'a::logic == y"
|
paulson@4610
|
484 |
val yz = read_prop "y::'a::logic == z"
|
clasohm@0
|
485 |
val xythm = Thm.assume xy and yzthm = Thm.assume yz
|
wenzelm@9455
|
486 |
in store_standard_thm "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
|
clasohm@0
|
487 |
|
nipkow@4679
|
488 |
fun symmetric_fun thm = thm RS symmetric_thm;
|
nipkow@4679
|
489 |
|
berghofe@10414
|
490 |
val imp_cong =
|
berghofe@10414
|
491 |
let
|
berghofe@10414
|
492 |
val ABC = read_prop "PROP A ==> PROP B == PROP C"
|
berghofe@10414
|
493 |
val AB = read_prop "PROP A ==> PROP B"
|
berghofe@10414
|
494 |
val AC = read_prop "PROP A ==> PROP C"
|
berghofe@10414
|
495 |
val A = read_prop "PROP A"
|
berghofe@10414
|
496 |
in
|
berghofe@10414
|
497 |
store_standard_thm "imp_cong2" (implies_intr ABC (equal_intr
|
berghofe@10414
|
498 |
(implies_intr AB (implies_intr A
|
berghofe@10414
|
499 |
(equal_elim (implies_elim (assume ABC) (assume A))
|
berghofe@10414
|
500 |
(implies_elim (assume AB) (assume A)))))
|
berghofe@10414
|
501 |
(implies_intr AC (implies_intr A
|
berghofe@10414
|
502 |
(equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
|
berghofe@10414
|
503 |
(implies_elim (assume AC) (assume A)))))))
|
berghofe@10414
|
504 |
end;
|
berghofe@10414
|
505 |
|
berghofe@10414
|
506 |
val swap_prems_eq =
|
berghofe@10414
|
507 |
let
|
berghofe@10414
|
508 |
val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
|
berghofe@10414
|
509 |
val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
|
berghofe@10414
|
510 |
val A = read_prop "PROP A"
|
berghofe@10414
|
511 |
val B = read_prop "PROP B"
|
berghofe@10414
|
512 |
in
|
berghofe@10414
|
513 |
store_standard_thm "swap_prems_eq" (equal_intr
|
berghofe@10414
|
514 |
(implies_intr ABC (implies_intr B (implies_intr A
|
berghofe@10414
|
515 |
(implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
|
berghofe@10414
|
516 |
(implies_intr BAC (implies_intr A (implies_intr B
|
berghofe@10414
|
517 |
(implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
|
berghofe@10414
|
518 |
end;
|
lcp@229
|
519 |
|
paulson@9547
|
520 |
val refl_implies = reflexive implies;
|
clasohm@0
|
521 |
|
clasohm@0
|
522 |
|
clasohm@0
|
523 |
(*** Some useful meta-theorems ***)
|
clasohm@0
|
524 |
|
clasohm@0
|
525 |
(*The rule V/V, obtains assumption solving for eresolve_tac*)
|
wenzelm@9455
|
526 |
val asm_rl = store_standard_thm "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
|
wenzelm@7380
|
527 |
val _ = store_thm "_" asm_rl;
|
clasohm@0
|
528 |
|
clasohm@0
|
529 |
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
|
wenzelm@4016
|
530 |
val cut_rl =
|
wenzelm@9455
|
531 |
store_standard_thm "cut_rl"
|
wenzelm@9455
|
532 |
(Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
|
clasohm@0
|
533 |
|
wenzelm@252
|
534 |
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
|
clasohm@0
|
535 |
[| PROP V; PROP V ==> PROP W |] ==> PROP W *)
|
clasohm@0
|
536 |
val revcut_rl =
|
paulson@4610
|
537 |
let val V = read_prop "PROP V"
|
paulson@4610
|
538 |
and VW = read_prop "PROP V ==> PROP W";
|
wenzelm@4016
|
539 |
in
|
wenzelm@9455
|
540 |
store_standard_thm "revcut_rl"
|
wenzelm@4016
|
541 |
(implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
|
clasohm@0
|
542 |
end;
|
clasohm@0
|
543 |
|
lcp@668
|
544 |
(*for deleting an unwanted assumption*)
|
lcp@668
|
545 |
val thin_rl =
|
paulson@4610
|
546 |
let val V = read_prop "PROP V"
|
paulson@4610
|
547 |
and W = read_prop "PROP W";
|
wenzelm@9455
|
548 |
in store_standard_thm "thin_rl" (implies_intr V (implies_intr W (assume W)))
|
lcp@668
|
549 |
end;
|
lcp@668
|
550 |
|
clasohm@0
|
551 |
(* (!!x. PROP ?V) == PROP ?V Allows removal of redundant parameters*)
|
clasohm@0
|
552 |
val triv_forall_equality =
|
paulson@4610
|
553 |
let val V = read_prop "PROP V"
|
paulson@4610
|
554 |
and QV = read_prop "!!x::'a. PROP V"
|
wenzelm@8086
|
555 |
and x = read_cterm proto_sign ("x", TypeInfer.logicT);
|
wenzelm@4016
|
556 |
in
|
wenzelm@9455
|
557 |
store_standard_thm "triv_forall_equality"
|
wenzelm@9455
|
558 |
(standard (equal_intr (implies_intr QV (forall_elim x (assume QV)))
|
wenzelm@9455
|
559 |
(implies_intr V (forall_intr x (assume V)))))
|
clasohm@0
|
560 |
end;
|
clasohm@0
|
561 |
|
nipkow@1756
|
562 |
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
|
nipkow@1756
|
563 |
(PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
|
nipkow@1756
|
564 |
`thm COMP swap_prems_rl' swaps the first two premises of `thm'
|
nipkow@1756
|
565 |
*)
|
nipkow@1756
|
566 |
val swap_prems_rl =
|
paulson@4610
|
567 |
let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
|
nipkow@1756
|
568 |
val major = assume cmajor;
|
paulson@4610
|
569 |
val cminor1 = read_prop "PROP PhiA";
|
nipkow@1756
|
570 |
val minor1 = assume cminor1;
|
paulson@4610
|
571 |
val cminor2 = read_prop "PROP PhiB";
|
nipkow@1756
|
572 |
val minor2 = assume cminor2;
|
wenzelm@9455
|
573 |
in store_standard_thm "swap_prems_rl"
|
nipkow@1756
|
574 |
(implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
|
nipkow@1756
|
575 |
(implies_elim (implies_elim major minor1) minor2))))
|
nipkow@1756
|
576 |
end;
|
nipkow@1756
|
577 |
|
nipkow@3653
|
578 |
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
|
nipkow@3653
|
579 |
==> PROP ?phi == PROP ?psi
|
wenzelm@8328
|
580 |
Introduction rule for == as a meta-theorem.
|
nipkow@3653
|
581 |
*)
|
nipkow@3653
|
582 |
val equal_intr_rule =
|
paulson@4610
|
583 |
let val PQ = read_prop "PROP phi ==> PROP psi"
|
paulson@4610
|
584 |
and QP = read_prop "PROP psi ==> PROP phi"
|
wenzelm@4016
|
585 |
in
|
wenzelm@9455
|
586 |
store_standard_thm "equal_intr_rule"
|
wenzelm@4016
|
587 |
(implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
|
nipkow@3653
|
588 |
end;
|
nipkow@3653
|
589 |
|
wenzelm@4285
|
590 |
|
wenzelm@9554
|
591 |
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
|
wenzelm@9554
|
592 |
Rewrite rule for HHF normalization.
|
wenzelm@9554
|
593 |
|
wenzelm@9554
|
594 |
Note: the syntax of ProtoPure is insufficient to handle this
|
wenzelm@9554
|
595 |
statement; storing it would be asking for trouble, e.g. when someone
|
wenzelm@9554
|
596 |
tries to print the theory later.
|
wenzelm@9554
|
597 |
*)
|
wenzelm@9554
|
598 |
|
wenzelm@9554
|
599 |
val norm_hhf_eq =
|
wenzelm@9554
|
600 |
let
|
wenzelm@9554
|
601 |
val cert = Thm.cterm_of proto_sign;
|
wenzelm@9554
|
602 |
val aT = TFree ("'a", Term.logicS);
|
wenzelm@9554
|
603 |
val all = Term.all aT;
|
wenzelm@9554
|
604 |
val x = Free ("x", aT);
|
wenzelm@9554
|
605 |
val phi = Free ("phi", propT);
|
wenzelm@9554
|
606 |
val psi = Free ("psi", aT --> propT);
|
wenzelm@9554
|
607 |
|
wenzelm@9554
|
608 |
val cx = cert x;
|
wenzelm@9554
|
609 |
val cphi = cert phi;
|
wenzelm@9554
|
610 |
val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
|
wenzelm@9554
|
611 |
val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
|
wenzelm@9554
|
612 |
in
|
wenzelm@9554
|
613 |
Thm.equal_intr
|
wenzelm@9554
|
614 |
(Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
|
wenzelm@9554
|
615 |
|> Thm.forall_elim cx
|
wenzelm@9554
|
616 |
|> Thm.implies_intr cphi
|
wenzelm@9554
|
617 |
|> Thm.forall_intr cx
|
wenzelm@9554
|
618 |
|> Thm.implies_intr lhs)
|
wenzelm@9554
|
619 |
(Thm.implies_elim
|
wenzelm@9554
|
620 |
(Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
|
wenzelm@9554
|
621 |
|> Thm.forall_intr cx
|
wenzelm@9554
|
622 |
|> Thm.implies_intr cphi
|
wenzelm@9554
|
623 |
|> Thm.implies_intr rhs)
|
wenzelm@10441
|
624 |
|> store_standard_thm "norm_hhf_eq"
|
wenzelm@9554
|
625 |
end;
|
wenzelm@9554
|
626 |
|
wenzelm@9554
|
627 |
|
paulson@8129
|
628 |
(*** Instantiate theorem th, reading instantiations under signature sg ****)
|
paulson@8129
|
629 |
|
paulson@8129
|
630 |
(*Version that normalizes the result: Thm.instantiate no longer does that*)
|
paulson@8129
|
631 |
fun instantiate instpair th = Thm.instantiate instpair th COMP asm_rl;
|
paulson@8129
|
632 |
|
paulson@8129
|
633 |
fun read_instantiate_sg sg sinsts th =
|
paulson@8129
|
634 |
let val ts = types_sorts th;
|
paulson@8129
|
635 |
val used = add_term_tvarnames(#prop(rep_thm th),[]);
|
paulson@8129
|
636 |
in instantiate (read_insts sg ts ts used sinsts) th end;
|
paulson@8129
|
637 |
|
paulson@8129
|
638 |
(*Instantiate theorem th, reading instantiations under theory of th*)
|
paulson@8129
|
639 |
fun read_instantiate sinsts th =
|
paulson@8129
|
640 |
read_instantiate_sg (#sign (rep_thm th)) sinsts th;
|
paulson@8129
|
641 |
|
paulson@8129
|
642 |
|
paulson@8129
|
643 |
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
|
paulson@8129
|
644 |
Instantiates distinct Vars by terms, inferring type instantiations. *)
|
paulson@8129
|
645 |
local
|
paulson@8129
|
646 |
fun add_types ((ct,cu), (sign,tye,maxidx)) =
|
paulson@8129
|
647 |
let val {sign=signt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
|
paulson@8129
|
648 |
and {sign=signu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
|
paulson@8129
|
649 |
val maxi = Int.max(maxidx, Int.max(maxt, maxu));
|
paulson@8129
|
650 |
val sign' = Sign.merge(sign, Sign.merge(signt, signu))
|
paulson@8129
|
651 |
val (tye',maxi') = Type.unify (#tsig(Sign.rep_sg sign')) maxi tye (T,U)
|
wenzelm@10403
|
652 |
handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
|
paulson@8129
|
653 |
in (sign', tye', maxi') end;
|
paulson@8129
|
654 |
in
|
paulson@8129
|
655 |
fun cterm_instantiate ctpairs0 th =
|
berghofe@8406
|
656 |
let val (sign,tye,_) = foldr add_types (ctpairs0, (#sign(rep_thm th), Vartab.empty, 0))
|
berghofe@8406
|
657 |
fun instT(ct,cu) = let val inst = subst_TVars_Vartab tye
|
paulson@8129
|
658 |
in (cterm_fun inst ct, cterm_fun inst cu) end
|
paulson@8129
|
659 |
fun ctyp2 (ix,T) = (ix, ctyp_of sign T)
|
berghofe@8406
|
660 |
in instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th end
|
paulson@8129
|
661 |
handle TERM _ =>
|
paulson@8129
|
662 |
raise THM("cterm_instantiate: incompatible signatures",0,[th])
|
paulson@8129
|
663 |
| TYPE (msg, _, _) => raise THM(msg, 0, [th])
|
paulson@8129
|
664 |
end;
|
paulson@8129
|
665 |
|
paulson@8129
|
666 |
|
paulson@8129
|
667 |
(** Derived rules mainly for METAHYPS **)
|
paulson@8129
|
668 |
|
paulson@8129
|
669 |
(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
|
paulson@8129
|
670 |
fun equal_abs_elim ca eqth =
|
paulson@8129
|
671 |
let val {sign=signa, t=a, ...} = rep_cterm ca
|
paulson@8129
|
672 |
and combth = combination eqth (reflexive ca)
|
paulson@8129
|
673 |
val {sign,prop,...} = rep_thm eqth
|
paulson@8129
|
674 |
val (abst,absu) = Logic.dest_equals prop
|
paulson@8129
|
675 |
val cterm = cterm_of (Sign.merge (sign,signa))
|
berghofe@10414
|
676 |
in transitive (symmetric (beta_conversion false (cterm (abst$a))))
|
berghofe@10414
|
677 |
(transitive combth (beta_conversion false (cterm (absu$a))))
|
paulson@8129
|
678 |
end
|
paulson@8129
|
679 |
handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
|
paulson@8129
|
680 |
|
paulson@8129
|
681 |
(*Calling equal_abs_elim with multiple terms*)
|
paulson@8129
|
682 |
fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) (rev cts, th);
|
paulson@8129
|
683 |
|
paulson@8129
|
684 |
local
|
paulson@8129
|
685 |
val alpha = TVar(("'a",0), []) (* type ?'a::{} *)
|
paulson@8129
|
686 |
fun err th = raise THM("flexpair_inst: ", 0, [th])
|
paulson@8129
|
687 |
fun flexpair_inst def th =
|
paulson@8129
|
688 |
let val {prop = Const _ $ t $ u, sign,...} = rep_thm th
|
paulson@8129
|
689 |
val cterm = cterm_of sign
|
paulson@8129
|
690 |
fun cvar a = cterm(Var((a,0),alpha))
|
paulson@8129
|
691 |
val def' = cterm_instantiate [(cvar"t", cterm t), (cvar"u", cterm u)]
|
paulson@8129
|
692 |
def
|
paulson@8129
|
693 |
in equal_elim def' th
|
paulson@8129
|
694 |
end
|
paulson@8129
|
695 |
handle THM _ => err th | Bind => err th
|
paulson@8129
|
696 |
in
|
paulson@8129
|
697 |
val flexpair_intr = flexpair_inst (symmetric ProtoPure.flexpair_def)
|
paulson@8129
|
698 |
and flexpair_elim = flexpair_inst ProtoPure.flexpair_def
|
paulson@8129
|
699 |
end;
|
paulson@8129
|
700 |
|
paulson@8129
|
701 |
(*Version for flexflex pairs -- this supports lifting.*)
|
paulson@8129
|
702 |
fun flexpair_abs_elim_list cts =
|
paulson@8129
|
703 |
flexpair_intr o equal_abs_elim_list cts o flexpair_elim;
|
paulson@8129
|
704 |
|
paulson@8129
|
705 |
|
paulson@8129
|
706 |
(*** GOAL (PROP A) <==> PROP A ***)
|
wenzelm@4789
|
707 |
|
wenzelm@4789
|
708 |
local
|
wenzelm@4789
|
709 |
val A = read_prop "PROP A";
|
wenzelm@4789
|
710 |
val G = read_prop "GOAL (PROP A)";
|
wenzelm@4789
|
711 |
val (G_def, _) = freeze_thaw ProtoPure.Goal_def;
|
wenzelm@4789
|
712 |
in
|
wenzelm@9455
|
713 |
val triv_goal = store_thm "triv_goal"
|
wenzelm@9455
|
714 |
(tag_rule internal_tag (standard (Thm.equal_elim (Thm.symmetric G_def) (Thm.assume A))));
|
wenzelm@9455
|
715 |
val rev_triv_goal = store_thm "rev_triv_goal"
|
wenzelm@9455
|
716 |
(tag_rule internal_tag (standard (Thm.equal_elim G_def (Thm.assume G))));
|
wenzelm@4789
|
717 |
end;
|
wenzelm@4789
|
718 |
|
wenzelm@9460
|
719 |
val mk_cgoal = Thm.capply (Thm.cterm_of proto_sign Logic.goal_const);
|
wenzelm@6995
|
720 |
fun assume_goal ct = Thm.assume (mk_cgoal ct) RS rev_triv_goal;
|
wenzelm@6995
|
721 |
|
wenzelm@4789
|
722 |
|
wenzelm@4285
|
723 |
|
wenzelm@5688
|
724 |
(** variations on instantiate **)
|
wenzelm@4285
|
725 |
|
paulson@8550
|
726 |
(*shorthand for instantiating just one variable in the current theory*)
|
paulson@8550
|
727 |
fun inst x t = read_instantiate_sg (sign_of (the_context())) [(x,t)];
|
paulson@8550
|
728 |
|
paulson@8550
|
729 |
|
wenzelm@4285
|
730 |
(* collect vars *)
|
wenzelm@4285
|
731 |
|
wenzelm@4285
|
732 |
val add_tvarsT = foldl_atyps (fn (vs, TVar v) => v ins vs | (vs, _) => vs);
|
wenzelm@4285
|
733 |
val add_tvars = foldl_types add_tvarsT;
|
wenzelm@4285
|
734 |
val add_vars = foldl_aterms (fn (vs, Var v) => v ins vs | (vs, _) => vs);
|
wenzelm@4285
|
735 |
|
wenzelm@5903
|
736 |
fun tvars_of_terms ts = rev (foldl add_tvars ([], ts));
|
wenzelm@5903
|
737 |
fun vars_of_terms ts = rev (foldl add_vars ([], ts));
|
wenzelm@5903
|
738 |
|
wenzelm@5903
|
739 |
fun tvars_of thm = tvars_of_terms [#prop (Thm.rep_thm thm)];
|
wenzelm@5903
|
740 |
fun vars_of thm = vars_of_terms [#prop (Thm.rep_thm thm)];
|
wenzelm@4285
|
741 |
|
wenzelm@4285
|
742 |
|
wenzelm@4285
|
743 |
(* instantiate by left-to-right occurrence of variables *)
|
wenzelm@4285
|
744 |
|
wenzelm@4285
|
745 |
fun instantiate' cTs cts thm =
|
wenzelm@4285
|
746 |
let
|
wenzelm@4285
|
747 |
fun err msg =
|
wenzelm@4285
|
748 |
raise TYPE ("instantiate': " ^ msg,
|
wenzelm@4285
|
749 |
mapfilter (apsome Thm.typ_of) cTs,
|
wenzelm@4285
|
750 |
mapfilter (apsome Thm.term_of) cts);
|
wenzelm@4285
|
751 |
|
wenzelm@4285
|
752 |
fun inst_of (v, ct) =
|
wenzelm@4285
|
753 |
(Thm.cterm_of (#sign (Thm.rep_cterm ct)) (Var v), ct)
|
wenzelm@4285
|
754 |
handle TYPE (msg, _, _) => err msg;
|
wenzelm@4285
|
755 |
|
wenzelm@4285
|
756 |
fun zip_vars _ [] = []
|
wenzelm@4285
|
757 |
| zip_vars (_ :: vs) (None :: opt_ts) = zip_vars vs opt_ts
|
wenzelm@4285
|
758 |
| zip_vars (v :: vs) (Some t :: opt_ts) = (v, t) :: zip_vars vs opt_ts
|
wenzelm@4285
|
759 |
| zip_vars [] _ = err "more instantiations than variables in thm";
|
wenzelm@4285
|
760 |
|
wenzelm@4285
|
761 |
(*instantiate types first!*)
|
wenzelm@4285
|
762 |
val thm' =
|
wenzelm@4285
|
763 |
if forall is_none cTs then thm
|
wenzelm@4285
|
764 |
else Thm.instantiate (zip_vars (map fst (tvars_of thm)) cTs, []) thm;
|
wenzelm@4285
|
765 |
in
|
wenzelm@4285
|
766 |
if forall is_none cts then thm'
|
wenzelm@4285
|
767 |
else Thm.instantiate ([], map inst_of (zip_vars (vars_of thm') cts)) thm'
|
wenzelm@4285
|
768 |
end;
|
wenzelm@4285
|
769 |
|
wenzelm@4285
|
770 |
|
wenzelm@5688
|
771 |
(* unvarify(T) *)
|
wenzelm@5688
|
772 |
|
wenzelm@5688
|
773 |
(*assume thm in standard form, i.e. no frees, 0 var indexes*)
|
wenzelm@5688
|
774 |
|
wenzelm@5688
|
775 |
fun unvarifyT thm =
|
wenzelm@5688
|
776 |
let
|
wenzelm@5688
|
777 |
val cT = Thm.ctyp_of (Thm.sign_of_thm thm);
|
wenzelm@5688
|
778 |
val tfrees = map (fn ((x, _), S) => Some (cT (TFree (x, S)))) (tvars_of thm);
|
wenzelm@5688
|
779 |
in instantiate' tfrees [] thm end;
|
wenzelm@5688
|
780 |
|
wenzelm@5688
|
781 |
fun unvarify raw_thm =
|
wenzelm@5688
|
782 |
let
|
wenzelm@5688
|
783 |
val thm = unvarifyT raw_thm;
|
wenzelm@5688
|
784 |
val ct = Thm.cterm_of (Thm.sign_of_thm thm);
|
wenzelm@5688
|
785 |
val frees = map (fn ((x, _), T) => Some (ct (Free (x, T)))) (vars_of thm);
|
wenzelm@5688
|
786 |
in instantiate' [] frees thm end;
|
wenzelm@5688
|
787 |
|
wenzelm@5688
|
788 |
|
wenzelm@8605
|
789 |
(* tvars_intr_list *)
|
wenzelm@8605
|
790 |
|
wenzelm@8605
|
791 |
fun tfrees_of thm =
|
wenzelm@8605
|
792 |
let val {hyps, prop, ...} = Thm.rep_thm thm
|
wenzelm@8605
|
793 |
in foldr Term.add_term_tfree_names (prop :: hyps, []) end;
|
wenzelm@8605
|
794 |
|
wenzelm@8605
|
795 |
fun tvars_intr_list tfrees thm =
|
wenzelm@8605
|
796 |
Thm.varifyT' (tfrees_of thm \\ tfrees) thm;
|
wenzelm@8605
|
797 |
|
wenzelm@8605
|
798 |
|
wenzelm@6435
|
799 |
(* increment var indexes *)
|
wenzelm@6435
|
800 |
|
wenzelm@6435
|
801 |
fun incr_indexes_wrt is cTs cts thms =
|
wenzelm@6435
|
802 |
let
|
wenzelm@6435
|
803 |
val maxidx =
|
wenzelm@6435
|
804 |
foldl Int.max (~1, is @
|
wenzelm@6435
|
805 |
map (maxidx_of_typ o #T o Thm.rep_ctyp) cTs @
|
wenzelm@6435
|
806 |
map (#maxidx o Thm.rep_cterm) cts @
|
wenzelm@6435
|
807 |
map (#maxidx o Thm.rep_thm) thms);
|
berghofe@10414
|
808 |
in Thm.incr_indexes (maxidx + 1) end;
|
wenzelm@6435
|
809 |
|
wenzelm@6435
|
810 |
|
wenzelm@8328
|
811 |
(* freeze_all *)
|
wenzelm@8328
|
812 |
|
wenzelm@8328
|
813 |
(*freeze all (T)Vars; assumes thm in standard form*)
|
wenzelm@8328
|
814 |
|
wenzelm@8328
|
815 |
fun freeze_all_TVars thm =
|
wenzelm@8328
|
816 |
(case tvars_of thm of
|
wenzelm@8328
|
817 |
[] => thm
|
wenzelm@8328
|
818 |
| tvars =>
|
wenzelm@8328
|
819 |
let val cert = Thm.ctyp_of (Thm.sign_of_thm thm)
|
wenzelm@8328
|
820 |
in instantiate' (map (fn ((x, _), S) => Some (cert (TFree (x, S)))) tvars) [] thm end);
|
wenzelm@8328
|
821 |
|
wenzelm@8328
|
822 |
fun freeze_all_Vars thm =
|
wenzelm@8328
|
823 |
(case vars_of thm of
|
wenzelm@8328
|
824 |
[] => thm
|
wenzelm@8328
|
825 |
| vars =>
|
wenzelm@8328
|
826 |
let val cert = Thm.cterm_of (Thm.sign_of_thm thm)
|
wenzelm@8328
|
827 |
in instantiate' [] (map (fn ((x, _), T) => Some (cert (Free (x, T)))) vars) thm end);
|
wenzelm@8328
|
828 |
|
wenzelm@8328
|
829 |
val freeze_all = freeze_all_Vars o freeze_all_TVars;
|
wenzelm@8328
|
830 |
|
wenzelm@8328
|
831 |
|
wenzelm@5688
|
832 |
(* mk_triv_goal *)
|
wenzelm@5688
|
833 |
|
wenzelm@5688
|
834 |
(*make an initial proof state, "PROP A ==> (PROP A)" *)
|
paulson@5311
|
835 |
fun mk_triv_goal ct = instantiate' [] [Some ct] triv_goal;
|
paulson@5311
|
836 |
|
clasohm@0
|
837 |
end;
|
wenzelm@252
|
838 |
|
wenzelm@5903
|
839 |
|
wenzelm@5903
|
840 |
structure BasicDrule: BASIC_DRULE = Drule;
|
wenzelm@5903
|
841 |
open BasicDrule;
|