src/Pure/drule.ML
author berghofe
Thu Apr 21 19:12:03 2005 +0200 (2005-04-21 ago)
changeset 15797 a63605582573
parent 15669 2b1f1902505d
child 15875 3e9a54e033b9
permissions -rw-r--r--
- Eliminated nodup_vars check.
- Unification and matching functions now check types of term variables / sorts
of type variables when applying a substitution.
- Thm.instantiate now takes (ctyp * ctyp) list instead of (indexname * ctyp) list
as argument, to allow for proper instantiation of theorems containing
type variables with same name but different sorts.
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
wenzelm@3766
     6
Derived rules and other operations on theorems.
clasohm@0
     7
*)
clasohm@0
     8
berghofe@13606
     9
infix 0 RS RSN RL RLN MRS MRL OF COMP;
clasohm@0
    10
wenzelm@5903
    11
signature BASIC_DRULE =
wenzelm@3766
    12
sig
paulson@9547
    13
  val mk_implies        : cterm * cterm -> cterm
paulson@9547
    14
  val list_implies      : cterm list * cterm -> cterm
wenzelm@4285
    15
  val dest_implies      : cterm -> cterm * cterm
berghofe@10414
    16
  val dest_equals       : cterm -> cterm * cterm
wenzelm@8328
    17
  val strip_imp_prems   : cterm -> cterm list
berghofe@10414
    18
  val strip_imp_concl   : cterm -> cterm
wenzelm@8328
    19
  val cprems_of         : thm -> cterm list
berghofe@15797
    20
  val cterm_fun         : (term -> term) -> (cterm -> cterm)
berghofe@15797
    21
  val ctyp_fun          : (typ -> typ) -> (ctyp -> ctyp)
wenzelm@8328
    22
  val read_insts        :
wenzelm@4285
    23
          Sign.sg -> (indexname -> typ option) * (indexname -> sort option)
wenzelm@4285
    24
                  -> (indexname -> typ option) * (indexname -> sort option)
berghofe@15442
    25
                  -> string list -> (indexname * string) list
berghofe@15797
    26
                  -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@4285
    27
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
wenzelm@7636
    28
  val strip_shyps_warning : thm -> thm
wenzelm@8328
    29
  val forall_intr_list  : cterm list -> thm -> thm
wenzelm@8328
    30
  val forall_intr_frees : thm -> thm
wenzelm@8328
    31
  val forall_intr_vars  : thm -> thm
wenzelm@8328
    32
  val forall_elim_list  : cterm list -> thm -> thm
wenzelm@8328
    33
  val forall_elim_var   : int -> thm -> thm
wenzelm@8328
    34
  val forall_elim_vars  : int -> thm -> thm
wenzelm@12725
    35
  val gen_all           : thm -> thm
wenzelm@8328
    36
  val freeze_thaw       : thm -> thm * (thm -> thm)
paulson@15495
    37
  val freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
wenzelm@8328
    38
  val implies_elim_list : thm -> thm list -> thm
wenzelm@8328
    39
  val implies_intr_list : cterm list -> thm -> thm
paulson@8129
    40
  val instantiate       :
berghofe@15797
    41
    (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@8328
    42
  val zero_var_indexes  : thm -> thm
wenzelm@8328
    43
  val standard          : thm -> thm
berghofe@11512
    44
  val standard'         : thm -> thm
paulson@4610
    45
  val rotate_prems      : int -> thm -> thm
oheimb@11163
    46
  val rearrange_prems   : int list -> thm -> thm
wenzelm@8328
    47
  val assume_ax         : theory -> string -> thm
wenzelm@8328
    48
  val RSN               : thm * (int * thm) -> thm
wenzelm@8328
    49
  val RS                : thm * thm -> thm
wenzelm@8328
    50
  val RLN               : thm list * (int * thm list) -> thm list
wenzelm@8328
    51
  val RL                : thm list * thm list -> thm list
wenzelm@8328
    52
  val MRS               : thm list * thm -> thm
wenzelm@8328
    53
  val MRL               : thm list list * thm list -> thm list
wenzelm@9288
    54
  val OF                : thm * thm list -> thm
wenzelm@8328
    55
  val compose           : thm * int * thm -> thm list
wenzelm@8328
    56
  val COMP              : thm * thm -> thm
clasohm@0
    57
  val read_instantiate_sg: Sign.sg -> (string*string)list -> thm -> thm
wenzelm@8328
    58
  val read_instantiate  : (string*string)list -> thm -> thm
wenzelm@8328
    59
  val cterm_instantiate : (cterm*cterm)list -> thm -> thm
wenzelm@13105
    60
  val eq_thm_sg         : thm * thm -> bool
wenzelm@13105
    61
  val eq_thm_prop	: thm * thm -> bool
wenzelm@8328
    62
  val weak_eq_thm       : thm * thm -> bool
wenzelm@8328
    63
  val size_of_thm       : thm -> int
wenzelm@8328
    64
  val reflexive_thm     : thm
wenzelm@8328
    65
  val symmetric_thm     : thm
wenzelm@8328
    66
  val transitive_thm    : thm
nipkow@4679
    67
  val symmetric_fun     : thm -> thm
berghofe@11512
    68
  val extensional       : thm -> thm
berghofe@10414
    69
  val imp_cong          : thm
berghofe@10414
    70
  val swap_prems_eq     : thm
wenzelm@8328
    71
  val equal_abs_elim    : cterm  -> thm -> thm
wenzelm@4285
    72
  val equal_abs_elim_list: cterm list -> thm -> thm
wenzelm@8328
    73
  val asm_rl            : thm
wenzelm@8328
    74
  val cut_rl            : thm
wenzelm@8328
    75
  val revcut_rl         : thm
wenzelm@8328
    76
  val thin_rl           : thm
wenzelm@4285
    77
  val triv_forall_equality: thm
nipkow@1756
    78
  val swap_prems_rl     : thm
wenzelm@4285
    79
  val equal_intr_rule   : thm
wenzelm@13368
    80
  val equal_elim_rule1  : thm
paulson@8550
    81
  val inst              : string -> string -> thm -> thm
wenzelm@8328
    82
  val instantiate'      : ctyp option list -> cterm option list -> thm -> thm
wenzelm@8328
    83
  val incr_indexes_wrt  : int list -> ctyp list -> cterm list -> thm list -> thm -> thm
wenzelm@5903
    84
end;
wenzelm@5903
    85
wenzelm@5903
    86
signature DRULE =
wenzelm@5903
    87
sig
wenzelm@5903
    88
  include BASIC_DRULE
berghofe@12908
    89
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    90
  val strip_type: ctyp -> ctyp list * ctyp
wenzelm@15669
    91
  val add_used: thm -> string list -> string list
wenzelm@11975
    92
  val rule_attribute: ('a -> thm -> thm) -> 'a attribute
wenzelm@11975
    93
  val tag_rule: tag -> thm -> thm
wenzelm@11975
    94
  val untag_rule: string -> thm -> thm
wenzelm@11975
    95
  val tag: tag -> 'a attribute
wenzelm@11975
    96
  val untag: string -> 'a attribute
wenzelm@11975
    97
  val get_kind: thm -> string
wenzelm@11975
    98
  val kind: string -> 'a attribute
wenzelm@11975
    99
  val theoremK: string
wenzelm@11975
   100
  val lemmaK: string
wenzelm@11975
   101
  val corollaryK: string
wenzelm@11975
   102
  val internalK: string
wenzelm@11975
   103
  val kind_internal: 'a attribute
wenzelm@11975
   104
  val has_internal: tag list -> bool
wenzelm@11975
   105
  val impose_hyps: cterm list -> thm -> thm
wenzelm@13389
   106
  val satisfy_hyps: thm list -> thm -> thm
wenzelm@11975
   107
  val close_derivation: thm -> thm
wenzelm@12005
   108
  val local_standard: thm -> thm
wenzelm@11975
   109
  val compose_single: thm * int * thm -> thm
wenzelm@12373
   110
  val add_rule: thm -> thm list -> thm list
wenzelm@12373
   111
  val del_rule: thm -> thm list -> thm list
wenzelm@11975
   112
  val add_rules: thm list -> thm list -> thm list
wenzelm@11975
   113
  val del_rules: thm list -> thm list -> thm list
wenzelm@11975
   114
  val merge_rules: thm list * thm list -> thm list
skalberg@15001
   115
  val imp_cong'         : thm -> thm -> thm
skalberg@15001
   116
  val beta_eta_conversion: cterm -> thm
skalberg@15001
   117
  val goals_conv        : (int -> bool) -> (cterm -> thm) -> cterm -> thm
skalberg@15001
   118
  val forall_conv       : (cterm -> thm) -> cterm -> thm
skalberg@15001
   119
  val fconv_rule        : (cterm -> thm) -> thm -> thm
wenzelm@11975
   120
  val norm_hhf_eq: thm
wenzelm@12800
   121
  val is_norm_hhf: term -> bool
wenzelm@12800
   122
  val norm_hhf: Sign.sg -> term -> term
wenzelm@11975
   123
  val triv_goal: thm
wenzelm@11975
   124
  val rev_triv_goal: thm
wenzelm@11815
   125
  val implies_intr_goals: cterm list -> thm -> thm
wenzelm@11975
   126
  val freeze_all: thm -> thm
wenzelm@11975
   127
  val mk_triv_goal: cterm -> thm
wenzelm@11975
   128
  val tvars_of_terms: term list -> (indexname * sort) list
wenzelm@11975
   129
  val vars_of_terms: term list -> (indexname * typ) list
wenzelm@11975
   130
  val tvars_of: thm -> (indexname * sort) list
wenzelm@11975
   131
  val vars_of: thm -> (indexname * typ) list
berghofe@14081
   132
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   133
  val rename_bvars': string option list -> thm -> thm
wenzelm@11975
   134
  val unvarifyT: thm -> thm
wenzelm@11975
   135
  val unvarify: thm -> thm
berghofe@15797
   136
  val tvars_intr_list: string list -> thm -> thm * (string * (indexname * sort)) list
wenzelm@12297
   137
  val remdups_rl: thm
wenzelm@11975
   138
  val conj_intr: thm -> thm -> thm
wenzelm@11975
   139
  val conj_intr_list: thm list -> thm
wenzelm@11975
   140
  val conj_elim: thm -> thm * thm
wenzelm@11975
   141
  val conj_elim_list: thm -> thm list
wenzelm@12135
   142
  val conj_elim_precise: int -> thm -> thm list
wenzelm@12135
   143
  val conj_intr_thm: thm
berghofe@13325
   144
  val abs_def: thm -> thm
berghofe@15797
   145
  val read_instantiate_sg': Sign.sg -> (indexname * string) list -> thm -> thm
berghofe@15797
   146
  val read_instantiate': (indexname * string) list -> thm -> thm
wenzelm@3766
   147
end;
clasohm@0
   148
wenzelm@5903
   149
structure Drule: DRULE =
clasohm@0
   150
struct
clasohm@0
   151
wenzelm@3991
   152
lcp@708
   153
(** some cterm->cterm operations: much faster than calling cterm_of! **)
lcp@708
   154
paulson@2004
   155
(** SAME NAMES as in structure Logic: use compound identifiers! **)
paulson@2004
   156
clasohm@1703
   157
(*dest_implies for cterms. Note T=prop below*)
paulson@2004
   158
fun dest_implies ct =
wenzelm@8328
   159
    case term_of ct of
wenzelm@8328
   160
        (Const("==>", _) $ _ $ _) =>
wenzelm@10767
   161
            let val (ct1,ct2) = Thm.dest_comb ct
wenzelm@10767
   162
            in  (#2 (Thm.dest_comb ct1), ct2)  end
paulson@2004
   163
      | _ => raise TERM ("dest_implies", [term_of ct]) ;
clasohm@1703
   164
berghofe@10414
   165
fun dest_equals ct =
berghofe@10414
   166
    case term_of ct of
berghofe@10414
   167
        (Const("==", _) $ _ $ _) =>
wenzelm@10767
   168
            let val (ct1,ct2) = Thm.dest_comb ct
wenzelm@10767
   169
            in  (#2 (Thm.dest_comb ct1), ct2)  end
berghofe@10414
   170
      | _ => raise TERM ("dest_equals", [term_of ct]) ;
berghofe@10414
   171
clasohm@1703
   172
lcp@708
   173
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   174
fun strip_imp_prems ct =
paulson@2004
   175
    let val (cA,cB) = dest_implies ct
paulson@2004
   176
    in  cA :: strip_imp_prems cB  end
lcp@708
   177
    handle TERM _ => [];
lcp@708
   178
paulson@2004
   179
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   180
fun strip_imp_concl ct =
wenzelm@8328
   181
    case term_of ct of (Const("==>", _) $ _ $ _) =>
wenzelm@10767
   182
        strip_imp_concl (#2 (Thm.dest_comb ct))
paulson@2004
   183
  | _ => ct;
paulson@2004
   184
lcp@708
   185
(*The premises of a theorem, as a cterm list*)
berghofe@13659
   186
val cprems_of = strip_imp_prems o cprop_of;
lcp@708
   187
berghofe@15797
   188
fun cterm_fun f ct =
berghofe@15797
   189
  let val {t, sign, ...} = Thm.rep_cterm ct
berghofe@15797
   190
  in Thm.cterm_of sign (f t) end;
berghofe@15797
   191
berghofe@15797
   192
fun ctyp_fun f cT =
berghofe@15797
   193
  let val {T, sign, ...} = Thm.rep_ctyp cT
berghofe@15797
   194
  in Thm.ctyp_of sign (f T) end;
berghofe@15797
   195
paulson@9547
   196
val proto_sign = Theory.sign_of ProtoPure.thy;
paulson@9547
   197
paulson@9547
   198
val implies = cterm_of proto_sign Term.implies;
paulson@9547
   199
paulson@9547
   200
(*cterm version of mk_implies*)
wenzelm@10767
   201
fun mk_implies(A,B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   202
paulson@9547
   203
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   204
fun list_implies([], B) = B
paulson@9547
   205
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   206
berghofe@12908
   207
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
berghofe@12908
   208
fun strip_comb ct = 
berghofe@12908
   209
  let
berghofe@12908
   210
    fun stripc (p as (ct, cts)) =
berghofe@12908
   211
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   212
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   213
  in stripc (ct, []) end;
berghofe@12908
   214
berghofe@15262
   215
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   216
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   217
    Type ("fun", _) =>
berghofe@15262
   218
      let
berghofe@15262
   219
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   220
        val (cTs, cT') = strip_type cT2
berghofe@15262
   221
      in (cT1 :: cTs, cT') end
berghofe@15262
   222
  | _ => ([], cT));
berghofe@15262
   223
lcp@708
   224
lcp@229
   225
(** reading of instantiations **)
lcp@229
   226
lcp@229
   227
fun absent ixn =
lcp@229
   228
  error("No such variable in term: " ^ Syntax.string_of_vname ixn);
lcp@229
   229
lcp@229
   230
fun inst_failure ixn =
lcp@229
   231
  error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
lcp@229
   232
nipkow@4281
   233
fun read_insts sign (rtypes,rsorts) (types,sorts) used insts =
wenzelm@10403
   234
let
berghofe@15442
   235
    fun is_tv ((a, _), _) =
berghofe@15442
   236
      (case Symbol.explode a of "'" :: _ => true | _ => false);
skalberg@15570
   237
    val (tvs, vs) = List.partition is_tv insts;
berghofe@15797
   238
    fun sort_of ixn = case rsorts ixn of SOME S => S | NONE => absent ixn;
berghofe@15442
   239
    fun readT (ixn, st) =
berghofe@15797
   240
        let val S = sort_of ixn;
nipkow@4281
   241
            val T = Sign.read_typ (sign,sorts) st;
wenzelm@10403
   242
        in if Sign.typ_instance sign (T, TVar(ixn,S)) then (ixn,T)
nipkow@4281
   243
           else inst_failure ixn
nipkow@4281
   244
        end
nipkow@4281
   245
    val tye = map readT tvs;
nipkow@4281
   246
    fun mkty(ixn,st) = (case rtypes ixn of
skalberg@15531
   247
                          SOME T => (ixn,(st,typ_subst_TVars tye T))
skalberg@15531
   248
                        | NONE => absent ixn);
nipkow@4281
   249
    val ixnsTs = map mkty vs;
nipkow@4281
   250
    val ixns = map fst ixnsTs
nipkow@4281
   251
    and sTs  = map snd ixnsTs
nipkow@4281
   252
    val (cts,tye2) = read_def_cterms(sign,types,sorts) used false sTs;
nipkow@4281
   253
    fun mkcVar(ixn,T) =
nipkow@4281
   254
        let val U = typ_subst_TVars tye2 T
nipkow@4281
   255
        in cterm_of sign (Var(ixn,U)) end
nipkow@4281
   256
    val ixnTs = ListPair.zip(ixns, map snd sTs)
berghofe@15797
   257
in (map (fn (ixn, T) => (ctyp_of sign (TVar (ixn, sort_of ixn)),
berghofe@15797
   258
      ctyp_of sign T)) (tye2 @ tye),
nipkow@4281
   259
    ListPair.zip(map mkcVar ixnTs,cts))
nipkow@4281
   260
end;
lcp@229
   261
lcp@229
   262
wenzelm@252
   263
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   264
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   265
     type variables) when reading another term.
clasohm@0
   266
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   267
***)
clasohm@0
   268
clasohm@0
   269
fun types_sorts thm =
wenzelm@15669
   270
    let val {prop, hyps, tpairs, ...} = Thm.rep_thm thm;
wenzelm@15669
   271
        (* bogus term! *)
wenzelm@15669
   272
        val big = list_comb (list_comb (prop, hyps), Thm.terms_of_tpairs tpairs);
wenzelm@252
   273
        val vars = map dest_Var (term_vars big);
wenzelm@252
   274
        val frees = map dest_Free (term_frees big);
wenzelm@252
   275
        val tvars = term_tvars big;
wenzelm@252
   276
        val tfrees = term_tfrees big;
wenzelm@252
   277
        fun typ(a,i) = if i<0 then assoc(frees,a) else assoc(vars,(a,i));
wenzelm@252
   278
        fun sort(a,i) = if i<0 then assoc(tfrees,a) else assoc(tvars,(a,i));
clasohm@0
   279
    in (typ,sort) end;
clasohm@0
   280
wenzelm@15669
   281
fun add_used thm used =
wenzelm@15669
   282
  let val {prop, hyps, tpairs, ...} = Thm.rep_thm thm in
wenzelm@15669
   283
    add_term_tvarnames (prop, used)
wenzelm@15669
   284
    |> fold (curry add_term_tvarnames) hyps
wenzelm@15669
   285
    |> fold (curry add_term_tvarnames) (Thm.terms_of_tpairs tpairs)
wenzelm@15669
   286
  end;
wenzelm@15669
   287
wenzelm@7636
   288
wenzelm@9455
   289
wenzelm@9455
   290
(** basic attributes **)
wenzelm@9455
   291
wenzelm@9455
   292
(* dependent rules *)
wenzelm@9455
   293
wenzelm@9455
   294
fun rule_attribute f (x, thm) = (x, (f x thm));
wenzelm@9455
   295
wenzelm@9455
   296
wenzelm@9455
   297
(* add / delete tags *)
wenzelm@9455
   298
wenzelm@9455
   299
fun map_tags f thm =
wenzelm@9455
   300
  Thm.put_name_tags (Thm.name_of_thm thm, f (#2 (Thm.get_name_tags thm))) thm;
wenzelm@9455
   301
wenzelm@9455
   302
fun tag_rule tg = map_tags (fn tgs => if tg mem tgs then tgs else tgs @ [tg]);
wenzelm@9455
   303
fun untag_rule s = map_tags (filter_out (equal s o #1));
wenzelm@9455
   304
wenzelm@9455
   305
fun tag tg x = rule_attribute (K (tag_rule tg)) x;
wenzelm@9455
   306
fun untag s x = rule_attribute (K (untag_rule s)) x;
wenzelm@9455
   307
wenzelm@9455
   308
fun simple_tag name x = tag (name, []) x;
wenzelm@9455
   309
wenzelm@11741
   310
wenzelm@11741
   311
(* theorem kinds *)
wenzelm@11741
   312
wenzelm@11741
   313
val theoremK = "theorem";
wenzelm@11741
   314
val lemmaK = "lemma";
wenzelm@11741
   315
val corollaryK = "corollary";
wenzelm@11741
   316
val internalK = "internal";
wenzelm@9455
   317
wenzelm@11741
   318
fun get_kind thm =
wenzelm@11741
   319
  (case Library.assoc (#2 (Thm.get_name_tags thm), "kind") of
skalberg@15531
   320
    SOME (k :: _) => k
wenzelm@11741
   321
  | _ => "unknown");
wenzelm@11741
   322
wenzelm@11741
   323
fun kind_rule k = tag_rule ("kind", [k]) o untag_rule "kind";
wenzelm@12710
   324
fun kind k x = if k = "" then x else rule_attribute (K (kind_rule k)) x;
wenzelm@11741
   325
fun kind_internal x = kind internalK x;
wenzelm@11741
   326
fun has_internal tags = exists (equal internalK o fst) tags;
wenzelm@9455
   327
wenzelm@9455
   328
wenzelm@9455
   329
clasohm@0
   330
(** Standardization of rules **)
clasohm@0
   331
wenzelm@7636
   332
(*Strip extraneous shyps as far as possible*)
wenzelm@7636
   333
fun strip_shyps_warning thm =
wenzelm@7636
   334
  let
wenzelm@14824
   335
    val str_of_sort = Pretty.str_of o Sign.pretty_sort (Thm.sign_of_thm thm);
wenzelm@7636
   336
    val thm' = Thm.strip_shyps thm;
wenzelm@7636
   337
    val xshyps = Thm.extra_shyps thm';
wenzelm@7636
   338
  in
wenzelm@7636
   339
    if null xshyps then ()
wenzelm@7636
   340
    else warning ("Pending sort hypotheses: " ^ commas (map str_of_sort xshyps));
wenzelm@7636
   341
    thm'
wenzelm@7636
   342
  end;
wenzelm@7636
   343
clasohm@0
   344
(*Generalization over a list of variables, IGNORING bad ones*)
clasohm@0
   345
fun forall_intr_list [] th = th
clasohm@0
   346
  | forall_intr_list (y::ys) th =
wenzelm@252
   347
        let val gth = forall_intr_list ys th
wenzelm@252
   348
        in  forall_intr y gth   handle THM _ =>  gth  end;
clasohm@0
   349
clasohm@0
   350
(*Generalization over all suitable Free variables*)
clasohm@0
   351
fun forall_intr_frees th =
clasohm@0
   352
    let val {prop,sign,...} = rep_thm th
clasohm@0
   353
    in  forall_intr_list
wenzelm@4440
   354
         (map (cterm_of sign) (sort (make_ord atless) (term_frees prop)))
clasohm@0
   355
         th
clasohm@0
   356
    end;
clasohm@0
   357
wenzelm@7898
   358
val forall_elim_var = PureThy.forall_elim_var;
wenzelm@7898
   359
val forall_elim_vars = PureThy.forall_elim_vars;
clasohm@0
   360
wenzelm@12725
   361
fun gen_all thm =
wenzelm@12719
   362
  let
wenzelm@12719
   363
    val {sign, prop, maxidx, ...} = Thm.rep_thm thm;
wenzelm@12719
   364
    fun elim (th, (x, T)) = Thm.forall_elim (Thm.cterm_of sign (Var ((x, maxidx + 1), T))) th;
wenzelm@12719
   365
    val vs = Term.strip_all_vars prop;
skalberg@15570
   366
  in Library.foldl elim (thm, Term.variantlist (map #1 vs, []) ~~ map #2 vs) end;
wenzelm@9554
   367
clasohm@0
   368
(*Specialization over a list of cterms*)
skalberg@15574
   369
fun forall_elim_list cts th = foldr (uncurry forall_elim) th (rev cts);
clasohm@0
   370
wenzelm@11815
   371
(* maps A1,...,An |- B   to   [| A1;...;An |] ==> B  *)
skalberg@15574
   372
fun implies_intr_list cAs th = foldr (uncurry implies_intr) th cAs;
clasohm@0
   373
clasohm@0
   374
(* maps [| A1;...;An |] ==> B and [A1,...,An]   to   B *)
skalberg@15570
   375
fun implies_elim_list impth ths = Library.foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   376
wenzelm@11960
   377
(* maps |- B to A1,...,An |- B *)
wenzelm@11960
   378
fun impose_hyps chyps th =
wenzelm@12092
   379
  let val chyps' = gen_rems (op aconv o apfst Thm.term_of) (chyps, #hyps (Thm.rep_thm th))
wenzelm@12092
   380
  in implies_elim_list (implies_intr_list chyps' th) (map Thm.assume chyps') end;
wenzelm@11960
   381
wenzelm@13389
   382
(* maps A1,...,An and A1,...,An |- B to |- B *)
wenzelm@13389
   383
fun satisfy_hyps ths th =
wenzelm@13389
   384
  implies_elim_list (implies_intr_list (map (#prop o Thm.crep_thm) ths) th) ths;
wenzelm@13389
   385
clasohm@0
   386
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@252
   387
fun zero_var_indexes th =
dixon@15545
   388
    let val {prop,sign,tpairs,...} = rep_thm th;
dixon@15545
   389
        val (tpair_l, tpair_r) = Library.split_list tpairs;
skalberg@15574
   390
        val vars = foldr add_term_vars 
skalberg@15574
   391
                         (foldr add_term_vars (term_vars prop) tpair_l) tpair_r;
skalberg@15570
   392
        val bs = Library.foldl add_new_id ([], map (fn Var((a,_),_)=>a) vars)
dixon@15545
   393
        val inrs = 
skalberg@15574
   394
            foldr add_term_tvars 
skalberg@15574
   395
                  (foldr add_term_tvars (term_tvars prop) tpair_l) tpair_r;
skalberg@15570
   396
        val nms' = rev(Library.foldl add_new_id ([], map (#1 o #1) inrs));
berghofe@15797
   397
        val tye = ListPair.map (fn ((v, rs), a) => (TVar (v, rs), TVar ((a, 0), rs)))
wenzelm@8328
   398
                     (inrs, nms')
berghofe@15797
   399
        val ctye = map (pairself (ctyp_of sign)) tye;
wenzelm@252
   400
        fun varpairs([],[]) = []
wenzelm@252
   401
          | varpairs((var as Var(v,T)) :: vars, b::bs) =
berghofe@15797
   402
                let val T' = typ_subst_atomic tye T
wenzelm@252
   403
                in (cterm_of sign (Var(v,T')),
wenzelm@252
   404
                    cterm_of sign (Var((b,0),T'))) :: varpairs(vars,bs)
wenzelm@252
   405
                end
wenzelm@252
   406
          | varpairs _ = raise TERM("varpairs", []);
paulson@8129
   407
    in Thm.instantiate (ctye, varpairs(vars,rev bs)) th end;
clasohm@0
   408
clasohm@0
   409
paulson@14394
   410
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   411
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   412
paulson@14394
   413
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   414
  This step can lose information.*)
paulson@14387
   415
fun flexflex_unique th =
paulson@14387
   416
    case Seq.chop (2, flexflex_rule th) of
paulson@14387
   417
      ([th],_) => th
paulson@14387
   418
    | ([],_)   => raise THM("flexflex_unique: impossible constraints", 0, [th])
paulson@14387
   419
    |      _   => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
paulson@14387
   420
wenzelm@10515
   421
fun close_derivation thm =
wenzelm@10515
   422
  if Thm.get_name_tags thm = ("", []) then Thm.name_thm ("", thm)
wenzelm@10515
   423
  else thm;
wenzelm@10515
   424
berghofe@11512
   425
fun standard' th =
wenzelm@10515
   426
  let val {maxidx,...} = rep_thm th in
wenzelm@10515
   427
    th
berghofe@14391
   428
    |> implies_intr_hyps
wenzelm@10515
   429
    |> forall_intr_frees |> forall_elim_vars (maxidx + 1)
wenzelm@10515
   430
    |> strip_shyps_warning
berghofe@11512
   431
    |> zero_var_indexes |> Thm.varifyT |> Thm.compress
wenzelm@1218
   432
  end;
wenzelm@1218
   433
berghofe@14391
   434
val standard = close_derivation o standard' o flexflex_unique;
berghofe@11512
   435
wenzelm@12005
   436
fun local_standard th =
wenzelm@12221
   437
  th |> strip_shyps |> zero_var_indexes
wenzelm@12005
   438
  |> Thm.compress |> close_derivation;
wenzelm@12005
   439
clasohm@0
   440
wenzelm@8328
   441
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   442
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   443
  Similar code in type/freeze_thaw*)
paulson@15495
   444
paulson@15495
   445
fun freeze_thaw_robust th =
paulson@15495
   446
 let val fth = freezeT th
paulson@15495
   447
     val {prop, tpairs, sign, ...} = rep_thm fth
paulson@15495
   448
 in
skalberg@15574
   449
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@15495
   450
       [] => (fth, fn i => fn x => x)   (*No vars: nothing to do!*)
paulson@15495
   451
     | vars =>
paulson@15495
   452
         let fun newName (Var(ix,_), pairs) =
paulson@15495
   453
                   let val v = gensym (string_of_indexname ix)
paulson@15495
   454
                   in  ((ix,v)::pairs)  end;
skalberg@15574
   455
             val alist = foldr newName [] vars
paulson@15495
   456
             fun mk_inst (Var(v,T)) =
paulson@15495
   457
                 (cterm_of sign (Var(v,T)),
skalberg@15570
   458
                  cterm_of sign (Free(valOf (assoc(alist,v)), T)))
paulson@15495
   459
             val insts = map mk_inst vars
paulson@15495
   460
             fun thaw i th' = (*i is non-negative increment for Var indexes*)
paulson@15495
   461
                 th' |> forall_intr_list (map #2 insts)
paulson@15495
   462
                     |> forall_elim_list (map (Thm.cterm_incr_indexes i o #1) insts)
paulson@15495
   463
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@15495
   464
 end;
paulson@15495
   465
paulson@15495
   466
(*Basic version of the function above. No option to rename Vars apart in thaw.
paulson@15495
   467
  The Frees created from Vars have nice names.*)
paulson@4610
   468
fun freeze_thaw th =
paulson@7248
   469
 let val fth = freezeT th
berghofe@13659
   470
     val {prop, tpairs, sign, ...} = rep_thm fth
paulson@7248
   471
 in
skalberg@15574
   472
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@7248
   473
       [] => (fth, fn x => x)
paulson@7248
   474
     | vars =>
wenzelm@8328
   475
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@8328
   476
                   let val v = variant used (string_of_indexname ix)
wenzelm@8328
   477
                   in  ((ix,v)::pairs, v::used)  end;
skalberg@15574
   478
             val (alist, _) = foldr newName ([], Library.foldr add_term_names
skalberg@15574
   479
               (prop :: Thm.terms_of_tpairs tpairs, [])) vars
wenzelm@8328
   480
             fun mk_inst (Var(v,T)) =
wenzelm@8328
   481
                 (cterm_of sign (Var(v,T)),
skalberg@15570
   482
                  cterm_of sign (Free(valOf (assoc(alist,v)), T)))
wenzelm@8328
   483
             val insts = map mk_inst vars
wenzelm@8328
   484
             fun thaw th' =
wenzelm@8328
   485
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   486
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   487
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   488
 end;
paulson@4610
   489
paulson@7248
   490
(*Rotates a rule's premises to the left by k*)
paulson@7248
   491
val rotate_prems = permute_prems 0;
paulson@4610
   492
oheimb@11163
   493
(* permute prems, where the i-th position in the argument list (counting from 0)
oheimb@11163
   494
   gives the position within the original thm to be transferred to position i.
oheimb@11163
   495
   Any remaining trailing positions are left unchanged. *)
oheimb@11163
   496
val rearrange_prems = let
oheimb@11163
   497
  fun rearr new []      thm = thm
wenzelm@11815
   498
  |   rearr new (p::ps) thm = rearr (new+1)
oheimb@11163
   499
     (map (fn q => if new<=q andalso q<p then q+1 else q) ps)
oheimb@11163
   500
     (permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
oheimb@11163
   501
  in rearr 0 end;
paulson@4610
   502
wenzelm@252
   503
(*Assume a new formula, read following the same conventions as axioms.
clasohm@0
   504
  Generalizes over Free variables,
clasohm@0
   505
  creates the assumption, and then strips quantifiers.
clasohm@0
   506
  Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
wenzelm@252
   507
             [ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ]    *)
clasohm@0
   508
fun assume_ax thy sP =
wenzelm@6390
   509
    let val sign = Theory.sign_of thy
paulson@4610
   510
        val prop = Logic.close_form (term_of (read_cterm sign (sP, propT)))
lcp@229
   511
    in forall_elim_vars 0 (assume (cterm_of sign prop))  end;
clasohm@0
   512
wenzelm@252
   513
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   514
fun tha RSN (i,thb) =
wenzelm@4270
   515
  case Seq.chop (2, biresolution false [(false,tha)] i thb) of
clasohm@0
   516
      ([th],_) => th
clasohm@0
   517
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   518
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   519
clasohm@0
   520
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   521
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   522
clasohm@0
   523
(*For joining lists of rules*)
wenzelm@252
   524
fun thas RLN (i,thbs) =
clasohm@0
   525
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   526
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
paulson@2672
   527
  in  List.concat (map resb thbs)  end;
clasohm@0
   528
clasohm@0
   529
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   530
lcp@11
   531
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   532
  makes proof trees*)
wenzelm@252
   533
fun rls MRS bottom_rl =
lcp@11
   534
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   535
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   536
  in  rs_aux 1 rls  end;
lcp@11
   537
lcp@11
   538
(*As above, but for rule lists*)
wenzelm@252
   539
fun rlss MRL bottom_rls =
lcp@11
   540
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   541
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   542
  in  rs_aux 1 rlss  end;
lcp@11
   543
wenzelm@9288
   544
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   545
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   546
wenzelm@252
   547
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   548
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   549
  ALWAYS deletes premise i *)
wenzelm@252
   550
fun compose(tha,i,thb) =
wenzelm@4270
   551
    Seq.list_of (bicompose false (false,tha,0) i thb);
clasohm@0
   552
wenzelm@6946
   553
fun compose_single (tha,i,thb) =
wenzelm@6946
   554
  (case compose (tha,i,thb) of
wenzelm@6946
   555
    [th] => th
wenzelm@6946
   556
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]));
wenzelm@6946
   557
clasohm@0
   558
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   559
fun tha COMP thb =
clasohm@0
   560
    case compose(tha,1,thb) of
wenzelm@252
   561
        [th] => th
clasohm@0
   562
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   563
wenzelm@13105
   564
wenzelm@4016
   565
(** theorem equality **)
clasohm@0
   566
paulson@13650
   567
(*True if the two theorems have the same signature.*)
wenzelm@13105
   568
val eq_thm_sg = Sign.eq_sg o pairself Thm.sign_of_thm;
paulson@13650
   569
paulson@13650
   570
(*True if the two theorems have the same prop field, ignoring hyps, der, etc.*)
wenzelm@13105
   571
val eq_thm_prop = op aconv o pairself Thm.prop_of;
clasohm@0
   572
clasohm@0
   573
(*Useful "distance" function for BEST_FIRST*)
wenzelm@12800
   574
val size_of_thm = size_of_term o prop_of;
clasohm@0
   575
wenzelm@9829
   576
(*maintain lists of theorems --- preserving canonical order*)
wenzelm@13105
   577
fun del_rules rs rules = Library.gen_rems eq_thm_prop (rules, rs);
wenzelm@9862
   578
fun add_rules rs rules = rs @ del_rules rs rules;
wenzelm@12373
   579
val del_rule = del_rules o single;
wenzelm@12373
   580
val add_rule = add_rules o single;
wenzelm@13105
   581
fun merge_rules (rules1, rules2) = gen_merge_lists' eq_thm_prop rules1 rules2;
wenzelm@9829
   582
lcp@1194
   583
(** Mark Staples's weaker version of eq_thm: ignores variable renaming and
lcp@1194
   584
    (some) type variable renaming **)
lcp@1194
   585
lcp@1194
   586
 (* Can't use term_vars, because it sorts the resulting list of variable names.
lcp@1194
   587
    We instead need the unique list noramlised by the order of appearance
lcp@1194
   588
    in the term. *)
lcp@1194
   589
fun term_vars' (t as Var(v,T)) = [t]
lcp@1194
   590
  | term_vars' (Abs(_,_,b)) = term_vars' b
lcp@1194
   591
  | term_vars' (f$a) = (term_vars' f) @ (term_vars' a)
lcp@1194
   592
  | term_vars' _ = [];
lcp@1194
   593
lcp@1194
   594
fun forall_intr_vars th =
lcp@1194
   595
  let val {prop,sign,...} = rep_thm th;
lcp@1194
   596
      val vars = distinct (term_vars' prop);
lcp@1194
   597
  in forall_intr_list (map (cterm_of sign) vars) th end;
lcp@1194
   598
wenzelm@13105
   599
val weak_eq_thm = Thm.eq_thm o pairself (forall_intr_vars o freezeT);
lcp@1194
   600
lcp@1194
   601
clasohm@0
   602
(*** Meta-Rewriting Rules ***)
clasohm@0
   603
paulson@4610
   604
fun read_prop s = read_cterm proto_sign (s, propT);
paulson@4610
   605
wenzelm@9455
   606
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
wenzelm@9455
   607
fun store_standard_thm name thm = store_thm name (standard thm);
wenzelm@12135
   608
fun store_thm_open name thm = hd (PureThy.smart_store_thms_open (name, [thm]));
wenzelm@12135
   609
fun store_standard_thm_open name thm = store_thm_open name (standard' thm);
wenzelm@4016
   610
clasohm@0
   611
val reflexive_thm =
wenzelm@14854
   612
  let val cx = cterm_of proto_sign (Var(("x",0),TVar(("'a",0),[])))
wenzelm@12135
   613
  in store_standard_thm_open "reflexive" (Thm.reflexive cx) end;
clasohm@0
   614
clasohm@0
   615
val symmetric_thm =
wenzelm@14854
   616
  let val xy = read_prop "x == y"
wenzelm@12135
   617
  in store_standard_thm_open "symmetric" (Thm.implies_intr_hyps (Thm.symmetric (Thm.assume xy))) end;
clasohm@0
   618
clasohm@0
   619
val transitive_thm =
wenzelm@14854
   620
  let val xy = read_prop "x == y"
wenzelm@14854
   621
      val yz = read_prop "y == z"
clasohm@0
   622
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
wenzelm@12135
   623
  in store_standard_thm_open "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
clasohm@0
   624
nipkow@4679
   625
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   626
berghofe@11512
   627
fun extensional eq =
berghofe@11512
   628
  let val eq' =
berghofe@11512
   629
    abstract_rule "x" (snd (Thm.dest_comb (fst (dest_equals (cprop_of eq))))) eq
berghofe@11512
   630
  in equal_elim (eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   631
berghofe@10414
   632
val imp_cong =
berghofe@10414
   633
  let
berghofe@10414
   634
    val ABC = read_prop "PROP A ==> PROP B == PROP C"
berghofe@10414
   635
    val AB = read_prop "PROP A ==> PROP B"
berghofe@10414
   636
    val AC = read_prop "PROP A ==> PROP C"
berghofe@10414
   637
    val A = read_prop "PROP A"
berghofe@10414
   638
  in
wenzelm@12135
   639
    store_standard_thm_open "imp_cong" (implies_intr ABC (equal_intr
berghofe@10414
   640
      (implies_intr AB (implies_intr A
berghofe@10414
   641
        (equal_elim (implies_elim (assume ABC) (assume A))
berghofe@10414
   642
          (implies_elim (assume AB) (assume A)))))
berghofe@10414
   643
      (implies_intr AC (implies_intr A
berghofe@10414
   644
        (equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
berghofe@10414
   645
          (implies_elim (assume AC) (assume A)))))))
berghofe@10414
   646
  end;
berghofe@10414
   647
berghofe@10414
   648
val swap_prems_eq =
berghofe@10414
   649
  let
berghofe@10414
   650
    val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
berghofe@10414
   651
    val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
berghofe@10414
   652
    val A = read_prop "PROP A"
berghofe@10414
   653
    val B = read_prop "PROP B"
berghofe@10414
   654
  in
wenzelm@12135
   655
    store_standard_thm_open "swap_prems_eq" (equal_intr
berghofe@10414
   656
      (implies_intr ABC (implies_intr B (implies_intr A
berghofe@10414
   657
        (implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
berghofe@10414
   658
      (implies_intr BAC (implies_intr A (implies_intr B
berghofe@10414
   659
        (implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
berghofe@10414
   660
  end;
lcp@229
   661
skalberg@15001
   662
val imp_cong' = combination o combination (reflexive implies)
clasohm@0
   663
berghofe@13325
   664
fun abs_def thm =
berghofe@13325
   665
  let
berghofe@13325
   666
    val (_, cvs) = strip_comb (fst (dest_equals (cprop_of thm)));
skalberg@15574
   667
    val thm' = foldr (fn (ct, thm) => Thm.abstract_rule
berghofe@13325
   668
      (case term_of ct of Var ((a, _), _) => a | Free (a, _) => a | _ => "x")
skalberg@15574
   669
        ct thm) thm cvs
berghofe@13325
   670
  in transitive
berghofe@13325
   671
    (symmetric (eta_conversion (fst (dest_equals (cprop_of thm'))))) thm'
berghofe@13325
   672
  end;
berghofe@13325
   673
clasohm@0
   674
skalberg@15001
   675
local
skalberg@15001
   676
  val dest_eq = dest_equals o cprop_of
skalberg@15001
   677
  val rhs_of = snd o dest_eq
skalberg@15001
   678
in
skalberg@15001
   679
fun beta_eta_conversion t =
skalberg@15001
   680
  let val thm = beta_conversion true t
skalberg@15001
   681
  in transitive thm (eta_conversion (rhs_of thm)) end
skalberg@15001
   682
end;
skalberg@15001
   683
skalberg@15001
   684
(*In [A1,...,An]==>B, rewrite the selected A's only -- for rewrite_goals_tac*)
skalberg@15001
   685
fun goals_conv pred cv =
skalberg@15001
   686
  let fun gconv i ct =
skalberg@15001
   687
        let val (A,B) = dest_implies ct
skalberg@15001
   688
        in imp_cong' (if pred i then cv A else reflexive A) (gconv (i+1) B) end
skalberg@15001
   689
        handle TERM _ => reflexive ct
skalberg@15001
   690
  in gconv 1 end
skalberg@15001
   691
skalberg@15001
   692
(* Rewrite A in !!x1,...,xn. A *)
skalberg@15001
   693
fun forall_conv cv ct =
skalberg@15001
   694
  let val p as (ct1, ct2) = Thm.dest_comb ct
skalberg@15001
   695
  in (case pairself term_of p of
skalberg@15001
   696
      (Const ("all", _), Abs (s, _, _)) =>
skalberg@15531
   697
         let val (v, ct') = Thm.dest_abs (SOME "@") ct2;
skalberg@15001
   698
         in Thm.combination (Thm.reflexive ct1)
skalberg@15001
   699
           (Thm.abstract_rule s v (forall_conv cv ct'))
skalberg@15001
   700
         end
skalberg@15001
   701
    | _ => cv ct)
skalberg@15001
   702
  end handle TERM _ => cv ct;
skalberg@15001
   703
skalberg@15001
   704
(*Use a conversion to transform a theorem*)
skalberg@15001
   705
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
skalberg@15001
   706
wenzelm@15669
   707
(*** Some useful meta-theorems ***)
clasohm@0
   708
clasohm@0
   709
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@12135
   710
val asm_rl = store_standard_thm_open "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
wenzelm@7380
   711
val _ = store_thm "_" asm_rl;
clasohm@0
   712
clasohm@0
   713
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   714
val cut_rl =
wenzelm@12135
   715
  store_standard_thm_open "cut_rl"
wenzelm@9455
   716
    (Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
clasohm@0
   717
wenzelm@252
   718
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   719
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   720
val revcut_rl =
paulson@4610
   721
  let val V = read_prop "PROP V"
paulson@4610
   722
      and VW = read_prop "PROP V ==> PROP W";
wenzelm@4016
   723
  in
wenzelm@12135
   724
    store_standard_thm_open "revcut_rl"
wenzelm@4016
   725
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   726
  end;
clasohm@0
   727
lcp@668
   728
(*for deleting an unwanted assumption*)
lcp@668
   729
val thin_rl =
paulson@4610
   730
  let val V = read_prop "PROP V"
paulson@4610
   731
      and W = read_prop "PROP W";
wenzelm@12135
   732
  in store_standard_thm_open "thin_rl" (implies_intr V (implies_intr W (assume W))) end;
lcp@668
   733
clasohm@0
   734
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   735
val triv_forall_equality =
paulson@4610
   736
  let val V  = read_prop "PROP V"
paulson@4610
   737
      and QV = read_prop "!!x::'a. PROP V"
wenzelm@8086
   738
      and x  = read_cterm proto_sign ("x", TypeInfer.logicT);
wenzelm@4016
   739
  in
wenzelm@12135
   740
    store_standard_thm_open "triv_forall_equality"
berghofe@11512
   741
      (equal_intr (implies_intr QV (forall_elim x (assume QV)))
berghofe@11512
   742
        (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   743
  end;
clasohm@0
   744
nipkow@1756
   745
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   746
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   747
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   748
*)
nipkow@1756
   749
val swap_prems_rl =
paulson@4610
   750
  let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
nipkow@1756
   751
      val major = assume cmajor;
paulson@4610
   752
      val cminor1 = read_prop "PROP PhiA";
nipkow@1756
   753
      val minor1 = assume cminor1;
paulson@4610
   754
      val cminor2 = read_prop "PROP PhiB";
nipkow@1756
   755
      val minor2 = assume cminor2;
wenzelm@12135
   756
  in store_standard_thm_open "swap_prems_rl"
nipkow@1756
   757
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   758
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   759
  end;
nipkow@1756
   760
nipkow@3653
   761
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   762
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   763
   Introduction rule for == as a meta-theorem.
nipkow@3653
   764
*)
nipkow@3653
   765
val equal_intr_rule =
paulson@4610
   766
  let val PQ = read_prop "PROP phi ==> PROP psi"
paulson@4610
   767
      and QP = read_prop "PROP psi ==> PROP phi"
wenzelm@4016
   768
  in
wenzelm@12135
   769
    store_standard_thm_open "equal_intr_rule"
wenzelm@4016
   770
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   771
  end;
nipkow@3653
   772
wenzelm@13368
   773
(* [| PROP ?phi == PROP ?psi; PROP ?phi |] ==> PROP ?psi *)
wenzelm@13368
   774
val equal_elim_rule1 =
wenzelm@13368
   775
  let val eq = read_prop "PROP phi == PROP psi"
wenzelm@13368
   776
      and P = read_prop "PROP phi"
wenzelm@13368
   777
  in store_standard_thm_open "equal_elim_rule1"
wenzelm@13368
   778
    (Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   779
  end;
wenzelm@4285
   780
wenzelm@12297
   781
(* "[| PROP ?phi; PROP ?phi; PROP ?psi |] ==> PROP ?psi" *)
wenzelm@12297
   782
wenzelm@12297
   783
val remdups_rl =
wenzelm@12297
   784
  let val P = read_prop "PROP phi" and Q = read_prop "PROP psi";
wenzelm@12297
   785
  in store_standard_thm_open "remdups_rl" (implies_intr_list [P, P, Q] (Thm.assume Q)) end;
wenzelm@12297
   786
wenzelm@12297
   787
wenzelm@9554
   788
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
wenzelm@12297
   789
  Rewrite rule for HHF normalization.*)
wenzelm@9554
   790
wenzelm@9554
   791
val norm_hhf_eq =
wenzelm@9554
   792
  let
wenzelm@9554
   793
    val cert = Thm.cterm_of proto_sign;
wenzelm@14854
   794
    val aT = TFree ("'a", []);
wenzelm@9554
   795
    val all = Term.all aT;
wenzelm@9554
   796
    val x = Free ("x", aT);
wenzelm@9554
   797
    val phi = Free ("phi", propT);
wenzelm@9554
   798
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   799
wenzelm@9554
   800
    val cx = cert x;
wenzelm@9554
   801
    val cphi = cert phi;
wenzelm@9554
   802
    val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@9554
   803
    val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   804
  in
wenzelm@9554
   805
    Thm.equal_intr
wenzelm@9554
   806
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   807
        |> Thm.forall_elim cx
wenzelm@9554
   808
        |> Thm.implies_intr cphi
wenzelm@9554
   809
        |> Thm.forall_intr cx
wenzelm@9554
   810
        |> Thm.implies_intr lhs)
wenzelm@9554
   811
      (Thm.implies_elim
wenzelm@9554
   812
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   813
        |> Thm.forall_intr cx
wenzelm@9554
   814
        |> Thm.implies_intr cphi
wenzelm@9554
   815
        |> Thm.implies_intr rhs)
wenzelm@12135
   816
    |> store_standard_thm_open "norm_hhf_eq"
wenzelm@9554
   817
  end;
wenzelm@9554
   818
wenzelm@12800
   819
fun is_norm_hhf tm =
wenzelm@12800
   820
  let
wenzelm@12800
   821
    fun is_norm (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
wenzelm@12800
   822
      | is_norm (t $ u) = is_norm t andalso is_norm u
wenzelm@12800
   823
      | is_norm (Abs (_, _, t)) = is_norm t
wenzelm@12800
   824
      | is_norm _ = true;
wenzelm@12800
   825
  in is_norm (Pattern.beta_eta_contract tm) end;
wenzelm@12800
   826
wenzelm@12800
   827
fun norm_hhf sg t =
wenzelm@12800
   828
  if is_norm_hhf t then t
berghofe@13198
   829
  else Pattern.rewrite_term (Sign.tsig_of sg) [Logic.dest_equals (prop_of norm_hhf_eq)] [] t;
wenzelm@12800
   830
wenzelm@9554
   831
paulson@8129
   832
(*** Instantiate theorem th, reading instantiations under signature sg ****)
paulson@8129
   833
paulson@8129
   834
(*Version that normalizes the result: Thm.instantiate no longer does that*)
paulson@8129
   835
fun instantiate instpair th = Thm.instantiate instpair th  COMP   asm_rl;
paulson@8129
   836
berghofe@15797
   837
fun read_instantiate_sg' sg sinsts th =
paulson@8129
   838
    let val ts = types_sorts th;
wenzelm@15669
   839
        val used = add_used th [];
berghofe@15797
   840
    in  instantiate (read_insts sg ts ts used sinsts) th  end;
berghofe@15797
   841
berghofe@15797
   842
fun read_instantiate_sg sg sinsts th =
berghofe@15797
   843
  read_instantiate_sg' sg (map (apfst Syntax.indexname) sinsts) th;
paulson@8129
   844
paulson@8129
   845
(*Instantiate theorem th, reading instantiations under theory of th*)
paulson@8129
   846
fun read_instantiate sinsts th =
wenzelm@14643
   847
    read_instantiate_sg (Thm.sign_of_thm th) sinsts th;
paulson@8129
   848
berghofe@15797
   849
fun read_instantiate' sinsts th =
berghofe@15797
   850
    read_instantiate_sg' (Thm.sign_of_thm th) sinsts th;
berghofe@15797
   851
paulson@8129
   852
paulson@8129
   853
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   854
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   855
local
paulson@8129
   856
  fun add_types ((ct,cu), (sign,tye,maxidx)) =
paulson@8129
   857
    let val {sign=signt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
paulson@8129
   858
        and {sign=signu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
paulson@8129
   859
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
paulson@8129
   860
        val sign' = Sign.merge(sign, Sign.merge(signt, signu))
wenzelm@14643
   861
        val (tye',maxi') = Type.unify (Sign.tsig_of sign') (tye, maxi) (T, U)
wenzelm@10403
   862
          handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
paulson@8129
   863
    in  (sign', tye', maxi')  end;
paulson@8129
   864
in
paulson@8129
   865
fun cterm_instantiate ctpairs0 th =
skalberg@15574
   866
  let val (sign,tye,_) = foldr add_types (Thm.sign_of_thm th, Vartab.empty, 0) ctpairs0
paulson@14340
   867
      fun instT(ct,cu) = 
berghofe@15797
   868
        let val inst = cterm_of sign o Envir.subst_TVars tye o term_of
paulson@14340
   869
        in (inst ct, inst cu) end
berghofe@15797
   870
      fun ctyp2 (ixn, (S, T)) = (ctyp_of sign (TVar (ixn, S)), ctyp_of sign T)
berghofe@8406
   871
  in  instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   872
  handle TERM _ =>
paulson@8129
   873
           raise THM("cterm_instantiate: incompatible signatures",0,[th])
paulson@8129
   874
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   875
end;
paulson@8129
   876
paulson@8129
   877
paulson@8129
   878
(** Derived rules mainly for METAHYPS **)
paulson@8129
   879
paulson@8129
   880
(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
paulson@8129
   881
fun equal_abs_elim ca eqth =
paulson@8129
   882
  let val {sign=signa, t=a, ...} = rep_cterm ca
paulson@8129
   883
      and combth = combination eqth (reflexive ca)
paulson@8129
   884
      val {sign,prop,...} = rep_thm eqth
paulson@8129
   885
      val (abst,absu) = Logic.dest_equals prop
paulson@8129
   886
      val cterm = cterm_of (Sign.merge (sign,signa))
berghofe@10414
   887
  in  transitive (symmetric (beta_conversion false (cterm (abst$a))))
berghofe@10414
   888
           (transitive combth (beta_conversion false (cterm (absu$a))))
paulson@8129
   889
  end
paulson@8129
   890
  handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
paulson@8129
   891
paulson@8129
   892
(*Calling equal_abs_elim with multiple terms*)
skalberg@15574
   893
fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) th (rev cts);
paulson@8129
   894
paulson@8129
   895
wenzelm@10667
   896
(*** Goal (PROP A) <==> PROP A ***)
wenzelm@4789
   897
wenzelm@4789
   898
local
wenzelm@10667
   899
  val cert = Thm.cterm_of proto_sign;
wenzelm@10667
   900
  val A = Free ("A", propT);
wenzelm@10667
   901
  val G = Logic.mk_goal A;
wenzelm@4789
   902
  val (G_def, _) = freeze_thaw ProtoPure.Goal_def;
wenzelm@4789
   903
in
wenzelm@11741
   904
  val triv_goal = store_thm "triv_goal" (kind_rule internalK (standard
wenzelm@10667
   905
      (Thm.equal_elim (Thm.symmetric G_def) (Thm.assume (cert A)))));
wenzelm@11741
   906
  val rev_triv_goal = store_thm "rev_triv_goal" (kind_rule internalK (standard
wenzelm@10667
   907
      (Thm.equal_elim G_def (Thm.assume (cert G)))));
wenzelm@4789
   908
end;
wenzelm@4789
   909
wenzelm@9460
   910
val mk_cgoal = Thm.capply (Thm.cterm_of proto_sign Logic.goal_const);
wenzelm@6995
   911
fun assume_goal ct = Thm.assume (mk_cgoal ct) RS rev_triv_goal;
wenzelm@6995
   912
wenzelm@11815
   913
fun implies_intr_goals cprops thm =
wenzelm@11815
   914
  implies_elim_list (implies_intr_list cprops thm) (map assume_goal cprops)
wenzelm@11815
   915
  |> implies_intr_list (map mk_cgoal cprops);
wenzelm@11815
   916
wenzelm@4789
   917
wenzelm@4285
   918
wenzelm@5688
   919
(** variations on instantiate **)
wenzelm@4285
   920
paulson@8550
   921
(*shorthand for instantiating just one variable in the current theory*)
paulson@8550
   922
fun inst x t = read_instantiate_sg (sign_of (the_context())) [(x,t)];
paulson@8550
   923
paulson@8550
   924
wenzelm@12495
   925
(* collect vars in left-to-right order *)
wenzelm@4285
   926
skalberg@15570
   927
fun tvars_of_terms ts = rev (Library.foldl Term.add_tvars ([], ts));
skalberg@15570
   928
fun vars_of_terms ts = rev (Library.foldl Term.add_vars ([], ts));
wenzelm@5903
   929
wenzelm@12800
   930
fun tvars_of thm = tvars_of_terms [prop_of thm];
wenzelm@12800
   931
fun vars_of thm = vars_of_terms [prop_of thm];
wenzelm@4285
   932
wenzelm@4285
   933
wenzelm@4285
   934
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   935
wenzelm@4285
   936
fun instantiate' cTs cts thm =
wenzelm@4285
   937
  let
wenzelm@4285
   938
    fun err msg =
wenzelm@4285
   939
      raise TYPE ("instantiate': " ^ msg,
skalberg@15570
   940
        List.mapPartial (Option.map Thm.typ_of) cTs,
skalberg@15570
   941
        List.mapPartial (Option.map Thm.term_of) cts);
wenzelm@4285
   942
wenzelm@4285
   943
    fun inst_of (v, ct) =
wenzelm@4285
   944
      (Thm.cterm_of (#sign (Thm.rep_cterm ct)) (Var v), ct)
wenzelm@4285
   945
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
   946
berghofe@15797
   947
    fun tyinst_of (v, cT) =
berghofe@15797
   948
      (Thm.ctyp_of (#sign (Thm.rep_ctyp cT)) (TVar v), cT)
berghofe@15797
   949
        handle TYPE (msg, _, _) => err msg;
berghofe@15797
   950
wenzelm@4285
   951
    fun zip_vars _ [] = []
skalberg@15531
   952
      | zip_vars (_ :: vs) (NONE :: opt_ts) = zip_vars vs opt_ts
skalberg@15531
   953
      | zip_vars (v :: vs) (SOME t :: opt_ts) = (v, t) :: zip_vars vs opt_ts
wenzelm@4285
   954
      | zip_vars [] _ = err "more instantiations than variables in thm";
wenzelm@4285
   955
wenzelm@4285
   956
    (*instantiate types first!*)
wenzelm@4285
   957
    val thm' =
wenzelm@4285
   958
      if forall is_none cTs then thm
berghofe@15797
   959
      else Thm.instantiate (map tyinst_of (zip_vars (tvars_of thm) cTs), []) thm;
wenzelm@4285
   960
    in
wenzelm@4285
   961
      if forall is_none cts then thm'
wenzelm@4285
   962
      else Thm.instantiate ([], map inst_of (zip_vars (vars_of thm') cts)) thm'
wenzelm@4285
   963
    end;
wenzelm@4285
   964
wenzelm@4285
   965
berghofe@14081
   966
berghofe@14081
   967
(** renaming of bound variables **)
berghofe@14081
   968
berghofe@14081
   969
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
   970
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
   971
berghofe@14081
   972
fun rename_bvars [] thm = thm
berghofe@14081
   973
  | rename_bvars vs thm =
berghofe@14081
   974
    let
berghofe@14081
   975
      val {sign, prop, ...} = rep_thm thm;
skalberg@15570
   976
      fun ren (Abs (x, T, t)) = Abs (getOpt (assoc (vs, x), x), T, ren t)
berghofe@14081
   977
        | ren (t $ u) = ren t $ ren u
berghofe@14081
   978
        | ren t = t;
berghofe@14081
   979
    in equal_elim (reflexive (cterm_of sign (ren prop))) thm end;
berghofe@14081
   980
berghofe@14081
   981
berghofe@14081
   982
(* renaming in left-to-right order *)
berghofe@14081
   983
berghofe@14081
   984
fun rename_bvars' xs thm =
berghofe@14081
   985
  let
berghofe@14081
   986
    val {sign, prop, ...} = rep_thm thm;
berghofe@14081
   987
    fun rename [] t = ([], t)
berghofe@14081
   988
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
   989
          let val (xs', t') = rename xs t
skalberg@15570
   990
          in (xs', Abs (getOpt (x',x), T, t')) end
berghofe@14081
   991
      | rename xs (t $ u) =
berghofe@14081
   992
          let
berghofe@14081
   993
            val (xs', t') = rename xs t;
berghofe@14081
   994
            val (xs'', u') = rename xs' u
berghofe@14081
   995
          in (xs'', t' $ u') end
berghofe@14081
   996
      | rename xs t = (xs, t);
berghofe@14081
   997
  in case rename xs prop of
berghofe@14081
   998
      ([], prop') => equal_elim (reflexive (cterm_of sign prop')) thm
berghofe@14081
   999
    | _ => error "More names than abstractions in theorem"
berghofe@14081
  1000
  end;
berghofe@14081
  1001
berghofe@14081
  1002
berghofe@14081
  1003
wenzelm@5688
  1004
(* unvarify(T) *)
wenzelm@5688
  1005
wenzelm@5688
  1006
(*assume thm in standard form, i.e. no frees, 0 var indexes*)
wenzelm@5688
  1007
wenzelm@5688
  1008
fun unvarifyT thm =
wenzelm@5688
  1009
  let
wenzelm@5688
  1010
    val cT = Thm.ctyp_of (Thm.sign_of_thm thm);
skalberg@15531
  1011
    val tfrees = map (fn ((x, _), S) => SOME (cT (TFree (x, S)))) (tvars_of thm);
wenzelm@5688
  1012
  in instantiate' tfrees [] thm end;
wenzelm@5688
  1013
wenzelm@5688
  1014
fun unvarify raw_thm =
wenzelm@5688
  1015
  let
wenzelm@5688
  1016
    val thm = unvarifyT raw_thm;
wenzelm@5688
  1017
    val ct = Thm.cterm_of (Thm.sign_of_thm thm);
skalberg@15531
  1018
    val frees = map (fn ((x, _), T) => SOME (ct (Free (x, T)))) (vars_of thm);
wenzelm@5688
  1019
  in instantiate' [] frees thm end;
wenzelm@5688
  1020
wenzelm@5688
  1021
wenzelm@8605
  1022
(* tvars_intr_list *)
wenzelm@8605
  1023
wenzelm@8605
  1024
fun tfrees_of thm =
wenzelm@8605
  1025
  let val {hyps, prop, ...} = Thm.rep_thm thm
berghofe@15797
  1026
  in foldr Term.add_term_tfrees [] (prop :: hyps) end;
wenzelm@8605
  1027
wenzelm@8605
  1028
fun tvars_intr_list tfrees thm =
berghofe@15797
  1029
  apsnd (map (fn ((s, S), ixn) => (s, (ixn, S)))) (Thm.varifyT'
berghofe@15797
  1030
    (gen_rems (op = o apfst fst) (tfrees_of thm, tfrees)) thm);
wenzelm@8605
  1031
wenzelm@8605
  1032
wenzelm@6435
  1033
(* increment var indexes *)
wenzelm@6435
  1034
wenzelm@6435
  1035
fun incr_indexes_wrt is cTs cts thms =
wenzelm@6435
  1036
  let
wenzelm@6435
  1037
    val maxidx =
skalberg@15570
  1038
      Library.foldl Int.max (~1, is @
wenzelm@6435
  1039
        map (maxidx_of_typ o #T o Thm.rep_ctyp) cTs @
wenzelm@6435
  1040
        map (#maxidx o Thm.rep_cterm) cts @
wenzelm@6435
  1041
        map (#maxidx o Thm.rep_thm) thms);
berghofe@10414
  1042
  in Thm.incr_indexes (maxidx + 1) end;
wenzelm@6435
  1043
wenzelm@6435
  1044
wenzelm@8328
  1045
(* freeze_all *)
wenzelm@8328
  1046
wenzelm@8328
  1047
(*freeze all (T)Vars; assumes thm in standard form*)
wenzelm@8328
  1048
wenzelm@8328
  1049
fun freeze_all_TVars thm =
wenzelm@8328
  1050
  (case tvars_of thm of
wenzelm@8328
  1051
    [] => thm
wenzelm@8328
  1052
  | tvars =>
wenzelm@8328
  1053
      let val cert = Thm.ctyp_of (Thm.sign_of_thm thm)
skalberg@15531
  1054
      in instantiate' (map (fn ((x, _), S) => SOME (cert (TFree (x, S)))) tvars) [] thm end);
wenzelm@8328
  1055
wenzelm@8328
  1056
fun freeze_all_Vars thm =
wenzelm@8328
  1057
  (case vars_of thm of
wenzelm@8328
  1058
    [] => thm
wenzelm@8328
  1059
  | vars =>
wenzelm@8328
  1060
      let val cert = Thm.cterm_of (Thm.sign_of_thm thm)
skalberg@15531
  1061
      in instantiate' [] (map (fn ((x, _), T) => SOME (cert (Free (x, T)))) vars) thm end);
wenzelm@8328
  1062
wenzelm@8328
  1063
val freeze_all = freeze_all_Vars o freeze_all_TVars;
wenzelm@8328
  1064
wenzelm@8328
  1065
wenzelm@5688
  1066
(* mk_triv_goal *)
wenzelm@5688
  1067
wenzelm@5688
  1068
(*make an initial proof state, "PROP A ==> (PROP A)" *)
skalberg@15531
  1069
fun mk_triv_goal ct = instantiate' [] [SOME ct] triv_goal;
paulson@5311
  1070
wenzelm@11975
  1071
wenzelm@11975
  1072
wenzelm@11975
  1073
(** meta-level conjunction **)
wenzelm@11975
  1074
wenzelm@11975
  1075
local
wenzelm@11975
  1076
  val A = read_prop "PROP A";
wenzelm@11975
  1077
  val B = read_prop "PROP B";
wenzelm@11975
  1078
  val C = read_prop "PROP C";
wenzelm@11975
  1079
  val ABC = read_prop "PROP A ==> PROP B ==> PROP C";
wenzelm@11975
  1080
wenzelm@11975
  1081
  val proj1 =
wenzelm@11975
  1082
    forall_intr_list [A, B] (implies_intr_list [A, B] (Thm.assume A))
wenzelm@11975
  1083
    |> forall_elim_vars 0;
wenzelm@11975
  1084
wenzelm@11975
  1085
  val proj2 =
wenzelm@11975
  1086
    forall_intr_list [A, B] (implies_intr_list [A, B] (Thm.assume B))
wenzelm@11975
  1087
    |> forall_elim_vars 0;
wenzelm@11975
  1088
wenzelm@11975
  1089
  val conj_intr_rule =
wenzelm@11975
  1090
    forall_intr_list [A, B] (implies_intr_list [A, B]
wenzelm@11975
  1091
      (Thm.forall_intr C (Thm.implies_intr ABC
wenzelm@11975
  1092
        (implies_elim_list (Thm.assume ABC) [Thm.assume A, Thm.assume B]))))
wenzelm@11975
  1093
    |> forall_elim_vars 0;
wenzelm@11975
  1094
wenzelm@11975
  1095
  val incr = incr_indexes_wrt [] [] [];
wenzelm@11975
  1096
in
wenzelm@11975
  1097
wenzelm@11975
  1098
fun conj_intr tha thb = thb COMP (tha COMP incr [tha, thb] conj_intr_rule);
wenzelm@12756
  1099
wenzelm@12756
  1100
fun conj_intr_list [] = asm_rl
wenzelm@12756
  1101
  | conj_intr_list ths = foldr1 (uncurry conj_intr) ths;
wenzelm@11975
  1102
wenzelm@11975
  1103
fun conj_elim th =
wenzelm@11975
  1104
  let val th' = forall_elim_var (#maxidx (Thm.rep_thm th) + 1) th
wenzelm@11975
  1105
  in (incr [th'] proj1 COMP th', incr [th'] proj2 COMP th') end;
wenzelm@11975
  1106
wenzelm@11975
  1107
fun conj_elim_list th =
wenzelm@11975
  1108
  let val (th1, th2) = conj_elim th
wenzelm@11975
  1109
  in conj_elim_list th1 @ conj_elim_list th2 end handle THM _ => [th];
wenzelm@11975
  1110
wenzelm@12756
  1111
fun conj_elim_precise 0 _ = []
wenzelm@12756
  1112
  | conj_elim_precise 1 th = [th]
wenzelm@12135
  1113
  | conj_elim_precise n th =
wenzelm@12135
  1114
      let val (th1, th2) = conj_elim th
wenzelm@12135
  1115
      in th1 :: conj_elim_precise (n - 1) th2 end;
wenzelm@12135
  1116
wenzelm@12135
  1117
val conj_intr_thm = store_standard_thm_open "conjunctionI"
wenzelm@12135
  1118
  (implies_intr_list [A, B] (conj_intr (Thm.assume A) (Thm.assume B)));
wenzelm@12135
  1119
clasohm@0
  1120
end;
wenzelm@252
  1121
wenzelm@11975
  1122
end;
wenzelm@5903
  1123
wenzelm@5903
  1124
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
  1125
open BasicDrule;