src/Pure/drule.ML
author wenzelm
Sat Dec 31 21:49:43 2005 +0100 (2005-12-31 ago)
changeset 18535 84b0597808bb
parent 18498 466351242c6f
child 18633 b32ee57b35f7
permissions -rw-r--r--
tuned forall_intr_vars;
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
wenzelm@3766
     6
Derived rules and other operations on theorems.
clasohm@0
     7
*)
clasohm@0
     8
berghofe@13606
     9
infix 0 RS RSN RL RLN MRS MRL OF COMP;
clasohm@0
    10
wenzelm@5903
    11
signature BASIC_DRULE =
wenzelm@3766
    12
sig
wenzelm@18179
    13
  val mk_implies: cterm * cterm -> cterm
wenzelm@18179
    14
  val list_implies: cterm list * cterm -> cterm
wenzelm@18179
    15
  val dest_implies: cterm -> cterm * cterm
wenzelm@18179
    16
  val dest_equals: cterm -> cterm * cterm
wenzelm@18179
    17
  val strip_imp_prems: cterm -> cterm list
wenzelm@18179
    18
  val strip_imp_concl: cterm -> cterm
wenzelm@18179
    19
  val cprems_of: thm -> cterm list
wenzelm@18179
    20
  val cterm_fun: (term -> term) -> (cterm -> cterm)
wenzelm@18179
    21
  val ctyp_fun: (typ -> typ) -> (ctyp -> ctyp)
wenzelm@18206
    22
  val read_insts: theory -> (indexname -> typ option) * (indexname -> sort option) ->
wenzelm@18206
    23
    (indexname -> typ option) * (indexname -> sort option) -> string list ->
wenzelm@18206
    24
    (indexname * string) list -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@4285
    25
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
wenzelm@18179
    26
  val strip_shyps_warning: thm -> thm
wenzelm@18179
    27
  val forall_intr_list: cterm list -> thm -> thm
wenzelm@18179
    28
  val forall_intr_frees: thm -> thm
wenzelm@18179
    29
  val forall_intr_vars: thm -> thm
wenzelm@18179
    30
  val forall_elim_list: cterm list -> thm -> thm
wenzelm@18179
    31
  val forall_elim_var: int -> thm -> thm
wenzelm@18179
    32
  val forall_elim_vars: int -> thm -> thm
wenzelm@18179
    33
  val gen_all: thm -> thm
wenzelm@18179
    34
  val lift_all: cterm -> thm -> thm
wenzelm@18179
    35
  val freeze_thaw: thm -> thm * (thm -> thm)
paulson@15495
    36
  val freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
wenzelm@18179
    37
  val implies_elim_list: thm -> thm list -> thm
wenzelm@18179
    38
  val implies_intr_list: cterm list -> thm -> thm
wenzelm@18206
    39
  val instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@18179
    40
  val zero_var_indexes: thm -> thm
wenzelm@18179
    41
  val implies_intr_hyps: thm -> thm
wenzelm@18179
    42
  val standard: thm -> thm
wenzelm@18179
    43
  val standard': thm -> thm
wenzelm@18179
    44
  val rotate_prems: int -> thm -> thm
wenzelm@18179
    45
  val rearrange_prems: int list -> thm -> thm
wenzelm@18179
    46
  val assume_ax: theory -> string -> thm
wenzelm@18179
    47
  val RSN: thm * (int * thm) -> thm
wenzelm@18179
    48
  val RS: thm * thm -> thm
wenzelm@18179
    49
  val RLN: thm list * (int * thm list) -> thm list
wenzelm@18179
    50
  val RL: thm list * thm list -> thm list
wenzelm@18179
    51
  val MRS: thm list * thm -> thm
wenzelm@18179
    52
  val MRL: thm list list * thm list -> thm list
wenzelm@18179
    53
  val OF: thm * thm list -> thm
wenzelm@18179
    54
  val compose: thm * int * thm -> thm list
wenzelm@18179
    55
  val COMP: thm * thm -> thm
wenzelm@16425
    56
  val read_instantiate_sg: theory -> (string*string)list -> thm -> thm
wenzelm@18179
    57
  val read_instantiate: (string*string)list -> thm -> thm
wenzelm@18179
    58
  val cterm_instantiate: (cterm*cterm)list -> thm -> thm
wenzelm@18179
    59
  val eq_thm_thy: thm * thm -> bool
wenzelm@18179
    60
  val eq_thm_prop: thm * thm -> bool
wenzelm@18179
    61
  val weak_eq_thm: thm * thm -> bool
wenzelm@18179
    62
  val size_of_thm: thm -> int
wenzelm@18179
    63
  val reflexive_thm: thm
wenzelm@18179
    64
  val symmetric_thm: thm
wenzelm@18179
    65
  val transitive_thm: thm
wenzelm@18179
    66
  val symmetric_fun: thm -> thm
wenzelm@18179
    67
  val extensional: thm -> thm
wenzelm@18179
    68
  val imp_cong: thm
wenzelm@18179
    69
  val swap_prems_eq: thm
wenzelm@18179
    70
  val equal_abs_elim: cterm  -> thm -> thm
wenzelm@4285
    71
  val equal_abs_elim_list: cterm list -> thm -> thm
wenzelm@18179
    72
  val asm_rl: thm
wenzelm@18179
    73
  val cut_rl: thm
wenzelm@18179
    74
  val revcut_rl: thm
wenzelm@18179
    75
  val thin_rl: thm
wenzelm@4285
    76
  val triv_forall_equality: thm
wenzelm@18179
    77
  val swap_prems_rl: thm
wenzelm@18179
    78
  val equal_intr_rule: thm
wenzelm@18179
    79
  val equal_elim_rule1: thm
wenzelm@18179
    80
  val inst: string -> string -> thm -> thm
wenzelm@18179
    81
  val instantiate': ctyp option list -> cterm option list -> thm -> thm
wenzelm@18179
    82
  val incr_indexes: thm -> thm -> thm
wenzelm@18179
    83
  val incr_indexes_wrt: int list -> ctyp list -> cterm list -> thm list -> thm -> thm
wenzelm@5903
    84
end;
wenzelm@5903
    85
wenzelm@5903
    86
signature DRULE =
wenzelm@5903
    87
sig
wenzelm@5903
    88
  include BASIC_DRULE
paulson@15949
    89
  val list_comb: cterm * cterm list -> cterm
berghofe@12908
    90
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    91
  val strip_type: ctyp -> ctyp list * ctyp
paulson@15949
    92
  val beta_conv: cterm -> cterm -> cterm
wenzelm@15875
    93
  val plain_prop_of: thm -> term
wenzelm@15669
    94
  val add_used: thm -> string list -> string list
wenzelm@11975
    95
  val rule_attribute: ('a -> thm -> thm) -> 'a attribute
wenzelm@18225
    96
  val map_tags: (tag list -> tag list) -> thm -> thm
wenzelm@11975
    97
  val tag_rule: tag -> thm -> thm
wenzelm@11975
    98
  val untag_rule: string -> thm -> thm
wenzelm@11975
    99
  val tag: tag -> 'a attribute
wenzelm@11975
   100
  val untag: string -> 'a attribute
wenzelm@11975
   101
  val get_kind: thm -> string
wenzelm@11975
   102
  val kind: string -> 'a attribute
wenzelm@11975
   103
  val theoremK: string
wenzelm@11975
   104
  val lemmaK: string
wenzelm@11975
   105
  val corollaryK: string
wenzelm@11975
   106
  val internalK: string
wenzelm@11975
   107
  val kind_internal: 'a attribute
wenzelm@11975
   108
  val has_internal: tag list -> bool
wenzelm@18468
   109
  val is_internal: thm -> bool
berghofe@17713
   110
  val flexflex_unique: thm -> thm
wenzelm@11975
   111
  val close_derivation: thm -> thm
wenzelm@12005
   112
  val local_standard: thm -> thm
wenzelm@11975
   113
  val compose_single: thm * int * thm -> thm
wenzelm@12373
   114
  val add_rule: thm -> thm list -> thm list
wenzelm@12373
   115
  val del_rule: thm -> thm list -> thm list
wenzelm@11975
   116
  val add_rules: thm list -> thm list -> thm list
wenzelm@11975
   117
  val del_rules: thm list -> thm list -> thm list
wenzelm@11975
   118
  val merge_rules: thm list * thm list -> thm list
wenzelm@18468
   119
  val imp_cong_rule: thm -> thm -> thm
skalberg@15001
   120
  val beta_eta_conversion: cterm -> thm
berghofe@15925
   121
  val eta_long_conversion: cterm -> thm
wenzelm@18468
   122
  val forall_conv: int -> (cterm -> thm) -> cterm -> thm
wenzelm@18468
   123
  val concl_conv: int -> (cterm -> thm) -> cterm -> thm
wenzelm@18468
   124
  val prems_conv: int -> (int -> cterm -> thm) -> cterm -> thm
wenzelm@18468
   125
  val conjunction_conv: int -> (int -> cterm -> thm) -> cterm -> thm
wenzelm@18179
   126
  val goals_conv: (int -> bool) -> (cterm -> thm) -> cterm -> thm
wenzelm@18179
   127
  val fconv_rule: (cterm -> thm) -> thm -> thm
wenzelm@11975
   128
  val norm_hhf_eq: thm
wenzelm@12800
   129
  val is_norm_hhf: term -> bool
wenzelm@16425
   130
  val norm_hhf: theory -> term -> term
wenzelm@18025
   131
  val protect: cterm -> cterm
wenzelm@18025
   132
  val protectI: thm
wenzelm@18025
   133
  val protectD: thm
wenzelm@18179
   134
  val protect_cong: thm
wenzelm@18025
   135
  val implies_intr_protected: cterm list -> thm -> thm
wenzelm@11975
   136
  val freeze_all: thm -> thm
wenzelm@11975
   137
  val tvars_of_terms: term list -> (indexname * sort) list
wenzelm@11975
   138
  val vars_of_terms: term list -> (indexname * typ) list
wenzelm@11975
   139
  val tvars_of: thm -> (indexname * sort) list
wenzelm@11975
   140
  val vars_of: thm -> (indexname * typ) list
wenzelm@18129
   141
  val tfrees_of: thm -> (string * sort) list
wenzelm@18129
   142
  val frees_of: thm -> (string * typ) list
wenzelm@18129
   143
  val fold_terms: (term -> 'a -> 'a) -> thm -> 'a -> 'a
berghofe@14081
   144
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   145
  val rename_bvars': string option list -> thm -> thm
wenzelm@11975
   146
  val unvarifyT: thm -> thm
wenzelm@11975
   147
  val unvarify: thm -> thm
wenzelm@18129
   148
  val tvars_intr_list: string list -> thm -> (string * (indexname * sort)) list * thm
wenzelm@12297
   149
  val remdups_rl: thm
wenzelm@18225
   150
  val multi_resolve: thm list -> thm -> thm Seq.seq
wenzelm@18225
   151
  val multi_resolves: thm list -> thm list -> thm Seq.seq
wenzelm@11975
   152
  val conj_intr: thm -> thm -> thm
wenzelm@11975
   153
  val conj_intr_list: thm list -> thm
wenzelm@11975
   154
  val conj_elim: thm -> thm * thm
wenzelm@11975
   155
  val conj_elim_list: thm -> thm list
wenzelm@18498
   156
  val conj_elim_precise: int list -> thm -> thm list list
wenzelm@12135
   157
  val conj_intr_thm: thm
wenzelm@18206
   158
  val conj_curry: thm -> thm
berghofe@13325
   159
  val abs_def: thm -> thm
wenzelm@16425
   160
  val read_instantiate_sg': theory -> (indexname * string) list -> thm -> thm
berghofe@15797
   161
  val read_instantiate': (indexname * string) list -> thm -> thm
wenzelm@3766
   162
end;
clasohm@0
   163
wenzelm@5903
   164
structure Drule: DRULE =
clasohm@0
   165
struct
clasohm@0
   166
wenzelm@3991
   167
wenzelm@16682
   168
(** some cterm->cterm operations: faster than calling cterm_of! **)
lcp@708
   169
paulson@2004
   170
fun dest_implies ct =
wenzelm@16682
   171
  (case Thm.term_of ct of
wenzelm@16682
   172
    (Const ("==>", _) $ _ $ _) =>
wenzelm@16682
   173
      let val (ct1, ct2) = Thm.dest_comb ct
wenzelm@16682
   174
      in (#2 (Thm.dest_comb ct1), ct2) end
wenzelm@16682
   175
  | _ => raise TERM ("dest_implies", [term_of ct]));
clasohm@1703
   176
berghofe@10414
   177
fun dest_equals ct =
wenzelm@16682
   178
  (case Thm.term_of ct of
wenzelm@16682
   179
    (Const ("==", _) $ _ $ _) =>
wenzelm@16682
   180
      let val (ct1, ct2) = Thm.dest_comb ct
wenzelm@16682
   181
      in (#2 (Thm.dest_comb ct1), ct2) end
wenzelm@16682
   182
    | _ => raise TERM ("dest_equals", [term_of ct]));
berghofe@10414
   183
clasohm@1703
   184
lcp@708
   185
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   186
fun strip_imp_prems ct =
paulson@2004
   187
    let val (cA,cB) = dest_implies ct
paulson@2004
   188
    in  cA :: strip_imp_prems cB  end
lcp@708
   189
    handle TERM _ => [];
lcp@708
   190
paulson@2004
   191
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   192
fun strip_imp_concl ct =
wenzelm@8328
   193
    case term_of ct of (Const("==>", _) $ _ $ _) =>
wenzelm@10767
   194
        strip_imp_concl (#2 (Thm.dest_comb ct))
paulson@2004
   195
  | _ => ct;
paulson@2004
   196
lcp@708
   197
(*The premises of a theorem, as a cterm list*)
berghofe@13659
   198
val cprems_of = strip_imp_prems o cprop_of;
lcp@708
   199
berghofe@15797
   200
fun cterm_fun f ct =
wenzelm@16425
   201
  let val {t, thy, ...} = Thm.rep_cterm ct
wenzelm@16425
   202
  in Thm.cterm_of thy (f t) end;
berghofe@15797
   203
berghofe@15797
   204
fun ctyp_fun f cT =
wenzelm@16425
   205
  let val {T, thy, ...} = Thm.rep_ctyp cT
wenzelm@16425
   206
  in Thm.ctyp_of thy (f T) end;
berghofe@15797
   207
wenzelm@16425
   208
val implies = cterm_of ProtoPure.thy Term.implies;
paulson@9547
   209
paulson@9547
   210
(*cterm version of mk_implies*)
wenzelm@10767
   211
fun mk_implies(A,B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   212
paulson@9547
   213
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   214
fun list_implies([], B) = B
paulson@9547
   215
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   216
paulson@15949
   217
(*cterm version of list_comb: maps  (f, [t1,...,tn])  to  f(t1,...,tn) *)
paulson@15949
   218
fun list_comb (f, []) = f
paulson@15949
   219
  | list_comb (f, t::ts) = list_comb (Thm.capply f t, ts);
paulson@15949
   220
berghofe@12908
   221
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
wenzelm@18179
   222
fun strip_comb ct =
berghofe@12908
   223
  let
berghofe@12908
   224
    fun stripc (p as (ct, cts)) =
berghofe@12908
   225
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   226
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   227
  in stripc (ct, []) end;
berghofe@12908
   228
berghofe@15262
   229
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   230
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   231
    Type ("fun", _) =>
berghofe@15262
   232
      let
berghofe@15262
   233
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   234
        val (cTs, cT') = strip_type cT2
berghofe@15262
   235
      in (cT1 :: cTs, cT') end
berghofe@15262
   236
  | _ => ([], cT));
berghofe@15262
   237
paulson@15949
   238
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
paulson@15949
   239
  of the meta-equality returned by the beta_conversion rule.*)
wenzelm@18179
   240
fun beta_conv x y =
paulson@15949
   241
    #2 (Thm.dest_comb (cprop_of (Thm.beta_conversion false (Thm.capply x y))));
paulson@15949
   242
wenzelm@15875
   243
fun plain_prop_of raw_thm =
wenzelm@15875
   244
  let
wenzelm@15875
   245
    val thm = Thm.strip_shyps raw_thm;
wenzelm@15875
   246
    fun err msg = raise THM ("plain_prop_of: " ^ msg, 0, [thm]);
wenzelm@15875
   247
    val {hyps, prop, tpairs, ...} = Thm.rep_thm thm;
wenzelm@15875
   248
  in
wenzelm@15875
   249
    if not (null hyps) then
wenzelm@15875
   250
      err "theorem may not contain hypotheses"
wenzelm@15875
   251
    else if not (null (Thm.extra_shyps thm)) then
wenzelm@15875
   252
      err "theorem may not contain sort hypotheses"
wenzelm@15875
   253
    else if not (null tpairs) then
wenzelm@15875
   254
      err "theorem may not contain flex-flex pairs"
wenzelm@15875
   255
    else prop
wenzelm@15875
   256
  end;
wenzelm@15875
   257
wenzelm@15875
   258
lcp@708
   259
lcp@229
   260
(** reading of instantiations **)
lcp@229
   261
lcp@229
   262
fun absent ixn =
lcp@229
   263
  error("No such variable in term: " ^ Syntax.string_of_vname ixn);
lcp@229
   264
lcp@229
   265
fun inst_failure ixn =
lcp@229
   266
  error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
lcp@229
   267
wenzelm@16425
   268
fun read_insts thy (rtypes,rsorts) (types,sorts) used insts =
wenzelm@10403
   269
let
berghofe@15442
   270
    fun is_tv ((a, _), _) =
berghofe@15442
   271
      (case Symbol.explode a of "'" :: _ => true | _ => false);
skalberg@15570
   272
    val (tvs, vs) = List.partition is_tv insts;
berghofe@15797
   273
    fun sort_of ixn = case rsorts ixn of SOME S => S | NONE => absent ixn;
berghofe@15442
   274
    fun readT (ixn, st) =
berghofe@15797
   275
        let val S = sort_of ixn;
wenzelm@16425
   276
            val T = Sign.read_typ (thy,sorts) st;
wenzelm@16425
   277
        in if Sign.typ_instance thy (T, TVar(ixn,S)) then (ixn,T)
nipkow@4281
   278
           else inst_failure ixn
nipkow@4281
   279
        end
nipkow@4281
   280
    val tye = map readT tvs;
nipkow@4281
   281
    fun mkty(ixn,st) = (case rtypes ixn of
skalberg@15531
   282
                          SOME T => (ixn,(st,typ_subst_TVars tye T))
skalberg@15531
   283
                        | NONE => absent ixn);
nipkow@4281
   284
    val ixnsTs = map mkty vs;
nipkow@4281
   285
    val ixns = map fst ixnsTs
nipkow@4281
   286
    and sTs  = map snd ixnsTs
wenzelm@16425
   287
    val (cts,tye2) = read_def_cterms(thy,types,sorts) used false sTs;
nipkow@4281
   288
    fun mkcVar(ixn,T) =
nipkow@4281
   289
        let val U = typ_subst_TVars tye2 T
wenzelm@16425
   290
        in cterm_of thy (Var(ixn,U)) end
nipkow@4281
   291
    val ixnTs = ListPair.zip(ixns, map snd sTs)
wenzelm@16425
   292
in (map (fn (ixn, T) => (ctyp_of thy (TVar (ixn, sort_of ixn)),
wenzelm@16425
   293
      ctyp_of thy T)) (tye2 @ tye),
nipkow@4281
   294
    ListPair.zip(map mkcVar ixnTs,cts))
nipkow@4281
   295
end;
lcp@229
   296
lcp@229
   297
wenzelm@252
   298
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   299
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   300
     type variables) when reading another term.
clasohm@0
   301
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   302
***)
clasohm@0
   303
clasohm@0
   304
fun types_sorts thm =
wenzelm@15669
   305
    let val {prop, hyps, tpairs, ...} = Thm.rep_thm thm;
wenzelm@15669
   306
        (* bogus term! *)
wenzelm@18179
   307
        val big = Term.list_comb
paulson@15949
   308
                    (Term.list_comb (prop, hyps), Thm.terms_of_tpairs tpairs);
wenzelm@252
   309
        val vars = map dest_Var (term_vars big);
wenzelm@252
   310
        val frees = map dest_Free (term_frees big);
wenzelm@252
   311
        val tvars = term_tvars big;
wenzelm@252
   312
        val tfrees = term_tfrees big;
haftmann@17325
   313
        fun typ(a,i) = if i<0 then AList.lookup (op =) frees a else AList.lookup (op =) vars (a,i);
haftmann@17325
   314
        fun sort(a,i) = if i<0 then AList.lookup (op =) tfrees a else AList.lookup (op =) tvars (a,i);
clasohm@0
   315
    in (typ,sort) end;
clasohm@0
   316
wenzelm@15669
   317
fun add_used thm used =
wenzelm@15669
   318
  let val {prop, hyps, tpairs, ...} = Thm.rep_thm thm in
wenzelm@15669
   319
    add_term_tvarnames (prop, used)
wenzelm@15669
   320
    |> fold (curry add_term_tvarnames) hyps
wenzelm@15669
   321
    |> fold (curry add_term_tvarnames) (Thm.terms_of_tpairs tpairs)
wenzelm@15669
   322
  end;
wenzelm@15669
   323
wenzelm@7636
   324
wenzelm@9455
   325
wenzelm@9455
   326
(** basic attributes **)
wenzelm@9455
   327
wenzelm@9455
   328
(* dependent rules *)
wenzelm@9455
   329
wenzelm@9455
   330
fun rule_attribute f (x, thm) = (x, (f x thm));
wenzelm@9455
   331
wenzelm@9455
   332
wenzelm@9455
   333
(* add / delete tags *)
wenzelm@9455
   334
wenzelm@9455
   335
fun map_tags f thm =
wenzelm@9455
   336
  Thm.put_name_tags (Thm.name_of_thm thm, f (#2 (Thm.get_name_tags thm))) thm;
wenzelm@9455
   337
wenzelm@9455
   338
fun tag_rule tg = map_tags (fn tgs => if tg mem tgs then tgs else tgs @ [tg]);
wenzelm@9455
   339
fun untag_rule s = map_tags (filter_out (equal s o #1));
wenzelm@9455
   340
wenzelm@9455
   341
fun tag tg x = rule_attribute (K (tag_rule tg)) x;
wenzelm@9455
   342
fun untag s x = rule_attribute (K (untag_rule s)) x;
wenzelm@9455
   343
wenzelm@9455
   344
fun simple_tag name x = tag (name, []) x;
wenzelm@9455
   345
wenzelm@11741
   346
wenzelm@11741
   347
(* theorem kinds *)
wenzelm@11741
   348
wenzelm@11741
   349
val theoremK = "theorem";
wenzelm@11741
   350
val lemmaK = "lemma";
wenzelm@11741
   351
val corollaryK = "corollary";
wenzelm@11741
   352
val internalK = "internal";
wenzelm@9455
   353
wenzelm@11741
   354
fun get_kind thm =
haftmann@17325
   355
  (case AList.lookup (op =) ((#2 o Thm.get_name_tags) thm) "kind" of
skalberg@15531
   356
    SOME (k :: _) => k
wenzelm@11741
   357
  | _ => "unknown");
wenzelm@11741
   358
wenzelm@11741
   359
fun kind_rule k = tag_rule ("kind", [k]) o untag_rule "kind";
wenzelm@12710
   360
fun kind k x = if k = "" then x else rule_attribute (K (kind_rule k)) x;
wenzelm@11741
   361
fun kind_internal x = kind internalK x;
wenzelm@18468
   362
fun has_internal tags = exists (fn ("kind", [k]) => k = internalK | _ => false) tags;
wenzelm@18468
   363
val is_internal = has_internal o Thm.tags_of_thm;
wenzelm@9455
   364
wenzelm@9455
   365
wenzelm@9455
   366
clasohm@0
   367
(** Standardization of rules **)
clasohm@0
   368
wenzelm@18025
   369
(*vars in left-to-right order*)
wenzelm@18025
   370
fun tvars_of_terms ts = rev (fold Term.add_tvars ts []);
wenzelm@18025
   371
fun vars_of_terms ts = rev (fold Term.add_vars ts []);
wenzelm@18025
   372
fun tvars_of thm = tvars_of_terms [Thm.full_prop_of thm];
wenzelm@18025
   373
fun vars_of thm = vars_of_terms [Thm.full_prop_of thm];
wenzelm@18025
   374
wenzelm@18129
   375
fun fold_terms f th =
wenzelm@18129
   376
  let val {hyps, tpairs, prop, ...} = Thm.rep_thm th
wenzelm@18129
   377
  in f prop #> fold (fn (t, u) => f t #> f u) tpairs #> fold f hyps end;
wenzelm@18129
   378
wenzelm@18129
   379
fun tfrees_of th = rev (fold_terms Term.add_tfrees th []);
wenzelm@18129
   380
fun frees_of th = rev (fold_terms Term.add_frees th []);
wenzelm@18129
   381
wenzelm@7636
   382
(*Strip extraneous shyps as far as possible*)
wenzelm@7636
   383
fun strip_shyps_warning thm =
wenzelm@7636
   384
  let
wenzelm@16425
   385
    val str_of_sort = Pretty.str_of o Sign.pretty_sort (Thm.theory_of_thm thm);
wenzelm@7636
   386
    val thm' = Thm.strip_shyps thm;
wenzelm@7636
   387
    val xshyps = Thm.extra_shyps thm';
wenzelm@7636
   388
  in
wenzelm@7636
   389
    if null xshyps then ()
wenzelm@7636
   390
    else warning ("Pending sort hypotheses: " ^ commas (map str_of_sort xshyps));
wenzelm@7636
   391
    thm'
wenzelm@7636
   392
  end;
wenzelm@7636
   393
clasohm@0
   394
(*Generalization over a list of variables, IGNORING bad ones*)
clasohm@0
   395
fun forall_intr_list [] th = th
clasohm@0
   396
  | forall_intr_list (y::ys) th =
wenzelm@252
   397
        let val gth = forall_intr_list ys th
wenzelm@252
   398
        in  forall_intr y gth   handle THM _ =>  gth  end;
clasohm@0
   399
clasohm@0
   400
(*Generalization over all suitable Free variables*)
clasohm@0
   401
fun forall_intr_frees th =
wenzelm@16425
   402
    let val {prop,thy,...} = rep_thm th
clasohm@0
   403
    in  forall_intr_list
wenzelm@16983
   404
         (map (cterm_of thy) (sort Term.term_ord (term_frees prop)))
clasohm@0
   405
         th
clasohm@0
   406
    end;
clasohm@0
   407
wenzelm@18535
   408
(*Generalization over Vars -- canonical order*)
wenzelm@18535
   409
fun forall_intr_vars th =
wenzelm@18535
   410
  let val cert = Thm.cterm_of (Thm.theory_of_thm th)
wenzelm@18535
   411
  in forall_intr_list (map (cert o Var) (vars_of th)) th end;
wenzelm@18535
   412
wenzelm@7898
   413
val forall_elim_var = PureThy.forall_elim_var;
wenzelm@7898
   414
val forall_elim_vars = PureThy.forall_elim_vars;
clasohm@0
   415
wenzelm@18025
   416
fun outer_params t =
wenzelm@18025
   417
  let
wenzelm@18025
   418
    val vs = Term.strip_all_vars t;
wenzelm@18375
   419
    val xs = Term.variantlist (map (perhaps (try Syntax.dest_skolem) o #1) vs, []);
wenzelm@18025
   420
  in xs ~~ map #2 vs end;
wenzelm@18025
   421
wenzelm@18025
   422
(*generalize outermost parameters*)
wenzelm@18025
   423
fun gen_all th =
wenzelm@12719
   424
  let
wenzelm@18025
   425
    val {thy, prop, maxidx, ...} = Thm.rep_thm th;
wenzelm@18025
   426
    val cert = Thm.cterm_of thy;
wenzelm@18025
   427
    fun elim (x, T) = Thm.forall_elim (cert (Var ((x, maxidx + 1), T)));
wenzelm@18025
   428
  in fold elim (outer_params prop) th end;
wenzelm@18025
   429
wenzelm@18025
   430
(*lift vars wrt. outermost goal parameters
wenzelm@18118
   431
  -- reverses the effect of gen_all modulo higher-order unification*)
wenzelm@18025
   432
fun lift_all goal th =
wenzelm@18025
   433
  let
wenzelm@18025
   434
    val thy = Theory.merge (Thm.theory_of_cterm goal, Thm.theory_of_thm th);
wenzelm@18025
   435
    val cert = Thm.cterm_of thy;
wenzelm@18025
   436
    val {maxidx, ...} = Thm.rep_thm th;
wenzelm@18025
   437
    val ps = outer_params (Thm.term_of goal)
wenzelm@18025
   438
      |> map (fn (x, T) => Var ((x, maxidx + 1), Logic.incr_tvar (maxidx + 1) T));
wenzelm@18025
   439
    val Ts = map Term.fastype_of ps;
wenzelm@18025
   440
    val inst = vars_of th |> map (fn (xi, T) =>
wenzelm@18025
   441
      (cert (Var (xi, T)), cert (Term.list_comb (Var (xi, Ts ---> T), ps))));
wenzelm@18025
   442
  in
wenzelm@18025
   443
    th |> Thm.instantiate ([], inst)
wenzelm@18025
   444
    |> fold_rev (Thm.forall_intr o cert) ps
wenzelm@18025
   445
  end;
wenzelm@18025
   446
wenzelm@9554
   447
wenzelm@16949
   448
(*specialization over a list of cterms*)
wenzelm@16949
   449
val forall_elim_list = fold forall_elim;
clasohm@0
   450
wenzelm@16949
   451
(*maps A1,...,An |- B  to  [| A1;...;An |] ==> B*)
wenzelm@16949
   452
val implies_intr_list = fold_rev implies_intr;
clasohm@0
   453
wenzelm@16949
   454
(*maps [| A1;...;An |] ==> B and [A1,...,An]  to  B*)
skalberg@15570
   455
fun implies_elim_list impth ths = Library.foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   456
clasohm@0
   457
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@252
   458
fun zero_var_indexes th =
wenzelm@16949
   459
  let
wenzelm@16949
   460
    val thy = Thm.theory_of_thm th;
wenzelm@16949
   461
    val certT = Thm.ctyp_of thy and cert = Thm.cterm_of thy;
wenzelm@16949
   462
    val (instT, inst) = Term.zero_var_indexes_inst (Thm.full_prop_of th);
wenzelm@16949
   463
    val cinstT = map (fn (v, T) => (certT (TVar v), certT T)) instT;
wenzelm@16949
   464
    val cinst = map (fn (v, t) => (cert (Var v), cert t)) inst;
wenzelm@16949
   465
  in Thm.adjust_maxidx_thm (Thm.instantiate (cinstT, cinst) th) end;
clasohm@0
   466
clasohm@0
   467
paulson@14394
   468
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   469
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   470
wenzelm@16595
   471
(*Discharge all hypotheses.*)
wenzelm@16595
   472
fun implies_intr_hyps th =
wenzelm@16595
   473
  fold Thm.implies_intr (#hyps (Thm.crep_thm th)) th;
wenzelm@16595
   474
paulson@14394
   475
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   476
  This step can lose information.*)
paulson@14387
   477
fun flexflex_unique th =
berghofe@17713
   478
  if null (tpairs_of th) then th else
paulson@14387
   479
    case Seq.chop (2, flexflex_rule th) of
paulson@14387
   480
      ([th],_) => th
paulson@14387
   481
    | ([],_)   => raise THM("flexflex_unique: impossible constraints", 0, [th])
paulson@14387
   482
    |      _   => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
paulson@14387
   483
wenzelm@10515
   484
fun close_derivation thm =
wenzelm@10515
   485
  if Thm.get_name_tags thm = ("", []) then Thm.name_thm ("", thm)
wenzelm@10515
   486
  else thm;
wenzelm@10515
   487
wenzelm@16949
   488
val standard' =
wenzelm@16949
   489
  implies_intr_hyps
wenzelm@16949
   490
  #> forall_intr_frees
wenzelm@16949
   491
  #> `(#maxidx o Thm.rep_thm)
wenzelm@16949
   492
  #-> (fn maxidx =>
wenzelm@16949
   493
    forall_elim_vars (maxidx + 1)
wenzelm@16949
   494
    #> strip_shyps_warning
wenzelm@16949
   495
    #> zero_var_indexes
wenzelm@16949
   496
    #> Thm.varifyT
wenzelm@16949
   497
    #> Thm.compress);
wenzelm@1218
   498
wenzelm@16949
   499
val standard =
wenzelm@16949
   500
  flexflex_unique
wenzelm@16949
   501
  #> standard'
wenzelm@16949
   502
  #> close_derivation;
berghofe@11512
   503
wenzelm@16949
   504
val local_standard =
wenzelm@16949
   505
  strip_shyps
wenzelm@16949
   506
  #> zero_var_indexes
wenzelm@16949
   507
  #> Thm.compress
wenzelm@16949
   508
  #> close_derivation;
wenzelm@12005
   509
clasohm@0
   510
wenzelm@8328
   511
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   512
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   513
  Similar code in type/freeze_thaw*)
paulson@15495
   514
paulson@15495
   515
fun freeze_thaw_robust th =
paulson@15495
   516
 let val fth = freezeT th
wenzelm@16425
   517
     val {prop, tpairs, thy, ...} = rep_thm fth
paulson@15495
   518
 in
skalberg@15574
   519
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@15495
   520
       [] => (fth, fn i => fn x => x)   (*No vars: nothing to do!*)
paulson@15495
   521
     | vars =>
paulson@15495
   522
         let fun newName (Var(ix,_), pairs) =
paulson@15495
   523
                   let val v = gensym (string_of_indexname ix)
paulson@15495
   524
                   in  ((ix,v)::pairs)  end;
skalberg@15574
   525
             val alist = foldr newName [] vars
paulson@15495
   526
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   527
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   528
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
paulson@15495
   529
             val insts = map mk_inst vars
paulson@15495
   530
             fun thaw i th' = (*i is non-negative increment for Var indexes*)
paulson@15495
   531
                 th' |> forall_intr_list (map #2 insts)
paulson@15495
   532
                     |> forall_elim_list (map (Thm.cterm_incr_indexes i o #1) insts)
paulson@15495
   533
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@15495
   534
 end;
paulson@15495
   535
paulson@15495
   536
(*Basic version of the function above. No option to rename Vars apart in thaw.
paulson@15495
   537
  The Frees created from Vars have nice names.*)
paulson@4610
   538
fun freeze_thaw th =
paulson@7248
   539
 let val fth = freezeT th
wenzelm@16425
   540
     val {prop, tpairs, thy, ...} = rep_thm fth
paulson@7248
   541
 in
skalberg@15574
   542
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@7248
   543
       [] => (fth, fn x => x)
paulson@7248
   544
     | vars =>
wenzelm@8328
   545
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@8328
   546
                   let val v = variant used (string_of_indexname ix)
wenzelm@8328
   547
                   in  ((ix,v)::pairs, v::used)  end;
skalberg@15574
   548
             val (alist, _) = foldr newName ([], Library.foldr add_term_names
skalberg@15574
   549
               (prop :: Thm.terms_of_tpairs tpairs, [])) vars
wenzelm@8328
   550
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   551
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   552
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
wenzelm@8328
   553
             val insts = map mk_inst vars
wenzelm@8328
   554
             fun thaw th' =
wenzelm@8328
   555
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   556
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   557
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   558
 end;
paulson@4610
   559
paulson@7248
   560
(*Rotates a rule's premises to the left by k*)
paulson@7248
   561
val rotate_prems = permute_prems 0;
paulson@4610
   562
oheimb@11163
   563
(* permute prems, where the i-th position in the argument list (counting from 0)
oheimb@11163
   564
   gives the position within the original thm to be transferred to position i.
oheimb@11163
   565
   Any remaining trailing positions are left unchanged. *)
oheimb@11163
   566
val rearrange_prems = let
oheimb@11163
   567
  fun rearr new []      thm = thm
wenzelm@11815
   568
  |   rearr new (p::ps) thm = rearr (new+1)
oheimb@11163
   569
     (map (fn q => if new<=q andalso q<p then q+1 else q) ps)
oheimb@11163
   570
     (permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
oheimb@11163
   571
  in rearr 0 end;
paulson@4610
   572
wenzelm@252
   573
(*Assume a new formula, read following the same conventions as axioms.
clasohm@0
   574
  Generalizes over Free variables,
clasohm@0
   575
  creates the assumption, and then strips quantifiers.
clasohm@0
   576
  Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
wenzelm@252
   577
             [ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ]    *)
clasohm@0
   578
fun assume_ax thy sP =
wenzelm@16425
   579
  let val prop = Logic.close_form (term_of (read_cterm thy (sP, propT)))
wenzelm@16425
   580
  in forall_elim_vars 0 (Thm.assume (cterm_of thy prop)) end;
clasohm@0
   581
wenzelm@252
   582
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   583
fun tha RSN (i,thb) =
wenzelm@4270
   584
  case Seq.chop (2, biresolution false [(false,tha)] i thb) of
clasohm@0
   585
      ([th],_) => th
clasohm@0
   586
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   587
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   588
clasohm@0
   589
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   590
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   591
clasohm@0
   592
(*For joining lists of rules*)
wenzelm@252
   593
fun thas RLN (i,thbs) =
clasohm@0
   594
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   595
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
paulson@2672
   596
  in  List.concat (map resb thbs)  end;
clasohm@0
   597
clasohm@0
   598
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   599
lcp@11
   600
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   601
  makes proof trees*)
wenzelm@252
   602
fun rls MRS bottom_rl =
lcp@11
   603
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   604
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   605
  in  rs_aux 1 rls  end;
lcp@11
   606
lcp@11
   607
(*As above, but for rule lists*)
wenzelm@252
   608
fun rlss MRL bottom_rls =
lcp@11
   609
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   610
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   611
  in  rs_aux 1 rlss  end;
lcp@11
   612
wenzelm@9288
   613
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   614
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   615
wenzelm@252
   616
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   617
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   618
  ALWAYS deletes premise i *)
wenzelm@252
   619
fun compose(tha,i,thb) =
wenzelm@4270
   620
    Seq.list_of (bicompose false (false,tha,0) i thb);
clasohm@0
   621
wenzelm@6946
   622
fun compose_single (tha,i,thb) =
wenzelm@6946
   623
  (case compose (tha,i,thb) of
wenzelm@6946
   624
    [th] => th
wenzelm@6946
   625
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]));
wenzelm@6946
   626
clasohm@0
   627
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   628
fun tha COMP thb =
clasohm@0
   629
    case compose(tha,1,thb) of
wenzelm@252
   630
        [th] => th
clasohm@0
   631
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   632
wenzelm@13105
   633
wenzelm@4016
   634
(** theorem equality **)
clasohm@0
   635
wenzelm@16425
   636
(*True if the two theorems have the same theory.*)
wenzelm@16425
   637
val eq_thm_thy = eq_thy o pairself Thm.theory_of_thm;
paulson@13650
   638
paulson@13650
   639
(*True if the two theorems have the same prop field, ignoring hyps, der, etc.*)
wenzelm@16720
   640
val eq_thm_prop = op aconv o pairself Thm.full_prop_of;
clasohm@0
   641
clasohm@0
   642
(*Useful "distance" function for BEST_FIRST*)
wenzelm@16720
   643
val size_of_thm = size_of_term o Thm.full_prop_of;
clasohm@0
   644
wenzelm@9829
   645
(*maintain lists of theorems --- preserving canonical order*)
wenzelm@13105
   646
fun del_rules rs rules = Library.gen_rems eq_thm_prop (rules, rs);
wenzelm@9862
   647
fun add_rules rs rules = rs @ del_rules rs rules;
wenzelm@12373
   648
val del_rule = del_rules o single;
wenzelm@12373
   649
val add_rule = add_rules o single;
wenzelm@13105
   650
fun merge_rules (rules1, rules2) = gen_merge_lists' eq_thm_prop rules1 rules2;
wenzelm@9829
   651
wenzelm@18535
   652
(*weak_eq_thm: ignores variable renaming and (some) type variable renaming*)
wenzelm@13105
   653
val weak_eq_thm = Thm.eq_thm o pairself (forall_intr_vars o freezeT);
lcp@1194
   654
lcp@1194
   655
clasohm@0
   656
(*** Meta-Rewriting Rules ***)
clasohm@0
   657
wenzelm@16425
   658
fun read_prop s = read_cterm ProtoPure.thy (s, propT);
paulson@4610
   659
wenzelm@9455
   660
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
wenzelm@9455
   661
fun store_standard_thm name thm = store_thm name (standard thm);
wenzelm@12135
   662
fun store_thm_open name thm = hd (PureThy.smart_store_thms_open (name, [thm]));
wenzelm@12135
   663
fun store_standard_thm_open name thm = store_thm_open name (standard' thm);
wenzelm@4016
   664
clasohm@0
   665
val reflexive_thm =
wenzelm@16425
   666
  let val cx = cterm_of ProtoPure.thy (Var(("x",0),TVar(("'a",0),[])))
wenzelm@12135
   667
  in store_standard_thm_open "reflexive" (Thm.reflexive cx) end;
clasohm@0
   668
clasohm@0
   669
val symmetric_thm =
wenzelm@14854
   670
  let val xy = read_prop "x == y"
wenzelm@16595
   671
  in store_standard_thm_open "symmetric" (Thm.implies_intr xy (Thm.symmetric (Thm.assume xy))) end;
clasohm@0
   672
clasohm@0
   673
val transitive_thm =
wenzelm@14854
   674
  let val xy = read_prop "x == y"
wenzelm@14854
   675
      val yz = read_prop "y == z"
clasohm@0
   676
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
wenzelm@12135
   677
  in store_standard_thm_open "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
clasohm@0
   678
nipkow@4679
   679
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   680
berghofe@11512
   681
fun extensional eq =
berghofe@11512
   682
  let val eq' =
berghofe@11512
   683
    abstract_rule "x" (snd (Thm.dest_comb (fst (dest_equals (cprop_of eq))))) eq
berghofe@11512
   684
  in equal_elim (eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   685
berghofe@10414
   686
val imp_cong =
berghofe@10414
   687
  let
berghofe@10414
   688
    val ABC = read_prop "PROP A ==> PROP B == PROP C"
berghofe@10414
   689
    val AB = read_prop "PROP A ==> PROP B"
berghofe@10414
   690
    val AC = read_prop "PROP A ==> PROP C"
berghofe@10414
   691
    val A = read_prop "PROP A"
berghofe@10414
   692
  in
wenzelm@12135
   693
    store_standard_thm_open "imp_cong" (implies_intr ABC (equal_intr
berghofe@10414
   694
      (implies_intr AB (implies_intr A
berghofe@10414
   695
        (equal_elim (implies_elim (assume ABC) (assume A))
berghofe@10414
   696
          (implies_elim (assume AB) (assume A)))))
berghofe@10414
   697
      (implies_intr AC (implies_intr A
berghofe@10414
   698
        (equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
berghofe@10414
   699
          (implies_elim (assume AC) (assume A)))))))
berghofe@10414
   700
  end;
berghofe@10414
   701
berghofe@10414
   702
val swap_prems_eq =
berghofe@10414
   703
  let
berghofe@10414
   704
    val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
berghofe@10414
   705
    val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
berghofe@10414
   706
    val A = read_prop "PROP A"
berghofe@10414
   707
    val B = read_prop "PROP B"
berghofe@10414
   708
  in
wenzelm@12135
   709
    store_standard_thm_open "swap_prems_eq" (equal_intr
berghofe@10414
   710
      (implies_intr ABC (implies_intr B (implies_intr A
berghofe@10414
   711
        (implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
berghofe@10414
   712
      (implies_intr BAC (implies_intr A (implies_intr B
berghofe@10414
   713
        (implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
berghofe@10414
   714
  end;
lcp@229
   715
wenzelm@18468
   716
val imp_cong_rule = combination o combination (reflexive implies);
clasohm@0
   717
skalberg@15001
   718
local
skalberg@15001
   719
  val dest_eq = dest_equals o cprop_of
skalberg@15001
   720
  val rhs_of = snd o dest_eq
skalberg@15001
   721
in
skalberg@15001
   722
fun beta_eta_conversion t =
skalberg@15001
   723
  let val thm = beta_conversion true t
skalberg@15001
   724
  in transitive thm (eta_conversion (rhs_of thm)) end
skalberg@15001
   725
end;
skalberg@15001
   726
berghofe@15925
   727
fun eta_long_conversion ct = transitive (beta_eta_conversion ct)
berghofe@15925
   728
  (symmetric (beta_eta_conversion (cterm_fun (Pattern.eta_long []) ct)));
berghofe@15925
   729
wenzelm@18337
   730
val abs_def =
wenzelm@18337
   731
  let
wenzelm@18337
   732
    fun contract_lhs th =
wenzelm@18337
   733
      Thm.transitive (Thm.symmetric (beta_eta_conversion (fst (dest_equals (cprop_of th))))) th;
wenzelm@18337
   734
    fun abstract cx = Thm.abstract_rule
wenzelm@18337
   735
      (case Thm.term_of cx of Var ((x, _), _) => x | Free (x, _) => x | _ => "x") cx;
wenzelm@18337
   736
  in
wenzelm@18337
   737
    contract_lhs
wenzelm@18337
   738
    #> `(snd o strip_comb o fst o dest_equals o cprop_of)
wenzelm@18337
   739
    #-> fold_rev abstract
wenzelm@18337
   740
    #> contract_lhs
wenzelm@18337
   741
  end;
wenzelm@18337
   742
wenzelm@18468
   743
(*rewrite B in !!x1 ... xn. B*)
wenzelm@18251
   744
fun forall_conv 0 cv ct = cv ct
wenzelm@18251
   745
  | forall_conv n cv ct =
wenzelm@18468
   746
      (case try Thm.dest_comb ct of
wenzelm@18468
   747
        NONE => cv ct
wenzelm@18468
   748
      | SOME (A, B) =>
wenzelm@18468
   749
          (case (term_of A, term_of B) of
wenzelm@18468
   750
            (Const ("all", _), Abs (x, _, _)) =>
wenzelm@18468
   751
              let val (v, B') = Thm.dest_abs (SOME (gensym "all_")) B in
wenzelm@18468
   752
                Thm.combination (Thm.reflexive A)
wenzelm@18468
   753
                  (Thm.abstract_rule x v (forall_conv (n - 1) cv B'))
wenzelm@18468
   754
              end
wenzelm@18468
   755
          | _ => cv ct));
wenzelm@18468
   756
wenzelm@18468
   757
(*rewrite B in A1 ==> ... ==> An ==> B*)
wenzelm@18468
   758
fun concl_conv 0 cv ct = cv ct
wenzelm@18468
   759
  | concl_conv n cv ct =
wenzelm@18468
   760
      (case try dest_implies ct of
wenzelm@18468
   761
        NONE => cv ct
wenzelm@18468
   762
      | SOME (A, B) => imp_cong_rule (reflexive A) (concl_conv (n - 1) cv B));
skalberg@15001
   763
wenzelm@18468
   764
(*rewrite the A's in A1 ==> ... ==> An ==> B*)
wenzelm@18468
   765
fun prems_conv 0 _ = reflexive
wenzelm@18468
   766
  | prems_conv n cv =
wenzelm@18468
   767
      let
wenzelm@18468
   768
        fun conv i ct =
wenzelm@18468
   769
          if i = n + 1 then reflexive ct
wenzelm@18468
   770
          else
wenzelm@18468
   771
            (case try dest_implies ct of
wenzelm@18468
   772
              NONE => reflexive ct
wenzelm@18468
   773
            | SOME (A, B) => imp_cong_rule (cv i A) (conv (i + 1) B));
wenzelm@18468
   774
  in conv 1 end;
wenzelm@18468
   775
wenzelm@18468
   776
(*rewrite the A's in A1 && ... && An*)
wenzelm@18468
   777
fun conjunction_conv 0 _ = reflexive
wenzelm@18468
   778
  | conjunction_conv n cv =
wenzelm@18468
   779
      let
wenzelm@18468
   780
        fun conv i ct =
wenzelm@18468
   781
          if i <> n andalso can Logic.dest_conjunction (term_of ct) then
wenzelm@18468
   782
            forall_conv 1
wenzelm@18468
   783
              (prems_conv 1 (K (prems_conv 2 (fn 1 => cv i | 2 => conv (i + 1))))) ct
wenzelm@18468
   784
          else cv i ct;
wenzelm@18468
   785
      in conv 1 end;
wenzelm@18468
   786
wenzelm@18468
   787
wenzelm@18468
   788
fun goals_conv pred cv = prems_conv ~1 (fn i => if pred i then cv else reflexive);
skalberg@15001
   789
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
skalberg@15001
   790
wenzelm@18468
   791
wenzelm@15669
   792
(*** Some useful meta-theorems ***)
clasohm@0
   793
clasohm@0
   794
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@12135
   795
val asm_rl = store_standard_thm_open "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
wenzelm@7380
   796
val _ = store_thm "_" asm_rl;
clasohm@0
   797
clasohm@0
   798
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   799
val cut_rl =
wenzelm@12135
   800
  store_standard_thm_open "cut_rl"
wenzelm@9455
   801
    (Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
clasohm@0
   802
wenzelm@252
   803
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   804
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   805
val revcut_rl =
paulson@4610
   806
  let val V = read_prop "PROP V"
paulson@4610
   807
      and VW = read_prop "PROP V ==> PROP W";
wenzelm@4016
   808
  in
wenzelm@12135
   809
    store_standard_thm_open "revcut_rl"
wenzelm@4016
   810
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   811
  end;
clasohm@0
   812
lcp@668
   813
(*for deleting an unwanted assumption*)
lcp@668
   814
val thin_rl =
paulson@4610
   815
  let val V = read_prop "PROP V"
paulson@4610
   816
      and W = read_prop "PROP W";
wenzelm@12135
   817
  in store_standard_thm_open "thin_rl" (implies_intr V (implies_intr W (assume W))) end;
lcp@668
   818
clasohm@0
   819
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   820
val triv_forall_equality =
paulson@4610
   821
  let val V  = read_prop "PROP V"
paulson@4610
   822
      and QV = read_prop "!!x::'a. PROP V"
wenzelm@16425
   823
      and x  = read_cterm ProtoPure.thy ("x", TypeInfer.logicT);
wenzelm@4016
   824
  in
wenzelm@12135
   825
    store_standard_thm_open "triv_forall_equality"
berghofe@11512
   826
      (equal_intr (implies_intr QV (forall_elim x (assume QV)))
berghofe@11512
   827
        (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   828
  end;
clasohm@0
   829
nipkow@1756
   830
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   831
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   832
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   833
*)
nipkow@1756
   834
val swap_prems_rl =
paulson@4610
   835
  let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
nipkow@1756
   836
      val major = assume cmajor;
paulson@4610
   837
      val cminor1 = read_prop "PROP PhiA";
nipkow@1756
   838
      val minor1 = assume cminor1;
paulson@4610
   839
      val cminor2 = read_prop "PROP PhiB";
nipkow@1756
   840
      val minor2 = assume cminor2;
wenzelm@12135
   841
  in store_standard_thm_open "swap_prems_rl"
nipkow@1756
   842
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   843
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   844
  end;
nipkow@1756
   845
nipkow@3653
   846
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   847
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   848
   Introduction rule for == as a meta-theorem.
nipkow@3653
   849
*)
nipkow@3653
   850
val equal_intr_rule =
paulson@4610
   851
  let val PQ = read_prop "PROP phi ==> PROP psi"
paulson@4610
   852
      and QP = read_prop "PROP psi ==> PROP phi"
wenzelm@4016
   853
  in
wenzelm@12135
   854
    store_standard_thm_open "equal_intr_rule"
wenzelm@4016
   855
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   856
  end;
nipkow@3653
   857
wenzelm@13368
   858
(* [| PROP ?phi == PROP ?psi; PROP ?phi |] ==> PROP ?psi *)
wenzelm@13368
   859
val equal_elim_rule1 =
wenzelm@13368
   860
  let val eq = read_prop "PROP phi == PROP psi"
wenzelm@13368
   861
      and P = read_prop "PROP phi"
wenzelm@13368
   862
  in store_standard_thm_open "equal_elim_rule1"
wenzelm@13368
   863
    (Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   864
  end;
wenzelm@4285
   865
wenzelm@12297
   866
(* "[| PROP ?phi; PROP ?phi; PROP ?psi |] ==> PROP ?psi" *)
wenzelm@12297
   867
wenzelm@12297
   868
val remdups_rl =
wenzelm@12297
   869
  let val P = read_prop "PROP phi" and Q = read_prop "PROP psi";
wenzelm@12297
   870
  in store_standard_thm_open "remdups_rl" (implies_intr_list [P, P, Q] (Thm.assume Q)) end;
wenzelm@12297
   871
wenzelm@12297
   872
wenzelm@9554
   873
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
wenzelm@12297
   874
  Rewrite rule for HHF normalization.*)
wenzelm@9554
   875
wenzelm@9554
   876
val norm_hhf_eq =
wenzelm@9554
   877
  let
wenzelm@16425
   878
    val cert = Thm.cterm_of ProtoPure.thy;
wenzelm@14854
   879
    val aT = TFree ("'a", []);
wenzelm@9554
   880
    val all = Term.all aT;
wenzelm@9554
   881
    val x = Free ("x", aT);
wenzelm@9554
   882
    val phi = Free ("phi", propT);
wenzelm@9554
   883
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   884
wenzelm@9554
   885
    val cx = cert x;
wenzelm@9554
   886
    val cphi = cert phi;
wenzelm@9554
   887
    val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@9554
   888
    val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   889
  in
wenzelm@9554
   890
    Thm.equal_intr
wenzelm@9554
   891
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   892
        |> Thm.forall_elim cx
wenzelm@9554
   893
        |> Thm.implies_intr cphi
wenzelm@9554
   894
        |> Thm.forall_intr cx
wenzelm@9554
   895
        |> Thm.implies_intr lhs)
wenzelm@9554
   896
      (Thm.implies_elim
wenzelm@9554
   897
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   898
        |> Thm.forall_intr cx
wenzelm@9554
   899
        |> Thm.implies_intr cphi
wenzelm@9554
   900
        |> Thm.implies_intr rhs)
wenzelm@12135
   901
    |> store_standard_thm_open "norm_hhf_eq"
wenzelm@9554
   902
  end;
wenzelm@9554
   903
wenzelm@18179
   904
val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq);
wenzelm@18179
   905
wenzelm@12800
   906
fun is_norm_hhf tm =
wenzelm@12800
   907
  let
wenzelm@12800
   908
    fun is_norm (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
wenzelm@12800
   909
      | is_norm (t $ u) = is_norm t andalso is_norm u
wenzelm@12800
   910
      | is_norm (Abs (_, _, t)) = is_norm t
wenzelm@12800
   911
      | is_norm _ = true;
wenzelm@12800
   912
  in is_norm (Pattern.beta_eta_contract tm) end;
wenzelm@12800
   913
wenzelm@16425
   914
fun norm_hhf thy t =
wenzelm@12800
   915
  if is_norm_hhf t then t
wenzelm@18179
   916
  else Pattern.rewrite_term thy [norm_hhf_prop] [] t;
wenzelm@18179
   917
wenzelm@12800
   918
wenzelm@9554
   919
wenzelm@16425
   920
(*** Instantiate theorem th, reading instantiations in theory thy ****)
paulson@8129
   921
paulson@8129
   922
(*Version that normalizes the result: Thm.instantiate no longer does that*)
paulson@8129
   923
fun instantiate instpair th = Thm.instantiate instpair th  COMP   asm_rl;
paulson@8129
   924
wenzelm@16425
   925
fun read_instantiate_sg' thy sinsts th =
paulson@8129
   926
    let val ts = types_sorts th;
wenzelm@15669
   927
        val used = add_used th [];
wenzelm@16425
   928
    in  instantiate (read_insts thy ts ts used sinsts) th  end;
berghofe@15797
   929
wenzelm@16425
   930
fun read_instantiate_sg thy sinsts th =
wenzelm@16425
   931
  read_instantiate_sg' thy (map (apfst Syntax.indexname) sinsts) th;
paulson@8129
   932
paulson@8129
   933
(*Instantiate theorem th, reading instantiations under theory of th*)
paulson@8129
   934
fun read_instantiate sinsts th =
wenzelm@16425
   935
    read_instantiate_sg (Thm.theory_of_thm th) sinsts th;
paulson@8129
   936
berghofe@15797
   937
fun read_instantiate' sinsts th =
wenzelm@16425
   938
    read_instantiate_sg' (Thm.theory_of_thm th) sinsts th;
berghofe@15797
   939
paulson@8129
   940
paulson@8129
   941
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   942
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   943
local
wenzelm@16425
   944
  fun add_types ((ct,cu), (thy,tye,maxidx)) =
wenzelm@16425
   945
    let val {thy=thyt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
wenzelm@16425
   946
        and {thy=thyu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
paulson@8129
   947
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
wenzelm@16425
   948
        val thy' = Theory.merge(thy, Theory.merge(thyt, thyu))
wenzelm@16949
   949
        val (tye',maxi') = Sign.typ_unify thy' (T, U) (tye, maxi)
wenzelm@10403
   950
          handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
wenzelm@16425
   951
    in  (thy', tye', maxi')  end;
paulson@8129
   952
in
paulson@8129
   953
fun cterm_instantiate ctpairs0 th =
wenzelm@16425
   954
  let val (thy,tye,_) = foldr add_types (Thm.theory_of_thm th, Vartab.empty, 0) ctpairs0
wenzelm@18179
   955
      fun instT(ct,cu) =
wenzelm@16425
   956
        let val inst = cterm_of thy o Envir.subst_TVars tye o term_of
paulson@14340
   957
        in (inst ct, inst cu) end
wenzelm@16425
   958
      fun ctyp2 (ixn, (S, T)) = (ctyp_of thy (TVar (ixn, S)), ctyp_of thy T)
berghofe@8406
   959
  in  instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   960
  handle TERM _ =>
wenzelm@16425
   961
           raise THM("cterm_instantiate: incompatible theories",0,[th])
paulson@8129
   962
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   963
end;
paulson@8129
   964
paulson@8129
   965
paulson@8129
   966
(** Derived rules mainly for METAHYPS **)
paulson@8129
   967
paulson@8129
   968
(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
paulson@8129
   969
fun equal_abs_elim ca eqth =
wenzelm@16425
   970
  let val {thy=thya, t=a, ...} = rep_cterm ca
paulson@8129
   971
      and combth = combination eqth (reflexive ca)
wenzelm@16425
   972
      val {thy,prop,...} = rep_thm eqth
paulson@8129
   973
      val (abst,absu) = Logic.dest_equals prop
wenzelm@16425
   974
      val cterm = cterm_of (Theory.merge (thy,thya))
berghofe@10414
   975
  in  transitive (symmetric (beta_conversion false (cterm (abst$a))))
berghofe@10414
   976
           (transitive combth (beta_conversion false (cterm (absu$a))))
paulson@8129
   977
  end
paulson@8129
   978
  handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
paulson@8129
   979
paulson@8129
   980
(*Calling equal_abs_elim with multiple terms*)
skalberg@15574
   981
fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) th (rev cts);
paulson@8129
   982
paulson@8129
   983
wenzelm@18025
   984
(** protected propositions **)
wenzelm@4789
   985
wenzelm@4789
   986
local
wenzelm@16425
   987
  val cert = Thm.cterm_of ProtoPure.thy;
wenzelm@18025
   988
  val A = cert (Free ("A", propT));
wenzelm@18025
   989
  val prop_def = #1 (freeze_thaw ProtoPure.prop_def);
wenzelm@4789
   990
in
wenzelm@18025
   991
  val protect = Thm.capply (cert Logic.protectC);
wenzelm@18025
   992
  val protectI = store_thm "protectI" (kind_rule internalK (standard
wenzelm@18025
   993
      (Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A))));
wenzelm@18025
   994
  val protectD = store_thm "protectD" (kind_rule internalK (standard
wenzelm@18025
   995
      (Thm.equal_elim prop_def (Thm.assume (protect A)))));
wenzelm@18179
   996
  val protect_cong = store_standard_thm_open "protect_cong" (Thm.reflexive (protect A));
wenzelm@4789
   997
end;
wenzelm@4789
   998
wenzelm@18025
   999
fun implies_intr_protected asms th =
wenzelm@18118
  1000
  let val asms' = map protect asms in
wenzelm@18118
  1001
    implies_elim_list
wenzelm@18118
  1002
      (implies_intr_list asms th)
wenzelm@18118
  1003
      (map (fn asm' => Thm.assume asm' RS protectD) asms')
wenzelm@18118
  1004
    |> implies_intr_list asms'
wenzelm@18118
  1005
  end;
wenzelm@11815
  1006
wenzelm@4789
  1007
wenzelm@5688
  1008
(** variations on instantiate **)
wenzelm@4285
  1009
paulson@8550
  1010
(*shorthand for instantiating just one variable in the current theory*)
wenzelm@16425
  1011
fun inst x t = read_instantiate_sg (the_context()) [(x,t)];
paulson@8550
  1012
paulson@8550
  1013
wenzelm@4285
  1014
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
  1015
wenzelm@4285
  1016
fun instantiate' cTs cts thm =
wenzelm@4285
  1017
  let
wenzelm@4285
  1018
    fun err msg =
wenzelm@4285
  1019
      raise TYPE ("instantiate': " ^ msg,
skalberg@15570
  1020
        List.mapPartial (Option.map Thm.typ_of) cTs,
skalberg@15570
  1021
        List.mapPartial (Option.map Thm.term_of) cts);
wenzelm@4285
  1022
wenzelm@4285
  1023
    fun inst_of (v, ct) =
wenzelm@16425
  1024
      (Thm.cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
wenzelm@4285
  1025
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
  1026
berghofe@15797
  1027
    fun tyinst_of (v, cT) =
wenzelm@16425
  1028
      (Thm.ctyp_of (Thm.theory_of_ctyp cT) (TVar v), cT)
berghofe@15797
  1029
        handle TYPE (msg, _, _) => err msg;
berghofe@15797
  1030
wenzelm@4285
  1031
    fun zip_vars _ [] = []
skalberg@15531
  1032
      | zip_vars (_ :: vs) (NONE :: opt_ts) = zip_vars vs opt_ts
skalberg@15531
  1033
      | zip_vars (v :: vs) (SOME t :: opt_ts) = (v, t) :: zip_vars vs opt_ts
wenzelm@4285
  1034
      | zip_vars [] _ = err "more instantiations than variables in thm";
wenzelm@4285
  1035
wenzelm@4285
  1036
    (*instantiate types first!*)
wenzelm@4285
  1037
    val thm' =
wenzelm@4285
  1038
      if forall is_none cTs then thm
berghofe@15797
  1039
      else Thm.instantiate (map tyinst_of (zip_vars (tvars_of thm) cTs), []) thm;
wenzelm@4285
  1040
    in
wenzelm@4285
  1041
      if forall is_none cts then thm'
wenzelm@4285
  1042
      else Thm.instantiate ([], map inst_of (zip_vars (vars_of thm') cts)) thm'
wenzelm@4285
  1043
    end;
wenzelm@4285
  1044
wenzelm@4285
  1045
berghofe@14081
  1046
berghofe@14081
  1047
(** renaming of bound variables **)
berghofe@14081
  1048
berghofe@14081
  1049
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
  1050
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
  1051
berghofe@14081
  1052
fun rename_bvars [] thm = thm
berghofe@14081
  1053
  | rename_bvars vs thm =
berghofe@14081
  1054
    let
wenzelm@16425
  1055
      val {thy, prop, ...} = rep_thm thm;
haftmann@17325
  1056
      fun ren (Abs (x, T, t)) = Abs (AList.lookup (op =) vs x |> the_default x, T, ren t)
berghofe@14081
  1057
        | ren (t $ u) = ren t $ ren u
berghofe@14081
  1058
        | ren t = t;
wenzelm@16425
  1059
    in equal_elim (reflexive (cterm_of thy (ren prop))) thm end;
berghofe@14081
  1060
berghofe@14081
  1061
berghofe@14081
  1062
(* renaming in left-to-right order *)
berghofe@14081
  1063
berghofe@14081
  1064
fun rename_bvars' xs thm =
berghofe@14081
  1065
  let
wenzelm@16425
  1066
    val {thy, prop, ...} = rep_thm thm;
berghofe@14081
  1067
    fun rename [] t = ([], t)
berghofe@14081
  1068
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
  1069
          let val (xs', t') = rename xs t
skalberg@15570
  1070
          in (xs', Abs (getOpt (x',x), T, t')) end
berghofe@14081
  1071
      | rename xs (t $ u) =
berghofe@14081
  1072
          let
berghofe@14081
  1073
            val (xs', t') = rename xs t;
berghofe@14081
  1074
            val (xs'', u') = rename xs' u
berghofe@14081
  1075
          in (xs'', t' $ u') end
berghofe@14081
  1076
      | rename xs t = (xs, t);
berghofe@14081
  1077
  in case rename xs prop of
wenzelm@16425
  1078
      ([], prop') => equal_elim (reflexive (cterm_of thy prop')) thm
berghofe@14081
  1079
    | _ => error "More names than abstractions in theorem"
berghofe@14081
  1080
  end;
berghofe@14081
  1081
berghofe@14081
  1082
berghofe@14081
  1083
wenzelm@5688
  1084
(* unvarify(T) *)
wenzelm@5688
  1085
wenzelm@5688
  1086
(*assume thm in standard form, i.e. no frees, 0 var indexes*)
wenzelm@5688
  1087
wenzelm@5688
  1088
fun unvarifyT thm =
wenzelm@5688
  1089
  let
wenzelm@16425
  1090
    val cT = Thm.ctyp_of (Thm.theory_of_thm thm);
skalberg@15531
  1091
    val tfrees = map (fn ((x, _), S) => SOME (cT (TFree (x, S)))) (tvars_of thm);
wenzelm@5688
  1092
  in instantiate' tfrees [] thm end;
wenzelm@5688
  1093
wenzelm@5688
  1094
fun unvarify raw_thm =
wenzelm@5688
  1095
  let
wenzelm@5688
  1096
    val thm = unvarifyT raw_thm;
wenzelm@16425
  1097
    val ct = Thm.cterm_of (Thm.theory_of_thm thm);
skalberg@15531
  1098
    val frees = map (fn ((x, _), T) => SOME (ct (Free (x, T)))) (vars_of thm);
wenzelm@5688
  1099
  in instantiate' [] frees thm end;
wenzelm@5688
  1100
wenzelm@5688
  1101
wenzelm@8605
  1102
(* tvars_intr_list *)
wenzelm@8605
  1103
wenzelm@8605
  1104
fun tvars_intr_list tfrees thm =
wenzelm@18129
  1105
  apfst (map (fn ((s, S), ixn) => (s, (ixn, S)))) (Thm.varifyT'
berghofe@15797
  1106
    (gen_rems (op = o apfst fst) (tfrees_of thm, tfrees)) thm);
wenzelm@8605
  1107
wenzelm@8605
  1108
wenzelm@6435
  1109
(* increment var indexes *)
wenzelm@6435
  1110
wenzelm@18025
  1111
fun incr_indexes th = Thm.incr_indexes (#maxidx (Thm.rep_thm th) + 1);
wenzelm@18025
  1112
wenzelm@6435
  1113
fun incr_indexes_wrt is cTs cts thms =
wenzelm@6435
  1114
  let
wenzelm@6435
  1115
    val maxidx =
skalberg@15570
  1116
      Library.foldl Int.max (~1, is @
wenzelm@6435
  1117
        map (maxidx_of_typ o #T o Thm.rep_ctyp) cTs @
wenzelm@6435
  1118
        map (#maxidx o Thm.rep_cterm) cts @
wenzelm@6435
  1119
        map (#maxidx o Thm.rep_thm) thms);
berghofe@10414
  1120
  in Thm.incr_indexes (maxidx + 1) end;
wenzelm@6435
  1121
wenzelm@6435
  1122
wenzelm@8328
  1123
(* freeze_all *)
wenzelm@8328
  1124
wenzelm@8328
  1125
(*freeze all (T)Vars; assumes thm in standard form*)
wenzelm@8328
  1126
wenzelm@8328
  1127
fun freeze_all_TVars thm =
wenzelm@8328
  1128
  (case tvars_of thm of
wenzelm@8328
  1129
    [] => thm
wenzelm@8328
  1130
  | tvars =>
wenzelm@16425
  1131
      let val cert = Thm.ctyp_of (Thm.theory_of_thm thm)
skalberg@15531
  1132
      in instantiate' (map (fn ((x, _), S) => SOME (cert (TFree (x, S)))) tvars) [] thm end);
wenzelm@8328
  1133
wenzelm@8328
  1134
fun freeze_all_Vars thm =
wenzelm@8328
  1135
  (case vars_of thm of
wenzelm@8328
  1136
    [] => thm
wenzelm@8328
  1137
  | vars =>
wenzelm@16425
  1138
      let val cert = Thm.cterm_of (Thm.theory_of_thm thm)
skalberg@15531
  1139
      in instantiate' [] (map (fn ((x, _), T) => SOME (cert (Free (x, T)))) vars) thm end);
wenzelm@8328
  1140
wenzelm@8328
  1141
val freeze_all = freeze_all_Vars o freeze_all_TVars;
wenzelm@8328
  1142
wenzelm@8328
  1143
wenzelm@11975
  1144
wenzelm@18225
  1145
(** multi_resolve **)
wenzelm@18225
  1146
wenzelm@18225
  1147
local
wenzelm@18225
  1148
wenzelm@18225
  1149
fun res th i rule =
wenzelm@18225
  1150
  Thm.biresolution false [(false, th)] i rule handle THM _ => Seq.empty;
wenzelm@18225
  1151
wenzelm@18225
  1152
fun multi_res _ [] rule = Seq.single rule
wenzelm@18225
  1153
  | multi_res i (th :: ths) rule = Seq.maps (res th i) (multi_res (i + 1) ths rule);
wenzelm@18225
  1154
wenzelm@18225
  1155
in
wenzelm@18225
  1156
wenzelm@18225
  1157
val multi_resolve = multi_res 1;
wenzelm@18225
  1158
fun multi_resolves facts rules = Seq.maps (multi_resolve facts) (Seq.of_list rules);
wenzelm@18225
  1159
wenzelm@18225
  1160
end;
wenzelm@18225
  1161
wenzelm@18225
  1162
wenzelm@18225
  1163
wenzelm@11975
  1164
(** meta-level conjunction **)
wenzelm@11975
  1165
wenzelm@11975
  1166
local
wenzelm@11975
  1167
  val A = read_prop "PROP A";
wenzelm@11975
  1168
  val B = read_prop "PROP B";
wenzelm@11975
  1169
  val C = read_prop "PROP C";
wenzelm@11975
  1170
  val ABC = read_prop "PROP A ==> PROP B ==> PROP C";
wenzelm@11975
  1171
wenzelm@11975
  1172
  val proj1 =
wenzelm@11975
  1173
    forall_intr_list [A, B] (implies_intr_list [A, B] (Thm.assume A))
wenzelm@11975
  1174
    |> forall_elim_vars 0;
wenzelm@11975
  1175
wenzelm@11975
  1176
  val proj2 =
wenzelm@11975
  1177
    forall_intr_list [A, B] (implies_intr_list [A, B] (Thm.assume B))
wenzelm@11975
  1178
    |> forall_elim_vars 0;
wenzelm@11975
  1179
wenzelm@11975
  1180
  val conj_intr_rule =
wenzelm@11975
  1181
    forall_intr_list [A, B] (implies_intr_list [A, B]
wenzelm@11975
  1182
      (Thm.forall_intr C (Thm.implies_intr ABC
wenzelm@11975
  1183
        (implies_elim_list (Thm.assume ABC) [Thm.assume A, Thm.assume B]))))
wenzelm@11975
  1184
    |> forall_elim_vars 0;
wenzelm@11975
  1185
in
wenzelm@11975
  1186
wenzelm@18025
  1187
fun conj_intr tha thb = thb COMP (tha COMP incr_indexes_wrt [] [] [] [tha, thb] conj_intr_rule);
wenzelm@12756
  1188
wenzelm@12756
  1189
fun conj_intr_list [] = asm_rl
wenzelm@12756
  1190
  | conj_intr_list ths = foldr1 (uncurry conj_intr) ths;
wenzelm@11975
  1191
wenzelm@11975
  1192
fun conj_elim th =
wenzelm@11975
  1193
  let val th' = forall_elim_var (#maxidx (Thm.rep_thm th) + 1) th
wenzelm@18025
  1194
  in (incr_indexes th' proj1 COMP th', incr_indexes th' proj2 COMP th') end;
wenzelm@11975
  1195
wenzelm@18498
  1196
(*((A && B) && C) && D && E -- flat*)
wenzelm@11975
  1197
fun conj_elim_list th =
wenzelm@11975
  1198
  let val (th1, th2) = conj_elim th
wenzelm@11975
  1199
  in conj_elim_list th1 @ conj_elim_list th2 end handle THM _ => [th];
wenzelm@11975
  1200
wenzelm@18498
  1201
(*(A1 && B1 && C1) && (A2 && B2 && C2 && D2) && A3 && B3 -- improper*)
wenzelm@18498
  1202
fun conj_elim_precise spans =
wenzelm@18498
  1203
  let
wenzelm@18498
  1204
    fun elim 0 _ = []
wenzelm@18498
  1205
      | elim 1 th = [th]
wenzelm@18498
  1206
      | elim n th =
wenzelm@18498
  1207
          let val (th1, th2) = conj_elim th
wenzelm@18498
  1208
          in th1 :: elim (n - 1) th2 end;
wenzelm@18498
  1209
    fun elims (0 :: ns) ths = [] :: elims ns ths
wenzelm@18498
  1210
      | elims (n :: ns) (th :: ths) = elim n th :: elims ns ths
wenzelm@18498
  1211
      | elims _ _ = [];
wenzelm@18498
  1212
  in elims spans o elim (length (filter_out (equal 0) spans)) end;
wenzelm@12135
  1213
wenzelm@12135
  1214
val conj_intr_thm = store_standard_thm_open "conjunctionI"
wenzelm@12135
  1215
  (implies_intr_list [A, B] (conj_intr (Thm.assume A) (Thm.assume B)));
wenzelm@12135
  1216
wenzelm@18206
  1217
end;
wenzelm@18179
  1218
wenzelm@18206
  1219
fun conj_curry th =
wenzelm@18206
  1220
  let
wenzelm@18206
  1221
    val {thy, maxidx, ...} = Thm.rep_thm th;
wenzelm@18206
  1222
    val n = Thm.nprems_of th;
wenzelm@18206
  1223
  in
wenzelm@18206
  1224
    if n < 2 then th
wenzelm@18206
  1225
    else
wenzelm@18206
  1226
      let
wenzelm@18206
  1227
        val cert = Thm.cterm_of thy;
wenzelm@18206
  1228
        val As = map (fn i => Free ("A" ^ string_of_int i, propT)) (1 upto n);
wenzelm@18206
  1229
        val B = Free ("B", propT);
wenzelm@18206
  1230
        val C = cert (Logic.mk_conjunction_list As);
wenzelm@18206
  1231
        val D = cert (Logic.list_implies (As, B));
wenzelm@18206
  1232
        val rule =
wenzelm@18206
  1233
          implies_elim_list (Thm.assume D) (conj_elim_list (Thm.assume C))
wenzelm@18206
  1234
          |> implies_intr_list [D, C]
wenzelm@18206
  1235
          |> forall_intr_frees
wenzelm@18206
  1236
          |> forall_elim_vars (maxidx + 1)
wenzelm@18206
  1237
      in Thm.adjust_maxidx_thm (th COMP rule) end
wenzelm@18206
  1238
  end;
wenzelm@252
  1239
wenzelm@11975
  1240
end;
wenzelm@5903
  1241
wenzelm@5903
  1242
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
  1243
open BasicDrule;